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Abstract—In this paper, we analyze the sum-rate capacity
of two-user Poisson multiple access channels (MAC) when the
receiver is equipped with single antenna. We first characterize the
sum-rate capacity of the non-symmetric Poisson MAC when each
transmitter has a single antenna. While the sum-rate capacity
of the symmetric Poisson MAC with single antenna at each
transmitter has been characterized in the literature, the special
property exploited in the existing method for the symmetric case
does not hold for the non-symmetric channel anymore. We obtain
the optimal input that achieves the sum-rate capacity by solving
a non-convex optimization problem. We show that, for certain
channel parameters, it is optimal for a single-user to transmit
to achieve the sum-rate capacity. This is in sharp contrast to
the Gaussian MAC, in which both users must transmit, either
simultaneously or at different times, in order to achieve the sum-
rate capacity. We then characterize the sum-rate capacity of the
Poisson multiple input single output (MISO) MAC with multiple
antennas at each transmitter and single antenna at the receiver.
By converting a non-convex optimization problem with a large
number of variables into a non-convex optimization problem with
two variables, we show that the sum-rate capacity of the Poisson
MISO MAC with multiple transmit antennas is equivalent to a
properly constructed Poisson MAC with a single antenna at each
transmitter.

Index Terms—Poisson channels, multiple input single output,
multi-access channels, optimal power allocation, sum-rate capac-
ity

I. INTRODUCTION

Poisson Channel, whereby the arrival of photons is recorded
by photon-sensitive devices incorporated in the receivers [2], is
often used to model free-space optical (FSO) and visible light
communication (VLC). The point-to-point single-user Pois-
son channel has been investigated from various perspectives,
including single antenna [3], multiple antennas [4], fading
channels [5], [6], in continuous-time [3], [7]–[9] and discrete-
time [10]–[12]. On the other hand, Poisson channels with
multiple users are not that well understood. Among limited
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existing work, [13], [14] focus on the Poisson broadcast
channel, [15] studies the Poisson multiple-access channel
(MAC), [16] considers the optimization of the capacity region
of Poisson MAC with respect to different power constraints,
and [17] investigates the Poisson channel with side information
at the transmitter. Furthermore, [18], [19] discuss the discrete-
time Poisson channel and show that sum-capacity achieving
distributions of the Poisson MAC under peak amplitude con-
straints are discrete with a finite number of mass points. [20]
discusses a discrete memoryless Poisson MAC with noiseless
feedback.

Of particular relevance to our study is [15], which thor-
oughly investigates the continuous-time Poisson MAC with
each user equipped with single antenna. [15] shows that the
approximation of the complex continuous-time continuous-
input discrete-output Poisson MAC by a discrete-time binary-
input binary-output MAC does not result in a loss in terms
of the capacity region. [15] determines the sum-rate capacity
of the symmetric Poisson MAC, in which the channel gains
and power constraints for all users are identical under the
maximum power constraint. Furthermore, it characterizes the
boundary points on the capacity region of the symmetric MAC
under maximum power constraint and analyzes the maximum-
throughput under peak-power and average power constraints.

In this paper, we first study the single antenna non-
symmetric Poisson MAC, in which the channel gains and
power constraints at the two users are not necessarily the
same. We refer to such a channel as Poisson SISO-MAC. This
scenario naturally arises in multiuser optical communications
when the transmitters have different distances to the receiver or
have different transmission powers. Unfortunately, the method
used in [15] to characterize the sum-rate capacity for the
symmetric case does not apply to the non-symmetric case
anymore. In particular, the method in [15] exploits the property
that the objective function involved is a Schur concave function
for the symmetric Poisson MAC, which greatly simplifies the
analysis. However, in the non-symmetric channel, the objective
function is not symmetric, and hence is not Schur concave
anymore. As a result, we resort to a different approach from
the one used in [15] to study the sum-rate capacity. More
specifically, we show that characterizing the sum-rate capacity
is equivalent to solving a non-convex optimization problem.
We show that there are at most four possible candidates for
the optimal solution to this optimization problem with two
candidate solutions corresponding to the cases when only one
user transmits. We further show that, for some channel param-
eters, it is indeed optimal to allow only one user to transmit
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in order to achieve the sum-rate capacity under the maximum
power constraint. This is in sharp contrast to the Gaussian
MAC with an average power constraint, in which it is always
optimal for both users to transmit, either simultaneously or
at different time, to achieve the sum-rate capacity. We also
identify conditions under which it is optimal for both users to
transmit in order to achieve the sum-rate capacity.

We then extend the study to Poisson MAC with multiple
antennas at each transmitter and one antenna at the receiver.
We refer to this as Poisson MISO-MAC. Similarly to the
Poisson SISO-MAC, the complex continuous-time continuous-
input discrete-output Poisson MAC can be converted to a
discrete-time binary-input binary-output Poisson MAC. How-
ever, the resulting problem is much more challenging than that
of the Poisson SISO-MAC. In particular, to characterize the
sum-rate capacity, we need to solve a non-convex optimization
problem with 2J1 + 2J2 variables, in which Jn is the number
of antennas at user n. Despite this challenge, we show that
the optimal value obtained from this optimization problem
with a large number of variables is the same as that of
an optimization problem with only 2 variables. Furthermore,
this reduced dimension optimization problem is equivalent to
a problem arising in the Poisson SISO-MAC with properly
chosen parameters. As the result, characterizing the sum-rate
capacity of the Poisson MISO-MAC is equivalent to character-
izing the sum-rate capacity of a Poisson SISO-MAC. Hence,
the techniques and asymptotic analysis developed in the SISO-
MAC case can be used for the MISO-MAC case. There are
two major steps in our proof. In the first step, we show that
the original optimization problem with 2J1 + 2J2 variables
can be converted to a non-convex optimization problem with
J1 + J2 variables by showing and exploiting the fact that,
at the optimality, if the antenna with a smaller duty cycle is
on, then the antenna with a larger duty cycle is also on. In
the second step, we show that the optimization problem with
J1 + J2 variables obtained in step 1 can be converted to an
optimization problem with only 2 variables. The key ingredient
in this step is to show that, at the optimality, all antennas at
each transmitter have to be simultaneously on or off.

A natural next step is to characterize the sum-rate capacity
of the scenario when there are also multiple antennas at the
receiver. Another natural extension is to characterize the set
of boundary points of the full capacity region. As will be dis-
cussed in sequel, there are significant technical challenges in
extending our methods to these cases. Hence, new techniques
are required for these extensions. One possible direction to
pursue is to explore the relationship between the derivative
of mutual information and mean squared error as discussed
in [21] and [22].

The remainder of the paper is organized as follows. Sec-
tion II describes the model under consideration. Section III
analyzes the Poisson SISO-MAC. Section IV analyzes the
Poisson MISO-MAC. Section V discusses challenges for cer-
tain extensions. Numerical analysis is presented in Section VI
and concluding remarks are presented in Section VII.

Fig. 1: The Poisson MISO-MAC model.

II. SYSTEM MODEL

In this section, we introduce the model considered in this
paper. As shown in the Fig. 1, we consider the continuous-time
two-user Poisson MISO-MAC with two users communicating
with a single antenna receiver. For transmitter n, it is equipped
with Jn transmit antennas. Let Xnj(t) be the input of the jth

transmitter from nth user and Y (t) be the doubly-stochastic
Poisson process observed at the receiver antenna. The input-
output relationship can be described as:

Y (t) = P

 2∑
n=1

Jn∑
j=1

SnjXnj(t) + λ

 , (1)

in which Snj is the channel response between the jth antenna
of the nth user to the receiver, λ is the dark current at receiver
antenna, and P(·) is the nonlinear transformation converting
the light strength to the doubly-stochastic Poisson process
that records the timing and number of photon’s arrivals. In
particular, for any time interval [t, t+ τ ], the probability that
there are k photons arriving at the receiver is

Pr{Y (t+ τ)− Y (t) = k} =
e−ΛΛk

k!
, (2)

where

Λ =

∫ t+τ

t

 2∑
n=1

Jn∑
j=1

SnjXnj(t
′) + λ

 dt′. (3)

We consider the peak power constraint, i.e., the transmitted
signal Xnj(t) must satisfy the following constraint:

0 ≤ Xnj(t) ≤ Anj , (4)

where Anj is the maximum power allowed by the jth antenna
of the nth transmitter. We use µnj to denote the duty cycle of
each transmitting antenna, i.e., µnj is the percentage of time
at which the jth antenna of the nth user is on. We use µ to
denote the vector of all µnjs.

Throughout the paper, we use the following notation:

ϕ(x) , x log(x), (5)
ζ(x, y) , (x+ y) log(x+ y)− y log y, (6)

α(x) ,
1

x

(
e−1(1 + x)(1+ 1

x ) − 1
)
. (7)
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It is easy to check that 0 < α(x) < 1 for x ≥ 0.
Our goal is to characterize the sum-rate capacity of this

Poisson MAC.

III. SISO-MAC ANALYSIS

In this section, we focus on the special case in which each
transmitter has only one antenna, i.e., J1 = 1 and J2 = 1.
Hence for the sake of convenience, we drop the subscript j in
this section. The techniques developed in this section will be
used in the more complicated setup considered in Section IV.

A. Optimality Conditions

It has been shown in [15] that the continuous-time
continuous-input discrete-output Poisson MAC can be con-
verted to a much simpler discrete-time binary-input binary-
output MAC. In particular, the input waveform can be limited
to be piecewise constant waveforms with two levels 0 or An
for the nth transmitter. Let µn be the duty cycle of the nth

transmitter (i.e., µn is the fraction of the time that transmitter
n is on). It has been shown in [15] that the sum-rate capacity
is given by

(P0): CSISO−MAC
sum = max

0≤µ1,µ2≤1
IX1,X2;Y (µ1, µ2), (8)

in which

IX1,X2;Y (µ1, µ2) = (1− µ1)(1− µ2)ϕ(λ)

+µ1(1− µ2)ϕ(S1A1 + λ) + (1− µ1)µ2ϕ(S2A2 + λ)

+µ1µ2ϕ(S1A1 + S2A2 + λ)− ϕ(S1A1µ1 + S2A2µ2 + λ).

The optimization problem (8) has been solved by [15]
for the symmetric case with S1A1 = S2A2. In particular,
[15] shows that the objective function IX1,X2;Y (µ1, µ2) is a
Schur concave function when S1A1 = S2A2. As the result, if
(µ̂1, µ̂2) is the optimal solution to (8) for the symmetric case,
µ̂1 must be equal to µ̂2. Hence, the problem can be converted
into a one-dimensional optimization problem, which can be
solved easily.

However, the situation for the non-symmetric case is differ-
ent. In particular, if S1A1 6= S2A2, then IX1,X2;Y (µ1, µ2) is
not a Schur concave function anymore. This can be observed
from the fact that a Schur concave function must be a symmet-
ric function (see page 258 of [23]), while IX1,X2;Y (µ1, µ2) is
not a symmetric function when S1A1 6= S2A2. Therefore, the
techniques developed in [15] for the symmetric case cannot be
extended to the non-symmetric case. Furthermore, for general
values of SnAn and λ, IX1,X2;Y (µ1, µ2) is not necessarily a
concave function of (µ1, µ2), (see the proof in Appendix A).
Hence, (8) is a non-convex optimization problem in general.

In the following, we solve this non-convex optimization
problem. We start with the necessary KKT conditions (since
the problem is not convex, these conditions are not sufficient
for optimality). For convenience, we write IX1,X2;Y = I and
hence the corresponding Lagrangian equation is given by:

L = −I + η1(µ1 − 1)− η2µ1 + η3(µ2 − 1)− η4µ2. (9)

The optimal solution (µ̂1, µ̂2) must satisfy the following KKT
constraints:

∂I

∂µ1

∣∣∣
(µ̂1,µ̂2)

− η1 + η2 = 0,

∂I

∂µ2

∣∣∣
(µ̂1,µ̂2)

− η3 + η4 = 0,

η1(µ̂1 − 1) = 0,

η2µ̂1 = 0,

η3(µ̂2 − 1) = 0,

η4µ̂2 = 0,

where
∂I

∂µ1
= −(1− µ2)ϕ(λ) + (1− µ2)ϕ(S1A1 + λ)

−µ2ϕ(S2A2 + λ) + µ2ϕ(S1A1 + S2A2 + λ)

−S1A1 log(S1A1µ1 + S2A2µ2 + λ)− S1A1, (10)

and
∂I

∂µ2
= −(1− µ1)ϕ(λ)− µ1ϕ(S1A1 + λ)

+(1− µ1)ϕ(S2A2 + λ) + µ1ϕ(S1A1 + S2A2 + λ)

−S2A2 log(S1A1µ1 + S2A2µ2 + λ)− S2A2. (11)

In order to further analyze the above KKT conditions, we
need to consider 16 cases corresponding to different combi-
nations of active constraints (i.e., whether ηi = 0 or not for
i = 1, · · · , 4). For example, if η1 = 0, η2 = 0, η3 6= 0, η4 = 0,
then the above KKT conditions can be simplified to

∂I

∂µ1

∣∣∣
(µ̂1,µ̂2)

= 0,

∂I

∂µ2

∣∣∣
(µ̂1,µ̂2)

− η3 = 0,

η3(µ̂2 − 1) = 0,

from which we obtain

µ̂1 = α

(
S1A1

S2A2 + λ

)
,

µ̂2 = 1. (12)

Since max I(µ̂1, 0) > max I(µ̂1, 1), (12) is clearly not an
optimal solution.

Using similar arguments, we can show that among these
16 possible combinations, 13 constraint combinations result
in non-optimal solutions. We are then left with the following
three possible scenarios:
Scenario 1: η1 = 0, η2 = 0, η3 = 0, η4 = 0:
The KKT conditions are simplified to

∂I

∂µ1

∣∣∣
(µ1,µ2)

= 0, (13)

∂I

∂µ2

∣∣∣
(µ1,µ2)

= 0. (14)

This scenario corresponds to the case where both users are
active. From (10) and (11), we can see that both ∂I

∂µ1

∣∣∣
(µ1,µ2)

and ∂I
∂µ2

∣∣∣
(µ1,µ2)

are nonlinear functions of (µ1, µ2). Hence,
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there can be multiple (µ1, µ2) pairs satisfying (13) and (14)
simultaneously. However, we now show that there are in fact
at most 2 possible (µ1, µ2) pairs that satisfy (13) and (14)
simultaneously.

First, by (13)×S2A2 = (14)×S1A1, we have

S2A2(−(1− µ2)ϕ(λ) + (1− µ2)ϕ(S1A1 + λ)

−µ2ϕ(S2A2 + λ)) + µ2ϕ(S1A1 + S2A2 + λ)

= S1A1(−(1− µ1)ϕ(λ)− µ1ϕ(S1A1 + λ)

−(1− µ1)ϕ(S2A2 + λ) + µ1ϕ(S1A1 + S2A2 + λ)). (15)

Using (15), we can write µ2 in terms of µ1:

µ2 =
V

W
+
S1A1

S2A2
µ1 , f(µ1), (16)

where

W , ϕ(λ)− ϕ(S1A1 + λ)− ϕ(S2A2 + λ)

+ϕ(S1A1 + S2A2 + λ), (17)

V , −ϕ(S1A1 + λ) + ϕ(λ)− S1A1

S2A2
ϕ(λ)

+
S1A1

S2A2
ϕ(S2A2 + λ). (18)

It is clear that f(µ1) is a linear function of µ1.
Using ∂I

∂µ2
= 0, we can write µ2 in terms of µ1:

µ2 =
1

S2A2

(
exp

(
1

S2A2
(−(1− µ1)ϕ(λ)

−µ1ϕ(S1A1 + λ) + (1− µ1)ϕ(S2A2 + λ)

+µ1ϕ(S1A1 + S2A2 + λ)− S2A2)

))
− S1A1µ1 + λ

S2A2

, g(µ1). (19)

It is easy to check that g
′′
(µ1) > 0, and hence g(µ1) is a

strictly convex function of µ1.
We have just converted (13) and (14) into equivalent forms:

µ2 = f(µ1), (20)
µ2 = g(µ1). (21)

Hence, (µ1, µ2) pairs where f(µ1) and g(µ1) intersect with
each other satisfy (13) and (14) simultaneously. As f(µ1) is a
linear function of µ1, while g(µ1) is a strictly convex function
of µ1, they can have at most two intersecting points as shown
in Fig. 2.

Therefore, there can be at most two pairs of (µ1, µ2) that
satisfy both conditions simultaneously. Let these solutions be
(µ̃1, µ̃2) and (µ̃′1, µ̃

′
2). We then need to check whether (µ̃1, µ̃2)

is in [0, 1] × [0, 1] or not. If yes, we keep it. If not, then for
the presentation convenience, we replace it with (0, 0). We do
the same for (µ̃′1, µ̃

′
2).

Scenario 2: η1 = 0, η2 = 0, η3 = 0, η4 6= 0:
Solving the corresponding KKT conditions, we obtain

µ̄1 = α(S1A1/λ), (22)
µ̄2 = 0.

From the property of α(·), we know that 0 ≤ µ̄1 ≤ 1, and
hence (µ̄1, 0) is a valid input. This scenario corresponds to the
case where only user 1 is active.

Fig. 2: f(µ1) and g(µ1) have at most two intersecting points.

Scenario 3: η1 = 0, η2 6= 0, η3 = 0, η4 = 0:
Solving the corresponding KKT conditions, we obtain

µ∗1 = 0,

µ∗2 = α(S2A2/λ). (23)

Similarly, we have 0 ≤ µ∗2 ≤ 1, and hence (0, µ∗2) is a valid
input. This scenario corresponds to the case where only user
2 is active.

In summary, we have the following theorem.

Theorem 1. The sum-rate capacity of the Poisson MAC is
CSISO−MAC
sum = IX1X2;Y (µ̂1, µ̂2) with (µ̂1, µ̂2) given by

(µ̂1, µ̂2) = (24)

(0, µ∗2)

if I(0, µ∗2) ≥ max (I(µ̄1, 0), I(µ̃1, µ̃2), I(µ̃′1, µ̃
′
2))

(µ̄1, 0)

if I(µ̄1, 0) ≥ max (I(0, µ∗2), I(µ̃1, µ̃2), I(µ̃′1, µ̃
′
2))

(µ̃′1, µ̃
′
2)

if I(µ̃′1, µ̃
′
2) ≥ max (I(0, µ∗2), I(µ̄1, 0), I(µ̃1, µ̃2))

(µ̃1, µ̃2) otherwise

.

It is interesting to note that unlike the Gaussian MAC with
an average power constraint, it can be optimal to allow only
one user to transmit in order to achieve the sum-rate capacity
in the Poisson MAC with a maximum power constraint. For
example, when S1A1 = 5, S2A2 = 50, λ = 0.5, there is no
solution for (20) and (21) in the desired range of 0 ≤ µ1 ≤ 1
and 0 ≤ µ2 ≤ 1, because (20) and (21) do not intersect (as
shown in Fig. 3). Hence, for such a set of parameters, it is
optimal to allow only one user (in this case, user 2) to transmit
to achieve the sum-rate capacity.

On the other hand, there are scenarios under which it is
optimal for both users to transmit. For example, when S1A1 =
10, S2A2 = 15, λ = 0.5, it is easy to check that it is optimal
for both users to transmit in order to achieve the sum-rate
capacity. Please refer to Fig. 7 in Section VI for an illustration
of optimal operating regions for varying values of S1A1 and
S2A2.
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Fig. 3: f(µ1) and g(µ1) have no intersection in 0 ≤ µ1 ≤ 1
and 0 ≤ µ2 ≤ 1, when S1A1 = 5, S2A2 = 50, and λ = 0.5.

Motivated by these observations, we further analyze (24)
to characterize conditions under which it is optimal to either
allow one user or two users to transmit.

B. Single-User or Two-User Transmission?

In this subsection, we present conditions under which it
is optimal for a single-user to transmit and conditions under
which it is optimal for two-user transmission.

We first focus on the optimality of single-user transmission.
As discussed above, the solution for two-user transmission
is characterized by the intersections of (20) and (21). The
following simple proposition characterize the conditions under
which (20) and (21) do not have an intersection in the desired
region [0, 1] × [0, 1] and hence two-user transmission is not
optimal.

Proposition 2. If g(0) < f(0) and g(1) < f(1), then single-
user transmission is optimal to achieve the sum-rate capacity.

Proof. It suffices to argue that two-user transmission is not
optimal under the assumption of the proposition. This happens
when (20) and (21) do not intersect. Therefore we prove that
g(µ1) does not intersect with f(µ1) when g(0) < f(0) and
g(1) < f(1) for µ1 ∈ [0, 1]. For any µ1 ∈ [0, 1], we have

f(µ1)
(a)
= (1− µ1)f(0) + µ1f(1)
(b)
> (1− µ1)g(0) + µ1g(1)
(c)
> g(µ1).

Here, (a) follows from the linearity of f(·), (b) follows from
the assumption g(0) < f(0) and g(1) < f(1), and (c) follows
from the strict convexity of g(·).

Proposition 2 gives sufficient conditions for single-user
transmission to be optimal. Even if the conditions in Propo-
sition 2 are not satisfied, which implies there are solutions
for two-user transmission, it is still possible for single-user
transmission to be optimal if the corresponding rate achieved
is the largest. In the following, we will show that if one of
the SiAis is sufficiently large, then it is optimal for one user
to transmit. As the roles of users are symmetric, we restrict
our analysis to S2A2 → ∞ as an example. We show that as

S2A2 →∞, the conditions in Proposition 2 are satisfied and
hence f(µ1) and g(µ1) do not intersect.

Lemma 3. The functions f(µ1) and g(µ1) have the following
properties:

lim
S2A2→∞

f(µ1) = lim
S2A2→∞

f(0) = lim
S2A2→∞

f(1) = 1

and

lim
S2A2→∞

g(µ1) = lim
S2A2→∞

g(1) = lim
S2A2→∞

g(0) =
1

e
.

Therefore, (20) and (21) do not intersect as S2A2 →∞.

Proof. Please refer to Appendix B.

Fig. 4: µ2 vs. µ1 as S2A2 →∞

Lemma 3 is illustrated in Fig. 4. As discussed in Scenario 1
of Section III-A, (20) and (21) do not intersect in our region
of interest, and hence we replace (µ̃′1, µ̃

′
2) and (µ̃1, µ̃2) by

(0, 0) when S2A2 >> S1A1. This implies that either (0, µ∗2)
or (µ̄1, 0) is the possible solutions. With S2A2 >> S1A1,
solving (24) yields (0, µ∗2) as the optimal solution, i.e., only
user 2 transmitting achieves the sum-rate capacity.

Now, we discuss the conditions under which it is optimal for
both users to transmit. In particular, the following proposition
characterizes conditions under which single-user transmission
is not optimal.

Proposition 4. User 1 transmitting alone is not optimal if

α(S1A1/λ) > γ1

,

(
1− S2A2

S1A1

)
ϕ(λ)− ϕ(S2A2 + λ) + S2A2

S1A1
ϕ(S1A1 + λ)

W
,

in which W is defined in (17). Similarly, user 2 transmitting
alone is not optimal if

α(S2A2/λ) > γ2

,

(
1− S1A1

S2A2

)
ϕ(λ)− ϕ(S1A1 + λ) + S1A1

S2A2
ϕ(S2A2 + λ)

W
.

Furthermore, if both conditions above are satisfied, it is
optimal for both users to be active.

Proof. To prove this proposition, we will find out conditions
under which a single-user transmission can be eliminated as
a candidate for optimality. To eliminate (0, µ∗2), which is
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obtained in (23), as a candidate for the optimal solution, we
check whether ∂I

∂µ1

∣∣∣
(µ1=0,µ∗2)

is larger than 0 or not. If it is

larger than 0, then we know that (0, µ∗2) cannot be the optimal
solution. By replacing the value of log(S2A2µ

∗
2 +λ) from the

∂I
∂µ2

∣∣∣
µ1=0,µ∗2

= 0 in ∂I
∂µ1

∣∣∣
(µ1=0,µ∗2)

= 0, we have

∂I

∂µ1

∣∣∣
(µ1=0,µ∗2)

= −(1− µ∗2)ϕ(λ) + (1− µ∗2)ϕ(S1A1 + λ)

−µ∗2ϕ(S2A2 + λ) + µ∗2ϕ(S1A1 + S2A2 + λ)

−S1A1

S2A2
ϕ(S2A2 + λ) +

S1A1

S2A2
ϕ(λ). (25)

Hence the condition for ∂I
∂µ1

∣∣∣
(µ1=0,µ∗2)

> 0 to hold true is µ∗2 >

γ2, where γ2 = r2
W with r2 = (1− S1A1

S2A2
)ϕ(λ)−ϕ(S1A1+λ)+

S1A1

S2A2
ϕ(S2A2 + λ). Therefore, the case (0, µ∗2) is not optimal

if µ∗2 > γ2.
Following similar arguments, we can conclude that (µ̄1, 0),

which is obtained in (22), is not optimal when µ̄1 > γ1, in
which γ1 = r1

W with r1 = (1− S2A2

S1A1
)ϕ(λ)− ϕ(S2A2 + λ) +

S2A2

S1A1
ϕ(S1A1 + λ).

If µ̄1 > γ1 and µ∗2 > γ2, two-user transmission is the
optimal solution.

C. Special Case: Symmetric Channel

In this section we show that the results obtained in Sec-
tion III-A can recover the results obtained in [15] for the
symmetric case. We show this using the following three steps.

Step 1: Among the four possible solutions in (24), we first
rule out (0, µ∗2) and (µ̄1, 0). It is easy to check that, when
S1A1 = S2A2, γ1 = 0 and γ2 = 0. Hence, as discussed in
Section III-B, (0, µ∗2) is not optimal, as we clearly have µ∗2 >
γ2 = 0. Similarly, (µ̄1, 0) is not optimal, as µ̄1 > γ1 = 0.
Hence, scenario 2 and scenario 3 cannot be optimal, and we
are left with only scenario 1.

Step 2: We show that, if (µ1, µ2) is a solution to (20) and
(21) of scenario 1, then µ1 must be equal to µ2. This can be
easily seen by setting S1A1 = S2A2 in (16), which yields
µ1 = µ2.

Step 3: We show that there is a unique pair (µ1, µ2) that
satisfies (20) and (21) of scenario 1. To prove the uniqueness

Fig. 5: f(µ1) and g(µ1) has a single intersecting point in the
region of interest when S1A1 = S2A2.

of the solution, as illustrated in Fig. 5, we show that g(0) >

0 = f(0) and g(1) < 1 = f(1). Since g(·) is a strictly convex
function while µ2 = µ1 is a linear function, f(µ1) and g(µ1)
have a single intersecting point in the range 0 ≤ µ1 ≤ 1.

Lemma 5. If S1A1 = S2A2, g(1) < 1 and g(0) > 0.

Proof. Please refer to Appendix C.

Hence it can be concluded that if S1A1 = S2A2, then there
is a unique solution to the problem and at optimality µ̂1 = µ̂2.
This result is consistent with the one shown in [15].

IV. MISO-MAC ANALYSIS

In this section, we extend the analysis to the case when the
transmitters are equipped with more than one antennas.

A. Sum-rate Capacity of MISO-MAC

Similarly to the single-antenna case studied in Section III,
the continuous-time continuous-input discrete-output Poisson
MAC can be converted to discrete-time binary-input binary-
output MAC. In particular, the input waveform of each an-
tenna can be limited to be piecewise constant waveforms
with two levels 0 or Anj for the jth antenna of the nth

transmitter, which can be established by following analysis
in [15] and [24]. At the end of Section IV-A, we also provide
another intuitive way to understand the optimality of two-level
signaling. Depending on the on-off states of each antenna of
user n, there are 2Jn states at user n. In the following, we
use in ∈ [1, · · · , 2Jn ] to index each of these 2Jn states at user
n. We will use Pn(in) to denote the probability that user n
lies in state in and pn , [Pn(1), · · · , Pn(2Jn)] to denote the
vector of probabilities of states at user n. We will use the
binary variable bnj(in) to indicate whether the jth antenna of
the nth user is on or off at state in, i.e., bnj(in) = 1 if the jth

antenna of the nth user is on for state in and is 0 otherwise.
The sum-rate achievable using (p1,p2) is given by

IXN ;Y (p1,p2) =

2J1∑
i1=1

2J2∑
i2=1

[
P1(i1)P2(i2)ζ

 2∑
n=1

Jn∑
j=1

SnjAnjbnj(in), λ

]

−ζ

 2∑
n=1

Jn∑
j=1

SnjAnjµnj , λ

 . (26)

It is easy to see that

µnj =

2Jn∑
in=1

Pn(in)bnj(in). (27)

Fig 6 (a) shows 4 possible states for user 2 with 2 antennas.
To characterize the sum-rate capacity, we need to solve the

following optimization problem:

(P1): CMISO−MAC
sum = max

p1,p2

IXN ;Y (p1,p2), (28)

s.t 0 ≤ Pn(in) ≤ 1, in = 1, · · · , 2Jn , n = 1, 2, (29)
2Jn∑
in=1

Pn(in) = 1, n = 1, 2. (30)
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Problem (P1) is a complex non-convex optimization prob-
lem with a large number of variables. In particular, the number
of variables 2J1 +2J2 increases exponentially with the number
of antennas. The main result of this section is the following
theorem.

Theorem 6. Solving problem (P1) is equivalent to solving the
following problem

(P2): CMISO−MAC
sum = max

0≤µ1,µ2≤1
I(µ1, µ2), (31)

with

I(µ1, µ2)

= (1− µ1)(1− µ2)ϕ(λ) + µ1(1− µ2)ϕ(B1 + λ)

+(1− µ1)µ2ϕ(B2 + λ) + µ1µ2ϕ(B1 +B2 + λ)

−ϕ(B1µ1 +B2µ2 + λ), (32)

where

Bn ,
Jn∑
j=1

SnjAnj . (33)

Remark 1. Compared with (P1), there are only 2 variables
in (P2). Although (P2) is still a non-convex optimization
problem, it has the same form as the problem (P0) solved in
Section III-A and hence all techniques and results there (e.g.,
the analysis on whether single-user transmission is optimal or
not) can be applied here. Intuitively, this theorem says that the
sum capacity of a MISO-MAC (with channel gains (Sn1, Sn2)
and power constraints (An1, An2) for each transmitter n) is
the same as the sum capacity of a SISO-MAC (with channel
gain Sn1An1 + Sn2An2 and power constraint 1 for each
transmitter n).

The proof of Theorem 6 has the following two major steps.
In Step-1, we prove the following proposition that simplifies

the optimization problem from (p1,p2) to µ.

Proposition 7. At the optimality, for each user, if the antenna
with a smaller duty cycle is on then all antennas with a larger
duty cycle must also be on.

This proposition shows that, at the optimality, instead of
being a function of (p1,p2), the objective function can be
simplified to a function of µ. As the result, the dimension
of the problem is reduced from 2J1 + 2J2 to J1 + J2. The
central issue addressed here is that, for a given µ, there are
infinite number of combinations of (p1,p2) that satisfy (27).
The main idea is to show that, for any user n, if the antenna
with a smaller duty cycle is on, then the antenna with a larger
duty cycle is also on at the optimality. As the result, at the
optimality, the value of (p1,p2) is determined by µ. Detailed
proof of this proposition can be found in Section IV-B. For the
example shown in Figure 6, assuming µ21 ≥ µ22, there are
four initial states shown in Fig. 6 (a): only the antenna with
the larger duty cycle is on, both of the antennas are on, only
the antenna with the smaller duty cycle is on and none of the
antennas is on. We argue that a state with only the antenna
having smaller duty cycle to be on is not optimal. Hence, at
the optimality, we have the scenario shown in Fig. 6 (b).

In Step-2, we show the following proposition that charac-
terizes the optimal value of µ.

Proposition 8. At the optimality, for each user, all antennas
must have the same duty cycle and they must be on or off
simultaneously.

This proposition shows that, at the optimality, the antennas
of each user must have the same duty cycle (i.e., µn1 = · · · =
µnJn , µn) and are aligned. Hence, the dimension of the
problem is further reduced from J1 + J2 to 2. The main idea
of this step is to show that, at the optimality, all antennas
of user n are either simultaneously on or off. Hence, from
receiver’s perspective, transmitter n can be viewed as a single

antenna with power constraint 1 and channel gain
Jn∑
j=1

SnjAnj .

Step 2 is illustrated Fig. 6 (b) and Fig. 6 (c). The proof can
be found in Section IV-C.

In order to prove Theorem 6, Propositions 7 and 8 need
to be proved. In the following subsections, we prove these
propositions in detail. For the MISO case, the results can be
proved in the continuous time domain as follows. For any
codeword for transmitter 1 that sends x1j(t) at antenna j for
t ∈ [0, T ]. Let xtot ,

∑J1
j=1 S1jx1j . Now consider a different

codeword that sends on the jth antenna

x′1j =
A1j∑J1

j=1 S1jA1j

xtot.

One can easily see that x′1j satisfies the peak power constraint
of the jth antenna, and that the new codeword induces the
same output distribution as the original one. Hence there is
no loss of optimality in letting all transmit antennas send the
same waveform. Hence, the MISO-MAC can be converted
to a SISO-MAC. Since in SISO-MAC, letting each antenna
to send two-level signal is optimal, this also shows that
letting each antenna sending two-level signal is optimal in
the multiple transmit antenna case. We note that, however, the
proofs presented below are more general and can be used to
handle more sophisticated scenarios when the receiver also has
multiple antennas, as discussed in Section V, or when we have
average power constraint at each transmit antenna.

B. Proof of Proposition 7

In this subsection, we prove Proposition 7 by characterizing
the optimal value of (p1,p2) for any given µ. Hence, in this
subsection, µ is fixed. More specifically, we show that, at the
optimality in the MISO-MAC, if the antenna with the smaller
duty cycle is on, then the other antenna should also be on.

From (26), it is clear that to optimize over (p1,p2) for a
given µ, we only need to focus on

We focus on finding the optimal values of p2 first. To
facilitate the understanding, we list the labeling of states of
user 2 and the corresponding values of b2js in Table I.

Using the definition of ζ function in (6), we can easily check
that

d(i1, 1) < min{d(i1, 2), d(i1, 3)}
≤ max{d(i1, 2), d(i1, 3)} < d(i1, 4),
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Fig. 6: (a) Four possible states for user 2; (b) Step 1 shows, at the optimality, the timing of antennas being on is aligned; (c)
Step 2 shows, at the optimality, the duty cycles of both antennas are the same and are aligned.

H ,
2J1∑
i1=1

2J2∑
i2=1

P1(i1)P2(i2)ζ

 2∑
n=1

Jn∑
j=1

SnjAnjbnj(in), λ


=

2J1∑
i1=1

P1(i1)

2J2∑
i2=1

P2(i2) ζ

 J1∑
j=1

S1jA1jb1j(i1) +

J2∑
j=1

S2jA2jb2j(i2), λ


︸ ︷︷ ︸

d(i1,i2)︸ ︷︷ ︸
H1(i1)

. (36)

b21 b22

(i1, 1) 0 0
(i1, 2) 0 1
(i1, 3) 1 0
(i1, 4) 1 1

TABLE I: The states of user 2 and the corresponding values
of b2js.

which is simultaneously true for any value of i1. As H1(i1) is
simply a linear combination of d(i1, i2)s, where H1(i1) and
d(·, ·) are defined in (36), hence, for any given µ, maximizing
H1(i1) is a linear programming problem, for which we have
the following (assuming µ21 ≥ µ22, the other case being
similar):

1) As d(i1, 4) is the largest, P2(4) should be as large as
possible. Therefore, we assign P2(4) = µ22.

2) As µ22 has been all used, we should set P2(2) = 0.
3) As d(i1, 3) > d(i1, 1), we assign the remaining part of

µ21 to state (i1, 3) and hence P2(3) = µ21 − µ22.
4) For the last state related to the term d(i1, 1), allot the

remaining probability. Hence P2(1) = 1− µ21.

This assignment implies that if the antenna with a smaller
duty cycle is on, the antenna with a larger duty cycle should
also be on. This is illustrated in Fig. 6 (b). Note that the
above arguments are true for all i1s, and hence this assignment
maximizes H1(i1) for all i1 simultaneously. Furthermore, this
assignment is independent of p1.

Notice that the above discussion for J2 = 2, can be extended
for J2 > 2.

Similarly, by writing

H =

2J2∑
i2=1

P2(i2)

2J1∑
i1=1

P1(i1)

ζ

 J1∑
j=1

S1jA1jb1j(i1) +

J2∑
j=1

S2jA2jb2j(i2), λ

 ,

then following the same procedure as above, we can calculate
the optimal values of p1.

As the result, we know that (26) can be simplified to a
function µ depending on the relationships between the values
of µnjs. For example, in the case of two transmitter antennas,
we have four symmetric cases, i.e. (µ11 ≥ µ12, µ21 ≥
µ22), (µ11 ≤ µ12, µ21 ≥ µ22), (µ11 ≥ µ12, µ21 ≤ µ22) and
(µ11 ≤ µ12, µ21 ≤ µ22). For the case of (µ11 ≥ µ12, µ21 ≥
µ22), IXN ;Y can be simplified to

I(µ11 − µ12, µ12, µ21 − µ22, µ22) =

(1− µ11)((1− µ21)ϕ(λ) + (µ21 − µ22)ϕ(S21A21 + λ)

+µ22ϕ(B2 + λ)) + (µ11 − µ12)((1− µ21)ϕ(S11A11 + λ)

+(µ21 − µ22)ϕ(S21A21 + S11A11 + λ)

+µ22ϕ(B2 + S11A11 + λ)) + µ12((1− µ21)ϕ(B1 + λ)

+(µ21 − µ22)ϕ(S21A21 +B1 + λ) (37)

+µ22ϕ(B2 +B1 + λ))− ϕ

 2∑
n=1

Jn∑
j=1

SnjAnjµnj + λ

 .

As the result, the objective function is simplified to charac-
terizing

CMISO−MAC
sum = max (Cµ11≥µ12,µ21≥µ22

, Cµ11≤µ12,µ21≥µ22
,

Cµ11≥µ12,µ21≤µ22
, Cµ11≤µ12,µ21≤µ22

) , (38)
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in which

(P3): Cµ11≥µ12,µ21≥µ22 =

max I(µ11 − µ12, µ12, µ21 − µ22, µ22), (39)
s.t. 0 ≤ µ12 ≤ µ11 ≤ 1, (40)

0 ≤ µ22 ≤ µ21 ≤ 1. (41)

Other terms in (38) are defined in a similar manner. Due to
symmetry, in the following, we only provide details on how
to solve (P3).

C. Proof of Proposition 8

In this subsection, we prove Proposition 8 by solving (P3).
For the ease of calculation, we define q1 = µ11 − µ12, q2 =
µ12, q3 = µ21 − µ22 and q4 = µ22 and let q = [q1, q2, q3, q4].
Then (37) can be re-written as

I(q) = (1− (q1 + q2))((1− (q3 + q4))ϕ(λ)

+q3ϕ(S21A21 + λ) + q4ϕ(B2 + λ))

+q1((1− (q3 + q4))ϕ(S11A11 + λ)

+q3ϕ(S21A21 + S11A11 + λ)

+q4ϕ(B2 + S11A11 + λ)) + q2((1− (q3 + q4)ϕ(B1 + λ)

+q3ϕ(S21A21 +B1 + λ) + q4ϕ(B2 +B1 + λ))

−ϕ(S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ). (42)

Correspondingly, (P3) is equivalent to

(P4): Cµ11≥µ12,µ21≥µ22
= max I(q) (43)

s.t. qk ≥ 0, k = 1, · · · , 4, (44)
q1 + q2 ≤ 1, (45)
q3 + q4 ≤ 1. (46)

Similarly to (8), the objective function (43) is not a convex
function in general. We use the KKT conditions as necessary
conditions to characterize the set of possible candidates for
the optimal solution. In the following, we consider only
the constraint (44) explicitly. We check (45) and (46) after
obtaining the solution.

The Langrangian equation for (P4) with constraint (44) is
given by

L = −I −
4∑
k=1

ηkqk.

The corresponding KKT conditions are:

∂I

∂qk
+ ηk = 0, k = 1, · · · , 4, (47)

ηkqk = 0, k = 1, · · · , 4, (48)

where

∂I

∂q1
= ζ(S11A11, λ) + q3(ζ(S21A21, S11A11 + λ)

−ζ(S21A21, λ)) + q4(ζ(B2, S11A11 + λ)− ζ(B2, λ))

−S11A11(log (S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ) + 1),
∂I

∂q2
= ζ(B1, λ) + q3(ζ(S21A21, B1 + λ)

−ζ(S21A21, λ)) + q4(ζ(B2, B1 + λ)− ζ(B2, λ))

−B1(log (S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ) + 1),
∂I

∂q3
= (1− (q1 + q2))ζ(S21A21, λ)

+q1ζ(S21A21, S11A11 + λ) + q2ζ(S21A21, B1 + λ)

−S21A21(log(S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ) + 1),

and

∂I

∂q4
= (1− (q1 + q2))ζ(B2, λ)

+q1ζ(B2, S11A11 + λ) + q2ζ(B2, B1 + λ)

−B2 (log(S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ) + 1) .

Now in order to find the set of optimal solutions, we may
solve the above KKT conditions (47) and (48). As we can
see from the expressions of ∂I

∂qk
s, we need to solve a set of

nonlinear equations, which are in general difficult to solve
and may have infinite number of solutions. Nevertheless, by
exploring the structure of problem, we obtain the following
result.

Proposition 9. There are only three possible cases for the
solution to Problem (P4):

1) q = (0, α(B1/λ), 0, 0), which implies that both an-
tennas of user 1 are active with the same duty cycle
α(B1/λ) while both antennas of user 2 are off.

2) q = (0, 0, 0, α(B2/λ)), which implies that both anten-
nas of user 1 are off while while both antennas of user
2 are active with the same duty cycle α(B2/λ).

3) q = (0, µ1, 0, µ2), which implies that both antennas of
user 1 are active with the same duty cycle µ1 and both
antennas of user 2 are active with the same duty cycle
µ2. Furthermore, there are only two possible pairs of
(µ1, µ2) and can be obtained by solving (13) and (14)
with S1A1 being replaced with B1 and S2A2 being
replaced with B2.

Proof. Please refer to Appendix D.

Proposition 9 states that the solution to (P4) is the same as
the solution to (P2), and hence Theorem 6 is proved.

V. DISCUSSIONS

In this section, we discuss a few interesting open directions
along the lines of the results presented in this paper and
potential challenges associated with these problems.
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A. Boundary Points of the Capacity Region
After characterizing the sum-rate capacity, a natural next

step is to characterize all boundary points on the capacity
region. Towards this goal, we can follow the same approach
developed in this paper to solve the following optimization
problem to obtain any boundary rate pair (R1, R2) for a given
0 ≤ γ ≤ 1/2

max γR1 + (1− γ)R2. (49)

Here,

R1 = IX1;Y , R2 = IX2;Y |X1
, (50)

whose expression can be written out as functions of duty
cycles of each antenna. Let E1 be the set of obtained rate
pairs (R1, R2) by solving (49) with γ varying in [0, 1/2].
Similarly, we can obtain the set E2 by setting R1 = IX1;Y |X2

and R2 = IX2;Y .
Let E = E1

⋃
E2. [15] shows that E is a description of

the boundary points of the capacity region, if the set R ,
{(R1, R2) : ∃(R∗1, R∗2) ∈ E such that 0 ≤ R1 ≤ R∗1, 0 ≤
R2 ≤ R∗2} is a convex set. However, although one can verify
the convexity of R numerically, it turns out to be difficult
to analytically verify such convexity even for the symmetric
case considered in [15] and further for the non-symmetric case.
Such an open problem is interesting and solution to it requires
more refined understanding of the structure of the set R.

B. Poisson MIMO-MAC
Another extension is to consider Poisson MIMO-MAC in

which the receiver is also equipped with multiple antennas. A
natural idea is still to characterize the sum-rate capacity by
following the two-step methodology developed in this paper.
In particular, in our approach, the first step is to reduce the
dimension of the problem by arguing that if the antenna with
a smaller duty cycle is on, the other antennas with larger duty
cycles must also be on. This step can still be carried out for
Poisson MIMO-MAC by following the method presented in
this paper. The second step is to characterize the optimal value
of the duty cycles. In the case of the Poisson MISO-MAC, we
do it by converting the set of KKT conditions related nonlinear
equations, to a set of linear equations and a convex equation
by substituting the common nonlinear term (i.e., the log term)
from one equation to all the others (see, for example, the proof
of Case-8 in Appendix D). This enables us to conclude that
there are only a finite number of solutions to our problem.
However, this procedure requires further exploration for the
general MIMO case. In particular, as the nonlinear terms in
KKT conditions have different forms, it is difficult to convert
nonlinear equations to a set of linear equations so that it
is not clear whether there are a finite number of solutions
or an infinite number of solutions from the set of nonlinear
equations related to KKT conditions. Therefore, the extension
to the Poisson MIMO-MAC may require new treatments of
the optimization objective function. One possible venue is to
explore the relationship between the derivative of the mutual
information and the mean squared error as discussed in [21]
and [22]. The interesting work on single user MIMO Poisson
channel [5], [24], [25] will be also be useful for our study.

VI. NUMERICAL ANALYSIS

In this section, we provide numerical examples to illustrate
results obtained in this paper. As shown in the paper, the
case of Poisson MISO-MAC can be converted to a Poisson
SISO-MAC. Hence, in the following, we provide only example
related to the SISO-MAC case.

Fig. 7: Optimal operating schemes over the ranges of S1A1

and S2A2

Fig. 7 shows the optimal operating scenarios for different
combinations of S1A1 and S2A2 when they range from 0 to
25. In generating this figure, we set λ = 0.5. In Region-I, it
is optimal for user 2 to transmit alone. Region-II corresponds
to the case in which it is optimal for both users to transmit.
In Region-III, it is optimal for user 1 to transmit alone.

Fig. 8: (µ̂1, µ̂2) vs. S2A2

Fig. 8 illustrates the effect of increasing S2A2 on the
optimal value of (µ̂1, µ̂2) when S1A1 is constant. In this figure,
S1A1 = 12.5. We can see that when S2A2 is small, the optimal
value µ̂2 is equal to 0, i.e., it is optimal for user 2 to stay
silent. We also observe that once S2A2 starts to increase and
has noticeable value compared to S1A1, µ̂1 starts to decrease
while µ̂2 starts to increase. Furthermore, µ1 and µ2 intersect
with each other, i.e. µ̂1 = µ̂2, when S1A1 = S2A2. This is
consistent with the result obtained in [15] for the symmetric
case.
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VII. CONCLUSION

In this paper, by solving non-convex optimization problems,
we have characterized the sum-rate capacity for both non-
symmetric Poisson SISO-MAC and non-symmetric Poisson
MISO-MAC. We have shown that under certain channel con-
ditions, it is optimal for both users to be active and we have
also established conditions under which it is optimal for only
one user to be active.

There are a few open issues that are interesting to investi-
gate. For example, one can aim to characterize the boundary
points of the capacity region. One can also consider the
scenario with multiple receiver antennas. These extensions
require exploration of new treatment and understanding of the
problem as we discuss in Section V. Furthermore, we can
investigate the error exponents of Poisson MAC by extending
the work in [26]. When the error exponent is considered, even
for the non-symmetric Poisson MAC, single user transmit may
not be optimal anymore.

APPENDIX A
CONCAVITY OF IX1,X2;Y (µ1, µ2)

In this Appendix, we show that IX1,X2;Y (µ1, µ2) is not
necessarily concave for general values of S1A1, S2A2 and
λ. For IX1,X2;Y (µ1, µ2) to be concave, 52I needs to be
negative semi-definite. For 52I to be negative semi-definite,
there are two conditions to be satisfied [27]. The first condition
is that its first order principle minor must be non-positive. As
∂2I
∂µ2

1
= − S2

1A
2
1

S1A1µ1+S2A2µ2+λ < 0, this condition holds. The
second condition is that the determinant of the Hessian matrix
must be non-negative. It is easy to check that

| 52 I| = (ϕ(λ)− ϕ(S1A1 + λ)− ϕ(S2A2 + λ)

+ϕ(S1A1 + S2A2 + λ))

(
2S1A1S2A2

S1A1µ1 + S2A2µ2 + λ

− (ϕ(λ)− ϕ(S1A1 + λ)− ϕ(S2A2 + λ)

+ϕ(S1A1 + S2A2 + λ))) .

The two terms on the right hand side can be dealt separately.
First, we show the following.

Lemma 10. ϕ(λ)−ϕ(S1A1 +λ)−ϕ(S2A2 +λ)+ϕ(S1A1 +
S2A2 + λ) > 0.

Proof. Using the definition of ϕ, it is easy to see that ϕ
′

is
a strictly increasing function. Let a = λ, b = S1A1 + λ, c =
S2A2 + λ and d = S1A1 + S2A2 + λ. then using the mean
value theorem, we have:

∃x1 ∈ (a, b) s.t. ϕ
′
(x1) =

ϕ(b)− ϕ(a)

b− a
,

∃x2 ∈ (c, d) s.t. ϕ
′
(x2) =

ϕ(d)− ϕ(c)

d− c
.

Without loss of generality we can assume that S1A1 < S2A2,
then we will have a < b < c < d. As ϕ

′
is an increasing

function and x1 < x2, we have ϕ
′
(x1) < ϕ

′
(x2) and b− a =

d− c, then:
ϕ(b)− ϕ(a)

b− a
<

ϕ(d)− ϕ(c)

d− c
ϕ(b)− ϕ(a) < ϕ(d)− ϕ(c). (51)

Hence ϕ(d) + ϕ(a) > ϕ(b) + ϕ(c).

As the first term is always greater than 0, for the function
to be concave, the second term, 2S1A1S2A2

S1A1µ1+S2A2µ2+λ − (ϕ(λ)−
ϕ(S1A1 + λ)− ϕ(S2A2 + λ) + ϕ(S1A1 + S2A2 + λ)), must
also be non-negative. This, however, is not true. For example,
taking µ1 = 0.9, µ2 = 0.7 and setting S1A1 = 50, S2A2 =
100 and λ = 0.5, the second term results in the value of
−6.2943. Hence, we can conclude that IX1,X2;Y (µ1, µ2) is
not always concave.

APPENDIX B
PROOF OF LEMMA 3

In this section we present the asymptotic analysis of (16)
and (19). As the case S1A1 → ∞ is similar to analysis for
S2A2 → ∞ due to symmetry, we restrict our analysis to
S2A2 →∞ in this section. We will show that as S2A2 →∞,
f(µ1) and g(µ1) do not intersect. Denoting S2A2 as x, we
calculate lim

x→∞
g(0), lim

x→∞
g(1) and lim

x→∞
f(0) as lim

x→∞
f(0) =

lim
x→∞

f(1).

lim
x→∞

g(0)

= lim
x→∞

(
1

x
exp

(
1

x
(−ϕ(λ) + ϕ(x+ λ)− x)

)
+
λ

x

)
= lim

x→∞

(
1

xe
exp

(
log(λ)

−λ
x + log(x+ λ)

x+λ
x

))
= lim

x→∞

(
1

xe
λ
−λ
x (x+ λ)(

x+λ
x )
)

= lim
x→∞

(
1

e
λ
−λ
x

1

x

x
λ
x

x
λ
x

(x+ λ)(
x+λ
x )

)

= lim
x→∞

(
1

e
λ
−λ
x x

λ
x

(
1 +

λ

x

)(1+λ
x )
)
.

As lim
x→∞

λ
−λ
x = 1, and

lim
x→∞

x
λ
x = lim

x→∞
e

log

(
x
λ
x

)
= lim
x→∞

e
λ
x log(x) = 1,

and

lim
x→∞

(
1 +

λ

x

)(1+λ
x )

= 1.

Hence, we obtain lim
x→∞

g(0) = 1
e .
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Similarly

lim
x→∞

g(1)

= lim
x→∞

(
1

x
exp

(
1

x
(−ϕ(S1A1 + λ)

+ϕ(S1A1 + x+ λ)− x)) +
S1A1 + λ

x

)
= lim

x→∞

(
1

xe
exp

(
log(S1A1 + λ)

−(S1A1+λ)
x

+ log(S1A1 + x+ λ)
S1A1+x+λ

x

))
= lim

x→∞

(
1

xe
(S1A1 + λ)

−(S1A1+λ)
x

(S1A1 + x+ λ)(
S1A1+x+λ

x )
)

= lim
x→∞

(
1

e
(S1A1 + λ)

−(S1A1+λ)
x

1

x

x
(S1A1+λ)

x

x
(S1A1+λ)

x

(S1A1 + x+ λ)(
S1A1+x+λ

x )
)

= lim
x→∞

(
1

e
(S1A1 + λ)

−(S1A1+λ)
x x

(S1A1+λ)
x

(
1 +

S1A1 + λ

x

)(1+
S1A1+λ

x )


=
1

e
.

Now for the f(µ1), we notice that lim
x→∞

f(0) = lim
x→∞

f(1).
Hence we calculate lim

x→∞
f(0).

lim
x→∞

f(0)

= lim
x→∞

ζ(S1A1, λ) + S1A1

x ζ(x, λ)

ζ(x, S1A1 + λ)− ζ(x, λ)

(a)
= lim

x→∞

−S1A1

x2 λ log
(
1 + x

λ

)
+ S1A1

x+λ + S1A1λ
x(x+λ)

log(1 + S1A1

x+λ )

(b)
= lim

x→∞

−S1A1λ log
(
1 + x

λ

)
+ 2S1A1x

O

= lim
x→∞

−S1A1λ
2x log

(
1 + x

λ

)
+ S1A1

R
= 1,

where O = (x + λ) log
(

1 + S1A1

x+λ

)
+ x

2 log
(

1 + S1A1

x+λ

)
−

xS1A1

2(S1A1+x+λ) ,R = (x + λ) log
(

1 + S1A1

x+λ

)
+

x
2 log

(
1 + S1A1

x+λ

)
− xS1A1

2(S1A1+x+λ) , (a) follows from the

L’hospital rule and (b) follows from multiplying by x2(x+λ)
x2(x+λ)

and L’hospital rule.

APPENDIX C
PROOF OF LEMMA- 5

In this section we will prove that when S1A1 = S2A2, we
have g(1) < 1 and g(0) > 0.

Proof. Using S1A1 = S2A2, we will show that

g(1)− 1 < 0.

By plugging µ1 = 1 in (19), this is equivalent to show

1

S1A1
exp

(
1

S1A1
(−ϕ(S2A2 + λ)

+ϕ(S1A1 + S2A2 + λ)− S1A1)

)
− 2− λ

S1A1
< 0,

⇔ 1

S1A1
exp

(
− (1 +

λ

S1A1
) log(S1A1 + λ)

+(2 +
λ

S1A1
) log(2S1A1 + λ)

)
.e−1 < 2 +

λ

S1A1
,

which is equivalent to show

exp

log

 (2S1A1 + λ)

(
2+ λ

S1A1

)

(S1A1 + λ)

(
1+ λ

S1A1

)
 < (2S1A1 + λ)e,

⇔ (2S1A1 + λ)

(
2+ λ

S1A1

)

(S1A1 + λ)

(
1+ λ

S1A1

) < (2S1A1 + λ)e,

⇔
(

1 +
S1A1

S1A1 + λ

)(
1+ λ

S1A1

)
< e,

⇔
(

1 +
λ

S1A1

)
log

(
1 +

S1A1

S1A1 + λ

)
< 1,

which is true as log(1 + x) < x. Following the similar steps,
g(0) > 0 can also be proved.

APPENDIX D
PROOF OF PROPOSITION 9

The proof strategy is to analyze different cases correspond-
ing to whether ηks are zero or not. By exploiting the structure
of the problem, we will show that, except for three cases, all
other cases are not optimal. It will be clear in the sequel, while
some cases are easy to handle, it needs significant amount of
work to rule out certain cases.
Case-1: η1 6= 0, η2 6= 0, η3 6= 0, η4 6= 0 ⇒

ηk 6= 0→ qk = 0.

This implies that none of the users are active. It is clear that
I(0, 0, 0, 0) can not the optimal solution.
Case-2: η1 6= 0, η2 6= 0, η3 6= 0, η4 = 0 ⇒

η1 6= 0→ q1 = 0,

η2 6= 0→ q2 = 0,

η3 6= 0→ q3 = 0,
∂I

∂q4
= 0.

These equations imply that user 1 is inactive while at user 2
both transmitting antennas are active with a same duty cycle.
These equations lead to

ζ(B2, λ)−B2(log(B2q4 + λ) + 1) = 0,

from which we solve q4:

q̃′4 = α(B2/λ).
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As 0 ≤ α(B2/λ) ≤ 1, we obtain a feasible candidate
(0, 0, 0, q̃4).
Case-3: η1 6= 0, η2 6= 0, η3 = 0, η4 6= 0 ⇒

η1 6= 0→ q1 = 0,

η2 6= 0→ q2 = 0,
∂I

∂q3
= 0,

η4 6= 0→ q4 = 0.

These equations imply that user 1 is inactive and at user 2 only
one antenna is active. As user 1 is inactive, the scenario is same
as a single-user MISO Poisson channel. It is easy to check
that, for a single-user MISO Poisson channel, the maximal rate
achievable using only a single antenna is less than the maximal
rate achievable when both antennas are active, which is Case-
2 mentioned above. Hence, Case-3 cannot be the optimal
solution.
Case-4: η1 6= 0, η2 6= 0, η3 = 0, η4 = 0 ⇒

η1 6= 0→ q1 = 0,

η2 6= 0→ q2 = 0,
∂I

∂q3
= 0,

∂I

∂q4
= 0.

This case refers to the scenario when user 1 is inactive and user
2 transmits with both antennas having different duty cycles.
Plugging q1 = 0 and q2 = 0 into the last two equations leads
to the following two equations:

S21A21 log

(
1 + α

(
S21A21

λ

) (
S21A21

λ

))
1 + S21A21

λ q3 + B2

λ q4

= 0,

B2 log
(1 + α

(
B2

λ

) (
B2

λ

)
)

1 + S21A21

λ q3 + B2

λ q4

= 0,

which requires:

S21A21

λ
q3 +

B2

λ
q4 = α

(
S21A21

λ

)(
S21A21

λ

)
,

S21A21

λ
q3 +

B2

λ
q4 = α

(
B2

λ

)(
B2

λ

)
.

It is easy to check that z(x) , α(x)x is a monotonically
increasing function. As the result, there does not exist (q3, q4)
that satisfies these two equations simultaneously as S21A21 <
B2. Hence, Case-4 is not possible.
Case-5: η1 6= 0, η2 = 0, η3 6= 0, η4 6= 0 ⇒

η1 6= 0→ q1 = 0,
∂I

∂q2
= 0,

η3 6= 0→ q3 = 0,

η4 6= 0→ q4 = 0.

These imply that user 2 is inactive and at user 1 both antennas
are active with a same duty cycle. From these equations, we
obtain

ζ(B1, λ)−B1(log(B1q2 + λ) + 1) = 0,

from which we solve q2:

q̃2 = α(B1/λ).

Hence, the obtained feasible candidate for optimal solution
from this case is (0, q̃2, 0, 0).
Case-6: η1 6= 0, η2 = 0, η3 6= 0, η4 = 0 ⇒

η1 6= 0→ q1 = 0,
∂I

∂q2
= 0, (52)

η3 6= 0→ q3 = 0,
∂I

∂q4
= 0. (53)

This case corresponds to the scenario when all of the antennas
are active and both antennas at user 1 have same duty cycle
and both antennas at user 2 have same duty cycle.

By plugging q1 = 0 and q3 = 0 into (52) and (53), these
two equations have the same form as (13) and (14) (with
S1A1 replaced by B1 and S2A2 replaced by B2 respectively).
Hence, (52)-(53) can be solved in the same manner as (13)-
(14). In particular, these two nonlinear equations can be con-
verted into a linear equation and a convex equation, therefore
we know that there can be only two such values of q2 and q4

that satisfy the equations simultaneously. Lets those values be
(0, q̄2, 0, q̄4) and (0, q̄′2, 0, q̄

′
4). If the solutions lies outside the

range of (0, 1) × (0, 1) × (0, 1) × (0, 1), we replace it with
(0, 0, 0, 0) for the sake of presentations convenience.
Case-7: η1 6= 0, η2 = 0, η3 = 0, η4 6= 0 ⇒

η1 6= 0→ q1 = 0,
∂I

∂q2
= 0,

∂I

∂q3
= 0,

η4 6= 0→ q2 = 0.

This case refers to the scenario when both of the antennas at
user 1 are active with a same duty cycle but at user 2 only the
antenna with the larger duty cycle is active. In Appendix E-A,
we show that any sum-rate achieved in this case can also
be achieved by the letting both antennas of each user to be
simultaneously on or off, which is Case-6. Hence, Case-7 can
be ruled out.
Case-8: η1 6= 0, η2 = 0, η3 = 0, η4 = 0 ⇒

η1 6= 0→ q1 = 0,
∂I

∂q2
= 0,

∂I

∂q3
= 0,

∂I

∂q4
= 0.

This case corresponds to the scenario when both antennas at
the user 2 are active and have different duty cycles but at user
1 both transmitting antennas have the same duty cycle.

Following a similar approach as how to obtain (15), we can
combine ∂I

∂q3
= 0 and ∂I

∂q4
= 0 to obtain a linear equation in
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terms of q1 and q2. By plugging q1 = 0 to the obtained linear
equation, we solve

q2 =
c1

c1 + c2
, (54)

where c1 = h1(λ), c2 = −h1(B1 + λ) with

h1(x) =

(
1 +

S22A22

S21A21

)
ζ(S21A21, x)− ζ(B2, x).

Now for q2 to be feasible, we need 0 ≤ q2 ≤ 1, which requires
c1 and c2 to have the same sign. To rule out this case, we need
the following lemma.

Lemma 11. h1(x) < 0 for x > 0.

Proof. Please see Appendix E-B.

Using this lemma, we know c1 < 0 and c2 > 0, so q2 /∈
[0, 1]. Hence this case not a valid choice.
Case-9: η1 = 0, η2 6= 0, η3 6= 0, η4 6= 0 ⇒

∂I

∂q1
= 0,

η2 6= 0→ q2 = 0,

η3 6= 0→ q3 = 0,

η4 6= 0→ q4 = 0.

In this case user 2 is inactive and at user 1 only the antenna
with a larger duty cycle is active. As user 2 is inactive, the
scenario is same as the single-user MISO Poisson channel. It
is easy to check that, for a single-user MISO Poisson channel,
the maximal rate achievable using only a single antenna is
less than the maximal rate achievable when both antennas
are active, which is Case-5 mentioned above. Hence, Case-
9 cannot be the optimal solution.
Case-10: η1 = 0, η2 6= 0, η3 6= 0, η4 = 0 ⇒

∂I

∂q1
= 0,

η2 6= 0→ q2 = 0

η3 6= 0→ q3 = 0
∂I

∂q4
= 0.

This case refers to the scenario when both antennas at user 2
are active with a same duty cycle, while at user 1 only one
antenna is active. This case can be ruled out using the same
reason as Case-7.
Case-11: η1 = 0, η2 6= 0, η3 = 0, η4 6= 0 ⇒

∂I

∂q1
= 0,

η2 6= 0→ q2 = 0,
∂I

∂q3
= 0,

η4 6= 0→ q4 = 0.

In this case, only one antenna at both of the users are active.
Following similar argument as that in Case-7, we know this

case cannot be the optimal solution.
Case-12: η1 = 0, η2 6= 0, η3 = 0, η4 = 0 ⇒

∂I

∂q1
= 0,

η2 6= 0→ q2 = 0,
∂I

∂q3
= 0,

∂I

∂q4
= 0.

This case occurs when both antennas at user 2 are active and
have different duty cycles while at user 1 only one antenna is
active. Following the same steps in Case-8, we obtain

q1 =
c1

c1 + c3
,

in which c1 = h1(λ) and c3 = −h1(S11A11 + λ). Using
Lemma 11, we know that q1 /∈ [0, 1], hence we may conclude
that Case-12 is not a valid case.
Case-13: η1 = 0, η2 = 0, η3 6= 0, η4 6= 0 ⇒

∂I

∂q1
= 0,

∂I

∂q2
= 0,

η3 6= 0→ q3 = 0,

η4 6= 0→ q4 = 0.

In this case user 2 is inactive while at user 1 both antennas
transmit with different duty cycles. By plugging q3 = 0 and
q4 = 0 into ∂I

∂q1
= 0 and ∂I

∂q2
= 0, we have that (q1, q2) must

satisfy the following two equations simultaneously:

S11A11 log

(
1 + α

(
S11A11

λ

) (
S11A11

λ

))
1 + S11A11

λ q1 + B1

λ q2

= 0,

B1 log

(
1 + α

(
B1

λ

) (
B1

λ

))
1 + S11A11

λ q1 + B1

λ q2

= 0.

As mentioned in Case-4, z(x) = α(x)x is a monotonically
increasing function. As S11A11 6= B1, we may conclude that
there does not exist such (q1, q2) pair and hence this case is
not possible.
Case-14: η1 = 0, η2 = 0, η3 6= 0, η4 = 0 ⇒

∂I

∂q1
= 0,

∂I

∂q2
= 0,

η3 6= 0→ q3 = 0,
∂I

∂q4
= 0.

This case corresponds to the scenario when at user 1 both
antennas are active with different duty cycles and at user 2
both antennas have same duty cycle.

Following the same steps in Case-8, we obtain q4 as shown
in (55).

However, it is difficult to make any definitive conclusion
about q4 from this form. To rule out this case, we use the
following lemma.
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q4 =

(
1 + S12A12

S11A11

)
ζ(S11A11, λ)− ζ(B1, λ)

ζ(B2, B1 + λ)−
(

1 + S12A12

S11A11

)
ζ(B2, S11A11 + λ) + S12A12

S11A11
ζ(B2, λ)

. (55)

Lemma 12.
(55) =

c4
c4 + c5

,

in which c4 = h2(λ) and c5 = −h2(B2 + λ) with

h2(x) =

(
1 +

S12A12

S11A11

)
ζ(S11A11, x)− ζ(B1, x).

Proof. Please see Appendix E-C.

Similar to Lemma 11, we can show that h2(x) < 0 when
x > 0. As the result, q4 /∈ [0, 1]. Hence, we know that Case-14
is not a valid choice.
Case-15: η1 = 0, η2 = 0, η3 = 0, η4 6= 0 ⇒

∂I

∂q1
= 0,

∂I

∂q2
= 0,

∂I

∂q3
= 0,

η4 6= 0→ q4 = 0.

This case corresponds to the scenario when both antennas at
user 1 are active with a different duty cycles while at user 2
only the antenna with the larger duty cycle is active. Following
the same steps in Case-8, we obtain the value of q3 as (56).

Similar to Case-14, it is difficult to directly make any
conclusion about the value of q3. Following similar steps as
in Lemma 12, we can show that

(56) =
c4

c4 + c6
,

in which c4 = h2(λ) and c6 = −h2(S21A21 + λ). Hence,
similar to Case-14, we can conclude that q3 /∈ [0, 1], and hence
this case is not a valid choice.
Case-16: η1 = 0, η2 = 0, η3 = 0, η4 = 0 ⇒

∂I

∂qk
= 0, k = 1, · · · , 4

This case refers to the scenario when both of the antennas of
each user is active and have different duty cycles. Following
similar argument in Appendix E-A, we can rule this case out.

In summary, we are left with only three candidates for the
optimality, i.e. Case-2, Case-5 and Case-6. Case-2 corresponds
to the scenario where only user 2 is active with both antennas
are simultaneously on or off with duty cycle α(B2/λ) and
hence the optimal value of q is (0, 0, 0, α(B2/λ)) . Case-
5 is the scenario where only user 1 is active with both
antennas are simultaneously on or off with duty cycle α(B1/λ)
and therefore q = (0, α(B1/λ), 0, 0). Case-6 is the scenario
where both users are active with both antennas at user 1 are
simultaneously on or off and both antennas at user 2 are
also simultaneously on or off and hence q = (0, µ1, 0, µ2)
where µ1 and µ2 are obtained by solving (13) and (14) with

S1A1 replaced by B1 = S11A11 +S12A12 and S2A2 replaced
by B2 = S21A21 + S22A22. It is clear that results obtained
for MISO-MAC are the same as a SISO-MAC with properly
chosen parameter.

APPENDIX E
PROOFS OF LEMMAS USED IN THE PROOF OF

PROPOSITION 9

A. Proof of Case-7

In this section we show that any sum-rate achievable for
scheme A, where both of the antennas at user 1 are active
with a same duty cycle but at user 2 only the antenna with the
larger duty cycle is active, can also be achieved by scheme
B, where both antennas of each user are simultaneously on or
off.

Let p∗ be the duty cycle used by both antennas of user 1
and x∗ be the duty cycle used by the antenna with the larger
duty cycle of user 2. Then the sum-rate achieved by scheme
A is

IA = (1− p∗)(1− x∗)ϕ(λ) + (1− p∗)x∗ϕ(S21A21 + λ)

+p∗(1− x∗)ϕ(S11A11 + S12A12 + λ)

+p∗x∗ϕ(S21A21 + S11A11 + S12A12 + λ)

−ϕ((S11A11 + S12A12)p∗ + S21A21x
∗ + λ).

Now consider scheme B, in which both antennas of user 1 to
be simultaneously on-off with duty-cycle p∗, for user 2, we let
both antennas to be simultaneously on or off with duty cycle
x∗ but with reduced amplitude. In particular, for antenna 1, it
uses β1A21. For antenna 2, it uses β2A22. We select β1 and
β2 such that β1S21A21 + β2S22A22 = S21A21. It is easy to
check that there always exists 0 ≤ β1 ≤ 1 and 0 ≤ β2 ≤ 1
such that this relationship holds. Hence, scheme B is a valid
scheme. For this scheme, the achievable sum-rate is

IB = (1− p∗)(1− x∗)ϕ(λ)

+(1− p∗)x∗ϕ(β1S21A21 + β2S22A22 + λ)

p∗(1− x∗)ϕ(S11A11 + S12A12 + λ)

+p∗x∗ϕ(β1S21A21 + β2S22A22 + S11A11 + S12A12 + λ)

−ϕ((S11A11 + S12A12)p∗ + (β1S21A21 + β2S22A22)x∗ + λ).

As β1S21A21 + β2S22A22 = S21A21, we have IA = IB .
Therefore, we can conclude that any sum-rate achievable by
letting both of the antennas at user 1 to be active with a same
duty cycle but letting only one antenna of user 2 to be active
can also be achieved by letting both antennas of each user to
be simultaneously on or off.
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q3 =

(
1 + S12A12

S11A11

)
ζ(S11A11, λ)− ζ(B1, λ)

ζ(S21A21, B1 + λ)−
(

1 + S12A12

S11A11

)
ζ(S21A21, S11A11 + λ) + S12A12

S11A11
ζ(S21A21, λ)

. (56)

B. Property of Lemma 11

To lighten up the notation, we set a = S22A22 and b =
S21A21. We have

h1(x)

=

(
1 +

b

a

)
ζ(a, x)− ζ(a+ b, x)

= ζ(a, x) +
b

a
ζ(a, x)− ζ(a+ b, x)

= (a+ x) log(a+ x)− x log x+
b

a
(a+ x) log(a+ x)

− b
a
x log x− (a+ b+ x) log(a+ b+ x) + x log x

= −(a+ x) log

(
a+ b+ x

a+ x

)
− b log

(
a+ b+ x

a+ x

)
+
b

a
x log

(
a+ x

x

)
.

Using the fact that for x > 0,

x

1 + x
< ln(1 + x) < x,

we obtain

h1(x)

<
1

ln(2)

(
−(a+ x)

b

a+ b+ x
− b2

a+ b+ x
+
b

a
x
a

x

)
= 0.

C. Proof of Lemma 12

In order to come to a firm conclusion about the value of
q4, we will write the value of I(q) in (42) in a different form.
In (42), all the terms are written separated by q1 and q2 terms,
we will now write I(q) written separated by q3 and q4. Clearly
I(q) in (42) can be written as

I(q) = (1− (q3 + q4))
(

(1− (q1 + q2))ϕ(λ)

+q1ϕ(S11A11 + λ) + q2ϕ(B1 + λ)
)

+q3

(
(1− (q1 + q2))ϕ(S21A21 + λ)

+q1ϕ(S11A11 + S21A21 + λ)

+q2ϕ(B1 + S21A21 + λ)
)

+ q4

(
(1− (q1 + q2)ϕ(B2 + λ)

+q1ϕ(S11A11 +B2 + λ) + q2ϕ(B1 +B2 + λ)

−ϕ(S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ). (57)

Using this new form, then we have:

∂I

∂q1
= (1− (q3 + q4))ζ(S11A11, λ)

+q3ζ(S11A11, S21A21 + λ) + q4ζ(S11A11, B2 + λ)

−S11A11 (log (S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ) + 1) ,
∂I

∂q2
= (1− (q3 + q4))ζ(B1, λ)

+q3ζ(B1, S21A21 + λ) + q4ζ(B1, B2 + λ)

−B1 (log(S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ) + 1) ,
∂I

∂q3
= ζ(S21A21, λ)

+q1

(
ζ(S11A11, S21A21 + λ)− ζ(S11A11, λ)

)
+q2

(
ζ(B1, S21A21 + λ)− ζ(B1, λ)

)
−S21A21(log (S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ) + 1),

and
∂I

∂q4
= ζ(B2, λ) + q1

(
ζ(S11A11, B2 + λ)− ζ(S11A11, λ)

)
+q2

(
ζ(B1, B2 + λ)− ζ(B1, λ)

)
−B2(log (S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ) + 1).

Recall that we need to solve
∂I

∂q1
= 0,

∂I

∂q2
= 0,

q3 = 0,
∂I

∂q4
= 0.

By combining ∂I
∂q1

= 0 and ∂I
∂q2

= 0, we can eliminate the
term with log and obtain a linear equation in terms of q3 and
q4. By plugging q3 = 0 to the obtained linear equation, we
obtain an alternative form of (55):

q4 =
c4

c4 + c5
,

in which c4 = h2(λ) and c5 = −h2(B2 + λ) with

h2(x) =

(
1 +

S12A12

S11A11

)
ζ(S11A11, x)− ζ(B1, x).
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