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Bayesian Two-stage Sequence Change Diagnosis
Across a Sensor Array

Xiaochuan Ma, Lifeng Lai, and Shuguang Cui

Abstract—In this paper, we formulate and solve a two-stage
Bayesian sequential change diagnosis (SCD) problem in a multi-
sensor setting. In the considered problem, the change propagates
across the sensor array gradually. After a change is detected, we
are allowed to continue observing more samples so that we can
identify the distribution after the change more accurately. Our
goal is to minimize the total cost including delay, false alarm, and
misdiagnosis probabilities. We first characterize the optimal SCD
rule. Moreover, to address the high computational complexity
issue of the optimal SCD rule, we propose a low-complexity
threshold SCD rule. We further analyze the asymptotic optimality
of the threshold SCD rule. In addition, we investigate how
increasing the number of sensors can improve the performance
of the proposed threshold SCD rule.

Index Terms—Two-stage sequential change diagnosis, multi-
sensor, optimal solution, asymptotically optimal solution.

I. INTRODUCTION

SEQUENTIAL change diagnosis (SCD) is a joint problem
of the quickest change-point detection (QCD) problem and

sequential multiple hypothesis testing (SMHT) problem. In
QCD problems, the goal is to detect the presence of a change
in data distribution quickly [2]–[12]. For SMHT problems,
in which there is no change, the goal is to determine the
correct data distribution from I candidate distributions [13]–
[16]. In SCD problems, the data distribution will change from
f0 to one of the I candidate distributions at an unknown time.
The goal of the SCD problem is to detect the change point
quickly and identify the post-change distribution accurately.
The SCD problem has many applications, including intrusion
detection in computer networks [17], outage detection and
identification in power system [18], and dynamic spectrum
access and allocation [19], etc.

In the one-stage SCD problem studied in [20], [21], the
change detection and identification must be made at the same
time. For the detection task, the goal is to detect the change
quickly. On the other hand, spending more time to collect
more data samples can increase the accuracy of identification.
Therefore, the requirement that the detection and identification
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must occur at the same time creates a tension between the
detection and identification objectives. In practice, however,
after we detect the change, we may still have the opportunity
to observe extra data samples, which may help us to make
a more accurate identification decision. In other words, the
change detection and identification do not have to occur at
the same time. This extra degree of freedom provides oppor-
tunities to design new detection and identification schemes
to achieve better performance. In our recent work [22], [23],
we formulate such problems as two-stage SCD problems,
and provide the optimal and asymptotically optimal solutions
of the two-stage SCD problem in a single-sensor setting.
These types of two-stage SCD problems may arise in many
applications. For example, in the structural health monitoring
(SHM) system [24], sensors are used to monitor a building.
When the building experiences a sudden damage, the SHM
system should detect the damage quickly and identify the
type of damage accurately. Typically, the identification task
requires more data than damage detection, i.e., more time
is needed for damage identification than damage detection.
However, the detection task is very urgent because people in
the building can be in great danger. Therefore, a smart SHM
system should allow the identification decision to be made
after the damage detection. In this case, the people can be
evacuated from the building immediately once the damage is
detected. After that, more data can be collected to make an
accurate damage identification. Other examples of such two-
stage situations include diagnosis of intrusions in computer
networks [25], navigation system integrity monitoring [26] etc.

As mentioned above, in our work [22], [23], we focus on the
case with a single sensor. To further improve the performance,
one could employ multiple sensors that collect information and
send it to the fusion center, where the detection and identifica-
tion decision is made. In this paper, we consider a two-stage
SCD problem in the multi-sensor scenario where there is a
linear sensor array with L sensors monitoring the environment.
A change will happen to the environment at an unknown time.
At the change point, the distribution of the observed signal
changes from f0 to one of the I candidate distributions. After
the change happens, it will propagate across the sensor array.
Using the observed information collected by the sensors, the
fusion center needs to decide two stopping times and one
identification decision. At the first stopping time, the fusion
center raises an alarm that a change has been detected. After
that, the sensors can still collect extra observations to facilitate
the identification task. At the second stopping time, the fusion
center makes the identification decision.
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For the proposed problem, we characterize the structure
of the optimal diagnosis rule. The optimal stopping rule is
obtained by converting the two-stage SCD problem into a two-
ordered optimal stopping time problem, which can be solved
using dynamic programming (DP). However, the dimension of
the state space grows exponentially with the number of sensors
and candidate post-change distributions. Thus the complexity
to implement the DP solution is extremely high. To address
this issue, we propose a low complexity threshold SCD rule.
Furthermore, we analyze the performance of the proposed
multi-sensor threshold SCD rule in two different cases de-
pending on whether the sensor first affected by the change is
known or not. Concretely, for the general case in which the
sensor first being affected by the change is randomly chosen
and unknown, we prove the threshold rule is asymptotically
optimal under some technical conditions. On the other hand,
for the special case in which the sensor first affected by
the change is fixed and known, we prove that the threshold
rule is asymptotically optimal without additional technical
conditions. In addition, we investigate how increasing the
number of sensors can improve the performance of the multi-
sensor threshold SCD rule. Our work is related to [11], which
studies the QCD problem under a multi-sensor setting. QCD
problems can be viewed as a special case of SCD problem,
which has only one post-change distribution. Therefore, the
identification part, which is important in this paper, is not
considered in [11].

Compared with the conference paper [1], this journal paper
provides several new contributions. Firstly, [1] focuses only
on a simple case that the change propagates across the sensor
array following a fixed and known order. In this journal
paper, we focus on a more general sensor array model in
which the change can first reach any sensor in the array
and then propagate to other sensors. Secondly, we provide
detailed proof of the asymptotic optimality of the threshold
SCD rule. Thirdly, we investigate the relationship between the
performance of the threshold rule and the number of sensors
in the array. Finally, we add more comprehensive numerical
examples to illustrate the analytical results obtained in this
paper.

The remainder of the paper is organized as follows. In
Section II, we provide our problem formulation. In Section III,
we study the evolution of the posterior probabilities. In Sec-
tion IV, we discuss the structure of the optimal SCD rule. Then
we introduce the threshold two-stage SCD rule and prove its
asymptotic optimality for the general case in Section V. In
Section VI, we prove the asymptotic optimality of the thresh-
old two-stage SCD rule for the special case. In Section VII,
we investigate the benefit of increasing the number of sensors.
Simulation results are provided in Section VIII. Finally, we
provide concluding remarks in Section IX.

II. PROBLEM FORMULATION

Consider a linear array of L sensors monitoring the envi-
ronment. The L sensors collect data at each time unit and then
immediately send data to the fusion center for analysis. The
observation of the system is a stochastic process hosted by a

Figure 1: Change propagation model

probability space (Ω,F ,P). At time k, the observation of the
system is ~Xk = (xk,1, xk,2, ..., xk,L), where xk,l is the data
collected by the lth sensor at time k. Let λ : Ω 7→ {0, 1, . . .}
be the time when an abrupt change happens in the sensing
environment and θ : Ω 7→ I := {1, . . . , I} be the environment
state after the change. The prior distribution of the change time
is P(λ = k) = ρ(1 − ρ)k. In addition, we denote I ∪ {0} as
I0. After time λ, the distribution of the data collected by each
sensor may experience a change from f0 to fθ. fθ can be one
of the candidate distributions {fi}i∈I . In addition, (Fk)k≥0 is
the filtration generated by the stochastic process { ~Xk}k≥1.

A. Change Propagation Model
The change propagation model is illustrated in Fig. 1,

the change will first happen to one sensor in the array and
then propagate to other sensors. In the considered model, the
change times of different sensors may be different. We denote
the time change happen to sensor l as λl for all 1 ≤ l ≤ L.
Let S denote the index of the sensor that the change first
reaches. The prior probability P (S = l) = κl is known. We
denote (κ1, κ2, . . . , κl) as ~K. As shown in Fig. 1, the change
first reaches sensor S at time λS = λ, then the change will
propagate to sensors on both sides of sensor S following the
order S → S + 1 → · · · → L and S → S − 1 → · · · → 1.
The propagation of the change in the sensor array follows a
geometric distribution, i.e., for k2 ≥ 0,{

P [λj−1 = k1 + k2|λj = k1, S = i] = ρ1(1− ρ1)k2 , i > j.
P [λj+1 = k1 + k2|λj = k1, S = i] = ρ2(1− ρ2)k2 , i < j

B. Observation Model
In this paper, we assume that, conditioned on the change

information, the observations of different times at every sensor
are independent. Concretely, if k < λl, xk,l ∼ f0, otherwise
xk,l ∼ fθ, where θ ∈ I. The prior probability of the state after
change is defined as vi = P{θ = i}, i ∈ I. To simplify the
notation, we express the conditional probabilities as:{

Pi{·} = P{·|θ = i},
P(t)
i {·} = P{·|θ = i, λ = t}, t ≥ 0.

Correspondingly, Ei and E(t)
i are the expectations under Pi

and P(t)
i . In addition, We have the assumption on f0 and fθ.

Assumption 1. For every i ∈ I0 and j ∈ I0\{i}, we have
(i) 0 < fi(x)/fj(x) <∞ a.s.;
(ii)
∫
{x:fi(x) 6=fj(x)} fi(x)(dx) > 0.
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C. Two-stage Multi-sensor SCD Problem

Our goal is to quickly raise an alarm after the change occurs
and further accurately determine the state θ, based on all the
data samples { ~X1, . . . , ~Xk}. Towards this goal, we employ a
two-stage SCD rule δ = (τ1, τ2, d) that includes two stopping
times τ1, τ1 + τ2, and an identification decision d. Here, τ1 is
the time for the change detection and τ1+τ2 is the time for the
identification. Let ∆ := {(τ1, τ2, d)|τ1 ≥ 0, τ2 ≥ 0, d ∈ I0}
be the set of all possible two-stage SCD rules. We should
note that if a wrong decision is made at τ1, i.e., τ1 < λ, then
d = 0 is the correct identification as long as this identification
is made before λ, i.e., τ1 + τ2 < λ.

The possible costs of an SCD rule include costs of delay,
false alarm, and misdiagnosis. The delay consists of the
delays in the change detection stage and the distribution
identification stage, i.e. (τ1 − λ)+ and τ2. The expected delay
costs of them are E[c1(τ1 − λ)+] and E[c2τ2], where c1
and c2 are per-unit delay costs associated with each stage
and (z)+ = max(0, z) for any z. In addition, we define
r := c1/c2 as the ratio between per-unit delay costs. A false
alarm is the situation that a change alarm is raised before
λ. The expected false alarm cost is E[a1{τ1<λ}], where a is
the penalty factor of false alarm and 1{·} is the indicator
function. Misdiagnosis occurs when a wrong identification
is made, i.e., d 6= θ. The expected misdiagnosis cost is
E
[∑

i∈I bij1{∞>τ1+τ2>λ,θ=i,d=j} + b0j1{τ1+τ2<λ,d=j}

]
for

d = j, where bij is the penalty factor for wrong decision
d = j when θ = i and b0,j is the penalty factor of the false
alarm of the identification stage. We set bij = 0 when i = j.
Hence the Bayesian cost function for a two-stage SCD rule
δ ∈ ∆ is

C(δ) = c1E [(τ1 − λ)+] + c2E[τ2] + aE[1{τ1<λ}]+
I∑
j=0

E
[ I∑
i=1

bij1{∞>τ1+τ2>λ,θ=i,d=j} + b0j1{τ1+τ2<λ,d=j}

]
.

(1)

The goal of the SCD problem is to find an SCD rule (τ1, τ2, d)
that minimizes the expected cost C(δ).

III. POSTERIOR PROBABILITY ANALYSIS

Following the main idea of [23], we can solve a two-
stage SCD problem using posterior probability process, Πk =

(Π
(0)
k , . . . ,Π

(I)
k )k≥0 ∈ Z , which is defined as{
Π

(i)
k := P{λ ≤ k, θ = i|Fk}, i ∈ I,

Π
(0)
k := P{λ > k|Fk},

where Z ∆
= {Π ∈ [0, 1]I+1|

∑
i∈I∪{0}Π(i) = 1}. Using

Bayesian rule, we know that, at any time k ≥ 1, each
component of Πk can be computed as

Π
(i)
k =

α
(i)
k ( ~X1, ~X2, . . . , ~Xk)∑

j∈I0 α
(j)
k ( ~X1, ~X2, . . . , ~Xk)

, (2)

in which

α
(0)
k = (1− ρ)k+1

L∏
l=1

k∏
n=1

f0(xn,l)

α
(i)
k =

L∑
s=1

κsviρ
k∑

ns=0

[
(1− ρ)

ns

(
ns−1∏
n=1

f0(xn,s)

)
·(

k∏
n=max(ns,1)

fi(xn,s)

)
Ψ

(i)
s−1(k, ns)Φ

(i)
s+1(k, ns)

]
Ψ

(i)
l−1(k, nl) = (1− ρ1)k−nl+1

l−1∏
t=1

k∏
n=1

f0(xn,t)+

ρ1

k∑
nl−1=nl

[
(1− ρ1)

nl−1−nl

(
nl−1−1∏
n=1

f0(xn,l−1)

)
·(

k∏
n=nl−1

fi(xn,l−1)

)
Ψ

(i)
l−2(k, nl−1)

]
, l > 1

Φ
(i)
l+1(k, nl) = (1− ρ2)k−nl+1

L∏
t=l+1

k∏
n=1

f0(xn,t)+

ρ2

k∑
nl+1=nl

[
(1− ρ2)

nl+1−nl

(
nl+1−1∏
n=1

f0(xn,l+1)

)
·(

k∏
n=nl+1

fi(xn,l+1)

)
Φ

(i)
l+2(k, nl+1)

]
, l < L

Φ
(i)
L+1(k, nl) = Ψ

(i)
0 (k, nl) = 1

.

(3)
Assumption 1 implies 0 < Π

(i)
k < 1 for every finite k ≥ 1

and i ∈ I0. We define the log-likelihood-ratio (LLR) processes
as

Λk(i, j) := log
Π

(i)
k

Π
(j)
k

= log
α

(i)
k ( ~X1, ~X2, . . . , ~Xk)

α
(j)
k ( ~X1, ~X2, . . . , ~Xk)

. (4)

Directly calculating Πk based on (2) requires us to remem-
ber all past samples, which requires large storage and is not
easy for implementation. Hence it is desirable to compute Πk

recursively once a new sample ~Xk arrives. To achieve this, we
further define the event Ti,k,s,l1,l2 = {S = s, λl1−1 > k, λl1 ≤
k, λl2+1 > k, λl2 ≤ k, θ = i} for 1 < s < L, l1 ≤ s and l2 ≥
s. Specially, Ti,k,1,1,l2 = {S = 1, λl2+1 > k, λl2 ≤ k, θ = i}
and Ti,k,L,l1,L = {S = L, λl1−1 > k, λl1 ≤ k, θ = i}. From
the definition, we know that event Ti,k,s,l1,l2 denotes the event
that the change with post-change distribution fi firstly reaches
sensor s and already propogates to sensors l1 and l2 at time k.
In addition, we define the event that change has not happened
yet as T0,k = {λ > k}. In this change process setting, we can
see that the underlying probability space Ω can be partitioned

as Ω=

(
L⋃
s=1

s⋃
l1=1

L⋃
l2=s

⋃
i∈I

Ti,k,s,l1,l2

)⋃
T0,k. Then, we denote

the posterior probability as pi,k,s,l1,l2 := P{Ti,k,s,l1,l2 |Fk} and
p0,k = P{T0,k|Fk}. Using Bayesian rule, we can derive the
updating rule for these posterior probabilities as



pi,k,s,l1,l2 =
Ni,k,s,l1,l2

L∑
s=1

s∑
l1=1

L∑
l2=s

∑
i∈I

Ni,k,s,l1,l2
+N0,k

,

1 < s < L, 1 ≤ l1 ≤ s, s ≤ l2 ≤ L, i ∈ I
p0,k =

N0,k

L∑
s=1

s∑
l1=1

L∑
l2=s

∑
i∈I

Ni,k,s,l1,l2
+N0,k

(5)
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where

Ni,k,s,l1,l2

=

(
l2∏

n=l1

fi(xk,n)

)(
l1−1∏
n=1

f0(xk,n)

)(
L∏

n=l2+1

f0(xk,n)

)
·[

p0,k−1κsρ(1− ρ1)1{l1 6=1}(1− ρ2)1{l2 6=L}ρs−l11 ρl2−s2 +(
s∑

n1=l1

l2∑
n2=s

pi,k−1,s,n1,n2
(1− ρ1)1{l1 6=1}(1− ρ2)1{l2 6=L}

ρn1−l1
1 ρl2−n2

2

)]
(6)

and

N0,k = p0,k−1(1− ρ)
L∏
n=1

f0(xk,n). (7)

For k = 0, we have p0,0 = 1 − ρ. For l1 ≤ s ≤ l2, we have
pi,0,s,l1,l2 = κsviρ(1− ρ1)1{l1 6=1}(1− ρ2)1{l2 6=L}ρs−l11 ρl2−s2 .

Let Pk denote the 4-dimensional posterior probabilities
tensor in which its elements are pi,k,s,l1,l2 . In Pk, only
elements satisfying l1 ≤ s and l2 ≥ s can be non-zero
value. From (5) (6) and (7), we see that Pk can be computed
from Pk−1 and observation Xk at time k. Hence, we have
the recursive update formula for the posterior probabilities
{Pk, p0,k}. More importantly, by the relationship between
{Pk, p0,k} and Πk, Π

(i)
k =

L∑
s=1

s∑
l1=1

L∑
l2=s

pi,k,s,l1,l2 , i ∈ I

Π
(0)
k = p0,k

(8)

we can update Πk recursively.

IV. OPTIMAL MULTI-SENSOR TWO-STAGE SCD RULE

Given the updating rule of Πk, (5) and (8), the optimal rule
(τ∗1 , τ

∗
2 , d
∗) that minimizes (1) can be obtained by following

similar steps as those in our recent work [23]. In particular,
by converting the two-stage problem into two optimal single
stopping time problems and solving them in reversed order,
we can obtain the optimal SCD rule for the proposed two-
stage sensor array SCD problem. Here, for completeness,
we introduce the main steps of obtaining the optimal rule
(τ∗1 , τ

∗
2 , d
∗).

To start, using Πk, we can express the Bayesian cost (1) as

C(δ) = E

[
τ1−1∑
n=0

c1

(
1−Π(0)

n

)
+ c2τ2 + 1{τ1<∞}aΠ(0)

τ1

+ 1{τ1+τ2<∞}

I∑
j=0

1{d=j}Bj(Πτ1+τ2)

]
,

where Bj(Π) =
∑
i∈I0 bijΠ

(i) is the misdiagnosis cost
associated with the decision d = j. Therefore, B(Π) =
min
j∈I0

Bj(Π) is the smallest misdiagnosis cost can be achieved

at time k. As the result, the optimal identification decision

is d∗ = arg minj∈I0 Bj(Π). Using this result, we have
C(τ1, τ2, d

∗) = E[C1(τ1) + C2(Πτ1 , τ2)], where

C1(τ1) =

τ1−1∑
n=0

c1

(
1−Π(0)

n

)
+ 1{τ1<∞}aΠ(0)

τ1

and C2(Πτ1 , τ2) = c2τ2 + 1{τ1+τ2<∞}B (Πτ1+τ2) are the
cost functions of the change detection stage and distribution
identification stage respectively. Then we have the minimal
expected cost for the SCD process,

C(τ∗1 , τ
∗
2 , d
∗)

= min
τ1,τ1+τ2∈F

E [C1(τ1) + C2(τ1, τ2)]

= min
τ1,τ1+τ2∈F

E
[
C1(τ1) + E [C2(τ2)|Pτ1 , p0,τ1 ]

]
= min
τ1∈F

E
[
C1(τ1) + min

τ1+τ2∈F
E [C2(τ2)|Pτ1 , p0,τ1 ]

]
.

(9)

By (9), the two-stage stopping time problem becomes two
ordered optimal single stopping time problems. The first one
is for the identification stage, its goal is finding the optimal
τ2 which minimizes E[C2(τ2)|Pτ1 , p0,τ1 ] for any given τ1,
Pτ1 and p0,τ1 . The second single stopping time problem is
to find the best stopping rule for the detection stage. From
the last line of (9), we can find an optimal τ1 to minimize
the expected cost for the whole SCD process if the optimal
rule for τ2 is known. Therefore, we will first find the optimal
rule for the identification stage first, then select the optimal
stopping time for the detection stage. Dynamic programming
is a good way to solve optimal single stopping time problems.
With the expression C1 and C2, we can built the cost-to-go
functions of the two optimal single stopping time problems.
In particular, for the identification stage, for any {P , p0},
let {P̃ , p̃0} be the posterior probabilities at time next to the
time of {P , p0}, the infinite-horizon cost-to-go function for
the DP process of the identification stage can be obtained by
solving V (P , p0) = min(B(P , p0), c2 + E[V (P̃ , p̃0)|P , p0]).
This implies that we should make an identification when
the expected cost for keep observing exceeds the cost of
making identification immediately. In addition, the optimal
identification decision is d = arg minj∈I0Bj(P ). Similarly, in
the change detection stage, for any {P , p0}, let {P̃ , p̃0} be the
posterior probabilities next to the time of {P , p0}, the infinite-
horizon cost-to-go function for the detection stage satisfy
the following Bellman equation W (P , p0) = min(ap0 +
V (P , p0), c1(1 − p0) + E[W (P̃ , p̃0)|P , p0]). From this, we
know that we should raise a change alarm when the expected
cost of observing more data exceeds the cost of declaring a
change has happened.

The cost-to-go functions V (P ) and W (P ) and the optimal
stopping times can be calculated using DP. However, the
size of the state space increases exponentially with L and I .
With such a high complexity, the optimal solution is hard to
implement.

V. LOW-COMPLEXITY RULE

Same as other DP-based methods, the complexity of the
optimal solution is very high, even with an array with only
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two sensors and two post-change distributions. To address
this issue, we propose a threshold SCD rule that is easy to
implement. Moreover, we will show this threshold SCD rule
is asymptotically optimal as c1 and c2 go to zero. Compared
with the asymptotic optimality proof for the single sensor case
considered in [23], the analysis of the convergence of the LLR
process is much more complicated. In this section, we will
introduce the main steps of the asymptotic optimality analysis
and then present details of the proof of the LLR convergence.

A. Threshold SCD Rule

Here, we introduce the proposed low complexity two-stage
SCD rule. The low complexity rule is a threshold rule. In
particular, it is characterized by a set of thresholds {A, ~B}
where ~B = (B0, B1, B2, ..., BI). A and all elements in ~B are
strictly positive constants. Using these thresholds, the proposed
threshold rule δT = (τA, τ ~B, d ~B) is defined as

τA := inf{k ≥ 1,Π
(0)
k < 1/(1 +A)},

τ ~B := min
i∈I0

τ
(i)
~B
,

τ
(i)
~B

:= inf{k ≥ 1,Π
(i)
k > 1/(1 +Bi)} − τA,

d ~B := arg min
i∈I0

τ
(i)
~B
.

(10)

In this threshold SCD rule, the first stopping time τA is the
first time Π

(0)
k falls below the threshold 1/(1 +A). After τA,

the rule turns to check the posterior probabilities Π
(i)
k for all

i ∈ I0. It will stop immediately if any threshold 1/(1 + Bi)
is exceeded. The identification decision depends on which
threshold is passed. In order to guarantee that this rule is in
the two-stage SCD rule space ∆, it must satisfy τ ~B ≥ 0. This
condition can be satisfied by choosing appropriate A and ~B
as described in [23].

For i ∈ I0 and k ≥ 1, define the logarithm of the odds-ratio
process as

Φ
(i)
k := log

Π
(i)
k

1−Π
(i)
k

= − log

[ ∑
j∈I0\{i}

exp(−Λk(i, j))

]
.

Using Φ
(i)
k , δT can be expressed as:

τA = inf

{
k ≥ 1,

1−Π
(0)
k

Π
(0)
k

> A

}
= inf{k ≥ 1,Φ

(0)
k < − logA},

τ ~B = min
i∈I0

τ
(i)
~B
,

τ
(i)
~B

= inf

{
k ≥ 1,

1−Π
(i)
k

Π
(i)
k

< Bi

}
− τA

= inf{k ≥ 1,Φ
(i)
k > − logBi} − τA,

d ~B = arg min
i∈I0

τ
(i)
~B
.

(11)

The complexity of the threshold rule (10) is very low. After
obtaining a new sample, we only need to update the posterior
probabilities using the recursive formula (5), and then compare
them with the thresholds. In the following parts, we will show
that this rule is asymptotically optimal as c1 and c2 go to zero.

B. Convergence of LLR Process

By (2) and (4), we can see that

log(Λk(i, j))

= logα
(i)
k ( ~X1, ~X2, . . . , ~Xk)− logα

(j)
k ( ~X1, ~X2, . . . , ~Xk).

For i ∈ I, we define

H
(i)
k =

L∑
s=1

κs

k∑
ns=0

[(
ns−1∏
n=1

(
(1− ρ)f0(xn,s)

(1− ρ1)(1− ρ2)fi(xn,s)

))
·

ψ
(i)
s−1(k, ns)φ

(i)
s+1(k, ns)

]
where

ψ
(i)
l (k, nl+1) =

k∏
n=1

[
(1− ρ1)

l∏
t=1

f0(xn,t)

fi(xn,t)

]
+

ρ1

k∑
nl=nl+1

nl−1∏
n=1

f0(xn,l)

fi(xn,l)
ψ

(i)
l−1 (k, nl) , l ≥ 1

φ
(i)
l (k, nl−1) =

k∏
n=1

[
(1− ρ2)

L∏
t=l

f0(xn,t)

fi(xn,t)

]
+

ρ2

k∑
nl=nl−1

nl−1∏
n=1

f0(xn,l)

fi(xn,l)
φ

(i)
l+1 (k, nl) , l ≤ L

In addition, φ(i)
L+1 (k, nL) = (1− ρ2)nL−1 and ψ(i)

0 (k, n1) =
(1− ρ1)n1−1. Therefore, we have

logα
(i)
k = log[viρ(1− ρ)] + log

(
L∏
l=1

k∏
m=1

fi(xm,l)

)
+ logH

(i)
k , for i ∈ I

logα
(0)
k = (k + 1) log(1− ρ) + log

(
L∏
l=1

k∏
m=1

f0(xm,l)

)
.

Then we define the following condition for i, j ∈ I.

Condition 1. log(1 − ρ) + q(j, i) − q(j, 0) ≥ 0 or q(j, i) −
q(j, 0) ≤ 0.

The next proposition describes the limit of logH
(i)
k /k as

k →∞ under Condition 1.

Proposition 1. For any i, j ∈ I, if Condition 1 is satisfied,
1

k
logH

(i)
k

Pj−a.s.−−−−−→
k→∞

h(i, j) (12)

where h(i, j) = (log(1− ρ) + L(q(j, i)− q(j, 0)))+.

Proof. Please see Appendix A.

C. Asymptotic Optimality

Once we show the convergence of log(H
(i)
n /k), we can

proceed to show the asymptotic optimality of the threshold
rule. The main steps on this proof are: (1) Obtain approxi-
mations of the delay, false alarm probability and misdiagnosis
probability, which leads to the expression of the Bayesian cost
of the threshold rule, C(δT ), w.r.t. A and B; (2) Select the
optimal A and B that can minimize C(δT ); (3) Prove that
C(δT , Aopt,Bopt) achieves the lower bound of the Bayesian
cost for arbitrary two-stage SCD rule when c1 and c2 go to 0.
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For any i ∈ I, define

w(i, j) =


L∑
l=1

q(i, j)− h(j, i), j ∈ I
L∑
l=1

q(i, 0)− log(1− ρ), j = 0

. (13)

If the first affected sensor is unknown, and Condition 1 is
satisfied for i, j ∈ I, h(i, j) can be calculated as in Proposition
1. As introduced in [23], the approximation of delay can be
expressed as Ei

[
(τ ~B + τA − λ)

+

]
Pi−a.s.−−−−−→
Bi→0

− logBi

w(i) , for i ∈ I

Ei
[
(τA − λ)+

] Pi−a.s.−−−−−→
A→∞

logA
w(i,0) , for i ∈ I

.

(14)
where w(i) = w(i, j(i)), j(i) = arg min

j∈I0\{i}
w(i, j). In addition,

the false alarm and misdiagnosis probability can be approx-
imated as ka

1+A and
∑
i∈I

viBiki, respectively. Here Ka = a

and ki = maxj∈I0\{i}bji. Therefore, the Bayesian cost of the
threshold rule can be approximated as

C(c2)(δT ) = c2
∑
i∈I

vi

(
− log(Bi)

w(i)

)
+
∑
i∈I

viBiki

+c2

(
1

r
− 1

)∑
i∈I

vi logA

w(i, 0)
+

ka
1 +A

.

(15)

By minimizing (15) w.r.t A and ~B, we get the optimal A and
~B as  Aopt ≈ ka

c2( 1
r−1)

∑
i∈I

vi
w(i,0)

− 2,

Bi,opt = c2
kiw(i) , i ∈ I.

(16)

The Bayesian cost for the optimal threshold SCD rule is

C(c2)(δ∗T ) = c2
∑
i∈I

−vi
w(i)

log

(
c2

kiw(i)

)
+
∑
i∈I

vic2
w(i)

+

c2

(
1

r
− 1

)∑
i∈I

vi
w(i, 0)

log

 ka

c2( 1
r − 1)

∑
i∈I

vi
w(i,0)

− 2

+

ka
1

ka
c2( 1

r−1)
∑
i∈I

vi
w(i,0)

− 1
.

(17)

Finally, in the following proposition, we prove that (17) is
the lowest Bayesian cost any two-stage SCD rule can achieve
when c1 and c2 go to 0. In other words, the proposed threshold
rule is asymptotically optimal.

Proposition 2. If δT = (τAT
, τ ~BT

, dT ) is a threshold two-
stage SCD rule with thresholds as (16), then for any given
fixed r := c2/c1 we have

lim
c2→0

infδ∈∆C
(c2)(δ)

C(c2)(δT )
≥ 1.

Note that, since Proposition 2 is proved based on Proposi-
tion 1, Condition 1 is also necessary for Proposition 2.

VI. SPECIAL CASE: WHEN THE FIRST AFFECTED SENSOR
IS KNOWN

As introduced in Section V, when the first affected sensor S
is an unknown random variable, Condition 1 is necessary for
the asymptotic optimality of the multi-sensor threshold SCD
rule. In this section, we will show that, when the first affected
sensor is fixed and known, the multi-sensor threshold SCD
rule is asymptotically optimal with no additional condition.

When the first affected sensor is fixed and known, one
element of ~K will be 1 and all other elements will be zero.
Without loss of generality, we assume that κs = 1. With
this additional assumption, the computations in the previous
section can be further simplified and we can prove stronger
asymptotic optimality results. In particular, for any time k ≥ 1,
Πk can be directly calculated as

Π
(i)
k =

α
(i)
k ( ~X1, ~X2, . . . , ~Xk)∑

j∈I0 α
(j)
k ( ~X1, ~X2, . . . , ~Xk)

(18)

where

α
(0)
k = (1− ρ)k+1

L∏
l=1

k∏
n=1

f0(xn,l)

α
(i)
k = viρ

k∑
ns=0

[
(1− ρ)

ns

(
ns−1∏
n=1

f0(xn,s)

)
·(

k∏
n=max(ns,1)

fi(xn,s)

)
Ψ

(i)
s−1(k, ns)Φ

(i)
s+1(k, ns)

] (19)

For i ∈ I, we define

H
(i)
k =

k∑
ns=0

[(
ns−1∏
n=1

(
(1−ρ)f0(xn,s)

(1−ρ1)(1−ρ2)fi(xn,s)

))
·

ψ
(i)
s−1(k, ns)φ

(i)
s+1(k, ns)

]
.

(20)

Define

ηl(i, j) =


log
[

1−ρ
(1−ρ1)

1{s 6=1} (1−ρ2)
1{s 6=L}

]
+ q(j, i)− q(j, 0),

l = s
log(1− ρ1) + q(j, i)− q(j, 0), l = 1 and s 6= 1
log(1− ρ2) + q(j, i)− q(j, 0), l = L and s 6= L
q(j, i)− q(j, 0), otherwise.

(21)
For any i, j ∈ I, according to the value of ηl(i, j), we divide
the sensor labels 1 ≤ l ≤ L into several consecutive groups
(the labels in each group are consecutive). The grouping rule
is described in Algorithm 1. After implementing Algorithm
1 for the case i, j ∈ I, we will have M(i, j) + N(i, j) + 1
consecutive groups

{am1 (i, j), am1 (i, j) + 1, . . . , am2 (i, j)}1≤m≤M(i,j),

{aM(i,j)
2 (i, j) + 1, a

M(i,j)
2 (i, j) + 2, . . . , b

N(i,j)
2 (i, j)− 1},

{bn2 (i, j), . . . , bn1 (i, j)− 1, bn1 (i, j)}N(i,j)≥n≥1.

The next proposition describes the limit of logH
(i)
k /k as

k →∞.

Proposition 3. For any i, j ∈ I,

logH
(i)
k

k

Pj−a.s.−−−−−→
k→∞

h(i, j) (22)
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Algorithm 1: Grouping the sensors

1 Initialize a1
1(i, j) = 1, a0

2(i, j) = 0, b11(i, j) = L,
b02(i, j) = L+ 1, m = 1, n = 1;

2 for l=1,2,. . . ,s-2,s-1 do

3 if
l∑

k=am1 (i,j)

ηk(i, j) ≥ 0 then

4 am2 (i, j) = l, am+1
1 (i, j) = l + 1;

5 m+ = 1;
6 end
7 for l=L,L-1,. . . ,s+2, s+1 do

8 if
l∑

k=bm1 (i,j)

ηk(i, j) ≥ 0 then

9 bn2 (i, j) = l, bn+1
1 (i, j) = l − 1;

10 n+ = 1;
11 M(i, j) = m− 1, N(i, j) = n− 1
12 end

where

h(i, j) =
a
M(i,j)
2 (i,j)∑
l=1

ηl(i, j) +
L∑

l=b
N(i,j)
2 (i,j)

ηl(i, j)

+

 b
N(i,j)
2 (i,j)−1∑

l=a
M(i,j)
2 (i,j)+1

ηl(i, j)


+

.

(23)

Proof. Please see Appendix B.

Then following the same steps of Section V-C, we can prove
that the multi-sensor threshold SCD rule is asymptotically
optimal as c1 and c2 go to zero. Plugging (23) in (13), (16) and
(17), we will have the optimal threshold and the corresponding
Bayesian cost. Different from the asymptotic optimality for the
general case in Section V-C, in this special case when the first
affected sensor is known, the asymptotic optimality does not
need any additional condition. If log(1−ρ)+q(j, i)−q(j, 0) ≥
0 or q(j, i)− q(j, 0) ≤ 0 for any i, j ∈ I, we can easily check
that the h(i, j) in Proposition 1 and 3 are equivalent. With
equivalent h(i, j), w(i, j) and the limit of cost function in (17)
will also be equivalent. This indicates that the performances
of the general case and special case will tend to be the same
as c1 and c2 go to zero.

VII. BENEFITS OF INCREASING NUMBER OF SENSORS

From the Bayesian cost of the optimal threshold rule in
(17), we can see that if constants w(i) and w(i, 0) increase,
the cost will decrease. Although we know that C(c2)(δ∗T )→ 0
as c1, c2 → 0, greater constants w(i) and w(i, 0) can make
C(c2)(δ∗T ) converge to 0 faster.

A. Case 1: The first affected sensor is unknown

When Condition 1 is satisfied for i, j ∈ I, and the first
affected sensor is randomly chosen and unknown. By (13)
and Proposition 1, we have

w(i, j) =

{
Lq(i, j), if log(1− ρ) ≥ q(i, 0)− q(i, j), i ∈ I
Lq(i, 0)− log(1− ρ), j = 0 or q(i, j) ≤ q(i, 0)

.

By Assumption 1 and the fact q(i, j) is the KL divergence,
q(i, j) is positive for i, j ∈ I. Therefore, w(i) and w(i, j) will
increase with the number of sensors. This implies that, with
more sensors in the sensor array, the performance of the multi-
sensor threshold SCD rule will be improved when Condition
1 is satisfied for all i, j ∈ I in the general case.

B. Case 2: The first affected sensor is known

As we introduced in Section VI, when Condition 1 does not
hold and the first affected sensor is fixed and known, the cal-
culation of constant w is more complicated. The reason is that
adding one more sensor to the array may change the grouping
result of Algorithm 1. Without of generality, we assume the
sensor is added to the right of the first affected sensor s, i.e.,
we added the l = (L+ 1)th sensor to the array. Then ηL(i, j)
change from log(1− ρ2) + q(j, i)− q(j, 0) to q(j, i)− q(j, 0).
The new added ηL+1(i, j) = log(1 − ρ2) + q(j, i) − q(j, 0).
Based on the value of ηL(i, j), the increment of h(i, j) could
be different. However, it’s easy to check that, the increment of
h(i, j) is upper bounded by (q(j, i)− q(j, 0))+. Based on this
observation and (13), we can see that by adding one sensor,
w(i, j) will always increase. Therefore, the performance of the
multi-sensor threshold SCD rule can always be improved by
adding sensors to the sensor array.

VIII. NUMERICAL RESULTS

Since the optimal SCD rule is too complex to implement
in the multi-sensor case, obtaining the optimal solution is
extremely time-consuming, even for a simple case with L = 2
and I = 2. Therefore, we will not to carry out experiments
to directly compare the performance of the optimal SCD rule
and the threshold SCD rule. However, we still can validate
that the multi-sensor threshold SCD rule has a considerable
improvement over a single sensor threshold rule (all sensors
except the first one are ignored) and a mismatched threshold
rule (changes of all sensors are falsely assumed to happen
at the same time). Particularly, we will investigate the perfor-
mance of the multi-sensor threshold SCD rule in a general case
(first affected sensor is a random variable) and a special case
(first affected sensor is fixed and known). In this section, we
provide 4 numerical examples to illustrate the performance of
the threshold SCD rule. In all following examples, the results
are estimated by Monte-Carlo simulations. Concretely, we
generate data samples following the underlying SCD process
and apply the SCD rules to the generated sequence. An
episode ends when the SCD rule makes the final detection
and identification decision. Then we calculate the whole cost
and start another episode. The Bayesian cost C(τ1, τ2, d) is
approximated using the average value of 100,000 episodes of
Monte-Carlo simulation.

In the first example, the observed data samples are generated
by a two-dimensional normal distribution, N (~µ, I2). The
mean vector ~µ changes at the change point. In the first
example, we consider the case with two possible post-change
mean vectors ~µ1 = (0, 1) and ~µ2 = (0,−1) and the pre-
change mean vector ~µ0 = (0, 0). In addition, we set ρ1 = 0.2,
ρ2 = 0.2, ρ = 0.01, (v1, v2) = (0.3, 0.7) and c2/c1 = 0.1.
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Figure 2: Performance of the multi-sensor threshold SCD rule
in 7 different cases

All the penalty factors of the false alarm and misdiagnosis
are set to be 1. For this problem formulation, we study 7
different cases: (1). L = 5 with ~K = [0.2, 0.2, 0.2, 0.2, 0.2]
(General case); (2). L = 5 with ~K = [0, 0, 1, 0, 0] (Special
case); (3) L = 5 with ~K = [0, 0, 1, 0, 0] (Mismatch case);
(4). L = 2 with ~K = [0.5, 0.5] (General case); (5). L = 2
with ~K = [0, 1] (Special case); (6) L = 2 with ~K = [0, 1]
(Mismatch case); (7) Single sensor case. The result of these
7 cases are shown in Fig. 2. From this figure, we can see
the general trends of the performance of the threshold rule
are: (1) Special case> General case> Mismatch case and
single sensor case; (2) L = 5 > L = 2 for the general and
the special case. The advantage of the special case over the
general case is due to the additional information that the first
sensor affected by the change is known in the special case.
Additionally, we notice that the performance of the mismatch
case with L = 5 is worse than L = 2. This demonstrates
that with wrong information about the problem formulation,
adding more sensors may not help to improve the performance.
In conclusion, the results of this example indicate that with
more sensors and the correct information about the problem
formulation, the proposed multi-sensor threshold SCD rule can
efficiently improve the performance.

In the second example, we illustrate our results using pre-
change and post-change distributions that are more complex
that the one used in the first example. Firstly, we define a 2-D
distribution, FL(µ1, µ2). With FL(µ1, µ2), the two elements
in each data sample are independent and follow the Laplace
distributions, L(µ1, 1/

√
2) and L(µ2, 1/

√
2), respectively. In

this example, we implement three experiments: (1) Change
in the mean vector of FL(µ1, µ2). The pre-change distribu-
tion is FL(0, 0), the post-change distributions are FL(0, 1)
and FL(0,−1); (2) Change in the covariance matrix of 2-
D Gaussian distribution. The pre-change distribution is 2-D
Gaussian distribution, N (~0, 0.5I2), the post-change distribu-
tions are N (~0, I2) and N (~0, 2I2); (3) Change in the type of
the distribution. The pre-change distribution is a 2-D Gaus-
sian distribution, FL(0, 0), the post-change distributions are
N ((0, 1), I2) and N ((0,−1), I2). All the other parameters in
this example are the same as the first example. The simulation

Table I: Performances of the two-stage multi-sensor threshold
SCD rules with different c1

c1 General Case Special Case Bayesian Cost Ratio

1−2 0.5291 0.4956 0.937

1−4 1.03e-2 9.83e-3 0.955

1−6 1.26e-4 1.23e-4 0.980

1−8 1.69e-6 1.66e-6 0.988

1−10 2.09e-8 2.08e-8 0.993

results of the three settings are shown in Figure 3. These results
are very similar to the results in the first example. It indicates
that the proposed multi-sensor threshold SCD rule (general
case and special case) works well for various settings of pre-
change and post-change distributions.

In the first two examples, we know that the additional
information about the first sensor affected by the change makes
the special case has better performance than the general case.
However, from the analysis in Section VI, the limit of the
cost function of the two cases should be the same. In the
third example, we implement an experiment to validate this
analysis result. Assume L = 5, for the general case, we
assume ~K = [0.2, 0.2, 0.2, 0.2, 0.2]. For the special case, we
assume ~K = [0, 0, 1, 0, 0]. Following similar setting of the first
example, we only change the mean vector to ~µ1 = (0, 0.2) and
~µ2 = (0,−0.2). It is easy to check that Condition 1 is satisfied
for all i, j ∈ I. The cost functions of the two cases and the
ratio between them are given in Table I. From that table, we
can see that, with smaller c1(since c2/c1 is set to be 0.1), the
ratio between the cost of the special case and the general case
is getting closer to 1. From the experiments we did in the first
three examples, we can see that the prior information about
the first affected sensor can help to improve the performance
of the multi-sensor threshold SCD rule, especially when c1
and c2 is not very small. However, this improvement will get
smaller as c1 and c2 approach zero.

As we introduced in Section V-C, the threshold SCD rule
is asymptotically optimal when the Condition 1 is satisfied for
all i, j ∈ I. If the condition is not satisfied, currently we are
not able to prove the asymptotic optimality of the threshold
SCD rule for the general case. In the fourth example, we
numerically study the performance of the multi-sensor SCD
rule in the general case when Condition 1 is not satisfied. We
still use the same 2-D Gaussian setting of the first example
except for the mean vector. We set ~µ1 = (0, 0.1) and
~µ2 = (0,−0.1) in order to make the Condition 1 unsatisfied.
In this setting, we compare the performance of the general
case and the special case. The result is shown in Fig. 4. From
this figure, we can see that the performance of the multi-
sensor threshold SCD rule in the general case is very close to
that in the special case. According to our analysis in Section
V, we know the multi-sensor threshold SCD rule is always
asymptotically optimal in the special case. Therefore, we know
that without the asymptotic optimal guarantee, the multi-sensor
threshold SCD rule can still have good performance.
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Figure 3: The cost ratio between the optimal and threshold two-stage SCD rules
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Figure 4: Performance of the multi-sensor threshold SCD rule
in general case and special case when Condition 1 is not
satisfied

IX. CONCLUSION

In this paper, we have formulated the Bayesian two-stage
sequential change diagnosis over a sensor array problem.
By analyzing the posterior probability, we have converted
the multi-sensor version SCD problem to a normal SCD
problem and characterized the optimal solution. However, the
complexity of the proposed optimal solution is high due to the
DP steps. To reduce the computational complexity, we have
designed a threshold multi-sensor two-stage SCD rule. For the
general case in which the first sensor affected by the change
is randomly chosen and unknown, we have proved that the
threshold SCD rule is asymptotically optimal under Condition
1. For the special case that the first affected sensor is fixed
and known, we have proved that the threshold rule is generally
asymptotically optimal. Furthermore, we have analyzed how
increasing the number of sensors can improve the performance
of the threshold SCD rule.

APPENDIX A
PROOF OF PROPOSITION 1

Before we prove Proposition 1, we introduce some helpful
results.

Lemma 1. Let {ξk}k≥1 be a positive stochastic process and
T be an a.s. finite random time defined on the same probability
space (Ω, ε,P). Given T , the random variables {ξk}k≥1 are
conditionally independent, and {ξk}1≤k≤T−1 and {ξk}k≥T
have common conditional probability distributions P(∞) and
P(0) on (R,B(R)), the expectations with respect to which
are denoted by E(∞) and E(0), respectively. Suppose that
E(∞)[logξ1] and E(0)[logξ1] exist, and define η := E(0)[logξ1].
Then for any fixed constant c > 0

1
k log

(
c+

k∑
l=1

l∏
n=1

ξn

)
P−a.s.−−−−→
k→∞

η+. (24)

This lemma is the first part of Lemma 5.5 in the paper [21].
Here we further extend this lemma so that it can be applied
to our sensor array problem.

Lemma 2. Let {ξk}k≥1 be a positive stochastic process and
TL−1 ≤ TL are two a.s. finite random times defined on the
same probability space (Ω, ε,P). Given TL−1 and TL, the
random variables {ξk}k≥1 are conditionally independent, and
{ξk}TL−1≤k≤TL−1 and {ξk}k≥TL

have common conditional
probability distributions P(∞) and P(0) on (R,B(R)), the
expectations with respect to which are denoted by E(∞) and
E(0), respectively. Suppose that E(∞)[logξ1] and E(0)[logξ1]
exist, 0 < ξk <∞ for all k ≥ 1 and define η := E(0)[logξ1].
Then for any fixed constant c > 0

1
k log

(
c+

k∑
l=1

l∏
n=1

ξn

)
P−a.s.−−−−→
k→∞

η+. (25)

Proof.

1
k log(c+

k∑
l=1

l∏
n=1

ξn)

= 1
k log

(
c+

TL−1−1∑
l=1

l∏
n=1

ξn +
k∑

l=TL−1

l∏
n=1

ξn

)

= 1
k log

((
c+

TL−1∑
l=1

l∏
n=1

ξn

)
TL−1∏
n=1

ξ−1
n +

k∑
l=TL−1

l∏
n=TL−1

ξn

)

+ 1
k log

(
TL−1−1∏
n=1

ξn

)
.

The last equality holds by setting

c′ =

(
c+

TL−1∑
l=1

l∏
n=1

ξn

)
TL−1∏
n=1

ξ−1
n > 0.
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By Lemma 1, we can see that

1
k log

(
c′ +

k∑
l=TL−1

l∏
n=TL−1

ξn

)
P−a.s.−−−−→
k→∞

η+.

On the other hand, since TL−1 is a.s. finite, we have

1
k log

(
TL−1−1∏
n=1

ξn

)
P−a.s.−−−−→
k→∞

0.

Then the lemma is proved.

Now, we first prove that, for any i, j ∈ I, we have

lim inf
k→∞

1

k
logH

(i)
k ≥ (log(1− ρ) + Lq(j, i)− Lq(j, 0))+ (26)

Pj almost surely.
For any i ∈ I, define

ξ
(l)
k (i) =

f0(xk,l)

fi(xk,l)
, 2 ≤ l ≤ L− 1,

ξ
(1)
k (i) =

f0(xk,l)

fi(xk,l)
(1− ρ1),

ξ
(L)
k (i) =

f0(xk,l)

fi(xk,l)
(1− ρ2).

(27)

With this definition, we can have

H
(i)
k =

L∑
s=1

κs

k∑
ns=0

(
ns−1∏
n=1

(
(1− ρ)ξ

(s)
n (i)

(1− ρ1)(1− ρ2)

))
·

ψ
(i)
s−1(k, ns)φ

(i)
s+1(k, ns)

(28)

and

ψ
(i)
l (k, nl+1) =

k∏
n=1

(1− ρ1)
l∏
t=1

ξ
(t)
n (i)

+ρ1

k∑
nl=nl+1

nl−1∏
n=1

ξ
(l)
n (i)ψ

(i)
l−1 (k, nl) , L− 1 ≥ l ≥ 1

ψ
(i)
0 (k, n1) = 1

φ
(i)
l (k, nl−1) =

k∏
n=1

(1− ρ2)
L∏
t=l

ξ
(t)
n (i)

+ρ2

k∑
nl=nl−1

nl−1∏
n=1

ξ
(l)
n (i)φ

(i)
l+1 (k, nl) , 2 ≤ l ≤ L

φ
(i)
L+1 (k, nL) = 1.

.

(29)
Then, we can see that

ψ
(i)
l (k, nl+1) ≥ ρ1

(
nl+1−1∏
n=1

ξ
(l)
n (i)ψ

(i)
l−1(k, nl+1)

)
,

L− 1 ≥ l ≥ 1

ψ
(i)
l (k, nl+1) ≥ ρ1

(
k−1∏
n=1

ξ
(l)
n (i)ψ

(i)
l−1(k, k)

)
,

φ
(i)
l (k, nl−1) ≥ ρ2

(
nl−1−1∏
n=1

ξ
(l)
n (i)φ

(i)
l+1(k, nl−1)

)
,

2 ≤ l ≤ L

φ
(i)
l (k, nl−1) ≥ ρ2

(
k−1∏
n=1

ξ
(l)
n (i)φ

(i)
l+1(k, k)

)
.

(30)

Applying equation (30) repeatedly, we have

H
(i)
k ≥

L∑
s=1

κs
k∑

ns=0

ns−1∏
n=1

(1−ρ)f0(xs,n)
(1−ρ1)(1−ρ2)fi(xs,n) ·[

ρs−1
1

(
s−1∏
t=1

ns−1∏
n=1

f0(xt,n)
fi(xt,n)

)
(1− ρ1)

ns−1

]
·[

ρL−s−1
2

(
L∏

t=s+1

ns−1∏
n=1

f0(xt,n)
fi(xt,n)

)
(1− ρ2)

ns−1

]
=

(
L∑
s=1

κsρ
s−1
1 ρL−s−1

2

)(
k∑

ns=0

ns−1∏
n=1

(1− ρ)
L∏
t=1

f0(xt,n)
fi(xt,n)

)
.

Then we have

1
k logH

(i)
k ≥

1
k log

(
L∑
s=1

κsρ
s−1
1 ρL−s−1

2

)
+ 1
k log

(
k∑

ns=0

ns−1∏
n=1

(1− ρ)
L∏
t=1

f0(xt,n)
fi(xt,n)

)
.

(31)

Since the parameters ρs−1 are all positive for all 1 ≤ s ≤ L,
we have

1

k
log

(
L∑
s=1

zlρ
s−1
1 ρL−s−1

2

)
−−−→
k→∞

0. (32)

Since the change will happen at all sensors at an almost surely
finite time T , then by applying Lemma 2, we have

1
k log

(
k∑

nl=0

nl−1∏
n=1

(1− ρ)
L∏
t=1

f0(xt,n)
fi(xt,n)

)
= 1

k log

(
2 +

k∑
nl=2

nl−1∏
n=1

(1− ρ)
L∏
t=1

f0(xt,n)
fi(xt,n)

)
Pj−a.s.−−−−−→
k→∞

(log(1− ρ) + Lq(j, i)− Lq(j, 0))+.

(33)

Combining (31), (32) and (33), we can see that (26) is
proved. Next we need to prove the other direction, i.e., for
any i, j ∈ I,

lim sup
k→∞

1

k
logH

(i)
k ≤ (log(1− ρ) + Lq(j, i)− Lq(j, 0))+,

(34)
Pj almost surely.

For any integer nx ≥ 0, we can see that
k∏

n=1
(1− ρ1)

l∏
t=1

ξ
(t)
n (i)

=

(
k∏

n=1
ξ

(l)
n (i)

)(
k∏

n=1
(1− ρ1)

l−1∏
t=1

ξ
(t)
n (i)

)
≤
(

k∏
n=1

ξ
(l)
n (i)

)
ψ

(i)
l−1(k, nx), L− 1 ≥ l ≥ 1

(35)

Similarly, for 2 ≤ l ≤ L we have
k∏

n=1
(1− ρ2)

L∏
t=l

ξ
(t)
n (i) ≤

(
k∏

n=1
ξ

(l)
n (i)

)
φ

(i)
l+1(k, nx). (36)

From (29), using (35) and (36) with nx = k + 1 and the fact
that ρ1 < 1 and ρ2 < 1, we can see that

ψ
(i)
l (k, nl+1) ≤

k+1∑
n
l
=n

l+1

(
nl−1∏
n=1

ξ
(l)
n (i)

)
ψ

(i)
l−1(k, nl),

L− 1 ≥ l ≥ 1

φ
(i)
l (k, nl−1) ≤

k+1∑
n
l
=n

l−1

(
nl−1∏
n=1

ξ
(l)
n (i)

)
φ

(i)
l+1(k, nl),

2 ≤ l ≤ L.
(37)
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Applying these two inequalities in (37) recursively, we have

H
(i)
k ≤

L∑
s=1

κs

k∑
ns=0

(
ns−1∏
n=1

(
(1− ρ)ξ

(s)
k (i)

(1− ρ1)(1− ρ2)

))
·

ψ̃
(i)
s−1(k, ns)φ̃

(i)
s+1(k, ns)

(38)

where

ψ̃
(i)
l (k, nl+1) =

k+1∑
nl=nl+1

(
nl−1∏
n=1

ξ(l)
n (i)

)
ψ̃

(i)
l−1(k, nl),

L− 1 ≥ l ≥ 1

ψ̃
(i)
0 (k, n1) = 1,

φ̃
(i)
l (k, nl−1) =

k+1∑
nl=nl−1

(
nl−1∏
n=1

ξ(l)
n (i)

)
φ̃

(i)
l+1(k, nl),

2 ≤ l ≤ L
φ̃

(i)
L+1 (k, nL) = 1.

(39)
Since nl in (38) is no larger than nL and n1 in (39), so the
right hand side of (38) will become larger if we cancel all
(1− ρ1) and (1− ρ2) in (38). Furthermore, we know that

ψ̃
(i)
l (k, nl+1) ≤

k+1∑
n
l
=0

(
nl−1∏
n=1

ξ
(l)
n (i)

)
ψ̃

(i)
l−1(k, nl),

L− 1 ≥ l ≥ 1

φ̃
(i)
l (k, nl−1) ≤

k+1∑
n
l
=0

(
nl−1∏
n=1

ξ
(l)
n (i)

)
φ̃

(i)
l+1(k, nl), 2 ≤ l ≤ L.

(40)
By canceling all (1 − ρ1) and (1 − ρ2) in (38) and applying

(40) reversely, we have that H(i)
k ≤

L∑
s=1

κsγs where

γs =

(
k∑

ns=0

(
ns−1∏
n=1

(
(1− ρ)ξ

(s)
k (i)

)))
·(

s−1∏
l1=1

(
k+1∑
t=0

(
t−1∏
n=1

ξ
(l1)
n (i)

)))
·(

L∏
l2=s+1

(
k+1∑
t=0

(
t−1∏
n=1

ξ
(l2)
n (i)

)))
.

(41)

By Lemma 2, for any 1 ≤ s ≤ L we have

1

k
log (γs)

Pj−a.s.−−−−−→
k→∞

(L− 1) (q(j, i)− q(j, 0))+

+ (log(1− ρ) + q(j, i)− q(j, 0))+ .

Since κs ≥ 0 and
L∑
s=1

κs = 1, we have

min
(

log
(γ1

k

)
, log

(γ2

k

)
, . . . , log

(γL
k

))
≤

log

(
L∑
s=1

κsγs

)
k

≤ max
(

log
(γ1

k

)
, log

(γ2

k

)
, . . . , log

(γL
k

))
.

We can have

1

k
log

(
L∑
s=1

κsγs

)
Pj−a.s.−−−−−→
k→∞

(L− 1) (q(j, i)− q(j, 0))+

+ (log(1− ρ) + q(j, i)− q(j, 0))+ .

When Condition 1 is satisfied, we have

(log(1− ρ) + Lq(j, i)− Lq(j, 0))+ = (log(1− ρ)+

q(j, i)− q(j, 0))+ + (L− 1) (q(j, i)− q(j, 0))+ .
(42)

Hence (34) is proved. Therefore, Proposition 1 is true.

APPENDIX B
PROOF OF PROPOSITION 3

Now, we first prove that, for any i, j ∈ I,

lim inf
k→∞

1

k
logH

(i)
k ≥ h(i, j) (43)

Pj almost surely. Please note that the h(i, j) in this section is
defined as (23) since we are studying the special case.

In (30), we have four inequalities about ψ(i)
l (k, nl+1) and

φ
(i)
l (k, nl−1). For (20), we apply the first inequality of (30)

to {ψ(i)
l }s−1≥l≥aM(i,j)

2 (i,j)+1
, the second inequality of (30)

to {ψ(i)
l }1≤l≤aM(i,j)

2 (i,j)
, the third inequality of (30) to

{φ(i)
l }s+1≤l≤bN(i,j)

2 (i,j)−1
and the fourth inequality of (30) to

{φ(i)
l }L≥l≥bN(i,j)

2 (i,j)+1
. Then we have

H
(i)
k ≥

k∑
ns=0

ns−1∏
n=1

 (1− ρ)

(1− ρ1) (1− ρ2)

b
N(i,j)
2 (i,j)−1∏

l=a
M(i,j)
2 (i,j)+1

ξ(l)
n (i)


a

M(i,j)
2 (i,j)∏
l=1

k−1∏
n=1

ξ(l)
n (i)


 L∏
l=b

N(i,j)
2 (i,j)

k−1∏
n=1

ξ(l)
n (i)

 ·
ρ1
s−1ρ2

L−s(1− ρ1)k−1(1− ρ2)k−1.

Therefore,

logH
(i)
k

k
≥ 1

k

a
M(i,j)
2 (i,j)∑
l=1

log

(
k−1∏
n=1

ξ(l)
n (i)

)
+

1

k

L∑
l=b

N(i,j)
2 (i,j)

log

(
k−1∏
n=1

ξ(l)
n (i)

)
+

1

k
log
(
ρ1
s−1ρ2

L−s)+

1

k
log

 k∑
ns=0

ns−1∏
n=1

(1− ρ)

(1− ρ1) (1− ρ2)

b
N(i,j)
2 (i,j)−1∏

l=a
M(i,j)
2 (i,j)+1

ξ(l)
n (i)


+

1

k
log
(
(1− ρ1)k−1

)
+

1

k
log
(
(1− ρ2)k−1

)
.

Since L is a finite integer, we have

1

k
log
(
ρ1
s−1ρ2

L−s) −−−→
k→∞

0. (44)

By Lemma 2 and the definition of ηl in (21), we can see that

1

k
log

 k∑
ns=0

ns−1∏
n=1

(1− ρ)

(1− ρ1) (1− ρ2)

b
N(i,j)
2 (i,j)−1∏

l=a
M(i,j)
2 (i,j)+1

ξ(l)
n (i)


Pj−a.s.−−−−−→
k→∞

 b
N(i,j)
2 (i,j)−1∑

l=a
M(i,j)
2 (i,j)+1

ηl(i, j)


+

.

(45)



12

In addition, by the definition of ηl and Algorithm 1, we can
see that

1
k

a
M(i,j)
2 (i,j)∑
l=1

log

(
k−1∏
n=1

ξ
(l)
n (i)

)
+ 1

k log
(
(1− ρ1)k−1

)
+ 1
k

L∑
l=b

N(i,j)
2 (i,j)

log

(
k−1∏
n=1

ξ
(l)
n (i)

)
+ 1

k log
(
(1− ρ2)k−1

)
Pj−a.s.−−−−−→
k→∞

a
M(i,j)
2 (i,j)∑
l=1

ηl(i, j) +
L∑

l=b
N(i,j)
2 (i,j)

ηl(i, j).

(46)
Combining (44), (45) and (46), (43) is proved. Next, we need
to prove the other direction, i.e., for any i, j ∈ I,

lim inf
k→∞

1

k
logH

(i)
k ≤ h(i, j) (47)

Pj almost surely.
Applying (37) recursively, we have

H
(i)
k ≤

k∑
nl=0

(
nl−1∏
n=1

(
(1− ρ)ξ

(l)
k (i)

(1− ρ1)(1− ρ2)

))
·

ψ̃
(i)
l−1(k, nl)φ̃

(i)
l+1(k, nl).

(48)

Here φ̃
(i)
l+1(k, nl) and ψ̃

(i)
l−1(k, nl) are given (39). We apply

the first inequality in (40) to ψ̃
(i)
l+1(k, nl) for l = am2 (i, j)

and 1 ≤ m ≤ M(i, j), following the order from m = 1 to
m = M(i, j). Then we also apply the second inequality in
(40) to φ̃

(i)
l+1(k, nl) for l = bn2 (i, j) and 1 ≤ n ≤ N(i, j),

following the order from n = 1 to n = N(i, j). We define

Ωm =
k+1∑

nam
2 (i,j)=0

[(
nam

2 (i,j)−1∏
n=1

ξ
(am2 (i,j))
n (i)

)

ζ
(i)
m,am2 (i,j)−1(nam2 (i,j))

]
, 1 ≤ m ≤M(i, j),

Θm =
k+1∑

nbn2 (i,j)=0

[(
nbn2 (i,j)−1∏
m=1

ξ
(bn2 (i,j))
m (i)

)

ε
(i)
n,bn2 (i,j)+1(nbn2 (i,j))

]
, N(i, j) ≥ n ≥ 1,

Γ =
k+1∑
ns=0

[(
ns−1∏
n=1

ξ
(s)
n (i)

)
ζ

(i)
M(i,j)+1,s−1(ns)

ε
(i)
N(i,j)+1,s+1(ns)

]

ζ
(i)
m,t(nt+1) =

k+1∑
nt=nt+1

[(
nt−1∏
n=1

ξ
(t)
n (i)

)
ζ

(i)
m,t−1(nt)

]
,

am2 (i, j)− 1 ≥ t ≥ am1 (i, j), 1 ≤ m ≤M(i, j) + 1,

ζ
(i)
m,t(nt+1) = 1, t = am1 (i, j)− 1,

ε
(i)
n,t(nt−1) =

k+1∑
nt=nt−1

[(
nt−1∏
m=1

ξ
(t)
m (i)

)
ε

(i)
n,t+1(nt)

]
,

bn1 (i, j) ≥ t ≥ bn2 (i, j) + 1, N(i, j) + 1 ≥ n ≥ 1,

ε
(i)
n,t(nt−1) = 1, t = bn1 (i, j) + 1.

(49)
With the definitions in (49), we have

H
(i)
k ≤

(
M(i,j)∏
m=1

Ωm

)(
N(i,j)∏
n=1

Θn

)
Γ. (50)

In (49), we denote
a
M(i,j)+1
1 (i, j) = a

M(i,j)
2 (i, j) + 1,

a
M(i,j)+1
2 (i, j) = s− 1,

b
N(i,j)+1
1 (i, j) = b

N(i,j)
2 (i, j)− 1,

b
N(i,j)+1
2 (i, j) = s+ 1

. (51)

Now, it suffices to show that

lim sup
k→∞

1
k log Ωm =

am2 (i,j)∑
l=am1 (i,j)

ηl(i, j), 1 ≤ m ≤M(i, j)

lim sup
k→∞

1
k log Θm =

bn1 (i,j)∑
l=bn2 (i,j)

ηl(i, j), 1 ≤ n ≤ N(i, j)

lim sup
k→∞

1
k log Γ =

b
N(i,j)
2 (i,j)−1∑

l=a
M(i,j)
2 (i,j)+1

ηl(i, j)

(52)
Pj almost surely. The proof of the three inequalities are
similar, and the third one is more complicated. So here we
only provide the proof of the third one. For any 1 ≤ l ≤ L,

k+1∑
nl=nl−1

nl−1∏
ml=1

ξ
(l)
ml

(
k+1∑

nl+1=nl

nl+1−1∏
ml+1=1

ξ
(l+1)
ml+1

)

=
k+1∑

nl=nl−1

nl−1∏
ml=1

ξ
(l)
mlξ

(l+1)
ml

(
k+1∑

nl+1=nl

nl+1−1∏
ml+1=nl

ξ
(l+1)
ml+1

)

≤
k+1∑

nl=nl−1

nl−1∏
ml=1

ξ
(l)
mlξ

(l+1)
ml

(
k+nl+1∑
nl+1=nl

nl+1−1∏
ml+1=nl

ξ
(l+1)
ml+1

)

≤
k+1∑

nl=nl−1

nl−1∏
ml=1

ξ
(l)
mlξ

(l+1)
ml

(
max
nl≤k+1

k+nl+1∑
nl+1=nl

nl+1−1∏
ml+1=nl

ξ
(l+1)
ml+1

)
.

(53)
Similarly, we have

k+1∑
nl=nl+1

nl−1∏
ml=1

ξ
(l)
ml

(
k+1∑

nl−1=nl

nl−1−1∏
ml−1=1

ξ
(l−1)
ml−1

)

≤
k+1∑

nl=nl+1

nl−1∏
ml=1

ξ
(l)
mlξ

(l−1)
ml

(
max
nl≤k+1

k+nl+1∑
nl−1=nl

nl−1−1∏
ml−1=nl

ξ
(l−1)
ml−1

)
.

(54)
For Γ, apply (54) from l = a

M(i,j)
2 (i, j) + 2 to l = s, then

apply (53) from to l = b
N(i,j)
2 (i, j)− 2 to l = s, we have

Γ ≤
k+1∑
ns=0

ns−1∏
q=1

b
N(i,j)
2 (i,j)−1∏

l=a
M(i,j)
2 (i,j)+1

ξ
(l)
q (i)

 s∏
l=a

M(i,j)
2 (i,j)+1

Cl

b
N(i,j)
2 (i,j)−1∏

l=s

Dl,

(55)
where

Cl = max
nl≤k+1

1 +
k+nl∑

nl−1=nl

nl−1∏
ml−1=nl

l∏
t=a

M(i,j)
2 (i,j)

ξ
(t)
ml−1

 ,

and

Dl == max
nl≤k+1

1 +
k+nl∑

nl+1=nl

nl+1∏
ml+1=nl

b
N(i,j)
2 (i,j)∏
t=l

ξ
(t)
ml+1

 .
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By Lemma 2, for s ≤ l ≤ bN(i,j)
2 (i, j)− 1, we have

1
k log

1 +
k+nl∑

nl+1=nl

nl+1∏
ml+1=nl

b
N(i,j)
2 (i,j)∏
t=l

ξ
(l)
ml+1


Pj−a.s.−−−−−→
k→∞

b
N(i,j)
2 (i,j)∑
t=l

ηt(i, j)


+

= 0.

And for aM(i,j)
2 (i, j) + 1 ≤ l ≤ s, we have

1
k log

1 +
k+nl∑

nl−1=nl

nl−1∏
ml−1=nl

l∏
t=a

M(i,j)
2 (i,j)

ξ
(t)
ml−1


Pj−a.s.−−−−−→
k→∞

 l∑
t=a

M(i,j)
2 (i,j)

ηt(i, j)


+

= 0.

Therefore, we have
1

k
logCl

Pj−a.s.−−−−−→
k→∞

0. (56)

and
1

k
logDl

Pj−a.s.−−−−−→
k→∞

0. (57)

Similarly, by lemma 2, we can see that,

k+1∑
ns=0

ns−1∏
q=1

b
N(i,j)
2 (i,j)−1∏

l=a
M(i,j)
2 (i,j)+1

ξ
(l)
q (i)

 Pj−a.s.−−−−−→
k→∞ b

N(i,j)
2 (i,j)−1∑

l=a
M(i,j)
2 (i,j)+1

ηl(i, j)


+

.

(58)

By (55), (56), (57) and (58), we know that the third inequality
in (52) is true. Using similar steps, we can prove the other two
inequalities in (52). Hence (43) is proved. Finally, by (43) and
(47), the proof of Proposition 3 is complete.
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