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Sum-Rate Capacity of Poisson MIMO

Multiple-Access Channels

Ain-ul-Aisha, Lifeng Lai, Yingbin Liang and Shlomo Shamai (Shitz)

Abstract

In this paper, we analyze the sum-rate capacity of two-user Poisson MIMO multiple-access channels

(MAC), when both the transmitters and the receiver are equipped with multiple antennas. We first

characterize the sum-rate capacity of the Poisson MAC when each transmitter has a single antenna and

the receiver has multiple antennas. Although the sum-rate capacity of Poisson MAC when the receiver

is equipped with a single antenna has been characterized in the literature, the inclusion of multiple

antennas at the receiver makes the problem more challenging. We obtain the optimal input that achieves

the sum-rate capacity by solving a non-convex optimization problem. We show that, for certain channel

parameters, it is optimal for a single user to transmit to achieve the sum-rate capacity, and for certain

channel parameters, it is optimal for both users to transmit. We then characterize the sum-rate capacity

of the channel where both the transmitters and the receiver are equipped with multiple antennas. We

show that the sum-rate capacity of the Poisson MAC with multiple transmit antennas is equivalent

to a properly constructed Poisson MAC with a single antenna at each transmitter, and has thus been

characterized by the former case.

I. INTRODUCTION

Free-space optical (FSO) and visible light communication (VLC) can be modeled using

Poisson channel, in which photon sensitive devices, embedded in the receivers [1], record the

Ain-ul-Aisha is with Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA,

01609, Email: aaisha@wpi.edu. Lifeng Lai is with Department of Electrical and Computer Engineering, University of California,

Davis, CA, 95616, Email: lflai@ucdavis.edu. Yingbin Liang is with Department of Electrical Engineering and Computer Science,

Syracuse University, Syracuse, NY, 13244, Email: yliang06@syr.edu. Shlomo Shamai (Shitz) is with Department of Electrical

Engineering, Technion, Technion City, Israel, Email: sshlomo@ee.technion.ac.il. The work of Ain-ul-Aisha and Lifeng Lai was

supported by the National Science Foundation under grants CCF-13-18980 and CCF-16-65073. The work of Yingbin Liang

was supported by the National Science Foundation under grant CCF-16-18127. The work of Shlomo Shamai (Shitz) has been

supported by the S. and N. grand research fund, Tchnion-Israel Institute of Technology.

February 16, 2017 DRAFT



2

arrival of photons. The point-to-point single-user Poisson channel has been investigated from

various perspectives [2]–[11]. On the other hand, multi-user Poisson channels are not very well

understood. Among limited existing work, [12], [13] focused on the Poisson broadcast chan-

nel, [14] studied the Poisson multiple-access channel (MAC), [15] considered the optimization

of the capacity region of Poisson MAC with respect to different power constraints, and [16]

investigated the Poisson channel with side information at the transmitter. Furthermore, [17], [18]

studied the discrete-time Poisson channel and showed that sum-capacity achieving distributions

of the Poisson MAC under peak amplitude constraints are discrete with a finite number of mass

points. [19] discussed a discrete memoryless Poisson MAC with noiseless feedback.

Among papers mentioned above, [14] is particularly relevant to us. In [14], the authors con-

sidered the Poisson single-input single-output MAC (SISO-MAC) with each of the transmitters

and the receiver having a single antenna. It is shown in [14] that the complex continuous-

time continuous-input discrete-output Poisson channel can be approximated with a discrete-time

binary-input binary-output channel without loss of optimality in terms of the transmission rate.

[14] further characterized the sum-rate capacity for the symmetric case where each transmitter has

the same power constraint and has the same channel condition to the receiver. By exploiting the

symmetric nature of the channel, [14] showed that, to achieve the sum-rate capacity, the objective

function is Schur-concave and hence the multi-dimensional convex optimization problem can be

converted into a one-dimensional convex optimization problem.

More recently, [20], [21] extended the study of [14] to the case with multiple antennas at

each transmitter and single antenna at the receiver (MISO-MAC). It was shown that for each

MISO-MAC, a SISO-MAC can be constructed to have the same sum-rate capacity. Hence, the

problem of characterizing the sum-rate capacity of MISO-MAC is reduced to the problem of

characterizing the sum-rate capacity of SISO-MAC. However, differently from the case studied

in [14], the constructed SISO-MAC may not be symmetric anymore, which makes the problem

more challenging. In particular, the objective function in the non-symmetric channel is not

a convex function, and hence the techniques used in [14] are not applicable. It was shown

in [20], [21] that there are four possible candidates for the optimal solution for the non-convex

optimization problem. Two possible candidates correspond to the scenario where one user is

active while the other user stays inactive, which is in contrast to the Gaussian MAC where

both users must transmit (either simultaneously or at different time) to achieve the sum-rate

capacity. The other two candidates of the optimal solution correspond to the scenario where
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both transmitters transmit simultaneously to achieve the sum-rate capacity.

In this paper, we further extend the study in [20], [21] to the case where all users are equipped

with multiple antennas (MIMO-MAC). Having multiple receive antennas makes the problem con-

siderably more complex than that of MISO-MAC [20], [21]. In particular, in MISO-MAC [20],

[21], although the objective function is not convex, the set of nonlinear equations corresponding

to KKT conditions, which are necessary but not sufficient conditions for optimality, can be

converted into a set of linear equations along with a nonlinear but convex equation. This special

structure of KKT conditions in MISO-MAC facilitates the further analysis. Unfortunately, such a

conversion technique developed in [20], [21] for MISO-MAC is not applicable to MIMO-MAC

anymore. As the result, we need to devise new techniques to analyze the MIMO-MAC. Despite

this challenge, using a novel channel transformation argument, we show that characterizing the

sum-rate capacity of MIMO-MAC can be reduced to characterizing the sum-rate capacity of

the SIMO-MAC, in which each transmitter has only one antenna. Similarly to the SISO-MAC

considered in [20], [21], the SIMO-MAC has a non-convex objective function. After analyzing

the KKT conditions for the case with two transmitters, we draw a conclusion that there are three

optimality scenarios for achieving the sum-rate capacity: 1) when only transmitter 1 is active

and transmitter 2 is inactive; 2) when transmitter 2 is active and transmitter 1 is inactive; and

3) when both transmitters are active.

The remainder of this paper is organized as follows. Section II introduces the system model

for this paper. Section III analyzes the SIMO-MAC and Section IV analyzes the MIMO-MAC.

Section V provides several numerical examples. Finally, Section VI concludes the paper with

some remarks.

II. SYSTEM MODEL

In this section, we introduce the model studied in this paper. As shown in Fig. 1, we consider

the two-user Poisson MIMO MAC. The analysis can be extended to the scenario with more

than two transmitting users. Let Jn be the number of antennas at transmitter n, and M be the

number of antennas at the receiver. Let Xnjn(t) be the input of the jthn transmitting antenna of

transmitter n and Ym(t) be the doubly-stochastic Poisson process observed at the mth receiving

antenna. The input-output relationship can be described as:

Ym(t) = P

(
2∑

n=1

SnjnmXnjn(t) + λm

)
, for m = 1, ...,M (1)
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Fig. 1: The Poisson MIMO-MAC model.

in which Snjnm is the channel response between the jthn antenna of the transmitter n and the

mth receiving antenna, λm is the dark current at the mth receive antenna, and P(·) is the non-

linear transformation converting the light strength to the doubly-stochastic Poisson process that

records the timing and number of photons’ arrivals. In particular, for any time interval [t, t+ τ ],

the probability that there are k photons arriving at the mth receiving antenna is

Pr{Ym(t+ τ)− Ym(t) = k} =
e−ΛmΛk

m

k!
, (2)

where

Λm =

∫ t+τ

t

[
2∑

n=1

SnjnmXnjn(t′) + λm

]
dt′. (3)

We consider the peak power constraint, i.e., the transmitted signal Xnjn(t) must satisfy the

following constraint:

0 ≤ Xnjn(t) ≤ Anjn , (4)

where Anjn is the maximum power allowed for antenna jn of transmitter n.

We use µnj to denote the duty cycle of each transmit antenna, i.e., µnj is the percentage of

time at which the jth antenna of the transmitter n is on. We use µ to denote the vector of all

µnjs.
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Throughout the paper, we use the following substitutions to simplify the notations:

ajm , S1jmA1j, (5)

bjm , S2jmA2j, (6)

φ(x) , x log(x), (7)

ζ(x, y) , φ(x+ y)− φ(y). (8)

The goal of this paper is to characterize the sum-rate capacity of the Poisson MIMO MAC.

III. SIMO-MAC ANALYSIS

To simplify the presentation of main ideas, in this section, we focus on the case with M = 2

and J1 = J2 = 1. That is each transmitter has only one antenna while the receiver has 2 antennas.

The solution of this special case is a building block to the solution to the general case where

the transmitters also have multiple antennas. This general case is studied in Section IV. As

J1 = J2 = 1, to lighten the notation, we omit the subscript jn in the remainder of this section.

A. Optimality Conditions

It has been shown in [14] that the continuous-input discrete-output Poisson MAC can be

converted to a binary-input binary-output MAC. In particular, the input waveform can be limited

to a two level waveform, i.e., 0 or An, for the transmitter n. Let µn be the duty cycle of each

transmitter. Therefore, the sum-rate capacity of such a channel is given by

Csum = max
0≤µ1,µ2≤1

IX1,X2;Y . (9)

where

IX1,X2;Y =
M∑
m=1

IX1,X2;Ym (10)

with

IX1,X2;Ym = (1− µ1)(1− µ2)φ(λm) + µ1(1− µ2)φ(am + λm)

+µ2(1− µ1)φ(bm + λm) + µ1µ2φ(am + bm + λm)

−φ(amµ1 + bmµ2 + λm). (11)
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The problem to calculate the sum-rate capacity can be rewritten as

P0: max IX1,X2;Y ,

s.t 0 ≤ µ1 ≤ 1,

0 ≤ µ2 ≤ 1. (12)

The problem (P0) has been solved for the special case of M = 1 (i.e., when the receiver has

only one antenna) in [22]. The main idea in [22] is to convert a set of nonlinear equations that

appear in the analysis into a set of linear equations and a convex function, which then can be

solved. However, when M > 1 (i.e., when the receiver has multiple antennas) as considered in

this paper, this technique is not applicable.

It can be easily shown that (10) is not a convex function. Accordingly, (P0) is a non-convex

optimization problem. Therefore, KKT conditions, being necessary but sufficient conditions

for non-convex optimization problem, can only be used to identify candidates for the optimal

solution. In the following, we use I to denote IX1,X2;Y .

The Lagrangian equation from (P0) is

L = −I + η1(µ1 − 1)− η2µ1 + η3(µ2 − 1)− η4µ2,

where ηi, for i = 1, · · · , 4 are Lagrangian multipliers.

These KKT conditions can be written as

∂I

∂µ1

∣∣∣
(µ̂1,µ̂2)

− η1 + η2 = 0,

∂I

∂µ2

∣∣∣
(µ̂1,µ̂2)

− η3 + η4 = 0,

η1(µ̂1 − 1) = 0,

η2µ̂1 = 0,

η3(µ̂2 − 1) = 0,

η4µ̂2 = 0,

where

∂I

∂µ1

=
2∑

m=1

(
− (1− µ2)φ(λm) + (1− µ2)φ(am + λm)

−µ2φ(bm + λm) + µ2φ(am + bm + λm)

−am(log(amµ1 + bmµ2 + λm) + 1)
)
, (13)
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and

∂I

∂µ2

=
2∑

m=1

(
− (1− µ1)φ(λm)− µ1φ(am + λm)

+(1− µ1)φ(bm + λm) + µ1φ(am + bm + λm)

−bm(log(amµ1 + bmµ2 + λm) + 1)
)
. (14)

To find the solution for this non-convex optimization problem, the KKT conditions can be solved

by considering different combinations of constraints being active at a given time. This yields 16

possible cases, each corresponding to whether ηi, i = 1, · · · , 4 being zero or not. Out of these

16 cases, in Appendix A, we show that 13 cases can not be the optimal solution. For example

when η1 = 0, η2 = 0, η3 6= 0, η4 = 0, we have

∂I

∂µ1

= 0,

∂I

∂µ2

− η3 = 0,

η3 6= 0⇒ µ2 = 1.

Then the optimal solution must satisfy ∂I
∂µ1

∣∣∣∣∣
(µ1,1)

= 0. In this case having µ2 = 1 means that

transmitter 2 is transmitting constantly and just imposing interference for the transmitter 1. Hence,

I(µ1, 0) ≥ I(µ1, 1). Therefore, we may conclude that this case does not result in a candidate

for the optimal solution. Detailed analysis on how to exclude these 13 cases is provided in

Appendix A.

The feasible candidates for the optimal solution are listed below.

Case-1: η1 = 0, η2 6= 0, η3 = 0, η4 = 0⇒
∂I

∂µ1

+ η2 = 0,

∂I

∂µ2

= 0,

η2 6= 0⇒ µ1 = 0.

The candidate for the optimal solution is (0, µ2), where µ2 satisfies ∂I
∂µ2

∣∣∣∣∣
(0,µ2)

= 0, i.e.,

2∑
m=1

(
bm log(bmµ2 + λm)

)
=

2∑
m=1

(
− φ(λm) + φ(bm + λm)− bm

)
. (15)

This case corresponds to the scenario when only transmitter 2 is active and transmitter 1 is

inactive. Equation (15) shows that the optimal value of µ2 that satisfies the KKT conditions is
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the intersection between the right side function of the equation and the left side of the equation.

It is easy to check that the left side of (15) is a monotonically increasing function of µ2, while

the right side of (15) is a constant. Therefore, there can be at most one value of µ2 that satisfies

this equation. We use µ̃2 to denote the solution to (15). If such solution does not exist or if the

solutions lies out of [0, 1], we simply set µ̃2 = 0. Hence, a candidate obtained from this case is

(0, µ̃2).

Case-2: η1 = 0, η2 = 0, η3 = 0, η4 6= 0⇒
∂I

∂µ1

= 0,

∂I

∂µ2

+ η4 = 0,

η4 6= 0⇒ µ2 = 0.

Therefore, the optimal pair must satisfy ∂I
∂µ1

∣∣∣∣∣
(µ1,0)

= 0, which yields

2∑
m=1

(
am log(amµ1 + λm)

)
=

2∑
m=1

(
− φ(λm) + φ(am + λm)− am

)
. (16)

This case corresponds to the scenario when only transmitter 1 is active and transmitter 2 is

inactive. It is clear that, similarly to Case-1, µ1 is the intersection point of a monotonically

increasing function and a constant. Therefore there can only be at most one such value of µ1

that satisfy this equation. Let (µ̄1, 0) be the obtained solution, with µ̄1 setting to zero if such

solution does not exist or the solution lies outside of [0, 1].

Case-3: η1 = 0, η2 = 0, η3 = 0, η4 = 0⇒
∂I

∂µ1

= 0, (17)

∂I

∂µ2

= 0. (18)

This case corresponds to the scenario when both transmitters are active. The pair (µ1, µ2) must

satisfy (17) and (18) simultaneously. Let (µ∗1, µ
∗
2) be the obtained solution.

From (13) and (14), we know that (17) and (18) are a pair of nonlinear equations. The

solution can be obtained efficiently by numerical methods. Under certain conditions, we can

analyze these nonlinear equations further and draw definite conclusions. These analysis will be

presented below.

After obtaining solutions from these three cases, we can then compare the rate obtained from

them and set the solution to be the one that results in the largest rate.

February 16, 2017 DRAFT



9

In summary, we have the following theorem.

Theorem 1. The sum-rate capacity of the Poisson MAC, CSIMO−MAC
sum = IX1X2;Y (µ̂1, µ̂2) where

(µ̂1, µ̂2) is given by

(µ̂1, µ̂2) =


(0, µ̃2) if I(0, µ̃2) ≥ max (I(µ̄1, 0), I(µ∗1, µ

∗
2))

(µ̄1, 0) if I(µ̄1, 0) ≥ max (I(0, µ̃2), I(µ∗1, µ
∗
2))

(µ∗1, µ
∗
2) otherwise

. (19)

From this Theorem, we see that there are three optimality scenarios for achieving the sum-rate

capacity: 1) when only transmitter 1 is active and transmitter 2 is inactive; 2) when transmitter 2

is active and transmitter 1 is inactive; and 3) when both transmitters are active. In the following,

we will show analytically that single user transmission is indeed optimal for certain scenarios.

This is in contrast to the Gaussian MAC where both users must transmit (either simultaneously

or at different time) to achieve the sum-rate capacity.

B. Special Cases

In this subsection, we further analyze (17) and (18) and analytically show that there are finite

number of solutions for some interesting scenarios.

1) Asymptotic Analysis: In this subsection, we show that when the transmission power of one

transmitter is sufficiently higher than the other, then there is no solution to (17) and (18), and

hence single user transmission is optimal.

Proposition 2. For any µ1 ∈ (0, 1) and µ2 ∈ (0, 1), if am → ∞ for any m ∈ {1, 2}, then
∂I
∂µ2
→ −∞.
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Proof.

lim
am→∞

∂I

∂µ2

= lim
am→∞

2∑
m=1

(
− (1− µ1)φ(λm)− µ1φ(am + λm)

+(1− µ1)φ(bm + λm) + µ1φ(am + bm + λm)

−bm(log(amµ1 + bmµ2 + λm) + 1)
)

= lim
am→∞

2∑
m=1

(1− µ1)
(
φ(bm + λm) + φ(λm)

)
+ lim

am→∞

2∑
m=1

(
µ1(am + λm) log

(
bm

am + λm
+ 1

)
+ µ1bm log(am + bm + λm)

−bm log(amµ1 + bmµ2 + λm) + 1
)

(a)

≤ c+ lim
am→∞

2∑
m=1

(
µ1bm + bmµ1 log(am) + µ1bm log

(
bm + λm
am

+ 1

)

−bm log(a1mµ1)− bm log

(
bm + λm
am

+ 1

)
− bm

)

= c+ lim
am→∞

2∑
m=1

(
µ1bm − bm + bmµ1 log(am)− bm log(amµ1)

)
= c+ lim

am→∞

2∑
m=1

(
− bm(1− µ1) + bm(µ1 log(am)− log(µ1)− log(am))

)
= c+ lim

am→∞

2∑
m=1

(
− bm(1− µ1)− bm(1− µ1) log(am)− bm log(µ1)

)
= −∞.

where (a) follows because ln(1 + x) ≤ x and c is a positive constant.

From Proposition 2, we may conclude that when am → ∞ for any m ∈ {1, 2}, there is no

solution for Case-3. Similarly, when bm →∞ for any m ∈ {1, 2}, Case-3 does not lead to any

solution. Hence in these scenarios, single user transmission is optimal.

2) Symmetric Channel: Here we show that for the symmetric channel where am = bm,∀m ∈

[1,M ], there are at most 2 solutions to (17) and (18).

Proposition 3. If the channel is symmetric, (17) and (18) have at most two solutions. Further-

more, in these solutions, µ1 = µ2.
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Proof. Let SmA , am = bm = SmA. Then ∂I
∂µ1

= 0 yields

2∑
m=1

(
− (1− µ2)φ(λm) + (1− µ2)φ(SmA+ λm)

−µ2φ(SmA+ λm) + µ2φ(2SmA+ λm)

−SmA(log(SmA(µ1 + µ2) + λm) + 1)
)

= 0.

This implies
2∑

m=1

(
SmA log(SmA(µ1 + µ2) + λm) + SmA

)
=

2∑
m=1

(
− (1− µ2)φ(λm) + (1− µ2)φ(SmA+ λm)

−µ2φ(SmA+ λm) + µ2φ(2SmA+ λm)
)
. (20)

After plugging the value of
∑2

m=1

(
SmA log(SmA(µ1 + µ2) + λm) + SmA

)
from (20) into

∂I
∂µ2

= 0 and rearranging terms, we obtain

2∑
m=1

(
− (1− µ1)φ(λm)− µ1φ(SmA+ λm)

+(1− µ1)φ(SmA+ λm) + µ1φ(2SmA+ λm)
)

=
2∑

m=1

(
− (1− µ2)φ(λm) + (1− µ2)φ(SmA+ λm)

−µ2φ(SmA+ λm) + µ2φ(2SmA+ λm)
)
. (21)

The equation (21) implies that µ1 = µ2, as the left side and the right side of (21) are the same

linear functions of µ1 and µ2, respectively.

We can now replace the value of µ1 = µ2 = µ in (20) and obtain:
2∑

m=1

[
φ(λm)− 2φ(SmA+ λm) + φ(2SmA+ λm)

−SmA log(2SmAµ+ λm)− SmA

]
= 0. (22)

It is easy to verify that the left side of (22) is a strictly convex function of µ, while the right

side is a constant. Therefore, there can be at most two values of µ ∈ (0, 1) that satisfies the

above equation.

February 16, 2017 DRAFT



12

IV. MIMO-MAC ANALYSIS

In this section, using the results obtained in the SIMO-MAC case presented in Section III, we

study the general case of the MIMO-MAC where both transmitters and the receiver are equipped

with multiple antennas.

Similarly to the SIMO-MAC, the continuous-time continuous-input discrete-output Poisson

MIMO-MAC can be converted to the discrete-time binary-input binary-output MAC. In particular,

the input waveform of each antenna can be limited to be piecewise constant waveforms with

two levels 0 or Anj for the jth antenna of the transmitter n. Depending on the on-off states of

each antenna of transmitter n, there are 2Jn states at transmitter n. In the following, we use

in ∈ [1, · · · , 2Jn ] to index each of these 2Jn states at transmitter n. We will use Pn(in) to denote

the probability that transmitter n lies in state in and pn , [Pn(1), · · · , Pn(2Jn)] to denote the

vector of probabilities of states at transmitter n. We use the binary variable bnj(in) to indicate

whether the jth antenna of the transmitter n is on or off at state in, i.e., bnj(in) = 1 if the jth

antenna of transmitter n is on for state in and is 0 otherwise. The sum-rate achievable using

(p1,p2) is given by

IXN ;Y (p1,p2) =
2J1∑
i1=1

2J2∑
i2=1

[
P1(i1)P2(i2)

M∑
m=1

[
ζ

(
2∑

n=1

Jn∑
j=1

SnjmAnjbnj(in), λm

)]]

−
M∑
m=1

[
ζ

(
2∑

n=1

Jn∑
j=1

SnjmAnjµnj, λm

)]
. (23)

It is easy to see that

µnj =
2Jn∑
in=1

Pn(in)bnj(in). (24)

To characterize the sum-rate capacity, we need to solve the following optimization problem:

(P1): CMIMO−MAC
sum = max

p1,p2

IXN ;Y (p1,p2), (25)

s.t 0 ≤ Pn(in) ≤ 1, (26)

in = 1, · · · , 2Jn , n = 1, 2, (27)
2Jn∑
in=1

Pn(in) = 1, n = 1, 2. (28)

Problem (P1) is a complex non-convex optimization problem with a large number of variables.

In particular, the number of variables 2J1 + 2J2 increases exponentially with the number of

antennas. The main result of this section is the following theorem.
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Theorem 4. Solving problem (P1) is equivalent to solving the following problem

(P2): CMIMO−MAC
sum = max

0≤µ1,µ2≤1
I(µ1, µ2), (29)

where

I(µ1, µ2) =
M∑
m=1

[
(1− µ1)(1− µ2)ϕ(λm)

+µ1(1− µ2)ϕ(am + λm) + (1− µ1)µ2ϕ(bm + λm)

+µ1µ2ϕ(am + bm + λ)− ϕ(amµ1 + bmµ2 + λm)
]
, (30)

with

am ,
J1∑
j1

S1j1mA1j1 , (31)

bm ,
J2∑
j2

S2j2mA2j2 . (32)

Note that the right hand side of problem (P2) has the same form as (P0) solved in the SIMO-

MAC case presented in Section III. Theorem 4 states that the sum-rate capacity of MIMO-MAC is

the same as the sum-rate capacity of a properly constructed SIMO-MAC. The enabling element

of our result is that in the MIMO-MAC, we show that to achieve the sum-rate capacity, all

antennas of the same transmitter must be simultaneously on or off. This enables us to view

these antennas of the same transmitter as one antenna with properly modified parameters.

Using Theorem 4 and results from the SIMO case, we know that three are different cases

for the optimal inputs to achieve the sum-rate capacity of the Poisson MIMO-MAC. The three

optimal solutions correspond to 1) the scenario where only transmitter 2 is active with both

antennas being simultaneously on or off; 2) the scenario where only transmitter 1 is active with

both antennas being simultaneously on or off; and 3) the scenario where both transmitters are

active with antennas at transmitter 1 being simultaneously on or off.

A. Proof of Theorem 4

The proof of Theorem 4 follows a two-step structure and relies on Propositions 5 and 6

presented below. The proof of proposition 5 is similar to the proof of Proposition 7 in [20]. The

proof of proposition 6, however, is significantly different because the proof method used in [20]

is not applicable when there are multiple antennas at the receiver.
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For the presentation convenience, we focus on the case M = 2 in this section. The proof for

the cases with M > 2 is the same.

In Step-1, we prove the following proposition that simplifies the optimization problem from

(p1,p2) to µ.

Proposition 5. At the optimality, for each transmitter, if the antenna with a smaller duty cycle

is on then all antennas with a larger duty cycle must also be on.

Proof. See Appendix B.

In Step-2, we show the following proposition that characterizes the optimal value of µ.

Proposition 6. At the optimality, for each transmitter, all antennas must have the same duty

cycle and they must be on or off simultaneously.

Proof. See Appendix C.

From these two propositions, we prove Theorem 4, which shows that a MIMO-MAC channel

can be converted to a SIMO-MAC channel with appropriate channels.

V. NUMERICAL RESULTS

In this section, we present numerical examples to illustrate the results obtained in the previous

sections.

In the first example, we set a1 = a2 = 5, b1 = b2 = 5, λ = 0.25. The sum-rate achieved by

three different cases are

Case - 1: µ̃1 = 0, µ̃2 = 0.25→ I(µ̃1, µ̃2) = 2.616.

Case - 2: µ̄1 = 0.25, µ̄2 = 0→ I(µ̄1, µ̄2) = 2.616.

Case - 3: µ1 = 0.2987, µ2 = 0.2987→ I(µ1, µ2) = 3.6057.

Therefore, for this channel, Case-3 where both transmitters are active achieves the sum-rate

capacity.

For the next example, we set a1 = a2 = 4, b1 = b2 = 10, λ = 0.25. The sum-rate achieved by

three different cases are

Case - 1: µ̃1 = 0, µ̃2 = 0.3888→ I(µ̃1, µ̃2) = 6.3720.

Case - 2: µ̄1 = 0.4041, µ̄2 = 0→ I(µ̄1, µ̄2) = 2.276.

Case - 3: Does not result in a solution, therefore I(µ1, µ2) = 0.
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Therefore, for this channel, Case-1 where only transmitter 2 is active achieves the sum-rate

capacity. This confirms our conclusion that if the power of one transmitter is relatively high, it

is optimal for only this user to be active to achieve the sum-rate capacity.

Fig. 2: ∂I
∂µ2

and the zero plane.

Fig. 2 illustrates the Proposition 2. In this figure, the red surface is the zero plane, and the black

surface is ∂I
∂µ2

for different values of µ1 and µ2. In generating this figure, we set a1 = a2 = 450,

b1 = b2 = 1 and λ1 = λ2 = 0.25. From the figure, we can see that, for this set of parameters, ∂I
∂µ2

has no intersection with the zero plane (except on the boundary). This confirms our conclusion

that, if the transmitter of one transmitter is relatively high, Case-3 does not yield a solution.

Fig. 3: Sum-rate capacity with respect to transmission power at transmitter 1 when M = 1 and

M = 2. Region I corresponds to the case when only transmitter 2 is transmitting, Region II is

when both transmitters are transmitting and Region III is when only transmitter 1 is transmitting.

Fig. 3 illustrates how the sum-rate capacities for the channels with different number of

receiving antennas increases as the transmission power increases. In generating Fig. 3, we set

b1 = b2 = 10 and λ1 = λ2 = 0.25, while increasing the value of a1 = a2. The sum-rate capacity

increases as the available transmission power at transmitter 1 increases but this slope is larger

when the receiver has multiple receiving antennas. In the figure, we also mark three regions

February 16, 2017 DRAFT



16

corresponding to different input scenarios that achieve the sum-rate capacity. In Region-I, when

the value of a1 is small, it is optimal to allow only transmitter 2 to be active. When a1 = 4.7 for

M = 1 and a1 = 4.5 for M = 2, both curves transit into Region-II where both transmitters must

be active to achieve the sum-rate capacity and when the value of a1 is high enough (a1 = 21.1

for M = 1 and a1 = 23 for M = 2), the curves are in Region-III where it is optimal for only

transmitter 1 to be active.

VI. CONCLUSION

In this paper, we have characterized the sum-rate capacity of the Poisson MIMO-MAC. We

have shown that the sum-rate capacity of a Poisson MIMO MAC can be characterized by studying

a carefully constructed Poisson SIMO MAC. We have also shown that there are three possible

operating scenarios for achieving the sum-rate capacity of the Poisson SIMO MAC. We have

shown that it is optimal for either a single user to transmit or both transmitters to transmit

depending on channel parameters. This is completely in contrast with the Gaussian channels

where all of the users must transmit (either simultaneously or at different times) in order to

achieve the sum-rate capacity.
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APPENDIX A

DETAILED ANALYSIS OF THE SIMO-MAC:

In order to find out the optimal solution to the given problem, we analyze the following 16

cases under different constraints.

Case-1: η1 = 0, η2 6= 0, η3 = 0, η4 = 0⇒

∂I

∂µ1

+ η2 = 0,

∂I

∂µ2

= 0

η2 6= 0⇒ µ1 = 0.
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Therefore the candidate for the optimal solution is (0, µ2), where µ2 satisfies ∂I
∂µ2

∣∣∣∣∣
(0,µ2)

= 0. This

case corresponds to the scenario when transmitter 1 is inactive and transmitter 2 is active.

Case-2: η1 = 0, η2 = 0, η3 = 0, η4 6= 0⇒

∂I

∂µ1

= 0,

∂I

∂µ2

+ η4 = 0,

η4 6= 0⇒ µ2 = 0.

Therefore the optimal pair must satisfy ∂I
∂µ1

∣∣∣∣∣
(µ1,0)

= 0. This case corresponds to the scenario

when transmitter 1 is active and transmitter 2 is inactive.

Case-3: η1 = 0, η2 = 0, η3 = 0, η4 = 0⇒

∂I

∂µ1

= 0,

∂I

∂µ2

= 0.

This case corresponds to the scenario when it is optimal for both transmitters to transmit. The

pair (µ1, µ2) must satisfy both of the equations simultaneously.

Case-4: η1 = 0, η2 = 0, η3 6= 0, η4 = 0⇒

∂I

∂µ1

= 0,

∂I

∂µ2

− η3 = 0,

η3 6= 0⇒ µ2 = 1.

Then the optimal solution must satisfy ∂I
∂µ1

∣∣∣∣∣
(µ1,1)

= 0. Since I(µ1, 0) ≥ I(µ1, 1), we conclude

that this case does not result in a candidate for the optimal solution.

Case-5: η1 = 0, η2 = 0, η3 6= 0, η4 6= 0⇒

∂I

∂µ1

= 0,

∂I

∂µ2

− η3 + η4 = 0,

η3 6= 0⇒ µ2 = 1,

η4 6= 0⇒ µ2 = 0.
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It is clear that this case is not possible.

Case-6: η1 = 0, η2 6= 0, η3 = 0, η4 6= 0⇒

∂I

∂µ1

+ η2 = 0,

∂I

∂µ2

+ η4 = 0,

η2 6= 0⇒ µ1 = 0,

η4 6= 0⇒ µ2 = 0.

It is clear that this case does not result in a candidate for the optimal solution.

Case-7: η1 = 0, η2 6= 0, η3 6= 0, η4 = 0⇒

∂I

∂µ1

+ η2 = 0,

∂I

∂µ2

− η3 = 0,

η2 6= 0⇒ µ1 = 0,

η3 6= 0⇒ µ2 = 1.

It is clear that µ1 = 0, µ2 = 1 is not a candidate for the optimal solution.

Case-8: η1 = 0, η2 6= 0, η3 6= 0, η4 6= 0⇒

∂I

∂µ1

+ η2 = 0,

∂I

∂µ2

− η3 + η4 = 0,

η2 6= 0⇒ µ1 = 0,

η3 6= 0⇒ µ2 = 1,

η4 6= 0⇒ µ2 = 0.

It is clear that it is not a feasible case.

Case-9: η1 6= 0, η2 = 0, η3 = 0, η4 = 0⇒

∂I

∂µ1

− η1 = 0,

∂I

∂µ2

= 0,

η1 6= 0⇒ µ1 = 1.
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Similarly to Case-4, this case does not result in a candidate for optimal solution because

I(0, µ2) ≥ I(1, µ1).

Case-10: η1 6= 0, η2 = 0, η3 = 0, η 6= 0⇒
∂I

∂µ1

− η1 = 0,

∂I

∂µ2

+ η4 = 0,

η1 6= 0⇒ µ1 = 1,

η4 6= 0⇒ µ2 = 0.

It is clear that I(1, 0) does not result in a candidate for the optimal value of the sum-rate.

Case-11: η1 6= 0, η2 = 0, η3 6= 0, η4 = 0⇒
∂I

∂µ1

− η1 = 0,

∂I

∂µ2

− η3 = 0,

η1 6= 0⇒ µ1 = 1,

η3 6= 0⇒ µ2 = 1.

It is clear that this case does not result in the optimal candidate.

Case-12: η1 6= 0, η2 = 0, η3 6= 0, η4 6= 0⇒
∂I

∂µ1

− η1 = 0,

∂I

∂µ2

− η3 + η4 = 0,

η1 6= 0⇒ µ1 = 1,

η3 6= 0⇒ µ2 = 1,

η4 6= 0⇒ µ2 = 0.

This case is not feasible due to the conflicting values of µ2.

Case-13: η1 6= 0, η2 6= 0, η3 = 0, η4 = 0⇒
∂I

∂µ1

− η1 + η2 = 0,

∂I

∂µ2

= 0,

η1 6= 0⇒ µ1 = 1,

η2 6= 0⇒ µ1 = 0.
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Clearly this case is not feasible.

Case-14: η1 6= 0, η2 6= 0, η3 = 0, η4 6= 0⇒

∂I

∂µ1

− η1 + η2 = 0,

∂I

∂µ2

+ η4 = 0,

η1 6= 0⇒ µ1 = 1,

η2 6= 0⇒ µ1 = 0,

η4 6= 0⇒ µ2 = 0.

This case is not feasible.

Case-15: η1 6= 0, η2 6= 0, η3 6= 0, η4 = 0⇒

∂I

∂µ1

− η1 + η2 = 0,

∂I

∂µ2

− η3 = 0,

η1 6= 0⇒ µ1 = 1,

η2 6= 0⇒ µ1 = 0,

η3 6= 0⇒ µ2 = 1.

This case is not feasible.

Case-16: η1 6= 0, η2 6= 0, η3 6= 0, η4 6= 0⇒

∂I

∂µ1

− η1 + η2 = 0,

∂I

∂µ2

+ η4 = 0,

η1 6= 0⇒ µ1 = 1,

η2 6= 0⇒ µ1 = 0,

η3 6= 0⇒ µ2 = 1,

η4 6= 0⇒ µ2 = 0.

This case is not feasible.
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APPENDIX B

PROOF OF PROPOSITION 5

The proof of this proposition is similar to the proof of Proposition 7 in [20] with proper

modification.

Proof. We prove Proposition 5 by characterizing the optimal value of (p1,p2) for any given µ.

Hence, in this subsection, µ is fixed. More specifically, we show that, at the optimality in the

MIMO-MAC, if the antenna with the smaller duty cycle is on, then the other antenna should

also be on.

From (23), it is clear that to optimize over (p1,p2) for a given µ, we only need to focus on

H ,
2J1∑
i1=1

2J2∑
i2=1

P1(i1)P2(i2)
2∑

m=1

ζ

(
2∑

n=1

Jn∑
j=1

SnjmAnjbnj(in), λm

)

=
2J1∑
i1=1

P1(i1)H1(i1), (33)

where

H1(i1) =
2J2∑
i2=1

P2(i2)
2∑

m=1

d(i1, i2), (34)

and

d(i1, i2) = ζ

(
J1∑
j=1

S1jmA1jb1j(i1) +

J2∑
j=1

S2jmA2jb2j(i2), λm

)
. (35)

We focus on finding the optimal values of p2 first. To facilitate the understanding, we list the

labeling of states of transmitter 2 and the corresponding values of b2js in Table I.

b21 b22

(i1, 1) 0 0

(i1, 2) 0 1

(i1, 3) 1 0

(i1, 4) 1 1

TABLE I: The states of transmitter 2 and the corresponding values of b2js.

Using the definition of ζ function, we can easily check that

d(i1, 1) < min{d(i1, 2), d(i1, 3)} ≤ max{d(i1, 2), d(i1, 3)} < d(i1, 4),
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which is simultaneously true for any value of i1. Since H1(i1) is simply a linear combination

of d(i1, i2)s, for any given µ, maximizing H1(i1) is a linear programming problem, for which

we have the following (assuming µ21 ≥ µ22, the other case being similar):

1) Since d(i1, 4) is the largest, P2(4) should be as large as possible. Therefore, we assign

P2(4) = µ22.

2) Since µ22 has been all used, we should set P2(2) = 0.

3) Since d(i1, 3) > d(i1, 1), we assign the remaining part of µ21 to state (i1, 3) and hence

P2(3) = µ21 − µ22.

4) For the last state related to the term d(i1, 1), allot the remaining probability. Hence P2(1) =

1− µ21.

This assignment implies that if the antenna with a smaller duty cycle is on, the antenna with

a larger duty cycle should also be on. Note that the above arguments are true for all i1s, and

hence this assignment maximizes H1(i1) for all i1 simultaneously. Furthermore, this assignment

is independent of p1.

Note that the above discussion for J2 = 2 can be extended for J2 > 2.

Similarly, by writing

H =
2J2∑
i2=1

P2(i2)
2J1∑
i1=1

P1(i1)
2∑

m=1

ζ

(
J1∑
j=1

S1jmA1jb1j(i1) +

J2∑
j=1

S2jmA2jb2j(i2), λm

)
,

and following the same procedure as above, we can calculaandte the optimal values of p1.

As the result, we know that (23) can be simplified to a function µ depending on the relation-

ships between the values of µnjs. For example, in the case of two transmitter antennas, we have

four symmetric cases, i.e., (µ11 ≥ µ12, µ21 ≥ µ22), (µ11 ≤ µ12, µ21 ≥ µ22), (µ11 ≥ µ12, µ21 ≤

µ22) and (µ11 ≤ µ12, µ21 ≤ µ22). For the case of (µ11 ≥ µ12, µ21 ≥ µ22), IXN ;Y can be simplified

February 16, 2017 DRAFT



24

to

I(µ11 − µ12, µ12, µ21 − µ22, µ22)

=
2∑

m=1

[
(1− µ11)((1− µ21)ϕ(λm) + (µ21 − µ22)ϕ(b1m + λm)

+µ22ϕ(b1m + b2m + λm)) +

+(µ11 − µ12)((1− µ21)ϕ(a1m + λm)

+(µ21 − µ22)ϕ(a1m + b1m + λm) +

+µ22ϕ(a1m + b1m + b2m + λm))

+µ12((1− µ21)ϕ(a1m + a2m + λm) +

+(µ21 − µ22)ϕ(a1m + a2m + b1m + λm) +

+µ22ϕ(a1m + a2m + b1m + b2m + λm))

−ϕ

(
2∑

n=1

Jn∑
j=1

SnjmAnjµnj + λm

)]
. (36)

As the result, the objective function is simplified to characterizing

CMIMO−MAC
sum = max (Cµ11≥µ12,µ21≥µ22 , Cµ11≤µ12,µ21≥µ22 ,

Cµ11≥µ12,µ21≤µ22 , Cµ11≤µ12,µ21≤µ22) , (37)

in which

(P3): Cµ11≥µ12,µ21≥µ22 = max I(µ11 − µ12, µ12, µ21 − µ22, µ22), (38)

s.t. 0 ≤ µ12 ≤ µ11 ≤ 1, (39)

0 ≤ µ22 ≤ µ21 ≤ 1. (40)

Other terms in (37) are defined in a similar manner. Due to symmetry, we provide details only

on how to solve (P3) in Step-2.
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APPENDIX C

PROOF OF PROPOSITION 6

Proof. For the ease of calculation, we define q1 = µ11 − µ12, q2 = µ12, q3 = µ21 − µ22 and

q4 = µ22 and let q = [q1, q2, q3, q4]. Then (36) can be re-written as

I(q) =
2∑

m=1

[
(1− (q1 + q2))((1− (q3 + q4))ϕ(λm)

+q3ϕ(b1m + λm) + q4ϕ(b1m + b2m + λm))

+q1((1− (q3 + q4))ϕ(a1m + λm) + q3ϕ(b1m + a1m + λm)

+q4ϕ(b1m + b2m + a1m + λm))

+q2((1− (q3 + q4))ϕ(a1m + a2m + λm)

+q3ϕ(b1m + a1m + a2m + λm)

+q4ϕ(b1m + b2m + a1m + a2m + λm))

−ϕ(a1mq1 + (a1m + a2m)q2 + b1mq3 + (b1m + b2m)q4 + λm)

]
.

(41)

Correspondingly, (P3) is equivalent to

(P4): Cµ11≥µ12,µ21≥µ22 = max I(q) (42)

s.t. qk ≥ 0, k = 1, · · · , 4, (43)

q1 + q2 ≤ 1, (44)

q3 + q4 ≤ 1. (45)

Now in order to find the optimal solution for (P4), we show that any sum-rate achievable when

both antennas at both transmitters 1 and 2 are active with different duty cycles (called scheme

A), can be achieved by setting the duty cycles of antennas of the same transmitter to be the

same (called scheme B) in a properly constructed weaker channel. This implies that, for the

original channel, we can restrict to the case where the antennas of the same transmitter are

simultaneously on or off without losing optimality.
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For scheme A, let q1 and q2 be the duty cycles of each of the antennas at transmitter 1 and

q3 and q4 be the duty cycle of each antenna at transmitter 2, respectively.

IA(q) =
2∑

m=1

[
(1− (q1 + q2))((1− (q3 + q4))ϕ(λm)

+q3ϕ(b1m + λm) + q4ϕ(b1m + b2m + λm))

+q1((1− (q3 + q4))ϕ(a1m + λm) + q3ϕ(b1m + a1m + λm)

+q4ϕ(b1m + b2m + a1m + λm))

+q2((1− (q3 + q4))ϕ(a1m + a2m + λm)

+q3ϕ(b1m + a1m + a2m + λm)

+q4ϕ(b1m + b2m + a1m + a2m + λm))

−ϕ(a1mq1 + (a1m + a2m)q2 + b1mq3 + (b1m + b2m)q4 + λm)

]
.

(46)

Fig. 4: Transformation from Scheme A to Scheme B.

Fig. 5: Scheme B elaborated.

Now we show that IA(q) can be achieved in a weakened channel but with both antennas to be

simultaneously on or off. In particular, in the weakened channel, we restrict the channel gains
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for the stage of Scheme A when only the stronger antenna is active. For transmitter 1, as shown

in Fig. 5, we reduce each ajm to β̃jmajm by reducing S1jm to β̃jmS1jm with 0 ≤ β̃jm ≤ 1. We

choose the values of β̃jm such that

a11 = β̃11a11 + β̃21a21, (47)

a12 = β̃12a12 + β̃22a22. (48)

It is easy to check that we can always find β̃jms in [0, 1] that satisfy (47) and (48).

Same can be done for transmitter 2 by choosing b1m = β̄1mb1m + β̄2mb2m by restricting the

channel gain at each of the channels for transmitter 2. We know that this scheme is also feasible

for 0 ≤ β̄1m, β̄2m ≤ 1. Therefore, the sum-rate capacity for scheme B is:

IB(q) =
2∑

m=1

[
(1− (q1 + q2))((1− (q3 + q4))ϕ(λm)

+q3ϕ(β̄1mb1m + β̄2mb2m + λm) + q4ϕ(b1m + b2m + λm))

+q1((1− (q3 + q4))ϕ(β̃1ma1m + β̃2ma2m + λm)

+q3ϕ(β̄1mb1m + β̄2mb2m + β̃1ma1m + β̃2ma2m + λm)

+q4ϕ(b1m + b2m + β̃1ma1m + β̃2ma2m + λm))

+q2((1− (q3 + q4))ϕ(a1m + a2m + λm)

+q3ϕ(β̄1mb1m + β̄2mb2m + a1m + a2m + λm)

+q4ϕ(b1m + b2m + a1m + a2m + λm))

−ϕ(a1mq1 + (a1m + a2m)q2 + b1mq3 + (b1m + b2m)q4 + λm)

]
.

(49)

Clearly, we have IA = IB. Therefore, we conclude that any sum-rate achievable by both antennas

at transmitter be active, at different duty cycles, can also be achieved by letting both antennas

of each user to be simultaneously on or off. Note that scheme A represents a channel model

with strong channel gains and scheme B represents a channel model with weak channel gains.

Hence, we conclude that in order to achieve the sum-rate capacity, the duty cycles of antennas

of the same transmitter should be simultaneously on or off.

February 16, 2017 DRAFT


