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Abstract—In this paper, the problem of function compu-
tation with privacy and secrecy constraints is considered. The
considered model consists of three legitimate nodes (i.e., two
transmitters Alice and Bob, and a fusion center which acts as
the receiver), who observe correlated sources and are connected
by noiseless public channels, and an eavesdropper Eve who has
full access to the public channels and also has its own source
observations. The fusion center would like to compute a function
of the distributed sources within a prefixed distortion level under
a certain distortion metric. To facilitate the function computation,
Alice and Bob will send messages to the fusion center. Different
from the existing setups in function computation, we assume
that there is a privacy constraint on the sources at Alice and
Bob. In particular, Alice and Bob would like to enable the fusion
center to compute the function but at same time they do not
want the fusion center to learn too much information about
the source observations. We introduce a quantity to precisely
measure the privacy leakage to the fusion center. In addition
to this privacy constraint, we also have a secrecy constraint to
Eve and use equivocation of sources to measure this quantity.
Under this model, we study tradeoffs among message rates,
private information leakage, equivocation and distortion. We
first consider a scenario involving only one transmitter, i.e., the
source at Bob is empty, and fully single-letter characterize the
corresponding regions. Then, we consider the more general case
and provide both outer and inner bounds on the corresponding
regions.

Index Terms—Function computation, privacy constraint, pub-
lic discussion, rate distortion, secrecy constraint.

I. INTRODUCTION

Recently, the problem of designing schemes to enable com-
munication parties to compute functions of distributed sources
has received significant attentions [3]–[19]. One straightfor-
ward scheme for function computation is to ask each informa-
tion source to send enough information (for example, using
schemes in distributed source coding [20]–[25]) so that the
function computing parties can first recover all sources and
then compute functions of interest using the recovered sources.
However, as shown in many of the existing works, full source
recovery is not necessary in many scenarios [13]–[18]. As the
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result, information sources can reduce their transmitted mes-
sage rates while still enabling the function computing parties to
compute functions of interest. This can significantly reduce the
resource (in terms of energy, spectrum, etc.) requirements and
hence is very appealing for resource-constrained applications
such as IoT where the goal of communication is decision
making (hence requires function computation) but not full
source recovery [26]–[29].

In the basic function computation setup considered in [13],
two terminals observe correlated sources and are allowed
to exchange messages, while only one of them is required
to compute a function of these distributed sources. [13]
investigates the minimum message rates so that the function
can be computed with a negligibly small error probability.
It characterizes the message rate region and further provides
an efficient method, by introducing conditional characteristic
graph, to characterize the optimal message rate for the case
where only one terminal is allowed to send messages. This
basic model is further extended to more complex scenarios in
many interesting recent papers [14]–[18]. In particular, [14]
studies the problem of two-terminal interactive distributed
source coding for function computations at both terminals.
In this model, these two terminals are allowed to exchange
t (a finite nonnegative integer) coded messages, and each
terminal needs to compute a function within a certain dis-
tortion level. [14] provides a single-letter characterization on
the corresponding message rate region. Properties of the limit
of the sum-rate-distortion function (i.e., the minimal value of
the sum of message rates) when t goes to infinity are further
investigated in [16]. Furthermore, [17] studies the message
rate region of function computation in a different setup. The
model considered in [17] consists of three terminals, two
of them (transmitters) are allowed to send messages to the
third terminal who needs to compute a function, but there
is no interaction between the two transmitters. This model
is further discussed in [18] by allowing an additional one-
way discussion between the two transmitters. [19] further
generalizes this model to a more sophisticated scenario that
consists of more terminals over a rooted multi-level directed
tree. In this scenario, each terminal is allowed to transmit
messages to its parent terminal and the function is computed
at the root. [19] provides both outer and inner bounds on the
message rate region, which recover capacity regions of many
function computation setups.

In this paper, we consider privacy and secrecy issues arising
in the function computation setup. In the considered model,



two terminals, Alice and Bob, are connected to a fusion center,
and they observe correlated source sequences Xn

1 , X
n
2 , Y

n

respectively. The fusion center would like to compute a func-
tion of Xn

1 , X
n
2 , Y

n. To facilitate the function computation,
Alice and Bob will send messages M1 and M2 respectively to
the fusion center. Different from the setups in [13]–[16], we
assume that there is a privacy constraint on the sources at Alice
and Bob. In particular, these terminals would like to assist the
fusion center to compute the function but at same time do not
want the fusion center to learn too much information about
their source observations. We use 1

nI(Xn
1 , X

n
2 ;M1,M2|Y n)

as our privacy measure. As this quantity is the same as
1
n [H(Xn

1 , X
n
2 |Y n)−H(Xn

1 , X
n
2 |M1,M2, Y

n)], this quantity
measures additional information about the sources (Xn

1 , X
n
2 )

that the fusion center learns from the transmitted messages.
We would like to minimize this privacy leakage subject to the
constraint that the fusion center can still compute the function
of interest. In addition to this privacy constraint, we also have a
secrecy constraint. In particular, there is an additional terminal
Eve who observes Zn, which is correlated with the source
sequences, and we use equivocation of sources to measure
the secrecy leakage to Eve. We would like to maximize this
equivocation so that Eve’s uncertainty about the sources is
maximized.

For the function to be computed, we consider both lossless
and lossy cases. In the lossless case, the fusion center is
required to compute the function with a diminishingly small
error probability. In the lossy case, we allow the computed
function to be within a certain distortion level measured by a
given distortion metric. We would like to note that the lossless
case in our model is not merely a special case of the lossy
case when the distortion is zero. It will be clear in the sequel,
the lossless case in our model has a more stringent constraint
than just setting distortion as zero in the lossy case. Thus, it
deserves an independent study. We study the relationship of
message rates, the private information leakage to the fusion
center, the equivocation at Eve and the distortion.

To gain design insights, we first study an important special
case where there is only one transmitter (by setting X2 = ∅).
This case recovers the basic function computation problem
[13] but with additional privacy and secrecy considerations.
We fully characterize the regions of the involved parameters
for both the lossless and the lossy function computation
cases. The results demonstrate that there exist tradeoffs among
these parameters. For example, given the distortion level,
the message rate and privacy leakage can be simultaneously
optimized but the secrecy level of sources at Eve may not be
simultaneously maximized. In addition, we show that, even
though the lossless case has a more stringent constraint than
that of the lossy case with distortion being zero, the obtained
result for the lossless case is equivalent to that of the special
case of the lossy case. The results obtained in this part have
been presented in [1] and [2].

Using the understanding from the single transmitter case,
we then extend the study to the scenario with two transmitters.
We first derive both an outer bound and an inner bound on

the corresponding region for the lossless case. These outer
and inner bounds have the same form but with different range
for auxiliary random variables involved. The obtained results
recover many existing results [17], [30], and show that there
exist tradeoffs among different parameters involved in the
model. Furthermore, the techniques used in the lossless case
are generalized into the lossy case. We also provide both
an outer bound and an inner bound on the corresponding
region. Similar to the lossless case, the obtained outer and
inner bounds have the same form but with different range for
auxiliary random variables involved.

We now briefly review some interesting related works. In
[31], Neri studied an extension of Shanon’s secrecy system. In
the model considered in [31], the transmitter and the receiver,
each observing a component of two correlated sequences,
share a common secret key. There is also a wiretapper who has
a degraded side information. To enable the receiver to decode
the transmitter’s source sequence within a given distortion
level while keeping the equivocation of the source at the
wiretapper larger than a given value, the transmitter can send
a message to the receiver over a noisy channel and the wire-
tapper also observes a more noisy output. [31] characterizes
the achievable region of five related metrics including the
equivocation, the key rate, the distortion level, etc. Similar rate
distortion problems for secrecy systems with common secret
keys are further considered under different models [32], [33].
Related problems are also studied for scenarios without shared
secret keys [34]–[38]. For example, in [34], the transmitter has
two correlated source sequences, and it is allowed to send a
message as a function of these two sequences to the receiver
so that the receiver can decode one of the sequences within
a given distortion level while keeping the equivocation of
the other sequences at the receiver larger than a given value.
[34] investigates the relationship among the message rate, the
distortion level and the equivocation. A common theme in
these papers is that they study the relationship among different
parameters such as message rates, equivocation level of the
intended sources at the eavesdroppers, and the distortion level
between the decoded sequences and the intended sources, etc.
In this respect, our paper is related to these very interesting
papers. One pivotal difference between the setups in these
papers and the setup in our paper is that the decoder in our
setup is only interested in a function of the source sequence
(not the source sequence itself) and the distortion level in our
paper is measured on the intended function.

The remainder of this paper is organized as follows. In
Section II, we introduce the system model. In Section III, we
consider the special case where there is only one transmitter.
The scenario with two transmitters is analyzed in Section IV.
In Section V, we provide proofs of results presented in this
paper. In Section VI, we offer our concluding remarks.

II. SYSTEM MODEL

As illustrated in Fig. 1, in the considered model, two
legitimate terminals, Alice and Bob, are connected to the
fusion center via two public noiseless channels in the presence
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Fig. 1. System model: The fusion center would like to compute a function
f of (Xn

1 , X
n
2 , Y

n). Alice and Bob are connected to the fusion center via
public noiseless channels, which Eve has full access to.

of an eavesdropper Eve who has full access to the public
channels, and there is no link between Alice and Bob. Alice,
Bob, the fusion center and Eve observe n-length correlated
source sequences Xn

1 , X
n
2 , Y

n and Zn respectively. These
sequences are generated according to a given probability mass
function (PMF) PX1X2Y Z :

Pr{Xn
1 , X

n
2 , Y

n, Zn} =

n∏
i=1

PX1X2Y Z(X1i, X2i, Yi, Zi), (1)

where (X1, X2, Y, Z) take values from finite alphabets
(X1,X2,Y,Z) respectively.

The fusion center would like to compute a function
f(Xn

1 , X
n
2 , Y

n) that consists of component-wise functions of
{X1i, X2i, Yi}ni=1, and f(Xn

1 , X
n
2 , Y

n) can be written as

f(Xn
1 , X

n
2 , Y

n) := {f(X1i, X2i, Yi)}ni=1.

f(Xn
1 , X

n
2 , Y

n) is denoted by f in short and f(X1i, X2i, Yi) is
denoted by fi for i ∈ [1 : n]. Thus, we rewrite f(Xn

1 , X
n
2 , Y

n)
as f := fn.

Define M1 and M2 as (stochastic) functions of Xn
1 and Xn

2 ,
respectively. To facilitate the computation of f at the fusion
center, Alice will send M1 and Bob will send M2 to the fusion
center via the public channels. After receiving these messages,
the fusion center computes an estimated value f̂ of f , based
on M1,M2 and Y n.

In the considered model, Alice and Bob have privacy con-
straints in the sense that they would like to minimize privacy
leakage to the fusion center and Eve about their observations
while still enabling the fusion center to compute the function
of interest. We use 1

nI(Xn
1 , X

n
2 ;M1,M2|Y n) to measure ad-

ditional private information leakage about (Xn
1 , X

n
2 ) to the fu-

sion center. As I(Xn
1 , X

n
2 ;M1,M2|Y n) = H(Xn

1 , X
n
2 |Y n)−

H(Xn
1 , X

n
2 |M1,M2, Y

n), this quantity measures additional
information about (Xn

1 , X
n
2 ) that the fusion center learns from

(M1,M2), and hence is the privacy price we pay in order to
compute f . We use 1

nH(Xn
1 , X

n
2 |M1,M2, Z

n) to measure the
equivocation of (Xn

1 , X
n
2 ) at Eve.

Definition 1. Given an arbitrary random variable alphabet F
and its reconstruction alphabet F̂ , the distortion measure is a
mapping

d : F × F̂ → [0,∞),

and the distortion between given sequences fn and f̂n is
measured as

d(fn, f̂n) =

n∑
i=1

d(fi, f̂i).

Definition 2. Given a per-letter distortion measure mapping
d, a tuple (R1, R2, D,∆1,∆2) is said to be achievable if
∀ε > 0, there exists an n(ε) ∈ N and a sequence of
(n,R1, R2, D,∆1,∆2) codes such that ∀n > n(ε)

1

n
E[d(f , f̂)] ≤ D + ε, (2)

1

n
H(Mi) ≤ Ri + ε, i = 1, 2, (3)

1

n
I(Xn

1 , X
n
2 ;M1,M2|Y n) ≤ ∆1 + ε, (4)

1

n
H(Xn

1 , X
n
2 |M1,M2, Z

n) ≥ ∆2 − ε. (5)

Here, (2) indicates that the average distortion between the
estimated value f̂ and the true value f is less than a given
positive parameter D, (3) measures the transmitted message
rates at Alice and Bob respectively, (4) implies that the extra
privacy leakage of (Xn

1 , X
n
2 ) to the fusion center is less than

∆1, and (5) measures the joint equivocation of (Xn
1 , X2) at

Eve’s side.

Remark 1. As I(Xn
1 , X

n
2 ;M1,M2|Y n) = H(Xn

1 , X
n
2 |Y n)−

H(Xn
1 , X

n
2 |M1,M2, Y

n), the privacy constraint and the se-
crecy constraint have similar formulations. Another pos-
sible problem formulation is to change the secrecy con-
straint to the equivocation of the function at Eve, i.e.,
1
nH(f(Xn

1 , X
n
2 , Y

n)|M1,M2, Z
n) ≥ ∆2 − ε. However, it is

difficult to characterize the secrecy relationship between f and
(M1,M2, Z

n), as the secrecy of f also depends on its specific
formulation. It will be of interest to consider this alternative
formation in the future study.

In Definition 2, in the case when D = 0, we replace (2)
with the following condition:

Pr{f 6= f̂} ≤ ε, (6)

while keeping the inequalities (3)-(5) unchanged. For this
case, we rewrite the tuple (n,R1, R2, D = 0,∆1,∆2) as
(n,R1, R2,∆1,∆2) in short. Obviously, the constraint defined
by (6) is stricter than that defined by (2). We refer the case
when D = 0 with constraints defined by (3)-(6) as lossless
function computation, and the case with constraints defined
by (2)-(5) as lossy function computation. The lossless function
computation case can be viewed as a special case of the lossy
function computation case, but with a stricter constraint, thus
it deserves an independent investigation.

Definition 3. The set of all achievable tuple
(R1, R2, D,∆1,∆2) is defined as:

S := {(R1, R2, D,∆1,∆2) ∈ R5
+ :

(R1, R2, D,∆1,∆2) is achievable }.

Our goal is to characterize the region S.
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III. A SPECIAL CASE WITH X2 = ∅
In this section, we study a special case when X2 = ∅. In

this case, for presentation convenience, we denote X1 by X ,
and M1 by M . The model is shown in Fig. 2.

EveZn

M Fusion
CenterAlice

Xn Y n

f̂

Fig. 2. The case with X2 = ∅: The fusion center would like to compute
a value as a function of sequences Xn and Y n. Alice is connected to the
fusion center via a public noiseless channel, which Eve has full access to.

A. Lossless Function Computation

In this part, we study the lossless function computation
case. Before proceeding to the main results, we introduce the
following definition (similar to the definition introduced in [13,
Section V. B]) that will simplify the presentation of results in
the sequel.

Definition 4. A random variable U is said to be admissible
with respect to random variables X,Y and function f (we
may write U is admissible in short), if it satisfies

1) U → X → Y ;
2) U and Y determine f , i.e., H(f |U, Y ) = 0.

Furthermore, a sequence un is said to be an admissible
sequence with respect to xn and yn if ∀i ∈ [1 : n], (ui, yi)
determine f(xi, yi).

Here, condition 1) denotes that random variables U,X and
Y form a Markov chain in this order. Condition 2) is equivalent
to the condition that there exists a deterministic function g
such that g(U, Y ) = f(X,Y ),∀(X,Y ) with PXY (X,Y ) > 0,
according to [30, Chapter 2].

When Eve observes the public discussion, Eve can utilize
it along with Zn to infer the information about the sequence
Xn, thus, the equivocation of Xn at Eve reduces. We have
the following result.

Theorem 1. The achievable tuple set S for the case when Eve
has side information is given by

S =
{

(R,∆1,∆2) : R ≥ I(X;U)− I(Y ;U), (7)

∆1 ≥ I(X;U |Y ), (8)
∆2 ≤ H(X|U,Z) + [I(Y ;U |V )− I(Z;U |V )]

+
, (9)

for some admissible U and a r.v. V with

V → U → X → (Y,Z)
}
, (10)

where |U| ≤ |X |+ 2 and |V| ≤ (|X |+ 1)(|X |+ 2).

Proof: Please see Section V-A.
To facilitate the understanding, we illustrate the results in

Theorem 1 for the special case when Z = ∅ (i.e., Eve has no
side information), for which we have the following corollary.

Corollary 1. The achievable tuple set S in the case when
Z = ∅ is

S =
{

(R,∆1,∆2) : R ≥ I(X;U |Y ), (11)

∆1 ≥ I(X;U |Y ), (12)
and ∆2 ≤ H(X)− I(X;U |Y ), (13)

for someadmissible U w.r.t.X,Y and f
}
,(14)

where |U| ≤ |X |+ 2.

Intuitively, for the case when Z = ∅, to reduce the addi-
tional information leakage to the fusion center and to increase
the equivocation at Eve, Alice should reduce the information
of Xn contained in the public message. Obviously, the set
of all possible random variables U is not empty: X belongs
to this set. In addition, from Corollary 1, we can see that
(R,∆1,∆2) can be optimized simultaneously. In particular,
when R achieves its optimal value denoted by R∗, the values
of ∆1 and ∆2 can be R∗ and H(X)−R∗ respectively, which
are the corresponding optimal values. In other words, there
exists a U that achieves lower bounds on R and ∆1, and the
upper bound for ∆2, simultaneously. Set

U∗ = arg min
U is admissible

I(X;U |Y ), (15)

then the set S in Corollary 1 can be rewritten as

S =
{

(R,∆1,∆2) : R ≥ I(X;U∗|Y ),

∆1 ≥ I(X;U∗|Y ),

and ∆2 ≤ H(X)− I(X;U∗|Y )}.

In addition, given PMF PXY and function f(X,Y ), the
range of U can be written in an alternative manner by
introducing conditional characteristic graph as shown [13].
[13] focuses on characterizing the least message rate and does
not take ∆1 and ∆2 into consideration. As a special case when
we only care about R, the result in Corollary 1 is consistent
with the result obtained in [13]. We now consider a simple
example.
Example 1: for X,Y ∈ {1, 2, 3}, define

PXY (x, y) =

{
1
6 , if x 6= y
0, if x = y

and f(x, y) =

{
1, if x > y
0, if x < y

,

then, the optimal U∗ (by solving (15), or refer to [13]) is given
by

PU∗|X(0|1) = 1, PU∗|X(0|2) =
1

2
, PU∗|X(0|3) = 0, (16)

with u∗ ∈ {0, 1}. We can easily calculate that I(X;U∗|Y ) ≈
0.541 and H(X)−I(X;U∗|Y ) ≈ 1.044, thus the correspond-
ing achievable region for this example is given by

S =
{

(R,∆1,∆2) : R ≥ 0.541,

∆1 ≥ 0.541,

∆2 ≤ 1.044}.

For the case when Z 6= ∅, the existence of side-information
Zn provides more information to Eve about Xn. Thus, it is
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necessary to introduce an additional random variable V that
serves as stochastic encoding to confuse Eve. Compared with
the result in Corollary 1, there exists a tradeoff among the
tuple (R,∆1,∆2): in general, there does not exist an optimal
solution (U∗, V ∗) that minimizes R and ∆1, and maximizes
∆2 simultaneously.

The result in Theorem 1 can also be simplified if the source
random variables satisfy the Markov chain relationship X →
Y → Z.

Corollary 2. If X → Y → Z holds, the achievable tuple set
S is given by

S =
{

(R,∆1,∆2) : R ≥ I(X;U |Y ), (17)

∆1 ≥ I(X;U |Y ), (18)
∆2 ≤ H(X|Z)− I(X;U |Y ), (19)

for some admissible U
}
,

where |U| ≤ |X |+ 2.

Proof. For the convenience of notation, under the condition
that X → Y → Z holds, we denote the region stated in
Theorem 1 as Ŝ and the region in the corollary as S̃. On the
one hand, we have

H(X|Z)− I(X;U |Y )

= H(X|Z)− I(X;U |Y,Z)

= H(X|Z)− I(Y,X;U |Z) + I(U ;Y |Z)

= H(X)− I(X;Z)− I(X;U |Z) + I(U ;Y |Z)

= H(X)− I(X;U,Z) + I(U ;Y |Z)

= H(X|U,Z) + I(Y ;U)− I(Z;U). (20)

Using this equation and setting V = ∅ in (9), we have that (9)
is equivalent to (19), and we can obtain S̃ from Ŝ. Thus, we
have S̃ ⊆ Ŝ.

On the other hand, we can show that Ŝ ⊆ S̃. To-
wards this end, it suffices to show that H(X|U,Z) +
[I(Y ;U |V )− I(Z;U |V )]

+ ≤ H(X|U,Z) + I(Y ;U) −
I(Z;U), which is equivalent to

I(Y ;U |V )− I(Z;U |V ) ≤ I(Y ;U)− I(Z;U)

⇔ I(Y ;V ) ≥ I(Z;V ).

And that I(Y ;V ) ≥ I(Z;V ) is true due to the Markov chain
V → U → X → Y → Z. Hence, we have Ŝ = S̃, and this
completes the proof.

If the Markov chain X → Y → Z holds, then Y has more
information about X than Z has. Hence, if enough information
is hidden from the fusion center, then the equivocation on Eve
will also be maximized. Equivalently, similar to Corollary 1,
there is an optimal U achieving the minimal values for R,∆1

and the maximal value for ∆2 simultaneously.
Example 2: for X,Y ∈ {1, 2, 3} and Z ∈ {0, 1}, suppose
PXY and f(X,Y ) are the same as defined in Example 1, and
PZ|Y is defined as follows (X → Y → Z):

PZ|Y (0|1) =
1

2
, PZ|Y (0|2) =

1

3
, PZ|Y (0|3) =

2

3
,

then, the optimal U∗ will be the same as defined in (16), and
we can calculate that H(X|Z) ≈ 1.572. Thus, the achievable
region for (R,∆1,∆2) is given by

S =
{

(R,∆1,∆2) : R ≥ 0.541,

∆1 ≥ 0.541,

∆2 ≤ 1.031}.

B. Lossy Function Computation

In this section, we focus on the lossy function computation
case, i.e. D > 0. In this case, the fusion center is not required
to recover the value of function f exactly, it only needs to
compute f within a prefixed allowed distortion level for a given
distortion metric. This relaxed requirement allows us to reduce
the message rate and the privacy leakage.

Given a distortion measure mapping d on the alphabets of
f and its reconstruction, we have the following result.

Theorem 2. Given distortion measure mapping d, the achiev-
able tuple set S for the coding of lossy function computation
is given by

S =
{

(R,D,∆1,∆2) : R ≥ I(X;U)− I(Y ;U), (21)

D ≥ E[d(f(X,Y ), g(U, Y ))], (22)
∆1 ≥ I(X;U |Y ), (23)
∆2 ≤ H(X|U,Z) + [I(Y ;U |V )− I(Z;U |V )]

+
, (24)

for some function g and r.v. U, V with

V → U → X → (Y, Z)
}
, (25)

where |U| ≤ |X |+ 3 and |V| ≤ (|X |+ 1)(|X |+ 3).

Proof: Please see Section V-B.
We note that, although there is a function g in the descrip-

tion of the region, the form of g is implicitly determined by the
choice of U . In particular, for any PMF PXY ZUV and function
f , we can always find an optimal function g∗ as follows:

g∗(U, Y ) = arg min
g
E[d(f(X,Y ), g(U, Y ))].

Consider the case with hamming distance as an example. Here,
we take the function f as a variable (denoted by F ) and its
value as to realization (denoted by f ).

E[d(F, g(U, Y ))] =
∑
f,u,y

PFUY (f, u, y)d(f, g(u, y))

≥ 1−
∑
u,y

PFUY (f̂ , u, y),

where f̂ := arg max
f

PF |UY (f |u, y). Thus, ∀(u, y) ∈ U × Y ,

we can obtain the optimal function g as

g∗(u, y) := arg max
f

PF |UY (f |u, y). (26)

When PXY ZUV and function f are given, the PMF PFUY is
given and it is straightforward to find the solution to (26).

Note that, unlike the lossless case, the random variable
U here is not required to be admissible w.r.t (X,Y ) and f

5



anymore. As shown in [13], in the lossless case, there are
many scenarios where the fusion center needs to decode Xn

exactly so that it can compute f . However, when a certain
amount of distortion is allowed, there always exists random
variable U other than X , such that the decoder only needs to
decode the sequence Un. This sequence serves as distortion
mapping of Xn, which helps in increasing the equivocation
of Xn at Eve and reducing the privacy leakage to the fusion
center.

A special case of our setup is equivalent to the setup
considered in Theorem 3 of [37], and the obtained result
is consistent with [37, Theorem 3]. In particular, if we set
f(Xn, Y n) := Xn and consider the region of (R,D,∆2) only
in our setup, then it is equivalent to the setup considered in
Theorem 3 of [37]. We can easily verify that (21) is equivalent
to equation (7) of [37] and (22) is equivalent to equation (8)
of [37]. We only need to verify that (24) is equivalent to (9)
of [37]. To make it clearer, we restate (9) of [37] using the
corresponding notation in this paper:

∆2 ≤ H(X|U, Y ) + I(X;Y |V )− I(X;Z|V ).

It suffices to show that H(X|U, Y ) + I(X;Y |V ) −
I(X;Z|V ) = H(X|U,Z) + I(Y ;U |V ) − I(Z;U |V ), which
is true as we have

H(X|U, Y ) + I(X;Y |V )− I(X;Z|V )

= H(X|U,Z) + I(Y ;U |V )− I(Z;U |V )

⇔ H(X|U, Y )−H(Y |X,V ) +H(Z|X,V )

= H(X|U,Z)−H(Y |U, V ) +H(Z|U, V )

⇔ H(X|U, Y )−H(Y |X) +H(Z|X)

= H(X|U,Z)−H(Y |U) +H(Z|U)

⇔ H(X|U, Y )−H(X|U,Z)

= H(Y |X)−H(Y |U) +H(Z|U)−H(Z|X)

⇔ H(X|U, Y )−H(X|U,Z)

= −I(X;Y |U) + I(X;Z|U)

⇔ H(X|U, Y )−H(X|U,Z)

= H(X|U, Y )−H(X; |U,Z). (27)

Comparing the results in Theorems 1 and 2, we observe that
the region given in Theorem 2, when D = 0, is the same as
that in Theorem 1, even though the requirement in the lossless
function computation case is stricter than that in the lossy case,
i.e., (6) is stricter than that of setting D = 0 to (2). In addition,
similar to Corollary 2, we have the following corollary when
X → Y → Z holds in the lossy function computation case.

Corollary 3. If X → Y → Z holds, the achievable tuple set
S in the lossy function computation case is given by

S =
{

(R,D,∆1,∆2) : R ≥ I(X;U |Y ), (28)

D ≥ E[d(f(X,Y ), g(U, Y ))], (29)
∆1 ≥ I(X;U |Y ), (30)
∆2 ≤ H(X|Z)− I(X;U |Y ), (31)
for some function g and r.v. U with

U → X → Y → Z
}
, (32)

where |U| ≤ |X |+ 3.

The proof follows similar steps as that in the derivative of
Corollary 2, thus is omitted here. From (28) to (31), we can
see that there exists a trade-off among these parameters: for
given PXY Z , ∆2 linearly decreases as R (or ∆1) increases,
but D is not generally linear in it on the boundary. Thus, there
may not exist an optimal U∗ that achieves optimal values for
R,D,∆1 and ∆2 simultaneously. We now give an example to
illustrate the tradeoff.
Example 3: For X,Y, Z ∈ {0, 1}, suppose X → Y → Z,
PX(0) = 2

5 , PX(1) = 3
5 , PY |X and PZ|Y are :

PY |X =

[
4
5

1
5

1
3

2
3

]
, PZ|Y =

[
2
3

1
3

1
3

2
3

]
,

f(Xn, Y n) = Xn ⊕ Y n, and the distortion is measured by
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Fig. 3. Relationship between maximal message rate R and minimal computed
function distortion.

Hamming distance. Fig. 3 illustrates the relationship between
R and D. In this example, we only plot the relationship be-
tween R and D, as the values of ∆1 and ∆2 can be determined
by R. We obtain this figure by numerically computing (28)
and (29). The right-upper region is the achievable region for
(R,D): when R = 0 (i.e., no message transmitted from Alice),
the minimal distortion rate is 0.28; when R ≥ 0.80 (note that
H(X|Y ) = 0.81) the minimal distortion is close to 0.

Note that the minimum values of the private information
leakage rate and the message rate are always the same for the
single transmitter case. The reason is that, for any variable U
achieving the region boundary, there exists a coding scheme
so that the transmitted message M is a function of Xn, and it
is independent with Y n (so are the transmitted messages in the
coding schemes of our proofs). Thus, the private information
leakage rate is the same as the transmitter information rate.

IV. THE CASE WHEN X2 6= ∅
In this section, we study the case when X2 6= ∅. Despite

being much more complicated than the case when X2 = ∅,
the techniques developed in the previous section can be
generalized to this case.

We first consider the lossless function computation case, for
which we have both inner and outer bounds on the region of
achievable tuples as follows.
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Theorem 3. (Converse) For lossless function computation at
the fusion center, if the tuple (R1, R2,∆1,∆2) is achievable,
then there exist auxiliary random variables (U1, V1) and
(U2, V2) with |U1| ≤ |X1| + 4, |V1 ≤ (|X1| + 1)(|X1| +
4), |U2| ≤ |X2| + 4, and |V2| ≤ (|X2| + 1)(|X2| + 4), for
which V1 → U1 → X1 → (X2, Y, Z) and V2 → U2 → X2 →
(X1, Y, Z) form Markov chains in the indicated orders, and

R1 ≥ I(V1;X1|Y, V2) + I(U1;X1|Y, U2, V1)

−I(V1;V2|Y,X1)− I(U1;U2|X1, Y, V1), (33)
R2 ≥ I(V2;X2|Y, V1) + I(U2;X2|Y, U1, V2)

−I(V1;V2|Y,X2)− I(U1;U2|X2, Y, V2), (34)
R1 +R2 ≥ I(V1;X1|Y ) + I(V2;X2|Y, V1)

+I(U1;X1|Y, V1, V2) + I(U2;X2|Y,U1, V2), (35)
∆1 ≥ I(X1, X2;U1, U2|Y ), (36)
∆2≤H(X1, X2|U1, U2, Z)+

[
I(U1, U2;Y |V1, V2)

−I(U1, U2;Z|V1, V2)
]+
, (37)

H(f |U1, U2, Y ) = 0. (38)

(Achievability) Furthermore, for random variables
(U1, V1) and (U2, V2) satisfying PU1V1U2V2X1X2Y Z

= PX1X2Y ZPU1|X1
PV1|U1

PU2|X2
PV2|U2

and
H(f |U1, U2, Y ) = 0, then the tuple (R1, R2,∆1,∆2)
subject to (33)-(37) is achievable.

Proof: Please see Section V-C.
In general, the converse and the achievable bounds do not

match because the region of U1, V1 and U2, V2 defined by
V1 → U1 → X1 → (X2, Y, Z) and V2 → U2 → X2 →
(X1, Y, Z) in the converse bound is larger than that defined by
PU1V1U2V2X1X2Y Z = PX1X2Y ZPU1|X1

PV1|U1
PU2|X2

PV2|U2

in the achievability bound. Note that, the minus terms
on the right-hand sides of (33) and (34) are zero if
PU1V1U2V2X1X2Y Z = PX1X2Y ZPU1|X1

PV1|U1
PU2|X2

PV2|U2
,

since we have

(V1, U1)→ X1 → (Y,U2, V2),

(V2, U2)→ X2 → (Y, U1, V1),

in this case.
By setting V1 = V2 = ∅, we observe that the achievability

result of the message rate region defined by (33)-(35) and (38)
recovers the inner bound obtained in [17, Prop. 1]. In addition,
it is consistent with a special case of the result obtained in [19,
Theorem 2] when the rooted directed tree involves with only
three nodes: one root and two children.

Given PU1V1U2V2X1X2Y Z , the main idea of our achiev-
able scheme is that there exist auxiliary sequences Un1 , V

n
1

and Un2 , V
n
2 such that f(Xn

1 , X
n
2 , Y

n) = f̂(Un1 , U
n
2 , Y

n) if
(R1, R2,∆1,∆2) is achievable. Thus, the function f will be
correctly computed at the fusion center as long as it can
correctly decodes (Un1 , U

n
2 ), and (33)-(35) define the region of

(R1, R2), such that (Un1 , U
n
2 ) can be correctly decoded with

some scheme. And sequences V n1 , V n2 are used to increase the
equivocation of (Xn

1 , X
n
2 ) at Eve.

Under certain scenarios where we need to correctly decode
Xn

1 and Xn
2 , i.e., f is an invertible function with respect to

X1 and X2: U1 = X1, U2 = X2 [17], and when we only care
about the region of (R1, R2), we have the following corollary.

Corollary 4. Given PX1X2Y , sequences (Xn
1 , X

n
2 ) can be

correctly decoded, if and only if

R1 ≥ H(X1|Y )− I(X1;X2|Y )

R2 ≥ H(X2|Y )− I(X1;X2|Y )

R1 +R2 ≥ H(X1|Y ) +H(X2|Y )− I(X1;X2|Y ).

Corollary 4 recovers the result in [17, Rate Region -
Invertible Function]. In addition, it recovers the distributed
source coding problem when Y = ∅ as well, and the result is
consistent with the Slepian-Wolf coding theorem [30, Chap.
15].

For the lossy function computation case with a given
distortion metric d, we have the following result regarding the
tradeoffs among message rates, information leakage, equivo-
cation and distortion.

Theorem 4. (Achievability) Given a distortion mapping d, the
tuple (R1, R2, D,∆1,∆2) is achievable if

R1 ≥ I(V1;X1|Y, V2) + I(U1;X1|Y, U2, V1)

−I(V1;V2|Y,X1)− I(U1;U2|X1, Y, V1), (39)
R2 ≥ I(V2;X2|Y, V1) + I(U2;X2|Y, U1, V2)

−I(V1;V2|Y,X2)− I(U1;U2|X2, Y, V2), (40)
R1 +R2 ≥ I(V1;X1|Y ) + I(V2;X2|Y, V1)

+I(U1;X1|Y, V1, V2) + I(U2;X2|Y, U1, V2),(41)
∆1 ≥ I(X1, X2;U1, U2|Y ), (42)
∆2≤H(X1, X2|U1, U2, Z)+

[
I(U1, U2;Y |V1, V2)

−I(U1, U2;Z|V1, V2)
]+
, (43)

D ≥ E [d (f(X1, X2, Y ), g(U1, U2, Y ))] , (44)

for some function g and auxiliary random variables
U1, V1 and U2, V2 with PU1V1U2V2X1X2Y Z = PX1X2Y Z

PU1|X1
PV1|U1

PU2|X2
PV2|U2

.
(Converse) If the tuple (R1, R2,∆1,∆2) is achievable, there

exist some function g and auxiliary random variables, (U1, V1)
and (U2, V2) with |U1| ≤ |X1| + 4, |V1 ≤ (|X1| + 1)(|X1| +
4), |U2| ≤ |X2|+4, and |V2| ≤ (|X2|+1)(|X2|+4), for which
V1 → U1 → X1 → (X2, Y, Z) and V2 → U2 → X2 →
(X1, Y, Z) form Markov chains in the indicated orders, such
that (39)-(44) hold.

Proof: Please see Section V-D.
Similar to the relationship in Theorem 3, the region de-

fined in the converse does not match the region defined in
the achievability. For given (V ni , U

n
i , X

n
i ), i ∈ {1, 2} and

Y n, Zn, which are generated by PU1V1U2V2X1X2Y Z , (39)-
(41) guarantee that there exists a coding scheme such that
the fusion center can correctly decode (V n1 , U

n
1 , V

n
2 , U

n
2 ),

thus the privacy information leakage is no less than
I(Xn

1 , X
n
2 ;Un1 , U

n
2 |Y n). The first term in the right-hand side
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of (43) measures the secrecy of sources as if (Un1 , U
n
2 ) were

provided to Eve, and the increased secrecy rate introduced
by the second term is due to the presence of (V n1 , V

n
2 ),

whose purpose is to prevent Eve from learning more infor-
mation about (Xn

1 , X
n
2 ). When D = 0, Theorem 4 requires

that E(d(f(X1, X2, Y ), g(U1, U2, Y ))) = 0, which implies
H(f |U1, U2, Y ) = 0. Thus, we conclude that the achievability
and converse regions provided in Theorem 3 can be viewed
as a special case of the regions characterized in Theorem 4.

V. PROOFS

In this paper, we use the term typicality as defined in [39,
Chapter 2], i.e., given a small number ε > 0, a sequence Xn

is said to be typical if

|π(x|Xn)− PX(x)| ≤ εPX(x),∀x ∈ X , (45)

where π(x|Xn) := |{i : Xi = x}|/n is the empirical PMF of
Xn.

We first have the following lemma that is very useful for
achievability proofs in the sequel.

Lemma 1. Given PUXY , where U is admissible, and function
f , suppose xn is a typical sequence and Y n is generated ac-
cording to Πn

i PY |X(yi|xi), then Un is an admissible sequence
if it is jointly typical with xn according to PUX .

Proof. Given X = x, we only need to consider realizations
y ∈ Y with pXY (x, y) > 0. According to Definition 4, we
have

Pr{f(x, Y ) = g(U, Y )} = 1, (46)

which is equivalent to∑
u∈U

PU |X(u|x)Pr{f(x, Y ) = g(u, Y )} = 1. (47)

This means that for all u ∈ U , Pr{f(x, Y ) = g(u, Y )} = 1 if
PU |X(u|x) 6= 0. Denote the support of the conditional PMF
PU |X(U |x) by

SPUX
(x) := {u ∈ U : PU |X(u|x) > 0}. (48)

The typicality of xn and Un guarantees that the probability
of Ui /∈ SPUX

(xi) is zero, since ∀Ui /∈ SPUX
(xi),

PUX(Ui, xi) = PX(x)PU |X(Ui|xi) = 0, (49)

and

|π((Ui, xi)|(Un, xn))− PUX(Ui, xi)| ≤ εPUX(Ui, xi)

⇔ | π((Ui, xi)|(Un, xn))| ≤ 0. (50)

Thus, we can conclude that Un is admissible.

Furthermore, throughout the paper, we will make extensive
use of the following equality in the converse proof.

Lemma 2 (Lemma 4.1 of [40]). For arbitrary RVs U, V and
sequences of RVs Y n, Zn we have

I(U ;Y n|V )− I(U ;Zn|V )

=

n∑
i=1

[
I(U ;Yi|Y i−1, Zni+1, V )− I(U ;Zi|Y i−1, Zni+1, V )

]
.

Now, we provide detailed proofs of the theorems presented
in this paper.

A. Proof of Theorem 1
Achievability:
Given PMF PXY ZPU |XPV |U with U being admissible, the

case when I(Y ;U |V )−I(Z;U |V ) ≤ 0 is trivial. Without loss
of generality, we assume that I(Y ;U |V ) − I(Z;U |V ) > 0.
For any sufficiently small value ε > 0, we will show that the
tuple (R,∆1,∆2) with

R = I(X;U)− I(Y ;U) + 4ε,

∆1 = I(X;U |Y ) + 2ε,

∆2 = H(X|U,Z) + [I(Y ;U |V )− I(Z;U |V )]− 5ε,

is achievable.
1) Codebook (C) construction: Randomly and inde-

pendently generate 2nR0 sequences V n according to∏n
i=1 PV (vi), and assign each V n into 2R1 bins which

are indexed by M ′, using a uniform distribution. We
use b(M ′) to denote bin M ′; For each generated se-
quence V n, randomly and independently generate 2nR2

sequences Un according to
∏n
i=1 PU |V (ui|vi), and as-

sign each Un into 2nR3 bins indexed by M ′′, using a
uniform distribution. We use bV n(M ′′) to denote the
corresponding bin of sequences Un. In addition, we set

R0 = I(X;V ) + ε, (51)
R1 = I(X;V )− I(Y ;V ) + 2ε, (52)
R2 = I(X;U |V ) + ε; (53)
R3 = I(X;U |V )− I(Y ;U |V ) + 2ε. (54)

2) Encoding: Upon observing a sequence Xn, Alice looks
into the generated codebook trying to find a V n that is
jointly PV X -typical with Xn. After selecting V n, Alice
looks into those sequences Un that are generated by
V n, trying to find a Un that is jointly PUVX -typical
with (V n, Xn). During this process, if there are more
than one such V n or Un, she randomly picks one such
sequence; if there is no such sequence, she declares an
error. If Alice finds such V n and Un, she sends the bin
indices, M ′ and M ′′, of V n and Un to the fusion center.

3) Decoding: After receiving (M ′,M ′′), the fusion center
first looks into b(M ′) trying to find a unique V̂ n that
is jointly PV Y -typical with Y n. Then, it looks into
bV̂ n(M ′′) trying to find a unique Ûn that is jointly
PV UY -typical with (V̂ n, Y n). If there are more than one
or no such sequence V̂ n(Ûn), it randomly selects a Ûn

as the decoded sequence.
4) Function computing: The fusion center computes the

estimated value f̂ := {g(Ûi, Yi)}ni=1.
5) Error analysis: According to Lemma 1, the fusion

center can correctly compute f as long as Un is jointly
typical with Xn and Ûn = Un. Thus, the error is upper
bounded by

Pr{V̂ n 6= V n|C}+ Pr{Ûn 6= Un|V n, C}. (55)
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Pr{V̂ n 6= V n|C} is upper bounded by the probabilities
of the following two events: Event-1: no jointly typical
sequence V n with Xn is found (if V n is jointly typical
with Xn, it will be jointly typical with Y n since
V → X → Y ); Event-2: there is a sequence other than
V n in b(M ′) jointly typical with Y n. Since there are
2n(I(V ;X)+ε) sequences V n in C, we can easily have
that there exists an ε1 → 0 (when n goes to infinity) so
that

Pr{Event-1} ≤ ε1. (56)

Next, we will show that there also exists an ε2 → 0 so
that

Pr{Event-2} ≤ ε2. (57)

To show (57), it suffices to prove that there exists an
ε′ → 0 so that |b(M ′)| ≤ 2n(I(V ;Y )−ε′). First, we have

E[|b(M ′)|] = 2nR0 · 1

2R1
= 2n(I(Y ;V )−ε), (58)

Var(|b(M ′)|) = 2nR0 · 1

2R1
· (1− 1

2R1
)

≤ 2n(I(Y ;V )−ε). (59)

Then, according to Chebyshev’s inequality, we have

Pr
{∣∣∣|b(M ′)| − E[|b(M ′)|]

∣∣∣ ≥ 1

2
E[|b(M ′)|]

}
≤ Var(|b(M ′)|)

( 1
2E[|b(M ′)|])2

≤ 4

2n(I(Y ;V )−ε) . (60)

Thus, with high probability, we have that

|b(M ′)| ∈ [
1

2
· 2n(I(Y ;V )−ε),

3

2
· 2n(I(Y ;V )−ε)]

:= [2n(I(Y ;V )−ε′1), 2n(I(Y ;V )−ε′2)]. (61)

We can conclude that (57) is true if we set ε′ = ε′2, and
that

Pr{V̂ n 6= V n|C} ≤ ε1 + ε2. (62)

Once V n is correctly decoded, we can go further to up-
per bound the second term of (55). Similarly, Pr{Ûn 6=
Un|V n, C} is upper bounded by the probabilities of
the following two events: Event-3: no jointly typical
sequence Un with (V n, Xn) is found; Event-4: there is a
sequence other than Un in bV n(M ′′) jointly typical with
(V n, Y n). Since there are 2n(I(U ;X|V )+ε) sequences Un

in bV n(M ′′), we have, according to the Covering lemma
[39, Lemma 3.3], that there exists an ε3 → 0 so that

Pr{Event-3} ≤ ε3. (63)

Next, we will show that there also exists an ε4 → 0 so
that

Pr{Event-4} ≤ ε4. (64)

To show (64), we will apply the Packing lemma [39,
Lemma 3.1] which suffices to prove that there exists

an ε′′ → 0 so that |bV n(M ′′)| ≤ 2n(I(U ;Y |V )−ε′′):
the procedure is similar as those steps upper bounding
|b(M ′)|, thus omitted.
Hence, the total error probability is upper bounded by
ε1+ε2+ε3+ε4, which goes to zero as n goes to infinity.

6) Message rate: The transmitted messages are (M ′,M ′′),
thus, the rate is I(X;V )−I(Y ;V )+2ε+I(X;U |V )−
I(Y ;U |V ) + 2ε = I(X;U)− I(Y ;U) + 4ε.

7) Privacy leakage: First, we have

I(Xn;M ′,M ′′|Y n, C)
≤ H(M ′,M ′′|C)
≤ H(M ′|C) +H(M ′′|C)
= n[I(X;V )− I(Y ;V ) + I(X;U |V )

−I(Y ;U |V ) + 2ε]

= nI(X;U |Y ) + 2nε. (65)

Before proceeding, we need the following two lemmas
whose proofs are presented in Appendix A.
Lemma 3. Given arbitrary ε > 0, we have

lim inf
n→∞

1

n
H(Xn|Un, V n, Zn, C) ≥ H(X|U,Z)− ε. (66)

Lemma 4. Given arbitrary ε > 0, we have

lim inf
n→∞

1

n
H(Un|V n, Zn, C) ≥ I(X;U |V )

−I(Z;U |V )− ε. (67)

Now we bound I(Xn;M ′,M ′′, Zn|C) as follows

I(Xn;M ′,M ′′, Zn|C)
≤ I(Xn;V n,M ′′, Zn|C)
= H(Xn|C)−H(Xn|V n,M ′′, Zn, C)
= nH(X)−H(Xn, Un|V n,M ′′, Zn, C)

+H(Un|Xn, V n,M ′′, Zn, C)
(a)

≤ nH(X)−H(Xn, Un|V n,M ′′, Zn, C) + nε

= nH(X)−H(Un|V n, Zn,M ′′, C)
−H(Xn|Zn, Un, V n,M ′′, C) + nε

= nH(X)−H(Un|V n, Zn,M ′′, C)
−H(Xn|Zn, Un, V n, C) + nε

(c)

≤ nI(X;Z,U)−H(Un|V n, Zn,M ′′, C) + 2nε

= nI(X;Z,U)−H(Un|V n, Zn, C)
+I(Un;M ′′|V n, Zn, C) + 2nε, (68)

where step (a) is true due to the fact that given V n

and M ′′, there are 2n(I(Y ;U |V )−ε) sequences Un in
bV n(M ′′), and the probability that there exists another
Ūn that is jointly typical with (Xn, V n) is upper
bounded by 2−n(I(X;U |V )−I(Y ;U |V )) < ε, thus, it is easy
to have

H(Un|V n, Zn,M ′′, C) ≤ nε. (69)
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And step (c) follows from Lemma 3. According to
Lemma 4, we have

H(Un|V n, Zn, C)≥n(I(X;U |V )−I(Z;U |V ))−ε. (70)

On the other hand, we have that

I(Un;M ′′|V n, Zn, C)
= H(M ′′|V n, Zn, C)−H(M ′′|Un, V n, Zn, C)
≤ H(M ′′|C)
= nI(X;U |V )− nI(Y ;U |V ) + 2nε. (71)

Thus, we have that

1

n
I(Xn;M ′,M ′′, Zn|C)

≤ I(X;Z,U)− [I(Y ;U |V )− I(Z;U |V )] + 5ε, (72)

which indicates that 1
nH(Xn|M ′,M ′′, Zn, C) ≥

H(X;Z,U) + [I(Y ;U |V )− I(Z;U |V )]− 5ε.
Hence, the achievability proof is complete.

Converse:
It is equivalent to show that any achievable tuple

(R,∆1,∆2) is contained in S, i.e. there exists some admissi-
ble U w.r.t. X,Y and f , as well as a random variable V , such
that (7), (8), (9) and (10) hold.

First of all, we have that

nR ≥ H(M)− nε
≥ H(M |Y n)− nε
≥ H(M |Y n)−H(M |Xn)− nε
= I(M ;Xn)− I(M ;Y n)− nε

=

n∑
i=1

I(M ;Xi|Xi−1, Y ni+1)−I(M ;Yi|Xi−1, Y ni+1)−nε

=

n∑
i=1

[I(M,Xi−1,Y ni+1;Xi)−I(M,Xi−1,Y ni+1;Yi)]−nε.

(73)

On the other hand, the following Markov chains are true,

Xi → (M,Xi−1, Y ni+1)→ Zi−1, (74)

Yi → (M,Xi−1, Y ni+1)→ Zi−1, (75)

which are implied by

(Y ni , X
n)→ Xi−1 → Zi−1

⇒ (M,Xi, Y
n
i )→ Xi−1 → Zi−1,

⇒ (Xi, Yi)→ (M,Xi−1, Y ni+1)→ Zi−1. (76)

Thus, it follows that

nR ≥
n∑
i=1

[I(M,Xi−1, Y ni+1;Xi)

−I(M,Xi−1, Y ni+1;Yi)]− nε (77)

=

n∑
i=1

[I(M,Xi−1, Y ni+1, Z
i−1;Xi)

−I(M,Xi−1, Y ni+1, Z
i−1;Yi)]− nε

=

n∑
i=1

[I(Ui;Xi)− I(Ui;Yi)]− nε

= n[I(U ;X)− I(U ;Y )]− nε, (78)

in which Ui and U are defined by Ui :=
(M,Xi−1, Y ni+1, Z

i−1) and U := (UJ , J), J is an
independent random variable uniformly distributed over
[1 : n]. And we can easily verify that U → X → Y holds.

Furthermore, according to Fano’s inequality, we have

nε ≥ H(f |f̂)
≥ H(fn|f̂ ,M, Y n)

= H(fn|M,Y n)

=

n∑
i=1

H(fi|f i−1,M, Y n)

≥
n∑
i=1

H(fi|f i−1,M, Y n, Xi−1)

(a)
=

n∑
i=1

H(fi|M,Y n, Xi−1)

(b)
=

n∑
i=1

H(fi|Yi,M, Y ni+1, X
i−1)

≥
n∑
i=1

H(fi|Yi,M, Y ni+1, X
i−1)

≥
n∑
i=1

H(fi|Yi,M, Y ni+1, X
i−1, Zi−1)

=

n∑
i=1

H(fi|Yi, Ui)

=nH(f |Y,U), (79)

where step (a) is true since f i−1 is a function of
(Xi−1, Y i−1), and step (b) follows from the Markov chain
fi → (Yi, Y

n
i+1, X

i−1,M)→ Y i−1, which is indicated by

(Xn, Y ni )→ Xi−1 → Y i−1

⇒ (M,Xi, Y
n
i )→ Xi−1 → Y i−1,

(a)⇒ (Xi, Yi)→ (M,Y ni+1, X
i−1)→ Y i−1. (80)

Here (a) is true due to the weak union property of the Markov
chain [41]. Thus, H(f |Y,U) ≤ ε. In addition, as ε can be made
arbitrarily small, we can claim that this constructed random
variable U is admissible w.r.t. X,Y and f .
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In addition, as (76) implies that the following Markov chain
holds

Xi → (Yi,M,Xi−1, Y ni+1)→ Zi−1, (81)

it follows that

n∆1 ≥ I(Xn;M |Y n)− nε (82)
= H(Xn|Y n)−H(Xn|M,Y n)− nε
= nH(X|Y )−H(Xn|M,Y n)− nε

= nH(X|Y )−
n∑
i=1

H(Xi|M,Y n, Xi−1)− nε

≥ nH(X|Y )−
n∑
i=1

H(Xi|Yi,M, Y ni+1, X
i−1)− nε

=nH(X|Y )−
n∑
i=1

H(Xi|Yi,M,Y ni+1,X
i−1,Zi−1)−nε

=nH(X|Y )− nH(X|Y,U)− nε
=nI(X;U |Y )− nε. (83)

As the final step, we now show (10). It follows that

I(Xn;M,Zn)

= I(M ;Xn) + I(Xn;Zn|M)

= I(M ;Xn)− I(M ;Y n) + I(M ;Y n)− I(M ;Zn)

+I(M ;Zn) + I(Xn;Zn|M)

= I(M ;Xn)− I(M ;Y n) + I(M ;Y n)− I(M ;Zn)

+I(M,Xn;Zn)

= I(M ;Xn)− I(M ;Y n) + I(M ;Y n)− I(M ;Zn)

+I(Xn;Zn)

= I(M ;Xn)− I(M ;Y n) + I(M ;Y n)− I(M ;Zn)

+nI(X;Z). (84)

In the right-hand side of (84), we have

I(M ;Xn)− I(M ;Y n)

=

n∑
i=1

[I(M ;Xi|Xi−1, Y ni+1)−I(M ;Yi|Xi−1, Y ni+1)]

=

n∑
i=1

[I(M,Xi−1, Y ni+1;Xi)−I(M,Xi−1, Y ni+1;Yi)]

=

n∑
i=1

[I(M,Xi−1, Y ni+1, Z
i−1;Xi)

−I(M,Xi−1, Y ni+1, Z
i−1;Yi)]

= n[I(U ;X)− I(U ;Y )], (85)

and

I(M ;Y n)− I(M ;Zn)

=

n∑
i=1

[I(M ;Yi|Zi−1, Y ni+1)− I(M ;Zi|Zi−1, Y ni+1)]

=

n∑
i=1

[I(M,Zi−1, Y ni+1;Yi)− I(M,Zi−1, Y ni+1;Zi)]

=

n∑
i=1

[I(Vi;Yi)− I(Vi;Zi)]

= n[I(V ;Y )− I(V ;Z)], (86)

in which Vi := (M,Y ni+1, Z
i−1) and V := (VJ , J), J is an

independent random variable uniformly distributed over [1 :
n]. For this construction of V , we can conclude that V →
U → X → (Y,Z) is true. Thus, it follows that

1

n
I(Xn;M,Zn)

= I(U ;X)− I(U ;Y ) + I(V ;Y )− I(V ;Z) + I(X;Z)

= I(U ;X)− I(U ;Y |V )− I(V ;Z) + I(X;Z)

= I(U ;X)− I(U ;Y |V ) + I(X;Z|V )

= I(U ;X)− I(U ;Y |V ) + I(U,X;Z|V )

= I(U ;X)− I(U ;Y |V ) + I(U ;Z|V ) + I(X;Z|U, V )

= I(U ;X)− I(U ;Y |V ) + I(U ;Z|V ) + I(X;Z|U)

= I(X;U,Z)− I(U ;Y |V ) + I(U ;Z|V )

≥ I(X;U,Z)− [I(U ;Y |V )− I(U ;Z|V )]+, (87)

which implies that

∆2 ≤
1

n
H(Xn|M,Zn) + ε

=
1

n
(H(Xn)− I(Xn;M,Zn)) + ε

≤H(X)−I(X;U,Z)+[I(U ;Y |V )−I(U ;Z|V )]++ε

= H(X|U,Z) + [I(U ;Y |V )− I(U ;Z|V )]+ + ε. (88)

Hence, the converse is complete.
The proof of bounding the cardinality of the valuable U is

lengthy and the derivation procedure follows the Cardinality
Bounding Techniques in [39, Appendix C], thus omitted in the
paper.

B. Proof of Theorem 2

Converse:
In this part, we show that any achievable tuple

(R,D,∆1,∆2) is contained in the region defined by (21)-
(25).
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First, according to (3), we have that

nR

≥ H(M)− ε
≥ I(M ;Xn)− I(M ;Y n)− ε

=

n∑
i=1

[
I(M ;Xi|Xi−1, Y ni+1)− I(M ;Yi|Xi−1, Y ni+1)

]
− ε

=

n∑
i=1

[
I(M,Xi−1, Y ni+1;Xi)− I(M,Xi−1, Y ni+1;Yi)

]
− ε

(a)
=

n∑
i=1

[
I(M,Xi−1, Y ni+1, Y

i−1, Zi−1;Xi)

−I(M,Xi−1, Y ni+1, Y
i−1, Zi−1;Yi)

]
− ε

=

n∑
i=1

[I(Ui;Xi)− I(Ui;Yi)]− ε

= n [I(U ;X)− I(U ;Y )]− ε, (89)

where step (a) follows from the following Markov chain

(Xi, Yi)→ (M,Xi−1, Y ni+1)→ (Y i−1, Zi−1), (90)

which is implied by the following Markov chain

(Xn, Y ni )→ (Xi−1)→ (Y i−1, Zi−1). (91)

And U := (UJ , J) with J uniformly distributed in [1 : n], and
Ui is defined as

Ui := (M,Xi−1, Y ni+1, Y
i−1, Zi−1), (92)

and we have Ui → Xi → (Yi, Zi), which follows from

(Xn, Y i−1, Y ni+1, Z
i−1)→ Xi → (Yi, Zi)

⇒ (M,Xi−1, Y ni+1, Y
i−1, Zi−1)→ Xi → (Yi, Zi).(93)

Second, it follows from (2) that

D ≥ 1

n
E
[
d(f(Xn, Y n), f̂(M,Y n))

]
− ε

=
1

n
E

[
n∑
i=1

d(f(Xi, Yi), f̂i(M,Y n))

]
− ε

(a)

≥ 1

n
E

[
n∑
i=1

d(f(Xi, Yi), g(M,Y n, Xi−1, Zi−1, i))

]
− ε

=
1

n
E

[
n∑
i=1

d(f(Xi, Yi), g(Ui, i, Yi))

]
− ε

= E

[
n∑
i=1

1

n
d(f(Xi, Yi), g(Ui, i, Yi))

]
− ε

= E [d(f(X,Y ), g(U, YI))]− ε
= E [d(f(X,Y ), g(U, Y ))]− ε, (94)

where step (a) holds as f̂i(M,Y n) is a function of M and
Y n in general, hence there must exist some function, say g,
such that the distortion decreases since more information is
provided for each i ∈ [1 : n].

In addition, we have

n∆1 ≥ I(Xn;M |Y n)− nε
= H(Xn|Y n)−H(Xn|M,Y n)− nε

= nH(X|Y )−
n∑
i=1

H(Xi|M,Y n, Xi−1)− nε

(a)
= nH(X|Y )−

n∑
i=1

H(Xi|M,Y n, Xi−1, Zi−1)− 2nε

=nH(X|Y )−
n∑
i=1

H(Xi|Yi, Ui)− nε

=nH(X|Y )− nH(X|Y, U)− nε
=nI(X;U |Y )− nε, (95)

in which step (a) is true due to the following Markov chain

Xi → (M,Y n, Xi−1)→ Zi−1. (96)

This Markov chain is implied by (90) due to the decomposition
property of Markov chain [41].

As the final step, the derivation is similar as the procedure
from (84) to (88).

First, we have

I(Xn;M,Zn)

= I(M ;Xn)− I(M ;Y n) + I(M ;Y n)− I(M ;Zn)

+nI(X;Z). (97)

Furthermore, it follows from (89) that

I(M ;Xn)− I(M ;Y n) = n[I(U ;X)− I(U ;Y )], (98)

while

I(M ;Y n)− I(M ;Zn)

=

n∑
i=1

[I(M ;Yi|Zi−1, Y ni+1)− I(M ;Zi|Zi−1, Y ni+1)]

=

n∑
i=1

[I(Vi;Yi)− I(Vi;Zi)]

= n[I(V ;Y )− I(V ;Z)], (99)

with Vi := (M,Y ni+1, Z
i−1) and V := (VJ , J), J is an in-

dependent random variable uniformly distributed over [1 : n].
Based on the definition of U and V stated above, we have the
Markov chain relationship: V → U → X → (Y,Z) according
to (93). Combine (97)-(99), and we have

I(Xn;M,Zn)

= I(U ;X)− I(U ;Y ) + I(V ;Y )− I(V ;Z) + I(X;Z)

= I(X;U,Z)− I(U ;Y |V ) + I(U ;Z|V )

≥ I(X;U,Z)− [I(U ;Y |V )− I(U ;Z|V )]+. (100)
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Finally, we obtain

∆2 ≤
1

n
H(Xn|M,Zn) + ε

=
1

n
(H(Xn)− I(Xn;M,Zn)) + ε

≤H(X)−I(X;U,Z)+[I(U ;Y |V )−I(U ;Z|V )]++ε

= H(X|U,Z) + [I(U ;Y |V )− I(U ;Z|V )]+ + ε. (101)

Hence, the converse proof is complete.
Achievability:
To prove the achievability for Theorem 2, we use the same

achievability scheme as stated in the proof for Theorem 1. The
only difference is the range of PMF PXY ZPU |XPV |U . In this
scheme, PXY ZPU |XPV |U is given, subject to that there exists
a function g of (U, Y ) achieving E(d(f(X,Y ), g(U, Y ))) ≤
D + ε and the function g is fixed for function computation.
Once PXY ZPU |XPV |U and g is fixed, we can follow the same
procedures in the proof of Theorem 1 to obtain the desired
result.

C. Proof of Theorem 3

Converse:
In the following, we define

U1i := (M1, X
i−1
1 , Zi−1, Y ni+1), (102)

V1i := (M1, Z
i−1, Y ni+1), (103)

U2i := (M2, X
i−1
2 , Zi−1, Y ni+1), (104)

V2i := (M2, Z
i−1, Y ni+1). (105)

Furthermore, define U1 := (U1J , J) with J being a random
variable independent with all other random variables and
uniformly distributed over [1 : n]. Define V1, U2 and V2
in the same manner. We can verify that the Markov chain
V1 → U1 → X1 → (X2, Y, Z) holds, as we have

(Xn
1 , Z

i−1, Y ni+1)→ X1i → (X2i, Yi, Zi)

⇒ (M1, X
i−1
1 , Zi−1, Y ni+1)→ X1i → (X2i, Yi, Zi). (106)

Similarly, we can verify that V2 → U2 → X2 → (X1, Y, Z)
holds.

In the following, we show (33)-(38) one by one. First, we
have

nR1 ≥ H(M1)− nε
≥ I(M1;Xn

1 )− I(M1;Y n)− nε

=

n∑
i=1

[I(M1;X1i|Xi−1
1 , Y ni+1)

−I(M1;Yi|Xi−1
1 , Y ni+1)]− nε

=

n∑
i=1

[I(M1, X
i−1
1 , Y ni+1;X1i)

−I(M1, X
i−1
1 , Y ni+1;Yi)]− nε

(a)
=

n∑
i=1

[I(M1, X
i−1
1 , Zi−1, Y ni+1;X1i)

−I(M1, X
i−1
1 , Zi−1, Y ni+1;Yi)]− nε

=

n∑
i=1

[I(U1i;X1i)− I(U1i;Yi)]− nε

= n[I(U1;X1)− I(U1;Y )]− nε
= nI(U1;X1|Y )− nε
= n[I(V1;X1|Y ) + I(U1;X1|Y, V1)]− nε,
= n[I(V1;X1, V2|Y )− I(V1;V2|Y,X1)]− nε

+n[I(U1;X1, U2|Y, V1)− I(U1;U2|X1, Y, V1)],

≥ n[I(V1;X1|Y, V2) + I(U1;X1|Y, U2, V1)

−I(V1;V2|Y,X1)− I(U1;U2|X1, Y, V1)]− nε, (107)

where step (a) follows a similar Markov chain relationship as
derived in (76). Thus, we have

R1 ≥ I(V1;X1|Y, V2) + I(U1;X1|Y,U2, V1)

−I(V1;V2|Y,X1)− I(U1;U2|X1, Y, V1)− ε.(108)

Similarly, we have

R2 ≥ I(V2;X2|Y, V1) + I(U2;X2|Y,U1, V2)

+I(V1;V2|Y,X2) + I(U1;U2|X2, Y, V2)− ε. (109)

In addition, it follows that

R1 +R2 ≥
1

n
H(M1)− ε+

1

n
H(M2)− ε

≥ 1

n
H(M1,M2)− 2ε

≥ 1

n
I(M1,M2;Xn

1 , X
n
2 )− 1

n
I(M1,M2;Y n)− 2ε

=
1

n

n∑
i=1

[I(M1,M2;X1i, X2i|Xi−1
1 , Xi−1

2 , Y ni+1)

−I(M1,M2;Yi|Xi−1
1 , Xi−1

2 , Y ni+1)]− 2ε

=
1

n

n∑
i=1

[I(M1,M2, X
i−1
1 , Xi−1

2 , Y ni+1;X1i, X2i)

−I(M1,M2, X
i−1
1 , Xi−1

2 , Y ni+1;Yi)]− 2ε

=
1

n

n∑
i=1

[I(M1,M2, X
i−1
1 , Xi−1

2 , Zi−1, Y ni+1;X1i, X2i)

−I(M1,M2, X
i−1
1 , Xi−1

2 , Zi−1, Y ni+1;Yi)]− 2ε

= I(U1, U2;X1, X2)− I(U1, U2;Y )− 2ε

= I(U1, U2;X1, X2|Y )− 2ε

= I(U1, U2;X1, X2|Y, V1, V2) + I(V1, V2;X1, X2|Y )− 2ε

= I(V1;X1, X2|Y ) + I(V2;X1, X2|Y, V1)− 2ε

+I(U1;X1, X2|Y, V1, V2) + I(U2;X1, X2|Y,U1, V2)

≥ I(V1;X1|Y ) + I(V2;X2|Y, V1) + I(U1;X1|Y, V1, V2)

+I(U2;X2|Y,U1, V2)− 2ε. (110)

Furthermore, we have

n∆1 ≥ I(Xn
1 , X

n
2 ;M1,M2|Y n)− nε

= H(Xn
1 , X

n
2 |Y n)−H(Xn

1 , X
n
2 |M1,M2, Y

n)− nε
= nH(X1, X2|Y )−H(Xn

1 , X
n
2 |M1,M2, Y

n)− nε

= nH(X1, X2|Y )−
n∑
i=1

H
(
X1i, X2i

∣∣
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M1,M2, Y
n, Xi−1

1 , Xi−1
2

)
− nε

(a)
= nH(X1, X2|Y )−

n∑
i=1

H
(
X1i, X2i

∣∣
M1,M2, Y

n
i+1, Z

i−1, Xi−1
1 , Xi−1

2

)
− nε

=nH(X1, X2|Y )−
n∑
i=1

H(X1i, X2i

∣∣
Yi, U1i, U2i)− nε

=nH(X1, X2|Y )− nH(X1, X2|Y,U1, U2)− nε
=nI(X1, X2;U1, U2|Y )− nε, (111)

in which step (a) is due to the following Markov chain:(
(X1)i, (X2)i

)
→
(
M1,M2, Y

n
i+1, X

i−1
1 , Xi−1

2

)
→
(
Y i−1, Zi−1

)
. (112)

This relationship is implied by(
(X1)i, (X2)i,M1,M2, Y

n
i+1

)
→
(
Xi−1

1 , Xi−1
2

)
→
(
Y i−1, Zi−1

)
. (113)

In addition, following similar steps from (84) to (88) by
replacing X with (X1, X2), U with (U1, U2), V with (V1, V2)
and M with (M1,M2), we can obtain

∆2≤H(X1, X2|U1, U2, Z)+
[
I(U1, U2;Y |V1, V2)

−I(U1, U2;Z|V1, V2)
]+

+ ε.(114)

As the last step, it follows that

nε ≥ H(fn|M1,M2, Y
n)

=

n∑
i=1

H(fi|f i−1,M1,M2, Y
n)

≥
n∑
i=1

H(fi|f i−1,M1,M2, Y
n, Xi−1

1 , Xi−1
2 , Zi−1)

≥
n∑
i=1

H(fi|M1,M2, Y
n, Xi−1

1 , Xi−1
2 , Zi−1)

=

n∑
i=1

H(fi|M1,M2, Y
n
i , X

i−1
1 , Xi−1

2 , Zi−1)

=

n∑
i=1

H(fi|Yi, U1i, U2i)

=nH(f |Y,U1, U2). (115)

Finally, the fact that ε is an arbitrarily small number
completes the converse proof.

Achievability:
In this part, we show that given any PU1V1U2V2X1X2Y Z =

PX1X2Y ZPU1|X1
PV1|U1

PU2|X2
PV2|U2

with H(f |U1, U2, Y ) =
0, any tuple (R1, R2,∆1,∆2) satisfying the conditions from
(33) to (38) is achievable. Since given PU1V1U2V2X1X2Y Z , the
values of the right-hand side of (36) and (37) are fixed, it
suffices to consider the corner point with

R1 = I(V1;X1|Y ) + I(U1;X1|Y, V1, V2), (116)
R2 = I(V2;X2|Y, V1) + I(U2;X2|Y,U1, V2), (117)
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Fig. 4. Encoding scheme

and the other corner point with

R1 = I(V1;X1|Y, V2) + I(U1;X1|Y,U2, V1), (118)
R2 = I(V2;X2|Y ) + I(U2;X2|Y, V1, V2), (119)

and at the corner points, we need to guarantee that ∆1 ≤
I(X1, X2;U1, U2|Y ) + ε and ∆2 ≥ H(X1, X2|U1, U2, Z) +
[I(U1, U2;Y |V1, V2) − I(U1, U2;Z|V1, V2)]+ − ε, for suffi-
ciently small value ε > 0. Due to the symmetry of the above
two corner points, we only consider the former one.

1) Codebook (C) construction:
CA at Alice. Given PX1X2Y Z

PU1|X1
PV1|U1

PU2|X2
PV2|U2

, randomly and
independently generate 2nR10 sequences V n1 according

to
n∏
i=1

PV1
(v1i), and assign each V n1 into 2nR11 bins

(indexed by M11) using a uniform distribution. For
each generated sequence V n1 generate 2nR12 sequences

Un1 according to
n∏
i=1

PU1|V1
(u1i|v1i) and assign each

Un1 into 2nR13 sub-bins indexed by M12, using a
similar manner as above. In addition, we use bA(M11)
and bA(M12|V n1 ) to denote the corresponding bin and
sub-bin indexed by M11 and M12 respectively, and set

R10 = I(V1;X1) + ε, (120)
R11 = I(V1;X1)− I(V1;Y ) + 2ε, (121)
R12 = I(U1;X1|V1) + ε, (122)
R13 = I(U1;X1|V1)− I(U1;Y, V2|V1) + 2ε. (123)

CB at Bob. Similar to CA, generate 2nR20 sequences V n2
according to

n∏
i=1

PV2
(v2i), and assign these sequences

into 2nR21 bins indexed by M21; For each V n2 , generated
2nR22 sequences Un2 and assign each Un2 into 2nR23 sub-
bins indexed by M22. The bin and sub-bin are denoted
by bB(M21) and bB(M22|V n2 ), respectively, and set

R20 = I(V2;X2) + ε, (124)
R21 = I(V2;X2)− I(V2;Y V1) + 2ε, (125)
R22 = I(U2;X2|V2) + ε, (126)
R23 = I(U2;X2|V2)− I(U2;Y U1|V2) + 2ε. (127)
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2) Encoding: As shown in Fig. 4, upon observing a se-
quence Xn

1 , Alice looks into CA trying to find a V n1
that is jointly PV1X1 -typical with Xn

1 . After find the
V n1 , she looks into those sequences Un1 generated by
V n1 , trying to find a Un1 that is jointly PV1U1X1

-typical
with (V n1 , X

n
1 ). In each step, if there are more than one

desired sequence, she randomly picks one; Otherwise,
she declares an error if no desired sequence is found.
Then, Alice sends the bin index M11 of V n1 and sub-bin
index M12 of Un1 to the fusion center.
Similar to the encoding procedures of Alice’s side, Bob
looks into CB to find a V n2 and a Un2 , and sends the
indices M21 and M22 to the fusion center.

3) Decoding: After receiving messages M11,M12,M21

and M22, the fusion center first looks into bin bA(M11),
trying to find a unique V̂ n1 that is jointly PV1Y -typical
with Y n. If there are more than one such sequence or
no such sequence, Bob randomly selects a V̂ n1 as the
decoded sequence. Using the same decoding strategy
within corresponding bins/sub-bins, it take turns to de-
code V̂ n2 with (Y n, V̂ n1 ), Ûn1 with (Y n, V̂ n1 , V̂

n
2 ) and

Ûn2 with (Y n, Ûn1 , V̂
n
2 ).

4) Function computing: The fusion center computes the
estimated value f̂ based on (Ûn1 , Û

n
2 , Y

n).
5) Error analysis: Without much modification to Lemma

1, we can easily obtain that the fusion center can
correctly compute f provided that Un1 is jointly typical
with Xn

1 and Un2 is jointly typical with Xn
2 . Thus, the

error probability is upper bounded by the two events: 1).
(Un1 , X

n
1 ) or (Un2 , X

n
2 ) are not jointly typical; 2). The

fusion center can not decode (Un1 , U
n
2 ) correctly.

First of all, based on the parameters provided in this
scheme, we can easily verify that with a high proba-
bility, there exists at least one pair (Un1 , U

n
2 ) such that

(Un1 , X
n
1 ) and (Un2 , X

n
2 ) are jointly typical respectively.

Furthermore, we can easily obtain that the fusion center
can correctly decode (Un1 , U

n
2 ) with a high probability

following the similar analysis in the achievability part
in Theorem 1. Thus, the fusion center can correctly
compute f with a high probability.

6) Message rates: From the above scheme, we have

R1 = R11 +R13

= I(V1;X1)− I(V1;Y ) + I(U1;X1|V1)

−I(U1;Y, V2|V1) + 4ε

= I(V1;X1|Y )+I(U1, X1|Y, V1, V2)+4ε, (128)

and

R2 = R21 +R23

= I(V2;X2)− I(V2;Y, V1) + I(U2;X2|V2)

−I(U2;Y,U1|V2) + 4ε

= I(V2;X2|Y, V1) + I(U2;X2|Y, U1, V2) + 4ε. (129)

7) Privacy leakage: At first, it is easy to obtain that

1

n
I(Xn

1 , X
n
2 ;M11,M12,M21,M22|Y n, C)

≤ H(M11,M12,M21,M22|C)
= I(V1;X1|Y ) + I(U1;X1|Y, V1, V2)

+I(V2;X2|Y, V1) + I(U2;X2|Y, U1, V2) + 8ε

= I(V1, V2;X1, X2|Y ) + I(U1, U2;X1, X2|Y, V1, V2) + 8ε

= I(X1, X2;U1, U2|Y ) + 8ε. (130)

Furthermore, we have

H(Xn
1 , X

n
2 |M11,M12,M21,M22, Z

n, C)
≥ H(Xn

1 , X
n
2 |V n1 , V n2 ,M12,M22, Z

n, C)
≥ H(Xn

1 , X
n
2 , U

n
1 , U

n
2 |V n1 , V n2 ,M12,M22, Z

n, C)−nε
= H(Un1 , U

n
2 |V n1 , V n2 ,M12,M22, Z

n, C)
+H(Xn

1 , X
n
2 |Un1 , Un2 , V n1 , V n2 ,M12,M22, Z

n, C)−nε
= H(Un1 , U

n
2 |V n1 , V n2 ,M12,M22, Z

n, C)
+H(Xn

1 , X
n
2 |Un1 , Un2 , V n1 , V n2 , Zn, C)− nε

(a)

≥ H(Un1 , U
n
2 |V n1 , V n2 ,M12,M22, Z

n, C)
+nH(X1, X2|U1, U2, Z)− 2nε

= nH(X1, X2|U1, U2, Z) +H(Un1 , U
n
2 |V n1 , V n2 , Zn, C)

−I(Un1 , U
n
2 ;M12,M22|V n1 , V n2 , Zn, C)− 2nε

≥ nH(X1, X2|U1, U2, Z) +H(Un1 , U
n
2 |V n1 , V n2 , Zn, C)

−H(M12,M22)− 2nε, (131)

where step (a) can be easily verified following similar
arguments as those in the proof of Lemma 3.
Now, we bound each term above. First, we have

1

n
H(M21,M22) ≤ R13 +R23

= I(U1;X1|V1)− I(U1;Y, V2|V1)

+I(U2;X2|V2)− I(U2;Y,U1|V2) + 4ε

= I(U1;X1|Y, V1, V2) + I(U2;X2|Y,U1, V2) + 4ε

= I(U1, U2;X1, X2|Y, V1, V2) + 4ε. (132)

We bound the term H(Un1 , U
n
2 |V n1 , V n2 , Zn, C) as

follows. Given V n1 , there are 2nR12 sequences Un1
that are generated by V n1 , and the probability of
that each Un1 is jointly typical with (V n1 , V

n
2 , Z

n)
is around 2−nI(U1;V2,Z|V1). Thus, there are around
2n(I(U1;X1|V1)−I(U1;V2,Z|V1)) sequences Un1 that is
jointly typical with (V n1 , V

n
2 , Z

n). Similarly, for each
such Un1 , there are around 2n(I(U2;X2|V2)−I(U2;U1,Z|V2)+ε)

sequences Un2 that are generated by V n2
and jointly typical with (Un1 , V

n
1 , V

n
2 , Z

n).
Hence, given (V n1 , V

n
2 , Z

n), there are around
2n(I(U1;X1|V1)−I(U1;V2,Z|V1)+I(U2;X2|V2)−I(U2;U1,Z|V2)+2ε)

jointly typical pairs of (Un1 , U
n
2 ) in the constructed
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codebook. Then, we can follow similar steps in Lemma
4 to obtain that
1

n
H(Un1 , U

n
2 |V n1 , V n2 , Zn, C) ≥ 3ε+ I(U1;X1|V1)

−I(U1;V2, Z|V1) + I(U2;X2|V2)− I(U2;U1, Z|V2)

= I(U1, U2;X1, X2|Z, V1, V2) + 3ε. (133)

Thus, it follows that
1

n
H(Xn

1 , X
n
2 |M11,M12,M21,M22, Z

n, C)

≥ H(X1, X2|U1, U2, Z) + I(U1, U2;X1, X2|Z, V1, V2)

−I(U1, U2;X1, X2|Y, V1, V2)− 2ε

≥ H(X1, X2|U1, U2, Z) + I(U1, U2;Y |V1, V2)

−I(U1, U2;Z|V1, V2)− 2ε. (134)

Similarly, we can obtain another scheme to achieve the other
corner point, then we can use the time-sharing technique to
show that the region defined by (33)-(37) is achievable.

D. Proof of Theorem 4

Given PMF PX1X2Y PU |X1
PV |X2

and a function g s.t. D >
E[d(f(X1, X2, Y ), g(U, V, Y ))] + ε, the achievability scheme
is the same as that in the proof of Theorem 3, we only need
to further analyze 1

nE[d(f(Xn
1 , X

n
2 , Y

n),g(Ûn, V̂ n, Y n))],
which can be easily shown to be upper bounded by D with a
high probability when n is large enough. We omit the details
for brevity.

Outer Bound:
Following similar process of extending the proof of Theo-

rem 1 to that of Theorem 2, the techniques used in Theorem
3 can be modified to prove Theorem 4 as follows. In this part,
we set

U1i := (M1, X
i−1
1 , Zi−1, Y i−1, Y ni+1), (135)

V1i := (M1, Z
i−1, Y ni+1), (136)

U2i := (M2, X
i−1
2 , Zi−1, , Y i−1, Y ni+1), (137)

V2i := (M2, Z
i−1, Y ni+1), (138)

and define U1 := (U1J , J) with J uniformly distributed in
[1 : n] (V1, U2, V2 are defined in a similar manner). We can
conclude that

V1 → U1 → X1 → (X2, Y, Z), (139)

which follows from the following relationship:

(Xn
1 , Z

i−1, Y i−1, Y ni+1)→ X1i → (X2i, Yi, Zi)

⇒(M1,X
i−1
1 ,Zi−1,Y i−1,Y ni+1)→X1i→(X2i,Yi,Zi). (140)

Similarly, we also have V2 → U2 → X2 → (X1, Y, Z).
The proof of (39)-(42) can be obtained by following similar

derivatives in the converse proof of Theorem 3. In particular,
we will use the following Markov chains:

(X1i, Yi)→ (M1, X
i−1
1 , Y ni+1)→ (Y i−1, Zi−1), (141)

(X2i, Yi)→ (M2, X
i−1
2 , Y ni+1)→ (Y i−1, Zi−1), (142)

(X1i, X2i, Yi)→ (M1,M2, X
i−1
1 , Xi−1

2 , Y ni+1)

→ (Y i−1, Zi−1), (143)

which follows from

(Xn
1 , Y

n
i )→ Xi−1

1 → (Y i−1, Zi−1), (144)
(Xn

2 , Y
n
i )→ Xi−1

2 → (Y i−1, Zi−1), (145)
(Xn

1 , X
n
2 , Y

n
i )→ (Xi−1

1 , Xi−1
2 )→ (Y i−1, Zi−1). (146)

Specifically, the proof of (39) follows the similar derivatives of
(107) by replacing Zi−1 with (Y i−1, Zi−1), and (40) follows
in a similar manner, using the Markov chain relationships
(141) and (142). Furthermore, with the Markov chain rela-
tionship (143), we can safely replace Zi−1 with (Y i−1, Zi−1)
in (110) and (111), to obtain the derivation of (41) and (42)
respectively. In addition, following similar steps from (84)
to (88) by replacing X with (X1, X2), U with (U1, U2),
V with (V1, V2) and M with (M1,M2), we can show the
validity of (43), where we use the Markov chain (143) in the
corresponding derivative as that in (85). Thus, in the sequel,
we only show (44) as follows. Give D, we have

D ≥ 1

n
E
[
d(f(Xn

1 , X
n
2 , Y

n), f̂(M1,M2, Y
n))
]
− ε

=
1

n
E

[
n∑
i=1

d(f(X1i, X2i, Yi), f̂i(M1,M2, Y
n))

]
− ε

(a)

≥ 1

n
E

[
n∑
i=1

d(f(X1i, X2i, Yi), g(M1,M2, Y
n,

Zi−1, X1
i−1

, X2
i−1, i))

]
− ε

=
1

n
E

[
n∑
i=1

d(f(X1i, X2iYi), g((U1)i, (U2)i, i, Yi))

]
− ε

= E

[
n∑
i=1

1

n
d(f(X1i, X2iYi), g((U1)i, (U2)i, i, Yi))

]
− ε

= E [d(f(X1, X2, Y ), g(U1, U2, YI))]− ε
= E [d(f(X1, X2, Y ), g(U1, U2, Y ))]− ε, (147)

where step (a) follows from the fact that f̂ is a function of
(M1,M2, Y

n), thus there must exist some function, say g,
such that the distortion decreases with more information is
provided for each i ∈ [1 : n].

Hence, the converse proof is complete.

VI. CONCLUDING REMARKS

In this paper, we have considered the problem of function
computation under privacy and secrecy constraints. We have
first considered the special scenario where X2 = ∅, and
have characterized the corresponding region for both the
lossless and the lossy function computation cases. Then, we
have generalized the obtained results into the more general
scenarios and provided both outer bounds and inner bounds
for the corresponding lossless and lossy cases.

APPENDIX A

Proof of Lemma 3: Denote the ε-jointly typical set of
sequence pairs (Un, V n, Zn) by T nε (U, V, Z), and the notation
T nε (V,Z) in the sequel, follows in a similar manner. Set
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θ1 = 0 if (Un, V n, Zn) ∈ T nε (U, V, Z), and θ1 = 1 otherwise.
According to the scheme, we have, according to Markov
lemma [39, Chapter 12], that Pr{θ1 = 1} → 0 as n → ∞.
Thus, we have Pr{θ1 = 0} ≥ 1 − ε when n is sufficiently
large. It follows that

H(Xn|Un, V n, Zn, C) ≥ H(Xn|Un, V n, Zn, θ1, C)
= Pr{θ1 = 0}H(Xn|Un, V n, Zn, θ1 = 0, C)

+Pr{θ1 = 1}H(Xn|Un, V n, Zn, θ1 = 1, C)
≥ (1− ε)H(Xn|Un, V n, Zn, θ1 = 0, C)
= H(Xn|Un, V n, Zn, θ1 = 0, C)

−εH(Xn|Un, V n, Zn, θ1 = 0, C)
≥ H(Xn|Un, V n, Zn, θ1 = 0, C)− nδ(ε)
=

∑
zn,{vn,un}∈C

Pr{un, vn, zn|θ1 = 0}H(Xn|un, vn, zn)− nδ(ε)

≥
∑

zn,vn,un∈C
Pr{un, vn, zn|θ1 = 0}n(H(X|U, V, Z)−ε)−nδ(ε)

≥ nH(X|U, V, Z)− nε− nδ(ε)
= nH(X|U,Z)− nε− nδ(ε),

for some value δ(ε) of the same order of ε when n is
sufficiently large.

Proof of Lemma 4: Set θ2 = 0 if (V n, Zn) ∈ T nε (V,Z),
and θ2 = 1 otherwise. Following the proof of Lemma 3, we
have that

H(Un|V n, Zn, C)
≥

∑
zn,vn∈C

Pr{vn, zn|θ1 = 0}H(Un|vn, zn, C)−nε. (148)

Now, set θ3 = 0 if (Un, vn, zn) ∈ T nε (U, V, Z), and θ3 = 1
otherwise. Again, according to the Markov lemma, we have
Pr{θ3 = 0} ≥ 1 − ε when n is sufficiently large. Then we
have

H(Un|vn, zn, C) ≥ H(Un|vn, zn, θ3, C)
= Pr{θ3 = 0}H(Un|vn, zn, θ3 = 0, C)

+Pr{θ3 = 1}H(Un|vn, zn, θ3 = 1, C)
≥ H(Un|vn, zn, θ3 = 0, C)− nδ(ε). (149)

Denote Num(Un|vn, zn) the number of sequences Un that
are generated by vn and are jointly typical with (vn, zn).
It is easy to verify that 1

nH(Un|vn, zn, θ3 = 0, C) ≥
log Num(Un|vn, zn) − ε, since each jointly typical Un has
the same, or close to be precise, probability to be the desired
sequence. For each Un generated by vn, according the Joint
Typicality Lemma [39, Chapter 2], we have

Pr{(Un, vn, zn) ∈ T nε (U, V, Z)} ≥ 2−n(I(U ;Z|V )+ε), (150)
Pr{(Un, vn, zn) ∈ T nε (U, V, Z)} ≤ 2−n(I(U ;Z|V )−ε) (151)

if (vn, zn) ∈ T nε (V,Z). Thus, it follows that

E[Num((Un|vn, zn))] ≥ 2n(I(U ;X|V )+ε)2−n(I(U ;Z|V )+ε)

= 2n(I(U ;X|V )−I(U ;Z|V )), (152)

and

Var[Num((Un|vn, zn))] ≤ 2n(I(U ;X|V )−I(U ;Z|V )+2ε). (153)

Thus, according to Chebyshev’s inequality, we have

Pr{Num((Un|vn, zn)) ≤ 1

2
E[Num((Un|vn, zn))]}

≤ 4 · 2−n(I(U ;X|V )−I(U ;Z|V )−2ε) ≤ δ(ε). (154)

Hence, we have

H(Un|vn,zn,C)≥(1−δ(ε))n[I(U ;X|V )−I(U ;Z|V )], (155)

which implies that

1

n
H(Un|V n, Zn, C) ≥ I(X;U |V )−I(Z;U |V )−2δ(ε).(156)
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