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Abstract—In this paper, the problem of simultaneously
generating multiple keys over a cascade of a noiseless channel
and a wiretap channel is considered. The problem consists of
three legitimate parties (i.e., Alice, Bob, and Carol), where Alice
and Bob wish to agree with Carol on independent secret keys.
Alice and Bob are connected via a noiseless channel, and Bob
is connected with Carol via a wiretap channel, while there is no
direct connection between Alice and Carol. To Alice and Carol,
Bob acts as a relay. Under this model, we first provide a full
characterization of the secret-key capacity region for the case
when Eve has no side information. The result shows that there
exists a trade-off between the individual secret-key rates. Then
we generalize the obtained result into the case when Eve has side
information, and fully characterize the corresponding secret-key
capacity region.

Index Terms—Cascaded channels, correlated sources, key ca-
pacity region, simultaneous key generation, wiretap channel.

I. INTRODUCTION

Enabling communication parties to share a common secret
key is a fundamental problem in cryptography. Recently, the
paradigm of secret key generation via public discussion, under
both source and channel models, has received significant atten-
tion [1]–[7]. Under the source model, the legitimate terminals
have access to correlated random sequences, from which they
can generate a secret key by exchanging messages over a
public noiseless channel fully accessible to an eavesdropper
[8]–[11]. On the other hand, under the channel model the le-
gitimate terminals usually have no access to correlated random
sequences, but they can utilize the differences between the
channel connected to the legitimate receiver and the channel
connected to the eavesdropper to generate a secret key [12]–
[15]. As the problem is typically approached either from a
source or a channel perspective, Khisti et al. recently intro-
duced a new joint source-channel model for the problem of key
generation [16]. Under this model, they provided both a lower
and an upper bounds for the key capacity. Furthermore, [16]
also contains a full characterization of the key capacity when
certain markov chain conditions are satisfied.
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One important assumption in the existing works is that the
public discussion is directly available to all legitimate users.
While it is important to assume that the public discussion
is available to Eve (so that the generated key is secure in
the worst case scenario), there are some practical scenarios
in which the public discussion is directly received only by a
subset of the legitimate users. For example, in key generation
over wireless networks [17], public discussion messages are
transmitted over wireless channels. Hence, it is reasonable to
assume that public discussion messages are directly received
only by neighboring legitimate users. In this case, the as-
sumption that the public discussion is directly available to all
legitimate users is too optimistic.

To gain some understanding of scenarios with limited direct
access to the public discussion by certain legitimate users,
we consider an extension of the joint source-channel model
of [16]. In our model, there are three legitimate users: Alice,
Bob, and Carol. Alice and Bob are connected by a noiseless
public channel (Eve can observe this noiseless channel), and
Bob is connected with Carol via a noisy channel (Eve can
also eavesdrop on this channel). However, Alice has no direct
connection with Carol and therefore Carol does not have
direct access to the public discussion messages sent by Alice.
This network setting captures many relevant scenarios such as
the scenario where Alice is a server who connects with the
base station Bob over an optical fiber, which can be viewed
as noiseless, and Carol is a wireless user. Furthermore, we
assume that Alice and Carol have access to correlated random
sources.

Under this network topology, we consider the problem of
simultaneously generating two secret keys: One between Alice
and Carol, and one between Bob and Carol. The problem of
simultaneously generating multiple keys is well motivated in
applications in which multiple keys are needed for different
communication sessions [18]–[22]. In our setup, we require
that the key generated by Alice and Carol is secure from
Bob and Eve, while the key generated by Bob and Carol is
secure from Alice and Eve. We first consider a case where Eve
has no side information, and fully characterize the secret-key
capacity region. Then, we generalize the considered model
to the case when Eve has side information, and obtain a
full characterization of the corresponding capacity region as
well. It turns out that if we only care about the key between
Alice and Carol, the considered model can be simplified to
the source model with one-way limited-rate public discussion
as studied in [9], and we show that our result recovers the
result in [9]. On the other hand, if we only care about the
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Fig. 1. System model: Alice and Bob wish to share individual secret keys K1

and K2 with Carol respectively. The link between Alice and Bob is assumed
to be noiseless, while Bob and Carol are connected via a wiretap channel.
Besides, Alice, Carol and Eve have access to correlated sequences UN , V N

and WN respectively.

key between Bob and Carol, the model can be viewed as
a wiretap channel [14] and our result recovers that of the
wiretap channel. Furthermore, there is a trade-off between the
two cases so that Alice and Bob cannot attain their maximal
secret-key rates simultaneously.

In addition to the work mentioned above, our work is related
to recent papers on simultaneously generating multiple keys in
networks consisting of trusted and untrusted parties [18]–[22].
The main differences between our model and models in these
papers are: 1) we consider a joint source-channel model; and 2)
we assume that the public discussion is not directly available
to all users.

The remainder of the paper is organized as follows. The
system model and the problem setup are introduced in Section
II. In Section III, we consider the case when Eve has no side
information. Then, we generalize our obtained results to the
case when Eve has side information in Section IV. Finally, we
offer our concluding remarks in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

As illustrated in Fig. 1, we consider a scenario in which
Alice and Carol wish to agree on a secret key K1 taking values
from K1, while Bob wishes to agree with Carol on a secret key
K2 taking values from K2. Under this model, K1 is required to
be kept confidential from Bob and Eve, while K2 is required
to be kept confidential from Alice and Eve.

Unlike Bob who can communicate with Carol over a noisy
channel eavesdropped by Eve, Alice has no direct connection
with Carol and therefore she needs assistance from Bob. The
link between Bob and Carol is modeled as a wiretap channel
(X , PY Z|X ,Y,Z), where X ,Y,Z denote finite channel input
and output alphabets. Alice and Bob can communicate through
a noiseless link. However, any message exchanged over this
noiseless link will also be perfectly overheard by Eve .

Alice, Carol and Eve are assumed to have access to three
correlated random sequences UN , V N and WN , N ∈ N,
which are generated according to a given joint probability mass
function (PMF)

PUNV NWN (uN , vN , wN ) =

N∏
i=1

PUVW (ui, vi, wi), (1)

where U, V and W take values from the finite alphabets U , V
and W , respectively.

Definition 1. An (N,n) key-agreement protocol for the joint
source-channel model is as follows.
• Step 0). Alice generates a random variable F0, and Bob

generates another random variable F ′0. F0 and F ′0 are
mutually independent, and are independent with all other
random variables in the model.

• Step 1). Alice and Bob exchange messages f1 and f ′1,
where f1 , f1(F0, U

N ) and f ′1 , f ′1(F
′
0), over the

noiseless channel.
• Step i). Alice and Bob exchange messages
fi(F0, U

N , f ′i−1) and f ′i(F
′
0, f

i−1), in which
f i−1 , (f1, · · · , fi−1) and f ′i−1 is defined in a
similar manner.

• Step k). (After Alice and Bob finish their discussion)
Denote F := (fk−1, f ′k−1). Bob generates another in-
dependent random variable Fb and transmits Xn(F, Fb)
into the wiretap channel.

• Final step). Alice computes a key via a function K1 ,
K1(U

N ,F, F0); Bob computes a key via a function K2 ,
K2(F, F

′
0, Fb); Carol computes two keys via functions

K ′1 , K ′1(Y
n, V N ),K ′2 , K ′2(Y

n, V N ).

Here, the use of random variables F0 and F ′0 enables the
messages exchanged over the public noiseless channel to be
random functions of UN , while Fb ensures that Bob can
use stochastic coding to generate his own key with Carol.
Throughout the paper, for notational convenience, we let
β = n

N .

Definition 2. A secret-key rate pair (R1, R2) is said to be
achievable if ∀ε > 0 there exists an n(ε) ∈ N and a sequence
of (N,n) codes such that ∀n ≥ n(ε), we have

Pr{Ki 6= K ′i} ≤ ε, i = 1, 2, (2)
1

n
I(K1;F, F

′
0, Fb) ≤ ε, (3)

1

n
I(K2;F, F0, U

N ) ≤ ε, (4)

1

n
I(K1,K2;F, Z

n,WN ) ≤ ε, (5)

1

n
H(Ki) ≥

1

n
log |Ki| − ε, i = 1, 2, (6)

1

n
H(K1) ≥ R1 − ε,

1

n
H(K2) ≥ R2 − ε. (7)

Here, (2) indicates that the keys generated at the key
generating parties should be the same with high probability, (3)
means that K1 is required to be secure from Bob, (4) means
that K2 should be secure from Alice, (5) implies that (K1,K2)
should be jointly secure from Eve, and (6) indicates that the
generated keys should be nearly uniformly distributed.

Definition 3. The secret-key capacity region C is defined as:

C ,
{
(R1, R2) ∈ R2

+ | (R1, R2) is achievable
}
.

Furthermore, we use C1 to denote the maximal value of R1

(Key capacity of K1), C2 to denote the maximal value of R2
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(Key capacity of K2) and Csum to denote the maximal value
of R1 +R2 (Sum capacity of (K1,K2)).

III. CAPACITY REGION WITH NO SIDE INFORMATION AT
EVE

In this section, to facilitate the presentation and understand-
ing of our scheme, we first consider the special case when
Eve has no side information, i.e., the case where W = ∅,
and denote the corresponding secret-key capacity region by
C0. For this case, we fully characterize C0. The results will be
extended to the general model with side information at Eve in
Section IV.

For auxiliary random variables M , S and T satisfying M−
U − V and T − S −X − (Y,Z), define

R(PM |U , PTSPX|S) ,

{(R1, R2) : R1 ≤
1

β
I(M ;V ),

R2 ≤
[
I(S;Y |T )− I(S;Z|T )

]+
, (8)

s.t. I(M ;U)− I(M ;V ) ≤ βI(T ;Y ).} (9)

Here, [x]+ = max{0, x}. Furthermore, the notation M−U−V
means that random variables (M,U, V ) form a Markovian
chain in that order. T − S − X − (Y,Z) (and other similar
relationships throughout the paper) is defined in a similar
manner.

We have the following result.

Theorem 1. The secret-key capacity region for the case with
no side information at Eve is

C0 =
⋃

PM|U ,PTSPX|S

R(PM |U , PTSPX|S). (10)

Proof. The proof contains two parts: converse and achievabil-
ity. In the converse proof presented in Appendix A-A, we show
that (10) is an outer bound. In the achievability part, we show
that for any given (PM |UPUV , PTSPX|S), rate pair (R1, R2)
with

R1 =
1

β
I(M ;V )− ε, R2 =

[
I(S;Y |T )− I(S;Z|T )

]+ − ε
s.t. I(M ;U)− I(M ;V ) ≤ βI(T ;Y ), (11)

is achievable, and hence the region specified in (10) is achiev-
able. Detailed proof of the achievability part is provided in
Appendix A-B. Here, we provide a high level idea of how
the achievability scheme works. As illustrated in Fig. 2, the
codebook construction is a combination of source coding
techniques and channel coding techniques. From Alice and
Carol’s perspective, the noisy channel PY |X acts as a noiseless
channel with rate I(T ;Y ). This guarantees that, if messages
sent by Alice have a rate less than I(T ;Y ), they can be
correctly decoded by Carol using Y n with high probability.
As a result, the key generation model between Alice, Carol
and Eve can be viewed as a source model (with no side
information at Eve) using one way public discussion with
rate constraint, and the rate 1

β I(M ;V )− ε is achievable using
techniques for this model. In particular, to generate K1, we

Fig. 2. Codebook construction

generate 2N(I(M ;U)+ε) sequences MN s, and randomly assign
them into 2N(I(M ;U)−I(M ;V )+2ε) bins (we choose the number
of bins to guarantee that its rate is less than I(T ;Y )). Alice
then sends the bin index to Carol through Bob. With this
bin index along with its source observation V N , Carol will
be able to decode MN . We will obtain a key at the rate of
1
β I(M ;V ) − ε by setting the sub-bin index of the decoded
MN as the key value of K1. At Bob’s side, Bob chooses
Tn to convey the received message to Carol, while using Sn

generated by the selected Tn to generate his own key with
Carol: We generate 2n(I(T ;Y )−ε) sequences Tns. For each
Tn we generate 2n(I(S;Y |T )−ε) sequences Sns and randomly
assign them into 2n(I(S;Y |T )−I(S;Z|T )−2ε) bins. We set the bin
index of Sn as the key value of K2.

Corollary 1. The secret-key capacity of K1 for the case with
no side information at Eve is

C1 = max
M−U−V

1

β
I(M ;V )

s.t. I(M ;U)− I(M ;V ) ≤ max
PX

βI(X;Y ). (12)

Proof. According to Theorem 1, the following rate is achiev-
able for K1

R1 ≤
1

β
I(M ;V ),

s.t. I(M ;U)− I(M ;V ) ≤ βI(T ;Y ). (13)

Due to T −X − Y , we conclude that (13) is contained in the
region

{R1 ∈ R+ : R1 ≤
1

β
I(M ;V ),

s.t. I(M ;U)− I(M ;V ) ≤ βI(X;Y ).}. (14)

And (14) is achievable by setting T = X . Hence, (12) can be
obtained via maximizing (14).

Corollary 1 shows that if one only cares about the key
K1, the channel between Alice and Carol can be viewed as a
noiseless channel with rate constraint R = max

PX

βI(X;Y ) and
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our problem is equivalent to the problem of generating a single
key with one-way public discussion subject to rate constraint
as studied in [9, Sec. II. Case 6]. Our result is consistent with
[9, Thm. 2.4]. Note that even though we allow multiple rounds
discussion over the public noiseless channel in our model, the
public discussion is between Alice and Bob, not between Alice
and Carol. And Carol is connected to this noiseless channel
via a wiretap channel, which is a one-way link. Thus, the link
between Alice and Carol can be viewed as a one-way channel
with rate constraint.

Corollary 2. The secret-key capacity of K2 for the case with
no side information at Eve is

C2 = max
PSX

{I(S;Y )− I(S;Z)}. (15)

Proof. According to Theorem 1, we have

C2 = max
PTSPX|S

{I(S;Y |T )− I(S;Z|T )}

= max
PTSPX|S

∑
t

PT (t)
[
I(S;Y |T = t)− I(S;Z|T = t)

]
(a)

≤ max
PTSPX|S

max
t

[
I(S;Y |T = t)− I(S;Z|T = t)

]
= max

PSX

{I(S;Y )− I(S;Z)}. (16)

The equality of (a) can be obtained by setting T be some
constant.

Corollary 2 shows that if one only cares about K2, the key
capacity is the same as the capacity of a discrete memoryless
wiretap channel. This implies that the correlated sources
(UN , V N ) do not help in increasing R2, as we require K2

to be secure from Alice.

Corollary 3. The sum capacity of (K1,K2) for the case with
no side information at Eve is

Csum = max
M−U−V

T−S−X−Y,Z

{I(S;Y |T )− I(S;Z|T ) + 1

β
I(M ;V )},

s.t. I(M ;U)− I(M ;V ) ≤ βI(T ;Y ). (17)

Proof. It’s a direct result from Theorem 1.

The plot of C0 is as shown in Fig. 3, where C0 =
R1

⋃
R2

⋃
R3.R1 is the region where there exists a PT∗ such

that βI(T ∗;Y ) ≥ H(U |V ) = max{I(M ;U)−I(M ;V )} (R1

vanishes if H(U |V ) ≥ max
PX

βI(X;Y )). One doesn’t need to

sacrifice R1 in order to obtain a larger R2 at least when R2 ≤
max

PS|T∗PS|X
{I(S;Y |T ∗) − I(S;Z|T ∗)}. R3 is the region ob-

tained when PT = argmax
PT

max
PS|TPX|S

{I(S;Y |T )−I(S;Z|T )}

and I(M ;U)− I(M ;V ) ≤ βI(T ;Y ) (R3 vanishes if T is a
constant). And inR3, one doesn’t need to sacrifice R2 in order
to obtain a larger R1. Obviously, in R2, there exists a tradeoff
between R1 and R2, and Csum is obtained in this region.

Note that our model is related to the setup in [16], especially
when one only cares about Csum. The major difference is
that we consider the achievable region while [16] equivalently

��
��
��
�� R2

R1

C2

C1 Csum

R1 R2

R3

R1 ∩R3

Fig. 3. Secret-key capacity region C , R1 ∪R2 ∪R3.

focuses only on the sum capacity. In addition, Alice and Bob
are connected by a noiseless channel in our model while
the setup in [16] can be viewed as that Alice and Bob are
combined into one terminal. What’s more, we require that K1

is concealed from Bob and K2 is concealed from Alice while
these requirements don’t exist in [16].

IV. CAPACITY REGION WITH SIDE INFORMATION AT EVE

In this section, we generalize the results obtained in Section
III to a more general case when Eve has access to side infor-
mation, i.e. W 6= ∅. Under this model, we fully characterize
the corresponding secret-key capacity region.

For auxiliary random variables L, M , S and T satisfying
L−M − U − (V,W ) and T − S −X − (Y,Z), we define

R(PM |UPL|M , PTSPX|S) ,

{(R1, R2) : R1 ≤
1

β

[
I(M ;V |L)− I(M ;W |L)

]+
,

R2 ≤
[
I(S;Y |T )− I(S;Z|T )

]+
, (18)

s.t. I(M ;U)− I(M ;V ) ≤ βI(T ;Y ).} (19)

Then, we have the following result.

Theorem 2. In the joint source-channel model with side
information at Eve, the secret-key capacity region is

C =
⋃

PM|UPL|M ,PTSPX|S

R(PM |UPL|M , PTSPX|S). (20)

Proof. This proof contains two parts: converse and achiev-
abily. In the converse part, we will show that any achiev-
able pair (R1, R2) is included in C. The converse proof
is provided in Appendix C-A. In the achievability part,
we will show that for any given (PM |UPL|M , PTSPX|S),
R(PM |UPL|M , PTSPX|S) is an achievable region. Details
of the achievability proof are provided in Appendix C-B.
Here, we provide a high level idea of how it works. The
codebook of the achievability scheme is illustrated in Fig.
4. To Alice and Carol, the noisy channel between Bob
and Carol acts as a noiseless channel with rate constraint

4



Fig. 4. Codebook construction

I(T ;Y ), such that the key generation model between Alice,
Carol and Eve can be viewed as a source model (with side
information at Eve) using one way public discussion with rate
constraint. Thus the rate 1

β [I(M ;V |L) − I(M ;W |L) − 2ε]
is achievable using techniques for this model. In particular,
we generate 2n(I(L;U)+ε) sequences Lns, and randomly assign
them into 2n(I(L;U)−I(L;V )+2ε) bins. For each Ln, we generate
2n(I(M ;U |L)+ε) sequences Mns, and randomly assign them
into 2n(I(M ;U |L)−I(M ;V |L)+2ε) bins. Within each bin, assign
each Mn into 2n(I(M ;V |L)−I(M ;W |L)−2ε) subbins, and set the
subbin index as the key value of K1. At Bob’s side, Bob uses
2n(I(T ;Y )−ε) sequences Tns to convey the message sent by Al-
ice to Carol. For each Tn, generate 2n(I(S;Y |T )−ε) sequences
Sns and randomly assign them into 2n(I(S;Y |T )−I(S;Z|T )−2ε)
bins. We set the bin index of Sn as the key value of K2.
After selecting Tn, Bob randomly selects a Sn to send to
Carol, in which way Bob can establish a key with Carol of a
rate I(S;Y |T )− I(S;Z|T )− 2ε.

Similar to Corollaries 1 and 3, we have the following
corollaries with regard to K1 and K2.

Corollary 4. The secret-key capacity of K1 for the case with
side information at Eve is

C1 = max
L−M−U−(V,W )

1

β

[
I(M ;V |L)−I(M ;W |L)

]
s.t. I(M ;U)− I(M ;V ) ≤ max

PX

βI(X;Y ). (21)

We note that, in general, the secret-key capacity with side
information at Eve under multiple rounds of public discussion
is still unknown [11]. The reason why we are able to character-
ize the key capacity of K1 in our model is that, even though we
allow multiple rounds of discussion over the public noiseless
channel, the public discussion is between Alice and Bob, not
between Alice and Carol. In our model, Carol is connected
to this noiseless channel via a wiretap channel, which is a
one-way link. Since Bob observes no randomness correlated
with (U, V,W ) in advance, compared with the case of one-
way discussion between Alice and Bob, the multiple rounds

of discussion between Alice and Bob does not increase the
key rate between Alice and Carol. Thus, the link between
Alice and Carol can be viewed as a one-way channel with
rate constraint.

Corollary 5. The sum capacity of (K1,K2) for the case with
side information at Eve is

Csum =

max
PL|MPM|U
PTSPX|S

I(S;Y |T )−I(S;Z|T )+1

β

[
I(M ;V |L)−I(M ;W |L)

]
,

s.t. I(M ;U)− I(M ;V ) ≤ βI(T ;Y ). (22)

V. CONCLUDING REMARKS

We have introduced the problem of simultaneously generat-
ing multiple secret keys under a cascade model of a noiseless
channel and a wiretap channel, using joint correlated sources
and channels, to gain some understanding of key generation
models with limited access to the public discussion channel.
We have fully characterized the secret-key capacity region of
the corresponding generated keys under the case when Eve
has no side information, and generalized the result to the more
general case when Eve has side information.

APPENDIX A
PROOF OF THEOREM 1

A. Converse

Here, we provide the converse proof of Theorem 1. Before
going further, we first introduce a lemma from [11], which
will be used frequently in the following.

Lemma 1 (Lemma 4.1 of [11]). For arbitrary random vari-
ables U, V and sequences of random variables Y n, Zn we
have

I(U ;Y n|V )− I(U ;Zn|V )

=

n∑
i=1

[
I(U ;Yi|Y i−1Zni+1, V )− I(U ;Zi|Y i−1Zni+1, V )

]
.(23)

5



Converse of Theorem 1: In this part, we will show that
any achievable pair (R1, R2) must be in the union defined by
the right hand side of (10).

According to the setup, the following Markov relationships
are true:

V N − UN − F− (Y n, Zn), (24)
V N − UN − (F,K2)− (Y n, Zn). (25)

Let ε > 0 be arbitrary, we have

H(K1) = H(K1|Y n, V N ) + I(K1;Y
n, V N )

≤ I(K1;Y
n, V N ) + nε

= I(K1;Y
n) + I(K1;V

N |Y n) + nε

≤ I(K1;F) + I(K1;V
N |Y n) + nε

≤
N∑
i=1

I(K1;Vi|Y n, V i−1) + 2nε

≤
N∑
i=1

I(K1, U
n
i+1, V

i−1, Y n;Vi) + 2nε

=

N∑
i=1

I(Mi;Vi) + 2nε

=

N∑
i=1

I(MQ;VQ|Q = i) + 2nε

= N

N∑
i=1

1

N
I(MQ;VQ|Q = i) + 2nε

= NI(MQ;VQ|Q) + 2nε

= NI(MQ, Q;VQ)−NI(Q;VQ) + 2nε

= NI(M ;V ) + 2nε, (26)

in which Mi := (K1, U
n
i+1, V

i−1, Y n), M := (MQ, Q), and
Q is an independent random variable uniformly distributed
over [1 : N ].

Thus, we have

R1 ≤
1

β
I(M ;V ) + 2ε. (27)

Furthermore, M − U − V is true as

(U i−1, UNi+1, V
i−1)− Ui − Vi

⇒ (UN , V i−1)− Ui − Vi
⇒ (K1,F, U

N
i+1, V

i−1)− Ui − Vi
(a)⇒ (K1, Y

n, UNi+1, V
i−1)− Ui − Vi

⇔ Mi − Ui − Vi, (28)

in which (a) is true as Y n can be seen as a function of (F, θ)
(θ is some random variable which is independent with all
variables in (28)).

Now, we prove (8). We have

H(K2) ≤ H(K2)− I(K2;Z
n,F) + 2nε

(a)
= H(K2)− I(K2;Z

n,F, V N ) + 2nε

= H(K2|Y n,F, V N ) + I(K2;Y
n,F, V N )

−I(K2;Z
n,F, V N ) + 2nε

≤ I(K2;Y
n,F, V N )− I(K2;Z

n,F, V N ) + 3nε

= I(K2;Y
n|F, V N )− I(K2;Z

n|F, V N ) + 3nε

=

n∑
i=1

[
I(K2;Yi|Y i−1, Zni+1,F, V

N )

−I(K2;Zi|Y i−1, Zni+1,F, V
N )
]
+ 3nε

=

n∑
i=1

[I(Si;Yi|Ti)− I(Si;Zi|Ti)] + 3nε

=

n∑
i=1

[
I(SJ ;YJ |TJ , J = i)

−I(SJ ;ZJ |TJ , J = i)
]
+ 3nε

= n [I(S;Y |T )− I(S;Y |T )] + 3nε. (29)

Here, Si := (K2, V
N , Y i−1, Zni+1,F), Ti :=

(V N , Y i−1, Zni+1,F), S := (SJ , J), T := (TJ , J), and
J is an independent random variable uniformly distributed
over [1 : n]. (a) is true due to

{
V N − F−K2

V N − (F,K2)− Zn

⇒ V N − F− (Zn,K2)

⇒ V N − (F, Zn)−K2

⇔ (V N , Zn,F)− (F, Zn)−K2. (30)

Hence, we have

R2 ≤ I(S;Y |T )− I(S;Y |T ) + 3ε. (31)

Furthermore, we can easily show that T − S −X − (Y,Z).
Now, to prove (9), we first have

I(UN ;Y n)− I(V N ;Y n)

≤ I(F;Y n)− I(V N ;Y n)

= I(F, V N ;Y n)− I(V N ;Y n|F)− I(V N ;Y n)

= I(F;Y n|V N )− I(V N ;Y n|F)
= I(F;Y n|V N )

=

n∑
i=1

I(F;Yi|Y i−1, V N )

≤
n∑
i=1

I(F, Y i−1, Zni+1, V
N ;Yi)

=

n∑
i=1

I(Ti;Yi)

= nI(T ;Y ). (32)
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On the other hand, we have

I(UN ;Y n)− I(V N ;Y n)

= I(UN ;Y n,K1)− I(V N ;Y n,K1)

−I(UN ;K1|Y n) + I(V N ;K1|Y n)
= I(UN ;Y n,K1)− I(V N ;Y n,K1)

+H(K1|Y n, UN )−H(K1|Y n, V N )

≥ I(UN ;Y n,K1)− I(V N ;Y n,K1)− nε

=

N∑
i=1

(
I(Y n,K1;Ui|UNi+1, V

i−1)

−I(Y n,K1;Vi|UNi+1, V
i−1)

)
− nε

=

N∑
i=1

(
I(Y n,K1, U

N
i+1, V

i−1;Ui)

−I(Y n,K1, U
N
i+1, V

i−1;Vi)
)
− nε

=

N∑
i=1

I(Mi;Ui)− I(Mi;Vi)− nε

= N
(
I(M ;U)− I(M ;V )

)
− nε. (33)

Combining (32) and (33), we have

I(M ;U)− I(M ;V ) ≤ βI(T ;Y ) + βε. (34)

B. Achievability

In this part, we will show that R(PM |U , PTSPX|S) is an
achievable region. It suffices to show that there exists at least
one scheme such that the pair (R1, R2) with

R1 =
1

β
[I(M ;V )− ε], R2 =

[
I(S;Y |T )− I(S;Z|T )

]+ − ε
s.t. I(M ;U)− I(M ;V ) < βI(T ;Y ), (35)

is achievable. Without loss of generality, we assume
I(S;Y |T )− I(S;Z|T ) > 0.

Codebook Construction:
CA at Alice. Given PM |UPUV (suppose I(M ;U) −

I(M ;V ) < βI(T ;Y )), randomly and independently gener-

ate 2NR0 sequences MN s according to
N∏
i=1

PM (Mi). These

sequences are indexed by (f, φ) with f ∈ [1 : 2NR01 ],
φ ∈ [1 : 2NR02 ],
CB at Bob. Given PTSPX|SPY Z|X randomly and indepen-

dently generate 2nR11 sequences Tns according to
n∏
i=1

PT (Ti).

These sequences are indexed by (f, ϕ) with ϕ ∈ [1 : 2nR12 ].
For each Tn(f, ϕ), randomly and independently generate
2nR13 sequences Sns which are indexed by (γ, ψ) with γ ∈
[1 : 2nR14 ] and ψ ∈ [1 : 2nR15 ], according to

n∏
i=1

PS|T (Si|Ti).

Here, we set

R0 = I(M ;U) + ε, (36)
R01 = I(M ;U)− I(M ;V ) + 2ε, (37)
R02 = I(M ;V )− ε, (38)
R11 = I(T ;Y )− ε, (39)

R12 = I(T ;Y )− ε− 1

β
(I(W ;U)− I(W ;V ) + 2ε) ,(40)

R13 = I(S;Y |T )− ε, (41)
R14 = I(S;Z|T ) + ε, (42)
R15 = I(S;Y |T )− I(S;Z|T )− 2ε. (43)

Encoding: After observing sequence UN , Alice selects one
MN that is jointly PMU typical with UN in CA. If there are
more than one of such MN s, randomly select one from these
sequences. If there is no such sequence, randomly select one
from the whole codebook. We denote the selected sequence by
MN (f, φ). Alice sends the index f to Bob. Upon receiving f ,
Bob refers to CB , randomly generates a value for ϕ, and then
looks into the sequences Sn generated by Tn(f, ϕ), randomly
selects one Sn(γ, ψ), and finally transmits it to Carol via the
channel PX|SPY Z|X .

Decoding: Upon receiving sequence Y n, Carol first tries to
find a unique Tn(f̂ , ϕ̂) that is jointly typical with Y n in CB :
If there are more than one of such Tns, randomly selects one;
If there exists no such Tn, declares an error. Then Carol looks
into those Sns generated by Tn(f̂ , ϕ̂), trying to find a unique
Sn(γ̂, ψ̂) that is jointly typical with (Tn(f̂ , ϕ̂), Y n): If there
are more than one of such Sns, randomly selects one; If there
exists no such Tn, declares an error. Meantime, after decoding
f̂ , Carol tries to find a unique MN (f̂ , φ̂) that is jointly typical
with V N .

Key Generation: Alice sets K1 = φ; Bob sets K2 = ψ;
Carol sets K ′1 = φ̂ and K ′2 = ψ̂.

Key Rates Analysis: According to the codebook con-
structed above, we know φ and ψ are uniformly distributed
in [1 : 2NR02 ] and [1 : 2nR14 ], respectively. Thus,

R1 =
N

n
R02 =

1

β
[I(M ;V )− ε], (44)

R2 = I(S;Y |T )− I(S;Z|T )− 2ε. (45)

Error Analysis: Denote

ξ , {K1 6= K ′1 or K2 6= K ′2}, (46)

ξ1 , {Tn(f, ϕ) 6= Tn(f̂ , ϕ̂)}, (47)

ξ2 , {Sn(γ, ψ) 6= Sn(γ̂, ψ̂)}, (48)

ξ3 , {MN (f, φ) 6=MN (f̂ , φ̂)}. (49)

Then, we have

Pr{ξ} ≤ Pr{ξ1 ∪ ξ2 ∪ ξ3}
= Pr{ξ1}+ Pr{ξ2|ξc1}+ Pr{ξ3|(ξ2 ∪ ξ1)c}
(a)
= Pr{ξ1}+ Pr{ξ2|ξc1}+ Pr{ξ3|ξc1}, (50)
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in which (a) is true since ξ2 and ξ3 are independent given ξc1
according to the above encoding approach. In the following,
we bound each term in (50) one by one.

In our scheme, each Tn is randomly and independently

generated according to
n∏
i=1

PT (Ti) and the total number of

Tns is 2nR11 . Furthermore, Y n is equivalently generated

by Tn(f, ϕ) according to
n∏
i=1

PY |T (Yi|Ti), with PY |T =

PS|TPX|SPY |X . Hence, it’s easy to show that with high
probability, (Tn(f, ϕ), Y n) is jointly typical and there will
be no other Tns to be jointly typical with Y n (one may refer
to Chapter 7 in [23]). Thus,

Pr{ξ1} ≤ ε/3,

when n is sufficiently large.
Given ξc1, which is equivalent to that Tn(f, ϕ) is given,

there are 2nR13 Sns and that Sns are randomly and indepen-

dently generated by Tn(f, ϕ) according to
n∏
i=1

PS|T (Si|Ti). In

addition, Y n is equivalently generated by Sn(γ, ψ) according

to
n∏
i=1

PY |S(Yi|Si), with PY |S = PX|SPY |X , we can show

that with high probability, Tn(f, ϕ), (Sn(γ, ψ) and Y n) are
jointly typical and there will be no other Sns that are jointly
typical with Y n according to the Packing Lemma [24]. Thus,
we can conclude

Pr{ξ2|ξc1} ≤ ε/3,

when n is sufficiently large.
Since there are 2NR0 MN s, and that MN s are randomly

and independently generated according to
N∏
i=1

PM (Mi), we

can show that with high probability there exists at least one
MN that is jointly typical with UN (also jointly typical with
V N since M → U → V ). Besides, given Tn(f, ϕ), which
indicates f is given, there are total 2NR02 MN (f, ·)s, thus,
with high probability there will be no other MN s that are
jointly typical with V N . Then, we have

Pr{ξ2|ξc1} ≤ ε/3,

when N is sufficiently large.
Hence,

Pr{ξ} ≤ ε. (51)

Information Leakage Analysis: Since φ and f are inde-
pendent, and that φ→ f → Zn,

I(K1; f, Z
n|CA, CB) = I(φ; f, Zn|CA, CB) = I(φ; f |CA) = 0.

To bound I(K2;U
N , f, Zn|CA, CB), we have

I(K2;U
N , f, Zn|CA, CB) = I(ψ;UN , f, Zn|CA, CB)

(a)
= I(ψ; f, Zn|CA, CB)
≤ I(ψ;Tn, Zn|CB)
= I(ψ;Tn|CB) + I(ψ;Zn|Tn, CB)
= I(ψ;Zn|Tn, CB), (52)

in which (a) is true due to{
UN − f, ψ − Zn,
UN − f − ψ

⇒ UN − f − ψ,Zn

⇒ UN − f, Zn − ψ
⇔ UN , Zn − f, Zn − ψ. (53)

Now, we have

I(ψ;Zn|Tn, CB)
= H(Zn|Tn, CB)−H(Zn|Tn, ψ, CB)
= H(Zn|Tn, CB)−H(Sn, Zn|Tn, ψ, CB)

+H(Sn|Zn, Tn, ψ, CB)
= H(Zn|Tn, CB)−H(Sn|Tn, ψ, CB)
−H(Zn|Sn, Tn, ψ, CB) +H(Sn|Zn, Tn, ψ, CB)

= H(Zn|Tn, CB)−H(Sn|Tn, ψ, CB)
−H(Zn|Sn, CB) +H(Sn|Zn, Tn, ψ, CB). (54)

We can easily obtain that

H(Zn|Tn, CB) ≤ nH(Z|T ) + nε,

H(Zn|Sn, CB) ≥ nH(Z|S)− nε, (55)

and according to Lemma 2 below, we have

I(ψ;Zn|Tn, CB) ≤ n(H(Z|T )−H(Z|S) + I(S;Z|T ) + 3ε)

= 3nε. (56)

Thus, we have

I(K2;U
N , f, Zn|CA, CB) ≤ 3nε.

Lemma 2. If R15 + I(S;Z|T ) < 1
nH(Sn|Tn, CB), then

1

n
H(Sn|Zn, Tn, ψ, CB) ≤

1

n
H(Sn|Tn, ψ, CB)−I(S;Z|T )+ε.

Proof. See appendix B.

Finally, using standard information theoretic arguments, we
can conclude that there exists a particular code such that (35)
is achievable and hence R(PM |U , PTSPX|S) is an achievable
region.

APPENDIX B
PROOF OF LEMMA 2

The proof here follows similar steps as those in the proof
of [24, Lemma 22.3].

Given Tn, denote Tnε (SZ|Tn) as the set of pairs (Sn, Zn)
which are jointly typical with Tn. Define

E1 =

{
1, (Sn, Zn) ∈ T nε (SZ|Tn);
0, (Sn, Zn) /∈ T nε (SZ|Tn).

Then, according to the Law of Large Numbers, we have

Pr{E1 = 0} n→∞−→ 0, (57)

since T − S − Z.
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Thus, we have

H(Sn|Zn, Tn, ψ, CB)
≤ H(Sn, E1|Zn, Tn, ψ, CB)
= H(E1|Zn, Tn, ψ, CB) +H(Sn|Zn, E1, T

n, ψ, CB)
≤ 1 + Pr{E1 = 0}H(Sn|Zn, E1 = 0, Tn, ψ, CB)

+Pr{E1 = 1}H(Sn|Zn, E1 = 1, Tn, ψ, CB)
≤ 1 + Pr{E1 = 0}H(Sn|Zn, E1 = 0, Tn, ψ, CB)

+
∑

zn,tn,ψ

Pr{zn, tn, ψ|E1 = 1}H(Sn|zn, E1 = 1, tn, ψ, CB)

≤ nε+
∑

zn,tn,ψ

Pr{zn, tn, ψ|E1 = 1}H(Sn|zn, E1 = 1, tn, ψ, CB).

Now, given tn, ψ, zn and E1 = 1, define Num(zn, tn) as the
number of Sn ∈ Sn(·, ψ|tn)∩T nε (S|zn) (Sn(·, ψ|tn) denotes
the sequences Sns generated by tn, with second index ψ), we
can easily show that

E(Num(zn, tn)) = 2−nI(S;Z|T )|Sn(·, ψ|tn)|,
Var(Num(zn, tn)) ≤ 2−nI(S;Z|T )|Sn(·, ψ|tn)|, (58)

where

log |Sn(·, ψ|tn)| = H(Sn|Tn, CB)− nR15.

Thus, we have

Pr{Num(zn, tn) ≥ 2E(Num(zn, tn))}
≤ 2−(H(Sn|Tn,CB)−nR15−nI(S;Z|T )). (59)

Then, we have

H(Sn|zn, E1 = 1, tn, ψ, CB)
≤ nε+H(Sn|Tn, CB)− nR15 − nI(S;Z|T )
= nε+H(Sn|Tn, ψ, CB)− nI(S;Z|T ). (60)

Hence, we have

H(Sn|Zn, Tn, ψ, CB) ≤ 2nε+H(Sn|Tn, ψ, CB)−nI(S;Z|T ).

APPENDIX C
PROOF OF THEOREM 2

A. Converse

Similar to the converse proof of Theorem
1, we will show that for any achievable pair
(R1, R2), there exists (PM |UPL|M , PTSPX|S) s.t.
(R1, R2) ∈ R(PM |UPL|M , PTSPX|S).

First, we have

H(K1) = H(K1|Y n, V N ) + I(K1;Y
n, V N )

≤ I(K1;Y
n, V N ) + nε

≤ I(K1;Y
n, V N )− I(K1;Z

n,WN ,F) + 2nε

≤ I(K1;Y
n, V N )− I(K1;W

N ,F) + 2nε
(a)
= I(K1;Y

n, V N )− I(K1;Y
n,WN ,F) + 2nε

≤ I(K1;Y
n, V N )− I(K1;Y

n,WN ) + 2nε

≤ I(K1;V
N |Y n)− I(K1;W

N |Y n) + 2nε

=

N∑
i=1

[
I(K1;Vi|V i−1,WN

i+1, Y
n)

−I(K1;Wi|V i−1,WN
i+1, Y

n)
]
+ 2nε

=

N∑
i=1

[
I(Mi;Vi|Li)− I(Mi;Wi|Li)

]
+ 2nε

= N
[
I(M ;V |L)− I(M ;W |L)

]
+ 2nε, (61)

in which Mi := (K1, V
i−1,WN

i+1, Y
n), Li :=

(V i−1,WN
i+1, Y

n) and M := (MQ, Q), L := (LQ, Q).
(a) is true because of

WN − UN − F− Y n

⇒ (UN ,WN )− F− Y n

⇒ (K1,W
N )− F− Y n

⇒ K1 − (WN ,F)− Y n. (62)

Thus, we have

R1 ≤
1

β

[
I(M ;V |L)− I(M ;W |L)

]
+ 2ε. (63)

Furthermore, similar to (28), we can show that L−M −U −
(V,W ).

The derivation of R2 is exactly the same as in (31), thus,
we have

R2 ≤ I(S;Y |T )− I(S;Y |T ) + 3ε, (64)

where S := (K2, V
N , Y J−1, ZnJ+1,F, J), and T :=

(V N , Y J−1, ZnJ+1,F, J).
Next, we show (19). From (33), we conclude

I(UN ;Y n)− I(V N ;Y n)

≥
N∑
i=1

[
I(Y n,K1, U

N
i+1, V

i−1;Ui)

−I(Y n,K1, U
N
i+1, V

i−1;Vi)
]
− nε. (65)

Now, since

WN
i+1 − UNi+1 − (UN , V i)

⇒ WN
i+1 − UNi+1 − (K1,F, Ui, V

i)

⇒ WN
i+1 − UNi+1 − (K1, Y

n, Ui, V
i)

⇒ WN
i+1 − (Y n,K1, U

N
i+1, V

i−1)− (Ui, Vi)

⇒
{
WN
i+1 − (Y n,K1, U

N
i+1, V

i−1)− Ui
WN
i+1 − (Y n,K1, U

N
i+1, V

i−1)− Vi
, (66)
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and

(UN , V i−1,WN
i+1)− Ui − Vi

⇒ (K1,F, U
N
i+1, V

i−1,WN
i+1)− Ui − Vi

⇒ (K1, Y
n, UNi+1, V

i−1,WN
i+1)− Ui − Vi

⇒ UNi+1 − (Y n,K1, V
i−1,WN

i+1, Ui)− Vi, (67)

we have
N∑
i=1

[
I(Y n,K1, U

N
i+1, V

i−1;Ui)

−I(Y n,K1, U
N
i+1, V

i−1;Vi)
]

=

N∑
i=1

[
I(Y n,K1, U

N
i+1, V

i−1,WN
i+1;Ui)

−I(Y n,K1, U
N
i+1, V

i−1,WN
i+1;Vi)

]
=

N∑
i=1

[
I(Y n,K1, V

i−1,WN
i+1;Ui)

−I(Y n,K1, V
i−1,WN

i+1;Vi)
]

+

N∑
i=1

[
I(UNi+1;Ui|Y n,K1, V

i−1,WN
i+1)

−I(UNi+1;Vi|Y n,K1, V
i−1,WN

i+1)
]

=

N∑
i=1

[
I(Y n,K1, V

i−1,WN
i+1;Ui)

−I(Y n,K1, V
i−1,WN

i+1;Vi)
]

+

N∑
i=1

[
I(UNi+1;Y

n,K1, V
i−1,WN

i+1, Ui, Vi)

−I(UNi+1;Y
n,K1, V

i−1,WN
i+1, Vi)

]
≥

N∑
i=1

[
I(Y n,K1, V

i−1,WN
i+1;Ui)

−I(Y n,K1, V
i−1,WN

i+1;Vi)
]

=

N∑
i=1

[
I(Mi;Ui)− I(Mi;Vi)

]
= N

[
I(M ;U)− I(M ;V )

]
. (68)

Thus, it follows

I(UN ;Y n)− I(V N ;Y n) ≥ N
[
I(M ;U)− I(M ;V )

]
− nε.

On the other hand, same as (32), we conclude

I(UN ;Y n)− I(V N ;Y n) ≤ nI(T ;Y ).

Hence,

N
[
I(M ;U)− I(M ;V )

]
− nε ≤ nI(T ;Y )

⇒ I(M ;U)− I(M ;V ) ≤ βI(T ;Y ) + βε. (69)

Combining the fact that ε in each term is an
arbitrary small number, we can conclude that
there exists such (PM |UPL|M , PTSPX|S) that
(R1, R2) ∈ R(PM |UPL|M , PTSPX|S).

B. Achievability

It suffices to show that the pair (R1, R2) with

R1 =
1

β
I(M ;V |L)− I(M ;W |L)− ε, (70)

R2 = I(S;Y |T )− I(S;Z|T )− ε, (71)
s.t. I(M ;U)− I(M ;V ) < βI(T ;Y ), (72)

is achievable.
Given (PM |UPL|M , PTSPX|S), without loss of generality,

we assume I(M ;V |L) − I(M ;W |L) > 0 and I(S;Y |T ) −
I(S;Z|T ) > 0.

Codebook Construction:
CA at Alice. Given PL, randomly and independently gen-

erate 2NR10 sequences LN s according to
N∏
i=1

PL(Li), and

assign each LN into 2NR11 bins indexed by f1(L
N ) with

f1 ∈ [1 : 2NR11 ], using a uniform distribution and denote
the corresponding bin by B0(f1).

For each LN , randomly and independently generate 2NR12

sequences MN s according to
N∏
i=1

PM |L(Mi|Li). Assign each

MN into 2NR13 bins indexed f2(MN ) with f2 ∈ [1 : 2NR13 ],
using a uniform distribution and denote the corresponding bin
by B1(f2). Within each bin B1(f2), randomly assign each MN

into 2NR14 sub-bins indexed φ(MN ) with φ ∈ [1 : 2NR14 ],
using a uniform distribution and denote the corresponding sub-
bin by B1(f2, φ).
CB at Bob. Given PT , randomly and independently gen-

erate 2nR20 sequences Tns according to
n∏
i=1

PT (Ti), in-

dexed by (f1, f2, ϕ). For each Tn(f1, f2, ϕ), randomly and
independently generate 2nR21 sequences Sns according to
n∏
i=1

PS|T (Si|Ti), and assign each Sn in to 2nR22 bins indexed

by ψ(Sn) with ψ ∈ [1 : 2nR22 ], using a uniform distribution
and denote the corresponding bin by B2(ψ). Here, we set

R10 = I(L;U) + ε,

R11 = I(L;U)− I(L;V ) + 2ε,

R12 = I(M ;U |L) + ε,

R13 = I(M ;U |L)− I(M ;V |L) + 2ε,

R14 = I(M ;V |L)− I(M ;W |L)− 2ε,

R20 = I(T ;Y )− ε,
R21 = I(S;Y |T )− ε,
R22 = I(S;Y |T )− I(S;Z|T )− 2ε. (73)

Encoding: With the observed sequence UN , Alice looks
into CA, looking for a LN that is jointly typical with UN

according to PLU . If there are more than one such sequence,
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randomly select one (suppose LN = lN is selected); If
Alice can’t find it, declares an error. Then, Alice looks into
those MN s generated by LN , looking for a MN that is
jointly typical with (LN , UN ) according to PLMU . If there are
more than one such sequence, randomly select one (suppose
MN = mN is selected); If there exists no such sequence,
declare an error. Finally, Alice sends (f1(L

N ), f2(M
N )) to

Bob.
Upon receiving (f1, f2), Bob first randomly generates a

value for ϕ and selects a sequence Tn(f1, f2), ϕ) in CB . Then
Bob randomly selects one Sn = sn from those Sns generated
by Tn(f1, f2), ϕ), and transmits it to Carol via the channel
PX|SPY Z|X .

Decoding: Upon receiving Y n, Carol first tries to decode
(T̂n, Ŝn) using the same method as described in the proof of
Theorem 1.

After decoding T̂n Carol will obtain corresponding values
for (f1, f2). Then Carol refers to CA, looking for a unique
L̂N in B0(f1) that is jointly typical with V N . If Carol can’t
find it, randomly selects one L̂N . Then, Carol turns to those
MN s generated by L̂N , looking for a unique M̂N which is
jointly typical with (L̂N , V N ) according to PLMV . If Carol
can’t find it, randomly selects one.

Key Generation: Alice sets K1 = φ(MN ); Bob sets K2 =
ψ(Sn); Carol sets K̂1 = φ(M̂N ) and K̂2 = ψ(Ŝn).

Key Rates Analysis: According to the above constructed
codebook, φ and ψ are uniformly distributed over [1 : 2NR14 ]
and [1 : 2NR22 ] respectively, thus

R1 =
1

β

[
I(M ;V |L)− I(M ;W |L)− 2ε

]
,

R2 = I(S;Y |T )− I(S;Z|T )− 2ε. (74)

Error Analysis: Note that

H(f1, f2) =
1

β

[
R11 +R13

]
=

1

β

[
I(M ;U)− I(M ;V ) + 4ε

]
. (75)

Thus, with the same reason as discussed in the proof of
Theorem 1, Carol will decode (Tn, Sn, LN ) correctly with
high probability. Now, we show Carol can also decode MN

correctly.
Since there are in total 2NR12 MN s generated by given

LN , there must exist at least one MN that is jointly typical
with UN with high probability, according to the covering
lemma [24] . Furthermore, in bin B1(f2), there are approx-
imately

2NR12/2NR12 = 2N(I(M ;V |L)−ε) (76)

MN sequences. This guarantees that, with high probability,
there is no other M̃N to be jointly typical with (LN , V N ),
according to the packing lemma [24]. Thus, we can conclude
that

Pr{K1 6= K̂1 or K2 6= K̂2|CA, CB} ≤ ε, (77)

when n is sufficiently large.

Information Leakage Analysis: Similar to the leakage
analysis in the proof of Theorem 1, we can also obtain that

I(K2;U
N ,WN , f1, f2, Z

n|CA, CB) ≤ nε, (78)

since

I(K2;U
N ,WN , f1, f2, Z

n|CA, CB) ≤ I(K2;T
n, Zn|CA, CB).

Now, we bound I(K1; f1, f2, ψ,W
N , Zn|CA, CB) from

above. Since,

I(K1; f1, f2, ψ,W
N , Zn|CA, CB)

= I(K1; f1, f2,W
N |CA, CB)

= I(K1; f1, f2,W
N |CA),

we can obtain that

I(K1; f1, f2,W
N |CA) ≤ nε,

using the same argument that is used in the achievability proof
of Theorem 22.4 in [24].

Finally, following standard information theoretic arguments,
we can conclude that there exists at least one scheme such that
(R1, R2) specified in (70) and (71) are achievable, and hence
R(PM |UPL|M , PTSPX|S) is achievable.
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