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Two-Stage Bayesian Sequential Change Diagnosis
Xiaochuan Ma, Lifeng Lai, and Shuguang Cui

Abstract—In this paper, we formulate and solve a two-stage
Bayesian sequential change diagnosis (SCD) problem. Different
from the one-stage sequential change diagnosis problem consid-
ered in the existing work, after a change has been detected, we
can continue to collect low-cost samples so that the post-change
distribution can be identified more accurately. The goal of a
two-stage SCD rule is to minimize the total cost including delay,
false alarm, and misdiagnosis probabilities. To solve the two-stage
SCD problem, we first convert the problem into a two-ordered
optimal stopping time problem. Using tools from optimal multiple
stopping time theory, we obtain the optimal SCD rule. Moreover,
to address the high computational complexity issue of the
optimal SCD rule, we further propose a computationally efficient
threshold-based two-stage SCD rule. By analyzing the asymptotic
behaviors of the delay, false alarm, and misdiagnosis costs, we
show that the proposed threshold SCD rule is asymptotically
optimal as the per-unit delay costs go to zero.

Index Terms—Two-stage sequential change diagnosis, optimal
solution, asymptotically optimal solution.

I. INTRODUCTION

ABRUPT changes detection and diagnosis problem using
sequential observations has many applications, including

network monitoring, outage detection and identification in
power system, etc. [2]–[5]. These tasks can be formulated and
generalized as a sequential change diagnosis (SCD) problem.
In particular, an SCD problem can be viewed as a combina-
tion of quickest change point detection (QCD) problem and
sequential multiple hypothesis testing (SMHT) problem. In
QCD problems, the goal is to detect the presence of change
in the distribution quickly [6]–[18]. In SMHT problems, the
distribution does not change. The focus is to identify the
data distribution from K candidate distributions [19]–[24].
In SCD problem, the data distribution will change at an
unknown time, from distribution f0 to one of the K candidate
distributions. We need to detect the change point as quickly as
possible and identify the distribution after change as accurately
as possible. [25] provides early results for SCD problem.
[26] generalizes earlier work on SCD and provides more
tractable and appropriate performance criteria. In addition, the
optimal solution and asymptotically optimal solution of one-
stage Bayesian SCD problem are derived in [27] and [28],
respectively.

In the existing work on SCD problem [25]–[28], one must
detect the change and identify the distribution after change
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at the same time. In practice, however, after we detect the
change, we may still have the opportunity to observe extra
data samples with low unit cost, which may help us to
make a more accurate identification decision. For example,
a factory conducts quality tests on a manufacturing process
that includes multiple processing components. When a sudden
fault occurs in one of the processing components, quality
testers need to detect the fault quickly and identify the faulted
processing component accurately. After a fault is detected,
the factory does not stop the production immediately because
quality testers want more samples to help identify the faulted
processing component. But the factory can take necessary
actions to reduce production costs after a fault is detected. In
this case, some extra product samples can be collected with a
unit cost lower than normal samples. Therefore, quality testers
can observe more product samples with a low unit cost and
make a more accurate fault diagnosis.

Motivated by this, we formulate a two-stage SCD problem.
In this problem, we have two stopping times. The first stopping
time is the time to raise an alarm once a change has been
detected. After that, we can keep collecting more observations
that have a low unit cost. The second stopping time is the
time when we are ready to make the identification decision.
Therefore, in our problem formulation, change detection and
distribution identification become two different stages of the
whole SCD procedure. Taking advantage of low-cost samples
after the change is detected, it is possible to improve the
identification accuracy and hence achieve a lower total cost.

In this paper, we first characterize the optimal solution for
the formulated Bayesian two-stage SCD problem. The main
idea is to convert the two-stage SCD problem into two ordered
optimal stopping time problems, one for change detection
stage and the other for distribution identification stage, and
then use tools from the recently developed optimal multiple
stopping time theory [29] to obtain the optimal solution. In
particular, we first convert the distribution identification stage
of the two-stage SCD problem into an optimal single stopping
time problem. Afterwards, we study this problem under the
finite-horizon dynamic programming (DP) framework, then
expand it to the infinite-horizon case and obtain the optimality
equation. Applying the DP method [30], we solve the opti-
mality equation and obtain the optimal stopping rule for the
distribution identification stage. Following the same method,
we can also characterize the optimal stopping rule of the
change detection stage.

Similar to other DP-based solutions, the computational
complexity of the obtained optimal solution is high. To address
this issue, we propose a threshold-based two-stage SCD rule,
which raises change alarm or makes identification when the
posterior probabilities pass certain thresholds. This threshold
rule is very simple to implement. At each step, we can simply
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use a recursive formula to update the posterior probabilities
and compare them to pre-determined thresholds. We analyze
the asymptotic behaviors of the delay, false alarm, and misdi-
agnosis costs of the threshold SCD rule as the per-unit delay
costs go to zero. Furthermore, we derive the lower bound of
Bayesian cost for any two-stage SCD rule. We prove that the
Bayesian cost of the proposed threshold SCD rule converges
to the lower bound as the per-unit delay costs go to zero. This
implies that the threshold SCD rule is asymptotically optimal.
We note that a similar technique was used by [28] to prove the
asymptotic optimality of the one-stage threshold SCD rule. In
this paper, we extend and modify the method in [28] to our
two-stage SCD scenario.

Finally, to illustrate the performances of the optimal SCD
rule and the threshold two-stage SCD rules, we conduct
comprehensive simulations using two-dimensional Gaussian
distributions. For the optimal rule, we study the relationship
between the Bayesian cost and per-unit costs of two stages.
We validate that the two-stage SCD rule outperforms one-
stage SCD rules. Afterwards, by calculating the ratio between
Bayesian costs of the optimal SCD rule and the threshold two-
stage SCD rule in different settings, we validate the asymptotic
optimality of the proposed threshold SCD rule. Even when
the KL divergences between the pre-change and post-change
distributions are very close, the performance of the threshold
rule still converges to that of the optimal rule. In addition, we
also present the performance of the threshold SCD rule with
different numbers of post-change distributions.

The remainder of the paper is organized as follows. In
Section II, we provide our problem formulation. In Section III,
we study the evolution of the posterior probability, and convert
the two-stage SCD problem into two optimal single stopping
time problems. In Section IV, we derive the optimal rules
for the two optimal single stopping time problems. Then we
introduce the threshold two-stage SCD rule in Section V.
Afterwards, we prove the asymptotic optimality of threshold
two-stage SCD rule in Section V-D. Simulation results are
provided in Section VI. Finally, we conclude this paper in
Section VII.

II. PROBLEM FORMULATION

Consider a probability space (Ω,F ,P) that hosts a stochas-
tic process {Xn}n≥1. Let λ : Ω 7→ {0, 1, . . .} be the
time when the distribution of Xn changes and θ : Ω 7→
I ∆

= {1, . . . , I} be the state after change. We also denote
I0 = I ∪{0}. In particular, the distribution of Xn is f0 when
n < λ, and is fθ when n ≥ λ. λ and θ are independent random
variables defined with the distributions

P{λ = t} =

{
ρ0,
(1− ρ0)(1− ρ)t−1ρ,

if t = 0
if t 6= 0

and vi = P{θ = i} > 0, i ∈ I. Here, ρ0, ρ and
{vi}i∈I are given constants. Given λ and θ, random variables
{Xn}n≥1 are independent. In addition, F = (Fn)n≥0 is the fil-
tration generated by the stochastic process {Xn}n≥1; namely,

Figure 1: Time ordering of a two-stage SCD process

F0 = {∅,Ω} and Fn = σ(X1, X2 . . . Xn). To simplify
the notation, we express the conditional probabilities as:{

Pi{·} = P{·|θ = i},
P(t)
i {·} = P{·|θ = i, λ = t}, t ≥ 0.

Correspondingly, Ei and E(t)
i are the expectations under Pi

and P(t)
i .

Our goal is to quickly raise an alarm when the change
occurs and further accurately identify the state θ. Towards
this goal, we employ a two-stage SCD rule δ = (τ1, τ2, d)
that includes two stopping times τ1 and τ1 +τ2 and a decision
rule d. Here, τ1 is the time when we raise an alarm that a
change has occurred. In our model, after τ1, we can keep
collecting more low-cost observations to make a more accurate
identification. Correspondingly, τ1 + τ2 is the time when we
make the identification decision d.

Let ∆ := {(τ1, τ2, d)|τ1, τ1 + τ2 ∈ F, τ2 ≥ 0, d ∈ I0} be
the set of all possible two-stage SCD rules. Here, τ ∈ F means
that τ is a stopping time associated to F. The time ordering
of a two-stage SCD process is shown in Fig.1. We should
note that if a wrong decision is made at τ1, i.e., τ1 < λ, then
d = 0 is the correct identification as long as this identification
is made before λ, i.e., τ1 + τ2 < λ.

The possible costs of an SCD rule include costs of delay,
false alarm and misdiagnosis. The delay consists of two parts,
(τ1 − λ)+ and τ2, which correspond to the change detection
stage and the distribution identification stage respectively. The
expected costs of them are E[c1(τ1 − λ)+] and E[c2τ2], where
c1 and c2 are per-unit delay costs associated with each stage.
We assume that the ratio between c1 and c2 is a constant
r = c1/c2. A false alarm occurs when a change alarm is raised
before λ. The expected false alarm cost is E[a1{τ1<λ}], where
a is the penalty factor of false alarm and 1{·} is the indicator
function. Misdiagnosis happens when a wrong distribution
identification is made, i.e., d 6= θ. The expected misdiagnosis
cost is

E
[∑
i∈I

bij1{∞>τ1+τ2>λ,θ=i,d=j} + b0j1{τ1+τ2<λ,d=j}

]
for d = j, where bij is the penalty factor for wrong decision
d = j when θ = i and b0,j is the penalty factor of the false
alarm of the distribution identification stage. We set bij = 0
when i = j. Thus the Bayesian cost function for a two-stage
SCD rule δ ∈ ∆ is

C(δ) = c1E [(τ1 − λ)+] + c2E[τ2] + aE[1{τ1<λ}]+
I∑
j=0

E
[ I∑
i=1

bij1{∞>τ1+τ2>λ,θ=i,d=j} + b0j1{τ1+τ2<λ,d=j}

]
.

(1)
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In a closely related one-stage SCD problem discussed in
[27] and [28], the change detection and distribution iden-
tification must occur at the same time, and hence there is
only one stopping time. We generalize the problem setup
in [27] by allowing identification to occur later than change
detection, with the hope of improving the decision accuracy
using the extra samples with lower cost. If c1 ≤ c2, there
is no low cost samples and the two-stage SCD rule will
become the one-stage rule in [27]. Therefore, in this paper,
We assume c1 > c2. Under this condition, we can improve the
identification accuracy with a low delay cost in the distribution
identification stage.

III. POSTERIOR ANALYSIS

Let Πn = (Π
(0)
n , . . . ,Π

(I)
n )n≥0 ∈ Z be the posterior proba-

bility process defined as{
Π

(i)
n := P{λ ≤ n, θ = i|Fn}, i ∈ I,

Π
(0)
n := P{λ > n|Fn},

where Z ∆
= {Π ∈ [0, 1]I+1|

∑
i∈I0 Π(i) = 1}.

It is easy to check that {Πn}n≥0 is a Markov process
satisfying

Π(i)
n =

Di(Πn−1, Xn)∑
j∈I0 Dj(Πn−1, Xn)

(2)

where

Di(Π, x) :=

{
(1− ρ)Π(0)f0(x) i = 0
(Π(i) + Π(0)ρvi)fi(x) i ∈ I.

The initial state, Π0, is set as Π
(0)
0 = 1− ρ0 and Π

(i)
0 = ρ0vi

for i ∈ I. In addition, We have the following assumption on
these distributions.

Assumption 1. For every i ∈ I0 and j ∈ I0\{i}, we have
(i) 0 < fi(x)/fj(x) <∞ a.s.;
(ii)
∫
{x:fi(x) 6=fj(x)} fi(x)(dx) > 0.

Assumption 1 implies 0 < Π
(i)
n < 1 for every finite n ≥

1 and i ∈ I0. The log-likelihood-ratio (LLR) processes are
defined as

Λn(i, j) := log
Π

(i)
n

Π
(j)
n

. (3)

Proposition 1. With Πn, we can express (1) as

C(δ) = E

[
τ1−1∑
n=0

c1

(
1−Π(0)

n

)
+ c2τ2 + 1{τ1<∞}aΠ(0)

τ1

+ 1{τ1+τ2<∞}

I∑
j=0

1{d=j}

I∑
i=0

bijΠ
(i)
τ1+τ2

]
.

Proof. Please refer to Appendix A for details.

Define Bj(Π) =
∑
i∈I0 Π(i)bij , which is the misdiagnosis

cost associated with the decision d = j. We have

C(δ) = E

[
τ1−1∑
n=0

c1

(
1−Π(0)

n

)
+ c2τ2 + 1{τ1<∞}aΠ(0)

τ1

+ 1{τ1+τ2<∞}
∑
j∈I0

1{d=j}Bj(Πτ1+τ2)

]

≥ E

[
τ1−1∑
n=0

c1

(
1−Π(0)

n

)
+ 1{τ1<∞}aΠ(0)

τ1︸ ︷︷ ︸
part 1

+ c2τ2 + 1{τ1+τ2<∞}B (Πτ1+τ2)︸ ︷︷ ︸
part 2

]

= C(τ1, τ2, d
∗),

(4)

where B(Π) = min
j∈I0

Bj(Π), the smallest misdiagnosis cost.

From (4), we can see that the optimal decision d∗ is the
choice that achieves B(Π). Then we only need to find the
optimal stopping times τ1 and τ2, which means that the SCD
problem becomes an optimal ordered two-stopping problem.
[29] showed that the ordered multiple stopping time problem
can be reduced to a sequence of optimal single stopping time
problems defined by backward induction. Here we use the
same method and reduce the two-stage stopping problem to
two optimal single stopping time problems. According to (4),
the total cost can be divided into two parts. The first part is the
expected cost of the change detection stage, and the second
part corresponds to the distribution identification stage. The
first part depends on τ1 while the second part depends both on
τ1 and τ2. We write the cost functions of the change detection
stage and distribution identification stage as

C1(τ1) =

τ1−1∑
n=0

c1

(
1−Π(0)

n

)
+ 1{τ1<∞}aΠ(0)

τ1

and C2(Πτ1 , τ2) = c2τ2 + 1{τ1+τ2<∞}B (Πτ1+τ2) . C2 is a
function of Πτ1 and τ2 because Πτ1 and the observations from
τ1 to τ1 + τ2 are sufficient to calculate Πτ1+τ2 . Then we have
the minimal expected cost for the SCD process,

C(τ∗1 , τ
∗
2 , d
∗) = min

τ1,τ1+τ2∈F
E [C1(τ1) + C2(τ1, τ2)]

= min
τ1,τ1+τ2∈F

E
[
C1(τ1) + E [C2(τ2)|Πτ1 ]

]
= min
τ1∈F

E
[
C1(τ1) + min

τ1+τ2∈F
E [C2(τ2)|Πτ1 ]

]
.

(5)

By (5), the two-stage stopping time problem becomes two
optimal single stopping time problems. The first one is for
the identification stage, its goal is finding the optimal τ2
which minimizes E[C2(τ2)|Πτ1 ] for any given τ1 and Πτ1 .
The second single stopping time problem is to find the best
stopping rule for the detection stage, i.e., selecting the optimal
τ1 to minimize the expected cost of the whole SCD process,
C(τ1, τ2, d

∗). From the last line of (5), it is easy to see that
we can find an optimal τ1 to minimize the expected cost for
the whole SCD process if the optimal rule for τ2 is known.
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Therefore, we will solve the SCD problem in a reversed order,
i.e., find the optimal rule for the identification stage first, then
select the optimal stopping time for the detection stage.

IV. OPTIMAL SOLUTION

In this section, we characterize the optimal solution to the
two-stage SCD problem. We will first focus on the finite-
horizon case, and then extend the solution to the infinite-
horizon case.

To solve the two-stage SCD problem, we first restrict
attention to the finite-horizon case. In particular, in the finite-
horizon case, we can spend at most T1 amount of time in the
detection stage, i.e., τ1 ≤ T1, and we can spend at most T2

amount of time in the identification stage, i.e., τ2 ≤ T2. Here,
T1 and T2 are fixed positive integers.

We first consider the distribution identification stage. In this
stage, τ1 and Πτ1 are already known. After we get the optimal
τ∗2 and minimum expected cost, C2(Πτ1 , τ

∗
2 ) for any τ1 and

Πτ1 , we will further introduce the optimal stopping rule for
the change detection stage.

Now we consider the optimal single stopping time problem
under a DP framework. Let S(2)

n denote the state of the system
at time n ∈ [τ1, T2 + τ1]. S(2)

n can take θ ∈ I, 0 and E (End).
Here, S(2)

n = θ means that the change has happened before
n and the distribution after the change is fθ. S(2)

n = 0 means
that no change has happened before n, which implies a false
alarm was made at time τ1. Once the result of distribution
identification is declared, the state of system becomes E. The
state evolves as S

(2)
n = g2(S

(2)
n−1, λ,1{τ1+τ2≤n}). Here the

transition function g2 is

g2(s, λ,1{τ1+τ2≤n}) =


0, if λ > n, s 6= E, τ1 + τ2 > n,

θ, if λ ≤ n, s 6= E, τ1 + τ2 > n,

E, if s = E or τ1 + τ2 ≤ n.

The initial state S(2)
τ1 = 0 if λ > τ1, otherwise S(2)

τ1 = θ. In
addition, the observations in this DP framework are the data
samples {Xn}n≥1.

Under this DP framework, we can see that Π
(i)
n =

P (S
(2)
n = i|Fn). Then the expected cost of the distribution

identification stage can be expressed as C2(Πn, n) = c2(n −
τ1)+1{n−τ1<∞}B(Πn). Therefore, Πn is the sufficient statis-
tics for the DP process. Furthermore, we can express the
minimum cost-to-go function at time n for this DP problem
as

V T2+τ1
n (Πn) = B(Πn), if n = T2 + τ1, (6)

V T2+τ1
n (Πn) = min

(
B(Πn),

c2 +GT2+τ1
n (Πn)

)
, if n < T2 + τ1, (7)

where

GT2+τ1
n (Πn) = E[V T2+τ1

n+1 (Πn+1)|Fn]

=

∫ [
V T2+τ1
n+1 (Πn+1(Πn, x))

∑
i∈I0

fi(x)Π(i)
n

]
dx

(8)

The first item of the minimization in equations (7) is the
misdiagnosis cost for stopping at time n, while the second
item corresponds to the cost of proceeding to time n + 1.
In this way, we know that the minimum expected cost for
the finite-horizon DP problem is V T2+τ1

τ1 (Πτ1). Therefore,
in the identification stage of finite-horizon two-stage SCD
problem, the optimal stopping rule is stopping immediately
when B(Πn) ≤ c2+GT2+τ1

n (Πn) or n = T2+τ1. This optimal
rule tells us we should stop only when the expected cost for
making identification is less or equal to the expected cost of
observing more data.

After knowing the optimal stopping rule of the distri-
bution identification stage and the minimum expected cost
V T2+τ1
τ1 (Πτ1) for any given τ1 and Πτ1 , selecting an optimal τ1

to minimize the total Bayesian cost becomes a single stopping
time problem. The method to solve this problem is similar to
the distribution identification stage.

Let S(1)
n denote the state of the system of the change

detection stage at time n ∈ [0, T1]. S(1)
n can take value 1 (post-

change), 0 (pre-change) and E (End). Once a change alarm
is raised, the state of system becomes E. The state evolves
as S(1)

n = g1(S
(1)
n−1, λ,1{τ1≤n}) with S

(1)
0 = 0, where the

transition function g1 is

g1(s, λ,1{τ1≤n}) =


0, if λ > n, s 6= E, τ1 > n,

1, if λ ≤ n, s 6= E, τ1 > n,

E, if s = E or τ1 ≤ n.

In addition, the observations of this DP framework are the data
samples {Xn}n≥1. Under this DP framework, we can see that
Π

(0)
n = P (S

(1)
n = 0|Fn) and 1 − Π

(0)
n = P (S

(1)
n = 1|Fn).

Then the expected cost of the whole SCD process can be
expressed in terms of {Πk}k≤n as

C(n, τ2, d
∗) = V T2+n

n (Πn)+

n−1∑
k=0

c1

(
1−Π

(0)
k

)
+1{n<∞}aΠ(0)

n .

Therefore, {Πk}k≤n is the sufficient statistics for the DP
process. Furthermore, we can express the minimum cost-to-
go function at time n for this DP problem as

WT1
n (Πn) = aΠ(0)

n + V T2+n
n (Πn), if n = T1, (9)

WT1
n (Πn) = min

(
aΠ(0)

n + V T2+n
n (Πn),

c1(1−Π(0)
n ) + UT1

n (Πn)
)
, if n < T1, (10)

where

UT1
n (Πn) = E[WT1

n+1(Πn+1)|Fn]

=

∫ [
WT1
n+1(Πn+1(Πn, x))

∑
i∈I0

fi(x)Π(i)
n

]
dx.

(11)

The first item of the minimization in equation (10) is the cost
for stopping at time n, while the second item corresponds to
the cost of proceeding to time n+1. In this way, we know that
the minimum expected cost for the finite-horizon DP problem
is WT1

0 (Π0). Therefore, in the detection stage of finite-horizon



5

two-stage SCD problem, the optimal stopping rule is stopping
immediately when aΠ

(0)
n + V T2+n

n (Πn) ≤ c1(1 − Π
(0)
n ) +

UT1
n (Πn) or n = T1.
After establishing the DP frameworks for the two stages

of the finite-horizon SCD problem, we can extend the frame-
works to the infinite-horizon case, i.e., letting T1 and T2 go
to infinity.

Theorem 1. For any Π ∈ Z , the infinite-horizon cost-to-go
function for the DP process of the identification stage is

V (Π) = lim
T2→∞

V T2+τ1
n (Π) = min

(
B(Π), c2 +GV (Π)

)
,

(12)
where

GV (Π) = E[V (Π̃)|F ] =

∫ [
V (Π̃(Π, x))

∑
i∈I0

fi(x)Π(i)

]
dx.

(13)

Here, Π̃ denotes the posterior probability of the next time slot.

Proof. Please see Appendix B.

From optimality equation (12), we know that the optimal
rule for this single optimal stopping time problem is

τ∗2 = inf
n≥τ1
{B(Πn) < c2 +GV (Πn)} − τ1. (14)

The optimal stopping rule (14) tells us that when B(Πn) <
c2 + GV (Πn), the optimal option is making identification
immediately. Otherwise, observing more data samples is a
better choice.

Based on (10), we can study the infinite-horizon DP process
of change detection stage by letting T1 →∞.

Theorem 2. For any Π ∈ Z , the infinite-horizon cost-to-go
function for the detection stage is

W (Π) = lim
T1→∞

WT1
n (Π)

= min
(
aΠ(0) + V (Π), c1(1−Π(0)) + UW (Π)

)
,

(15)

where

UW (Π) = E[W (Π̃)|F ] =

∫ [
W (Π̃(Π, x))

∑
i∈I0

fi(x)Π(i)

]
dx.

(16)

Proof. The proof of this theorem is very similar to the proof
of Theorem 1 and thus omitted.

From optimality equation (15), we can see that the optimal
rule for this problem is

τ∗1 = inf
n≥0
{aΠ(0)

n +V (Πn) < c1(1−Π(0)
n ) +UW (Πn)}. (17)

The optimal stopping rule (17) tells us that when aΠ
(0)
n +

V (Πn) < c1(1 − Π
(0)
n ) + UW (Πn), the optimal option is to

raise change alarm immediately. Otherwise, it is better to wait
and observe more samples.

V. LOW COMPLEXITY TWO-STAGE SCD RULE

Similar to other DP-based solutions, the computational com-
plexity of the optimal solution obtained in Section IV is high,
especially when I is large. In this section, we design a low
complexity threshold-based two-stage SCD rule. Furthermore,
we analyze the performance of this low complexity rule and
show that this rule is asymptotically optimal.

A. Threshold Two-stage SCD Rule

Here, we describe our low complexity two-stage SCD rule.
Our low complexity rule is a threshold rule. In particular,
the proposed rule is charcterized by a set of thresholds
{A, ~B = (B0, B1, B2, ..., BM )}, in which A and every ele-
ments in ~B are strictly positive constants. With these thresh-
olds, the proposed threshold rule δT = (τA, τ ~B, d ~B) is defined
as



τA := inf{n ≥ 1,Π
(0)
n < 1/(1 +A)},

τ ~B := min
i∈I0

τ
(i)
~B
,

τ
(i)
~B

:= inf{n ≥ 1,Π
(i)
n > 1/(1 +Bi)} − τA,

d ~B := arg min
i∈I0

τ
(i)
~B
.

(18)

In this threshold rule, the first stopping time τA is the first time
Π

(0)
n falls below the threshold 1/(1 + A). After τA, the rule

turns to check the posterior probabilities Π
(i)
n for all i ∈ I0. It

will stop immediately if any threshold 1/(1+Bi) is exceeded.
The identification decision depends on which threshold is
passed. In order to guarantee that this rule is in the two-stage
SCD rule space ∆, it must satisfy τ ~B ≥ 0. This condition can
be satisfied by choosing appropriate A and ~B. So we assume
that A and ~B applied in this SCD rule satisfy τ ~B ≥ 0. We
will discuss how to select such values in Section V-C.

For i ∈ I0 and n ≥ 1, define the logarithm of the odds-ratio
process as

Φ(i)
n := log

Π
(i)
n

1−Π
(i)
n

= − log

 ∑
j∈I0\{i}

exp(−Λn(i, j))

 .
(19)

Using Φ
(i)
n , δT can be expressed as:

τA = inf

{
n ≥ 1,

1−Π
(0)
n

Π
(0)
n

> A

}
= inf{n ≥ 1,Φ(0)

n < − logA},
τ ~B = min

i∈I0
τ

(i)
~B
,

τ
(i)
~B

= inf

{
n ≥ 1,

1−Π
(i)
n

Π
(i)
n

< Bi

}
− τA

= inf{n ≥ 1,Φ(i)
n > − logBi} − τA,

d ~B = arg min
i∈I0

τ
(i)
~B
.

(20)

The complexity of the threshold rule (18) is very low. After
obtaining a new sample, we only need to update the posterior
probabilities using the recursive formula (2), and then compare
them with the thresholds. In the following, we will show that
this rule is asymptotically optimal as c1 and c2 go to zero.
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B. Asymptotic Analysis

We now analyze the performance of the proposed threshold
rule as c1 and c2 go to zero, for which A should go to infinity
and elements of ~B should go to zero.

We first analyze the delays. From (18), we can easily see
that the delays increase as A→∞ and Bi → 0 for all i ∈ I,
as shown in the following proposition.

Proposition 2. For i ∈ I, we have (1). Pi−a.s. τ (i)
~B

+τA →∞
as Bi → 0; (2). Pi − a.s. τA →∞ as A→∞.

Then, for every i ∈ I and j ∈ I0\{i}, we define

l(i, j) :=

{
q(i, 0) + |log(1− ρ)| j ∈ I0\(Γi ∪ {i}),
q(i, j) j ∈ Γi,

where q(i, j) is the Kullback-Leibler divergence from fj to fi,
and Γi = {j ∈ I\{i}|q(i, j) < q(i, 0) + |log(1− ρ)|}. Next,
to show how fast these delays increase, we have the following
proposition.

Proposition 3. For every i ∈ I we have
(τ

(i)
~B

+τA−λ)+

− logBi

Pi−a.s.−−−−−→
Bi→0

1
l(i)

(τA−λ)+
− logA

Pi−a.s.−−−−−→
A→∞

1
−l(i,0)

(21)

where l(i) = l(i, j(i)), j(i) = arg min
j∈I0\{i}

l(i, j).

Proof. The proof is similar to the Lemma 4.3 in [28] and thus
details are omitted.

Here we do not consider τ (0)
~B

+ τA. This is because the
decision d = 0 is not an optimal choice in any case if c1 and
c2 go to zero. We will verify this in Section V-C.

After studying the delay, we now analyze the false alarm
probability R0(δT ) = Π

(0)
τA and misdiagnosis probabilities{

Rji(δT ) = P{θ = j, d ~B = i, λ ≤ τA + τ ~B <∞}
R0i(δT ) = P{d ~B = i, τA + τ ~B < λ} (22)

where i ∈ I and j ∈ I\{i}. From the proposed SCD rule, we
can see the false alarm probability in the first stage is bounded
by 1/(1+A). When A→∞, the false alarm probability in the
first stage is very close to 1/(1+A) since τA →∞. As for the
misdiagnosis probability, we consider several upper bounds.
Firstly, following Proposition 2.4 of [28], we can prove the
following lemma.

Lemma 1. For every SCD rule δ = (τ1, τ2, d) ∈ ∆, if i ∈ I
and j ∈ I0\{i}, We have

Rji(δ) = viEi
[
1{d=i,λ≤τ1+τ2<∞}e

−Λτ (i,j)
]
.

By Lemma 1, definition of Φ
(i)
τ , and the threshold rule

(20), we can easily have the following upper bound for the
misdiagnosis probability.

Proposition 4. For every i ∈ I, we have∑
j∈I0\{i}

Rji(δT ) ≤ viBi.

By Proposition 4, we have the following proposition.

Proposition 5. For every i ∈ I and j ∈ I0\{i} we have∑
i∈I

∑
j∈I0\{i}

bjiRji(δT ) ≤
∑
i∈I

viBibi,

where bi := maxj∈I0\{i}bji.

Therefore, we know that the misdiagnosis probabilities for
d = i ∈ I goes to zero as Bi → 0. Now, we need to
study the misdiagnosis probability for the case d = 0. The
misdiagnosis probability in this case is 1 − Π

(0)
τA+τ~B

. The
following proposition shows that this misdiagnosis probability
does not go to zero.

Proposition 6. For any λ ≥ 0, there always exists 0 < x < 1,
such that the posterior probability Π

(0)
n < x is always true.

Proof. Please see Appendix C.

By Propositions 5 and 6, we know that the misdiagnosis
probability for the case d = 0 is much larger than misdiagnosis
probability for the case d ∈ I if Bi → 0.

C. Threshold Selection

We now discuss how to select the thresholds A and ~B.
By Proposition 2, we know that τA → ∞ as A → ∞. This
implies that τA > λ almost surely as A → ∞. So we have
E(τA − λ)+ = E(τA − λ) as A→∞. If the condition τ (i)

~B
≥

0, i.e.,

inf
{
n ≥ 1,

1−Π(i)
n

Π
(i)
n

< Bi

}
≥ τA (23)

is satisfied for all i ∈ I, we can calculate the delay cost as

c1E[(τA − λ)+] + c2E(τ ~B) =

(c1 − c2)E[(τA − λ)+] + c2E[(τA + τ ~B − λ)+]. (24)

We will discuss how to find A and ~B which can guarantee
that (23) is satisfied in the sequel.

Now, by Proposition 3 we have Ei[(τ (i)
~B

+ τA − λ)+] for
all i ∈ I. However, we need Ei[(τ ~B + τA − λ)+] for all
i ∈ I to calculate the expectation of delay. So we consider
the following lemma.

Proposition 7. For every i ∈ I, we have

Ei
[
(τ ~B + τA − λ)

+

]
Pi−a.s.−−−−−→ − logBi

l(i)

if Bi → 0 for all i ∈ I.

Proof. Please see Appendix D.

Now, under the following three conditions:

(a) τ
(i)
~B
≥ 0, i.e., inequality (23) is satisfied;

(b) A→∞, Bi → 0 for all i ∈ I as c1 and c2 go to 0;
(c) d = 0 is not the optimal decision in any cases as c1 and

c2 go to 0;
we can calculate the Bayesian cost and the thresholds. After
getting the thresholds, we will verify that the chosen thresholds
do satisfy these conditions.
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By Proposition 5, we know that there exists a set of constant
ki such that ki < b̄i and the misdiagnosis probability∑

i∈I

∑
j∈I0\{i}

bjiRji(δT ) =
∑
i∈I

viBiki.

Similarly, the false alarm cost can be approximated by ka/(1+
A) with a constant ka in (0, a). By Propositions 7, the delay
cost can be calculated. Therefore, if c2 → 0 and the ratio
constant r is fixed, the Bayesian cost can be calculated as

C(c2)(δT ) = c2
∑
i∈I

vi

(
− log(Bi)

l(i)

)
+
∑
i∈I

viBiki︸ ︷︷ ︸
part1

+ c2(
1

r
− 1)

∑
i∈I

vi logA

l(i, 0)
+

ka
1 +A︸ ︷︷ ︸

part2

.

(25)

A simple calculation shows that to minimize (25), we should
set the thresholds as Aopt ≈ ka

c2( 1
r−1)

∑
i∈I

vi
l(i,0)

− 2,

Bi,opt = c2
kil(i)

, i ∈ I.
(26)

Plugging in Aopt and ~Bopt, we have the corresponding rule
δ∗T and its Bayesian cost

C(c2)(δ∗T ) = c2
∑
i∈I

−vi
l(i)

log(
c2

kil(i)
) +

∑
i∈I

vic2
kil(i)

ki

+ c2(
1

r
− 1)

∑
i∈I

vi
l(i, 0)

log

 ka

c2( 1
r − 1)

∑
i∈I

vi
l(i,0)

− 2


+ ka

1
ka

c2( 1
r−1)

∑
i∈I

vi
l(i,0)

− 1
.

(27)

Now we need to check if the three conditions are satisfied.
First, we check condition (a). By the threshold rule (20), we
know that τAopt is the first time

∑
i∈I Π

(i)
n = 1−Π

(0)
n exceeds

the threshold 1−1/(1 +Aopt). Also, τ (i)
~Bopt

+τAopt is the first

time for Π
(i)
n exceeds the threshold 1/(1 +Bi,opt). So if

1− 1

1 +Aopt
<

1

1 +Bi,opt
(28)

for all i ∈ I, it is guaranteed that the threshold ~B can
not be reached before threshold A, namely, τ ~B ≥ 0. After
plugging the explicit expressions of the optimal thresholds
(26) in inequality (28) and basic calculation, we know that
a sufficient condition of τ ~B ≥ 0 is

0 < r ≤ min
i∈I

1

1 + ka
kil(i)

∑
i∈I

vi
l(i,0)

. (29)

If the value of r satisfies (29), condition (a) is satisfied.
However, for the case (29) is not satisfied, we need to change
the threshold accordingly as{

A′ = Aopt,

B′i = Bi,opt
ki
η , i ∈ I

(30)

where η is a constant such that

r = min
i∈I

1

1 + ka
ηl(i)

∑
i∈I

vi
l(i,0)

.

We can see that with A′ and ~B′opt, condition (a) is satisfied.
Hence the Bayesian cost of the rule δ′T = (τA′ , τ ~B′ , d

′) is

C(c2)(δ′T ) = C(c2)(δ∗T )− c2
∑
i∈I

log

(
ki
η

)
vi
l(i)

+
∑
i∈I

viBi,opt

(
k2
i

η
− ki

)
.

(31)

Since ki, l(i) and η are constants, the last two terms in (31)
decay much faster than C(c2)(δ∗T ) as c2 → 0. This implies that
the difference between the cost calculated by (27) and (31) is
negligible as c2 → 0. So condition (a) is satisfied. Then we
can see that the Bayesian cost in (27) for any 0 < r < 1 goes
to 0 as c2 → 0. However, by Proposition 6, there is always
a constant cost x > 0 if the decision d = 0 is made. Hence,
choosing d = 0 will always end up with a higher Bayesian
cost, as long as c2 → 0. So condition (c) is true, hence B0 is
set to be 0 to disable d = 0. In addition, it’s easy to see that
condition (b) is true by (26) and (30).

In summary, we select thresholds in the following manner:
if r satisfies (29), we set the thresholds according to (26);
otherwise, we choose the thresholds as (30). Besides, B0 = 0.

Finally, we consider the values of ka and {ki}i∈I . As we
can see from equations (27) and (31), the cost of false alarm
and misdiagnosis costs decay much faster than the delay cost
as c2 → 0. Therefore, as long as {ki} and ka are constants,
taking different values for them will not change the asymptotic
behavior of the Bayesian cost. Typically, we set ka to be the
penalty factor a. For ki, [28] introduced a method to calculate
a higher order approximation of ki:

ki = bj(i)iEi[e−Zi ], i ∈ I. (32)

Here Zi is a random variable with distribution

Pi(Zi ≤ z) =

∫ z
0
P(0)
i

{∑T
(0)
i

l=0 log fi(Xl)
fj(i)(Xl)

> s

}
ds

E(0)
i

[∑T
(0)
i

l=0 log fi(Xl)
fj(i)(Xl)

] ,

where 0 < z <∞ and

T
(0)
i := inf

{
n ≥ 0 :

n∑
l=0

log
(

fi(Xl)
fj(i)(Xl)

)
> 0

}
. (33)

D. Asymptotically Optimality of Threshold Two-Stage SCD
rule

We now show that the threshold two-stage SCD rule is
asymptotically optimal as c2 → 0. In particular, we will show
that, for any δ = (τ1, τ2, d) ∈ ∆, we have

C(c2)(δ)

C(c2)(δT )
≥ 1, (34)

in which δT = (τAT , τ ~BT
, dT ) with thresholds AT and ~BT

computed using (26) or (30) according to the value of r.
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We already know that the difference between Bayesian costs
calculated by (27) and (31) is negligible as c2 → 0. So we
only need to consider the cost function calculated by (27), i.e.,
the case in which r satisfies (29) and hence AT and ~BT is
set as (26).

First, we study the delay cost of an SCD rule δ =
(τ1, τ2, d) ∈ ∆. For convenience of expression, we define
∆1 := {τ1|τ1 is any stopping time associated to F} as the
collection of all possible one-time change detection rules for
the first stage. We also denote collections of rules which has
bounded false alarm and misdiagnosis probabilities for the two
stages respectively as ∆1(R0) := {τ1 ∈ ∆1|R0(τ1) ≤ R0},
and ∆(R) := {(τ1, τ2, d) ∈ ∆|Rji(τ1, τ2, d) ≤ Rji, i ∈
I, j ∈ I0\{i}}, where R0 and R = {Rji}i∈I,j∈I0\{i}≥0 are
the upper bounds of false alarm and misdiagnosis probabilities
respectively. As we discuss in V-C, d = 0 should not be
considered for a rule that can outperform our threshold rule
as c2 → 0. So a bound for i = 0 is unnecessary here.

From (27), we know that the Bayesian cost of the threshold
SCD rule goes to zero as c2 → 0. If there exists a rule such that
it has a lower cost than the threshold rule, the false alarm and
misdiagnosis cost must go to zero. Therefore, we only need
to consider the SCD rule δ = (τ1, τ2, d) such that δ ∈ ∆(R)
and τ1 ∈ ∆1(R0) where R → 0 and R0 → 0. Here R → 0
means that every constant in set R goes to zero. If false alarm
and misdiagnosis probabilities go to zero, the delays τ1 and τ2
must go to infinity. Given λ is finite almost surely, the delay
cost can be expanded as

c1E[(τ1 − λ)+] + c2E(τ2) =

(c1 − c2)E[(τ1 − λ)+] + c2E[(τ1 + τ2 − λ)+].

The following lemma provides the lower bounds of E[(τ1 −
λ)+] and E[(τ1 + τ2 − λ)+] respectively.

Lemma 2. If i ∈ I and δ = (τ1, τ2, d), we have
lim inf
R→0

inf
δ∈∆(R)

Ei[(τ1+τ2−λ)+]

|log(Rj(i)i/vi)|/l(i) ≥ 1

lim inf
R0→0

inf
τ1∈∆1(R0)

Ei[(τ1−λ)+]

|log(R0/vi)|/l(i,0)
≥ 1

(35)

Proof. Please see Appendix E.

With the lower bound of the delay, we finally establish the
asymptotic optimality of the threshold two-stage SCD rule.

Proposition 8. If δT = (τAT , τ ~BT
, dT ) is a threshold two-

stage SCD rule with thresholds as (26), then for any given
fixed r we have

lim
c2→0

infδ∈∆C
(c2)(δ)

C(c2)(δT )
≥ 1.

Proof. Please see Appendix F.

This proposition implies that for given r satisfies (29), the
threshold SCD rule with threshold (26) is asymptotically op-
timal. Since the difference between Bayesian costs calculated
by (27) and (31) is negligible as c2 → 0, so the asymptotic
optimality of the proposed threshold SCD rule holds generally
for any 0 < r < 1.

Table I: Comparison of the optimal Bayesian two-stage costs
with different c1 and r

c1

r 0.02 0.05 0.2 0.5 1 (One-stage)

0.005 0.0720 0.0798 0.1009 0.1309 0.1580
0.02 0.2352 0.2511 0.3115 0.3695 0.4016
0.05 0.4763 0.5086 0.6123 0.6853 0.6980
0.2 0.9392 0.9892 1.0021 1.0023 1.0023
0.5 1.0059 1.0062 1.0058 1.0064 1.0067

VI. NUMERICAL EXAMPLE

In this section, we provide numerical examples to illustrate
the performance of the optimal and threshold SCD rules. In
our simulation, the observed data samples are generated by
a two-dimensional normal distribution, N (~µ, I2). The mean
vector ~µ changes at the change point.

In the first example, we consider the case with two possible
post-change mean vectors ~µ1 = (1, 0) and ~µ2 = (1, 0.5) and
the pre-change mean vector ~µ0 = (0, 0). In addition, we set
ρ0 = 0, ρ = 0.01, (v1, v2) = (0.3, 0.7). All the penalty factors
of the false alarm and misdiagnosis are set to be 1. The results
are estimated by Monte-Carlo simulations. Table I presents
the expected costs of the optimal two-stage SCD rule with
different delay penalty factor settings, i.e., with different c1
and r.

From Table I, we can see that the performance of the optimal
two-stage SCD rule becomes better as c1 and r get smaller. In
particular, with identical c1, the optimal two-stage SCD rules
with r < 1 generally outperform the rules with r = 1. Note
that, the two-stage SCD problem will become a one-stage SCD
problem when r = 1. Therefore, this result validates that the
optimal two-stage SCD rule generally outperforms the optimal
one-stage SCD rule when c2 < c1. Furthermore, with smaller
c1, the performance improvement brought by reducing r is
more significant. The reason is, with a small c1, we can use
more data to improve the accuracy of change detection and
identification without a significant increment of the delay cost.
On the contrary, when c1 is large enough, the performance
can still be very poor even with a very small r. This result
implies that when the per-unit delay cost is too large, the
improvement on diagnosis accuracy becomes too expensive
and also negligible.

Figure 2a illustrates the ratio between the costs of optimal
and threshold SCD rules with different penalty factors, c1
and r. The constants {ki}i∈I used to get the thresholds are
approximated using (32) and ka is set as 1. From this figure,
we can see that the Bayesian cost of the threshold SCD rule
converges to the cost of optimal SCD rule as c1 → 0. This
result validates the asymptotic optimality of the threshold SCD
rule. From the lines for different r values, we can see that the
cost of the threshold SCD rule converges to the cost of optimal
SCD rule faster and faster as r decreases. This implies that,
with the same c1, a smaller c2 makes the cost of the threshold
SCD rule more close to the cost of the optimal rule.

In the second example, we compare the performances of
the threshold SCD rule in problems with different difficulty
level. In particular, we investigate the performance of the
threshold rule when the KL distances between f0, f1 and
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Figure 2: The cost ratio between the optimal and threshold two-stage SCD rules
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Figure 3: The Bayesian costs of the threshold two-satge SCD
rules with different number of post-change distributions

f2 are reduced. Keeping all other parameters in example 1,
we run two simulations: 1) In simulation 1, the post-change
mean vectors are ~µ1 = (0.5, 0) and ~µ2 = (0.5, 0.5); 2) In
simulation 2, the post-change mean vectors are ~µ1 = (1, 0)
and ~µ2 = (1, 0.25). Results are shown in Figure 2b and 2c.

From Figures 2a, 2b and 2c, the ratio between the costs of
the optimal SCD rule and the threshold SCD rule is generally
large when c1 and r are not very small, especially when f0, f1

and f2 are close. However, when c1 and r are sufficiently
small, the performance of threshold SCD rule becomes very
close to the optimal SCD rule in all the examples, even if f0, f1

and f2 are close. This indicates the difficulty of the change
diagnosis task will not change the asymptotic optimality.

In the third example, we investigate the performances of the
threshold SCD rule when there are more than two candidate
post-change distributions. To this end, we implement four sets
of simulations with 2, 4, 8, and 16 post-change distributions.
In each set of simulations, all the distributions are still 2D
Gaussian. The prior probabilities of the post-change situations
are uniformly distributed, i.e., (v1, . . . , vI) = (1/I, . . . , 1/I).
The mean vector of the pre-change Gaussian distribution is
~µ0 = (0, 0). The mean vectors of the post-change Gaussian
distributions are uniformly distributed on the circle centering
µ0 with radius 0.5. For example, if d = 4, we can set ~µ1 =
(0.5, 0), ~µ2 = (0, 0.5), ~µ3 = (−0.5, 0), ~µ4 = (0,−0.5). The
co-variance matrices of all distributions are identity matrices.
In addition, ρ0, ρ and penalty factors are same as example 1.
The results of the simulations are presented in Figure 3. As

we expected, with more post-change distributions around the
same circle, the threshold SCD rule will have a larger Bayesian
cost.

VII. CONCLUSION

In this paper, we have formulated the Bayesian two-stage
sequential change diagnosis problem. We have converted the
problem into two optimal single stopping time problems and
obtained the optimality equations of them. After solving these
equations using dynamic programming, we have obtained
the optimal rule for the Bayesian two-stage SCD problem.
However, the complexity of the proposed optimal solution
is high due to the DP steps. To reduce the computational
complexity, we have designed a threshold two-stage SCD rule
and proved that this threshold rule is asymptotically optimal
as the per-unit delay costs of the two stages go to zero.

APPENDIX A
PROOF OF PROPOSITION 1

Since {τ1 > n} ∈ Fn for every n ≥ 0, then

E[(τ1 − λ)+] = E
[ ∞∑
n=0

1{λ≤n<τ1}

]
=
∞∑
n=0

E
[
1{n<τ1}P(λ ≤ n|Fn)

]
= E

[
τ1−1∑
n=0

(1−Π
(0)
n )

]
.

Next, since {τ1 = n} ∈ Fn,

E
[
1{τ1<λ}

]
=
∞∑
n=0

E
[
1{n<λ}1{τ1=n}

]
=
∞∑
n=0

E
[
Π

(0)
n 1{τ1=n}

]
= lim
N→∞

E
[
N∑
n=0

Π
(0)
n 1{τ1=n}

]
= lim
N→∞

E
[
Π

(0)
τ1 1{τ1≤N}

]
= E

[
Π

(0)
τ1 1{τ1<∞}

]
because of the monotone convergence theorem and that
lim
N→∞

{τ1 ≤ N} = ∪∞n=1{τ1 ≤ n} = {τ1 <∞}.
Similar to the derivation of E

[
1{τ1<λ}

]
, for any j ∈ I,

E
[
1{τ1+τ2<λ,d=j}

]
= E

[
Π

(0)
τ1+τ21{τ1+τ2<∞,d=j}

]
.

Similarly, for any i ∈ I and j ∈ I ∪ {0},

E
[
1{θ=i,d=j,λ≤τ1+τ2<∞}

]
= E

[
1{τ1+τ2<∞,d=j}Π

(i)
τ1+τ2

]
.

Plugging these four expressions in equation (1) completes the
proof.
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APPENDIX B
PROOF OF THEOREM 1

Now we consider the infinite-horizon DP and show that it
is well-defined. Towards this end, we need to establish that
limT2→∞V

T2+τ1
k (·) exists, which is done as the following

derivation.
By an induction argument, we know that for any Π

and T2 + τ1 fixed, V T2+τ1
k (Π) ≤ V T2+τ1

k+1 (Π) for k ∈
[τ1, T2 + τ1−1]. Similarly, by an induction argument, we have
that for any Π and T2 + τ1 fixed, V T2+τ1+1

k (Π) ≤ V T2+τ1
k (Π).

Heuristically, this is true because the set of stopping times
increases with the time upper bound T2 + τ1. With a larger
set of stopping times, a lower expected cost can be achieved.
Since maxi,j∈I0bij ≥ V T2+τ1

k (Π) ≥ 0 for all k and T2 + τ1
for any fixed k, let T2 + τ1 →∞, then

lim
T2+τ1→∞

V T2+τ1
k (Π) = inf

T2+τ1:T2+τ1>k
V T2+τ1
k (Π)

∆
= V∞k (Π).

Furthermore, the memorylessness property and the i.i.d. ob-
servation process results in the invariance of V∞k (Π) on k.
This is shown by a simple time-shift argument. This common
limit is denoted as V (Π).

Since V T2+τ1
k (Π) is decreasing with T2 + τ1 and has a

well-defined limit as T2 + τ1 → ∞, dominated convergence
theorem can be applied to the bounded GT2+τ1

k (Π). By doing
this, we know that limT2+τ1→∞G

T2+τ1
k (Π) is well defined and

independent of k. Denote the limit as GV (Π), it equals to

E[V (Π̃)|F ] =
∫ [

V (Π̃(Π, x))
∑
i∈I0 fi(x)Π(i)

]
dx.

Here, Π̃ and X̃ denote the posterior probability and data
sample at time next to the time of Π and F . Hence, the infinite-
horizon cost-to-go function for the distribution identification
stage can be written as V (Π) = min(B(Π), c2 +GV (Π)).

APPENDIX C
PROOF OF PROPOSITION 6

By equation (2),

Π
(0)
n =

[
1 +

∑
i∈I

p0vi
1−p0

n∏
k=1

fi(Xk)
f0(Xk)(1−p)

+
∑
i∈I

pvi
n∑
k=1

n∏
m=k

fi(Xm)
f0(Xm)(1−p)

]−1

=

{∑
i∈I

p0vi
1−p0 exp

(
n log

(
1

1−p

)
+

n∑
k=1

log fi(Xk)
f0(Xk)

)
+1 +

∑
i∈I

pvi
n∑
k=1

exp

[
(n− k + 1) log

(
1

1−p

)
+

n∑
m=k

log
(
fi(Xm)
f0(Xm)

)]}−1

.

To analyze the value of Π
(0)
n , different cases should be

considered here.
Case 1: If log

(
1

1−p

)
> q(0, i) for any i ∈ I, then

∑
i∈I

p0vi
1−p0 exp

(
n log

(
1

1−p

)
+

n∑
k=1

log fi(Xk)
f0(Xk)

)
Pi−a.s.−−−−−→
n→∞

∞.

Thus the proposition is true in this case.
Case 2: If log

(
1

1−p

)
= q(0, i) for any i ∈ I, then

lim
n→∞

[
p0vi
1−p0 exp

(
n log

(
1

1−p

)
+

n∑
k=1

log fi(Xk)
f0(Xk)

)]
= p0vi

1−p0 ,

which is a positive constant. So the proposition is true for this
case.

Case 3: If log
(

1
1−p

)
< q(0, i) for any i ∈ I, then

∑
i∈I

pvi
n∑
k=1

exp

[
(n− k + 1) log

(
1

1−p

)
+

n∑
m=k

log
(
fi(Xm)
f0(Xm)

)]
=
∑
i∈I

pvi exp
(

log
(

1
1−p

)
+ log

(
fi(Xn)
f0(Xn)

))
+

∑
i∈I

pvi
n−1∑
k=1

exp

[
(n− k + 1) log

(
1

1−p

)
+

n∑
m=k

log
(
fi(Xm)
f0(Xm)

)]
.

Under the condition λ = 0, there is a lower bound for
log(fi(xn)/f0(xn)). So the above quantity does not converge
to 0. Therefore, there is a corresponding upper bound for Π

(0)
n ,

which is less than 1. In conclusion, the proposition is true in
all cases.

APPENDIX D
PROOF OF PROPOSITION 7

The proof of Proposition 7 is close to Theorem 5.1 in [19].
By Proposition 3,

(τ
(i)
~B

+ τA − λ)+

− logBi

Pi−a.s.−−−−−→
Bi→0

1

l(i)
.

Since λ is finite almost surely, for any ε > 0, σ > 0, there
exists B such that

Pi
{∣∣∣∣ τ(i)

~B
+τA

− logBi
− 1

l(i)

∣∣∣∣ > ε for all
∣∣∣ ~B∣∣∣
∞
≤B

}
< σ,

where
∣∣∣ ~B∣∣∣
∞

is the infinity norm of ~B. Thus

Pi
{∣∣∣ τ ~B+τA
− logBi

− 1
l(i)

∣∣∣ > ε for all
∣∣∣ ~B∣∣∣
∞
≤B
}

=
∑
j∈I0

Pi

{∣∣∣∣ τ(j)
~B

+τA

− logBi
− 1

l(i)

∣∣∣∣ > ε for all
∣∣∣ ~B∣∣∣
∞
≤B,

τ ~B + τA = τ
(j)
~B

+ τA

}
≤ Pi

{∣∣∣∣ τA+τ
(j)
~B

− logBi
− 1

l(i)

∣∣∣∣ > ε for all
∣∣∣ ~B∣∣∣
∞
≤B

}
+

∑
j∈I0\{i}

Pi
{
τ ~B + τA = τ

(j)
~B

+ τA

}
< σ + viBi.

Since Bi → 0 and σ can take any positive value, for any
σ = σ + viBi > 0 and ε > 0, there exists a B > 0 such that

Pi
{∣∣∣ τ ~B+τA
− logBi

− 1
l(i)

∣∣∣ > ε for all
∣∣∣ ~B∣∣∣
∞
≤B
}
< σ,
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i.e.,
(τ ~B + τA)

− logBi

Pi−a.s.−−−−−→
Bi→0

1

l(i)
.

Since λ is almost surely finite, the proposition is true.

APPENDIX E
PROOF OF LEMMA 2

The main idea of the proof is similar to that in [28], which
focuses on one-stage SCD. Here we extend and modify the
techniques developed in [28] to the considered two-stage SCD
case. Since the proofs of the two inequalities in this lemma
follow similar steps, here we only give proof of the first one.

Before proving Lemma 2, some supplemental lemmas are
introduced as follows.

Lemma 3. Let δ = (τ1, τ2, d) ∈ ∆. For every i ∈ I,
j ∈ I0\{i}, L > 0, f > 1, then

Pi(τ1 + τ2 − λ ≥ L) ≥ 1−
∑

k∈I0\{i}

Rik(δ)
vi
−
∑
k∈I

R0k(δ)

− e
fLl(i,j)Rji(δ)

vi
− Pi

{
sup

n≤λ+L
Λn(i, j) > fLl(i, j)

}
.

Proof. The misdiagnosis probabilities

Rji(δ) = viEi[1{d=i,λ≤τ1+τ2<∞}e
−Λτ1+τ2

(i,j)]

= E[1{d=i,λ≤τ1+τ2<∞,θ=i}e
−Λτ1+τ2

(i,j)]

≥ E[1{d=i,λ≤τ1+τ2<λ+L,θ=i,Λτ1+τ2 (i,j)≤B}e
−Λτ1+τ2 (i,j)]

≥ e−BP{d = i, λ ≤ τ1 + τ2 < λ+ L, θ = i,

Λτ1+τ2(i, j) ≤ B}
for every fixed B > 0.

P{d = i, λ ≤ τ1 + τ2 < λ+ L, θ = i,Λτ1+τ2(i, j) ≤ B}
≥ P{d = i, λ ≤ τ1 + τ2 < λ+ L, θ = i,

sup
n≤λ+L

Λn(i, j) ≤ B}

= P{d = i, λ ≤ τ1 + τ2 < λ+ L, θ = i}−
P{d = i, λ ≤ τ1 + τ2 < λ+ L, θ = i, sup

n≤λ+L
Λn(i, j) > B}

≥ P{d = i, λ ≤ τ1 + τ2 < λ+ L, θ = i}
−P{θ = i, sup

n≤λ+L
Λn(i, j) > B}

= P{d = i, λ ≤ τ1 + τ2 <∞, θ = i} − P{d = i, θ = i,
λ+ L ≤ τ1 + τ2 <∞}− P{θ = i, sup

n≤λ+L
Λn(i, j) > B}

≥ P{d = i, λ ≤ τ1 + τ2 <∞, θ = i} − P{θ = i,
λ+ L ≤ τ1 + τ2 <∞}− P{θ = i, sup

n≤λ+L
Λn(i, j) > B}.

With this lower bound, we have

Rji(δ) ≥ e−B{P{d = i, λ ≤ τ1 + τ2 <∞, θ = i}
− P{λ+ L ≤ τ1 + τ2 <∞, θ = i}
− P{θ = i, sup

n≤λ+L
Λn(i, j) > B}}

and hence
P{L ≤ τ1 + τ2 − λ, θ = i}

= P{λ+ L ≤ τ1 + τ2 <∞, θ = i}
≥ P{d = i, λ ≤ τ1 + τ2 <∞, θ = i}
− P{θ = i, sup

n≤λ+L
Λn(i, j) > B} − eBRji(δ).

Divide vi on both sides,

Pi{L ≤ τ1 + τ2 − λ}
≥ Pi{d = i, λ ≤ τ1 + τ2 <∞}− eBRji(δ)

vi
−Pi{ sup

n≤λ+L
Λn(i, j) > B}

= 1−
∑

k∈I0\{i}
Pi{d = k, λ ≤ τ1 + τ2 <∞}+

Pi{τ1 + τ2 < λ} − eBRji(δ)
vi

− Pi{ sup
n≤λ+L

Λn(i, j) > B}

= 1−
∑

k∈I0\{i}

Rik(δ)
vi
− Pi{τ1 + τ2 < λ}

− e
BRji(δ)
vi

− Pi{ sup
n≤λ+L

Λn(i, j) > B}.

Since the stopping time is independent to the state after
change, so Pi{τ1 + τ2 < λ} = P{τ1 + τ2 < λ} =∑
k∈I

R0k(δ). Therefore,

Pi{τ1 + τ2 − λ ≥ L} ≥ 1−
∑

k∈I0\{i}

Rik(δ)
vi

−
∑
k∈I

R0k(δ)− eBRji(δ)
vi

− Pi{ sup
n≤λ+L

Λn(i, j) > B}.

Finally, the lemma is proved by setting B = fLl(i, j).

By Lemma 3, we can easily have the following lemma.

Lemma 4. Let δ = (τ1, τ2, d) be an SCD rule in ∆. For every
i ∈ I, j ∈ I0\{i}, L > 0, f > 1, then

inf
δ∈∆(R)

Pi{τ1 + τ2 − λ ≥ L} ≥ 1−
∑

k∈I0\{i}

Rik
vi

+

∑
k∈I

R0k −
efLl(i,j)Rji

vi
− Pi{ sup

n≤λ+L
Λn(i, j) > fLl(i, j)}.

To control the probability part on the right hand side of
Lemma 4, we derive the following lemma.

Lemma 5. For every i ∈ I, j ∈ I0\{i}, f > 1, then

Pi{ sup
n≤λ+L

Λn(i, j) > fLl(i, j)} −−−−→
L→∞

0.

Proof. By Proposition 4.1 in [28], we know that Λn(i, j)/n
converges Pi a.s. to l(i, j). Therefore, there must exist a Pi
a.s. finite random variable Kf such that

sup
n>Kf

Λn(i, j)+

n
= sup
n>Kf

Λn(i, j)

n
< (

1 + f

2
)l(i, j),Pi a.s..

Moreover,

lim
L→∞

Pi
{

sup
n≤λ+L

Λn(i, j) > fLl(i, j)
}

≤ lim
L→∞

Pi
{

sup
n≤λ+L

Λn(i, j)+ > fLl(i, j)
}

≤ lim
L→∞

Pi
{

sup
n≤Kf

Λn(i, j)+ + sup
Kf<n≤λ+L

Λn(i, j)+

> fLl(i, j)
}

≤ lim
L→∞

Pi

{
sup
n≤Kf

Λn(i, j)++

(λ+ L) sup
Kf<n≤λ+L

Λn(i,j)+
n > fLl(i, j)

}
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= lim
L→∞

Pi

{
sup
n≤Kf

Λn(i,j)+

L + λ+L
L sup

Kf<n≤λ+L

Λn(i,j)+
n

> fl(i, j)

}
.

Since λ and Kf are Pi a.s. finite, then

lim
L→∞

[
sup
n≤Kf

Λn(i,j)+

L + λ+L
L sup

Kf<n≤λ+L

Λn(i,j)+
n

]
= sup
Kf<n

Λn(i,j)+
n ≤ f+1

2 l(i, j) ≤ fl(i, j).

Therefore,

lim
L→∞

Pi

{
sup
n≤Kf

Λn(i,j)+

L +

λ+L
L sup

Kf<n≤λ+L

Λn(i,j)+
n > fl(i, j)

}
= 0.

Hence Lemma 5 is proved.

By lemma 4 and 5, we have the following result.

Lemma 6. Let δ = (τ1, τ2, d) be an SCD rule in ∆. For
0 < γ < 1, i ∈ I, and j = j(i), then

lim inf
R→0

inf
δ∈∆(R)

Pi

{
τ1 + τ2 − λ ≥

γ
∣∣log(Rj(i)i/vi)

∣∣
l(i)

}
≥ 1.

Proof. If we set j = j(i) and L =
γ|log(Rj(i)i/vi)|

l(i) , and choose
f > 1 such that 0 < fγ < 1, then L→∞ as R→ 0. Then
plug them in Lemma 4 and apply Lemma 5, we have

lim inf
R→0

inf
(δ)∈∆(R)

Pi

{
τ1 + τ2 − λ ≥

γ|log(Rj(i)i/vi)|
l(i)

}

≥ lim inf
R→0

[
1−

∑
k∈I0\{i}

Rik
vi
−
∑
k∈I

R0k − (
Rj(i)i
vi

)1−fγ

−Pi
{

sup
n≤λ+L

Λn(i, j(i)) > fLl(i)
}]

= 1− o(1).

Now we prove the first inequality in Lemma 2. Fix a set of
positive constants R, 0 < γ < 1 and δ = (τ1, τ2, d) ∈ ∆. By
Markov inequality

Ei
[

(τ1+τ2−λ)+

|log(Rj(i)i/vi)|/l(i)

]
≥ γPi

[
(τ1+τ2−λ)+

|log(Rj(i)i/vi)|/l(i) ≥ γ
]

≥ γ inf
δ̃∈∆(R)

Pi
[
(τ̃1 + τ̃2 − λ)+ ≥

γ
l(i)

∣∣log(Rj(i)i/vi)
∣∣] .

Here δ̃ = (τ̃1, τ̃2, d̃) is any SCD rule in ∆(R). Hence

inf
δ̃∈∆(R)

Ei
[

(τ̃1+τ̃2−λ)+

|log(Rj(i)i/vi)|/l(i)

]
≥

γ inf
δ̃∈∆(R)

Pi
[
(τ̃1 + τ̃2 − λ)+ ≥

γ
l(i)

∣∣log(Rj(i)i/vi)
∣∣] .

Therefore,

lim inf
R→0

inf
δ̃∈∆(R)

Ei
[

(τ̃1+τ̃2−λ)+

|log(Rj(i)i/vi)|/l(i)

]
≥

γ lim inf
R→0

inf
δ̃∈∆(R)

Pi
[
(τ̃1 + τ̃2 − λ)+ ≥

γ
l(i)

∣∣log(Rj(i)i/vi)
∣∣]

≥
(a)
γ.

The inequality (a) is due to Lemma 6 and the fact (τ̃1 + τ̃2−
λ)+ ≥ (τ̃1 + τ̃2 − λ). Finally, the first inequality in (35) is
proved since γ is arbitrary constant between 0 and 1. The
proof of second inequality in (35) is similar and thus omitted.

APPENDIX F
PROOF OF PROPOSITION 8

The proof follows the idea of the proof of Proposition 6.2
in [28]. Here we extend the technique in [28] to the two-stage
SCD case considered in this paper. Assume that

lim
c2→0

infδ∈∆C
(c2)(δ)

C(c2)(δT )
< 1

for contradiction. This means that there exists a monotonically
decreasing sequence {c2,n}n≥1 → 0 and their corresponding
SCD rules δ∗c2,n = (τ∗1,c2,n , τ

∗
2,c2,n , d

∗
2,c2,n) such that

lim
n→∞

C(c2,n)(δ∗c2,n)

C(c2,n)(δT )
< 1.

Since we know that C(c2)(δT ) → 0 as c2 → 0. Therefore,
C(c2,n)(δT )→ 0 as n→∞. This further implies that{

R0(δ∗c2,n) −−−−→
n→∞

0,

Rij(δ
∗
c2,n) −−−−→

n→∞
0, i ∈ I0, j ∈ I0\{i}.

By Lemma 2, as these false alarm and misdiagnosis probabil-
ities go to 0,

Ei[(τ∗1,c2,n − λ)+] ≥ inf
τ1∈∆1(R0(δ∗c2,n

))
E[(τ1 − λ)+]

≥
∣∣∣∣log

R0(τ∗1,c2,n
)

vi

∣∣∣∣ /l(i, 0)

Ei[(τ∗1,c2,n + τ∗2,c2,n − λ)+]

≥ inf
δ∈∆(R(δ∗c2,n

))
Ei[(τ1 + τ2 − λ)+]

≥
∣∣∣∣log

Rj(i)i(δ
∗
c2,n

)

vi

∣∣∣∣ /l(i).
(36)

Now we can apply these results to analyze the total Bayesian
cost. We know that τ∗1,c2,n > λ a.s. when the false alarm of
the first stage goes to 0. Then, as n→∞ (i.e. c2,n → 0),

C(c2,n)(δ∗c2,n) = c2,n
∑
i∈I

viEi[(τ∗1,c2,n + τ∗2,c2,n − λ)]

+c2,n
(

1
r − 1

) ∑
i∈I

viEi[(τ∗1,c2,n − λ)]

+
∑
i∈I0

∑
j∈I0\{i}

bjiRji(δ
∗
c2,n) + aR0(δ∗c2,n)

≥
∑
i∈I

[
c2,nviEi[(τ∗1,c2,n + τ∗2,c2,n − λ)] + bj(i)iRj(i)i(δ

∗
c2,n)

]
+c2,n

(
1
r − 1

) ∑
i∈I

viEi[(τ∗1,c2,n − λ)] + aR0(δ∗c2,n)

≥
(a)

∑
i∈I

vi

[
c2,n
−l(i)

log
Rj(i)i(δ

∗
c2,n)

vi
+
bj(i)i

vi
Rj(i)i(δ

∗
c2,n)

]
︸ ︷︷ ︸

Item1
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+ aR0(δ∗c2,n)− c2,n
(

1

r
− 1

)∑
i∈I

vi logR0(δ∗c2,n)

l(i, 0)︸ ︷︷ ︸
Item2

+ c2,n

(
1

r
− 1

)∑
i∈I

vi log vi
l(i, 0)︸ ︷︷ ︸

Item3

.

Here, inequality (a) is due to (36).
Since (1/r−1)

∑
i∈I

(vi log vi/l(i, 0)) is a finite constant and
(

1
r − 1

) ∑
i∈I

vi logR0(δ∗c2,n )

l(i,0) →∞,

1
−l(i) log

(
Rj(i)i(δ

∗
c2,n

)

vi

)
→∞,

as n→∞, Item 3 is negligible compared with Item 1 and Item
2. So we can conclude that C(c2,n)(δ∗c2,n) ≥ Item 1+Item 2.
Let 

A′ = 1
R0(δ∗c2,n

) ,

~B′ = (B′1, . . . , B
′
M ),

B′i =
Rj(i)i(δ

∗
c2,n

)

vi
, i ∈ I.

Then, we have

Item1 + Item2 =
∑
i∈I

vi

[
c2,n
−l(i)

log (B′i) + bj(i)iB
′
i

]
+ c2,n

(
1

r
− 1

)∑
i∈I

vi
l(i, 0)

logA′ +
a

A′
.

Now we can find that Item 1+ Item 2 have a very similar
form of the Bayesian cost function of the threshold rule,
C(c2)(δT ). But there are two differences between them. One
difference is that the false alarm probability in item 2 is 1/A′,
while it is ka/(1 +A) in C(c2)(δT ). But they are almost
equivalent when A and A′ goes to infinity. The other difference
is the coefficient of false alarm in Item 1 is bj(i)i, while it’s ki
in C(c2)(δT ). However, as we discussed in Section V, taking
different value of ki will not change the asymptotic behavior
of the Bayesian cost. So this difference becomes negligible as
c2 → 0. So we can conclude that

C(c2,n)(δ∗c2,n) ≥ Item1 + Item2

≈ C(c2,n)(A′, ~B′) ≥ C(c2,n)(δT ),

where C(c2,n)(A′, ~B′) is the cauculated as (25) with thresholds
A′ and ~B′. As the result, the proposition is true.
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