
1

EVaR Optimization for Risk-Sensitive
Reinforcement Learning

Xinyi Ni and Lifeng Lai

Abstract

In the existing work on risk-sensitive reinforcement learning (RL) problems, in order to take uncertainty into
consideration, risk measure such as conditional value-at-risk (CVaR) has been widely used to design robust RL
algorithms. However, the uncertainty set in the dual representation of CVaR is defined by distributions whose
Radon-Nikodym derivative is constrained to a certain range. This is a less common way to define distribution
neighborhood in machine learning applications and hence its interpretation is less natural. This paper applies a
recently developed risk measure named entropic value-at-risk (EVaR) to risk-sensitive RL problems. One appealing
feature of EVaR is that the uncertainty set in its dual representation is defined by distributions whose Kullback-
Leibler (KL) distance to the nominal distribution is less or equal to a certain level. Hence EVaR has a very natural
interpretation for RL applications. In this paper, we address the EVaR optimization problem based on Markov
decision process (MDP) by proposing a value iteration algorithm as well as its approximate version equipped
with linear interpolation. Furthermore, for the case where the nominal transition kernel of the underlying MDP is
unknown, we present a sample-based counterpart for the value iteration algorithm. Numerical examples are also
provided to illustrate these proposed algorithms.

I. INTRODUCTION

Reinforcement learning (RL) [1] is an area of machine learning where agents learn from the environment
to determine the actions. The environment is typically stated as a Markov decision process (MDP). A
common goal in solving these sequential decision making tasks is to determine an optimal policy that
minimizes the expected total discounted cost, which is also named risk-neutral approach [2]. Despite the
popularity of the risk-neutral approach, it doesn’t take either the uncertainties of cost nor its sensitivity to
modeling errors into account, which may significantly degrade the performance of the optimal policy [3]
when there are uncertainties or modeling errors.

The uncertainty of the cost can be addressed in risk-sensitive MDPs [4] by utilizing risk measures. A risk
measure is a mapping from a random variable to a real value. Typically, the risk object is derived from the
total discounted cost. Artzner et al. [5] propose an important concept named coherent risk measures, which
satisfy four basic axioms: translation invariance, subadditivity, monotonicity and positive homogeneity.
A useful property is that each coherent risk measure has a dual representation. Follmer et al. [6] extend
the concept of coherent risk measures by introducing the notion of convex measure or risk. They also
provide the corresponding extension of the dual representation. The sensitive issue could be solved in
robust MDPs by choosing some uncertainty sets to model the uncertainty and considering the worst
case [7] over these uncertainty sets. Osogami [8] shows that risk-sensitive MDP with certain coherent risk
measures is equivalent to robust MDP of minimizing the worst-case expectation over the uncertainty set
determined by the dual representation of the risk measure. Therefore, suitably choosing risk measure can
decrease the influence of both issues at the same time.

In risk-sensitive MDPs, one well-known risk measure is value-at-risk (VaR). However, VaR is not
coherent due to the lack of subadditivity and convexity [5]. Furthermore, VaR is unstable and difficult to
optimize when the costs are not normally distributed [9], [10]. To address these shortcomings, Rockafellar
and Uryasev developed a new risk measure called conditional value-at-risk (CVaR) in [9] and [10]. CVaR
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is able to quantify risk beyond VaR and is a coherent risk measure. Due to these advantages, CVaR has
been extensively applied to RL problems [11]–[18]. However, as will be detailed in Section II, in the dual
representation of CVaR, the uncertainty set of the CVaR optimization is defined by distributions whose
Radon-Nikodym derivative is constrained to a certain range. While the uncertainty set corresponding to
CVaR is certainly relevant for some RL applications [11], it is a less common way to define distri-
bution neighborhood in machine learning applications and hence its interpretation for machine learning
applications is less natural. This leads to the question of whether we can apply risk measures, whose
uncertainty sets in their dual presentations are defined using widely used metrics and have more natural
interpretations in machine learning applications, to design risk-sensitive RL algorithms. One promising
coherent risk measure is entropic value-at-risk (EVaR) developed recently by Ahmadi et al. [19]. EVaR
is a coherent risk measure that is derived from the Chernoff inequality for the VaR. In particular, EVaR is
the tightest upper bound for both VaR and CVaR [19]. One appealing feature of EVaR is the uncertainty
set in its dual representation. In particular, [19] shows that the uncertainty set in the dual representation
of EVaR is defined by distributions whose Kullback-Leibler (KL) distance to the nominal distribution
is less or equal to a certain level. As a result, minimizing EVaR is equivalent to minimizing the worst-
case expectation over distributions whose KL distance to the nominal distribution is less or equal to a
certain level. As KL distance is widely used to define distances between distributions in machine learning
applications, EVaR appears to be a natural risk measure to use for RL problems.

Considering all these advantages of EVaR, we introduce a new approach to determine the optimal
policies for risk-sensitive decision making problem based on the optimization of EVaR. To the best of our
knowledge, this is the first time that EVaR is applied in risk-sensitive MDPs. In our approach, the goal is
to determine the optimal policies that minimize the EVaR value of the total discounted cost. Due to the
coherent property of EVaR, we can apply the alternative dual representation for EVaR in [19] and then
the problem becomes an optimization problem over an uncertainty set. However, in the uncertainty set,
we need to know the probability distribution of the total discounted cost under different policies, which
is quite hard to obtain. To address this issue, we utilize the conditional decomposition theorem of version
independent risk functions in [20] to develop the conditional EVaR decomposition theorem that reveals the
connection of EVaR computation between the current state and the next state. After utilizing conditional
EVaR decomposition theorem, the EVaR problem becomes an optimization problem over the uncertainty
set defined on the one-step transition kernel of the underlying MDP using KL distance. Following the
idea of dynamic programming, we define value function and Bellman operator for EVaR. Similar with
the Bellman operator, we show that the EVaR Bellman operator also has the monotonicity, transition
invariance and contraction properties, which guarantees the existence of the unique fixed-point solution.
Combining with these useful properties, we develop an EVaR value iteration algorithm, which recursively
update the EVaR value at each time step and gradually converge to the optimize value. According to
the optimal value function, we can then construct a method to extract the optimal policy as a stationary
Markovian policy, which is more structured and easier for implementation. However, using the conditional
EVaR decomposition theorem will bring in an augmented continuous space representing the confidence
level, which makes our algorithm not practical enough. To improve the practicality, we follow the idea of
linear interpolation in [11] to develop an approximate value iteration algorithm, in which we choose some
points of the confidence level rather than using its whole continuous space. Similar with the EVaR value
iteration algorithm, we also define the interpolated EVaR Bellman operator and show that it also has these
useful properties as mentioned in EVaR Bellman operator. Therefore, we can follow the same procedure
to develop the approximate version of the value iteration algorithm and analyze the error bounds between
these two algorithms. Furthermore, for the scenarios where we do not know the transition kernel of the
underlying MDP model, we adapt the sample average approximation (SAA) approach introduced in [21]
and [22] to estimate the transition probability and design the sample based EVaR algorithm following the
same procedure. Moreover, we validate the proposed algorithms using numerical examples.

The remainder of this paper is organized as follows. In Section III, we introduce the problem formulation.
In Section IV, we describe our value iteration algorithms. We also introduce a more practical approximation

2



version using linear interpolation. In Section V, we consider cases where the underlying MDP model is
unknown and present a sample-base algorithm. In Section VI, we provide numerical examples to illustrate
our approach. Finally, we offer concluding remarks in Section VII.

II. PRELIMINARIES

Consider a probability space (Ω,F , P ), where Ω is the set of all possible outcomes, F is a σ-algebra over
Ω and P is a probability measure over F . Let Z denote the space of random variables Z : Ω→ (−∞,∞)
over the probability space (Ω,F , P ). A risk measure ρ is a mapping from a random variable Z ∈ Z to
a real value. In risk-sensitive RL, Z usually presents the reward or cost and the goal is to determine the
optimal strategies that minimize ρ(Z). In the last few decades, many different risk measures have been
proposed and investigated in the risk-sensitive decision making context. All these risk measures can be
classified into two categories: coherent measures and non-coherent measures. A risk measure ρ is coherent
if it satisfies the following properties mentioned in [19].
(P1) Translation invariance: ρ(Z + c) = ρ(Z) + c for any Z ∈ Z and c ∈ R;
(P2) Subadditivity: ρ(Z1 + Z2) ≤ ρ(Z1) + ρ(Z2) for all Z1, Z2 ∈ Z;
(P3): Monotonicity: If Z1, Z2 ∈ Z and Z1(w) ≤ Z2(w) for all w ∈ Ω, then ρ(Z1) ≤ ρ(Z2);
(P4) Positive homogeneity: ρ(λZ) = λρ(Z) for all Z ∈ Z and λ ≥ 0
One very useful property of coherent risk measures is the dual representation theorem [21], which connects
the risk-sensitiveness to robustness. Examples of coherent measures include the conditional value-at-risk
and entropic value-at-risk [19] etc. Examples of non coherent measures include variance, mean-standard-
deviation and value-at-risk etc [5].

In the following, we review risk measures that are directly related to our work. Let Z be a bounded
random variable on the probability space (Ω,F , P ) with the cumulative distribution function (CDF)
F (z) = P (Z ≤ z). The value-at-risk (VaR) [5] at confidence level α ∈ [0, 1] is the 1 − α quantile
of Z. Since we interpret Z as a cost in this paper, VaR is defined as:

VaRα(Z) = inf{z|F (z) ≥ α}.

However, VaR is not a coherent risk measure as it lacks the subadditivity and convexity properties [5]. In
order to overcome the shortcomings of VaR, conditional value-at-risk (CVaR) is proposed in [9] and [10].
CVaR is defined as the mean of the worst α% of values of Z, i.e.,

CVaRα(Z) = inf
t∈R

{
t+

1

α
EP [(Z − t)+]

}
,

where (z)+ = max(z, 0). CVaR is a coherent risk measure. From its definition, we can see that CVaRα

is decreasing in α, i.e, CVaRα tends to max(Z) as α decreasing to 0 and CVaR1(Z) equals E(Z). CVaR
has been extensively applied to RL problems [11]–[18].

As mentioned above, for each coherent risk measure, there is a useful alternative dual representation [19].
Before introducing the dual representation of CVaR, we introduce some notation. Let Q be another
probability measure on (Ω,F), Q is said to be absolutely continuous with respect to P (denoted by
Q � P ) if P (A) = 0 implies Q(A) = 0 for any measurable set A ∈ F . If Q � P , then by probability
theory there is a well-defined Radon-Nikodym derivative dQ

dP
and the alternative dual representation for

CVaR can be written as [23]:
CVaRα(Z) = sup

Q∈UCVaR

EQ(Z), (1)

where
UCVaR =

{
Q� P :

dQ

dP
∈
[
0,

1

α

]}
. (2)

From this dual representation, CVaRα(Z) can be interpreted as the largest mean of Z computed using
distribution Q that is in the neighborhood of P defined in (2). While the neighborhood defined in UCVaR
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is certainly relevant for some RL applications [11], it is a less common way to define distribution
neighborhood in machine learning applications.

Recently, in [19], Ahmadi et al. propose a risk measure named entropic value-at-risk (EVaR) from
the Chernoff inequality of the VaR. Let LM+ be the set of all Borel measurable functions Z : Ω → R
whose moment generating function MZ(t) = EP

[
etZ
]

exists for t ≥ 0. The EVaR of a random variable
Z ∈ LM+ with confidence level 1− α is defined as

EVaRα(Z) = inf
t>0

{
t−1 ln(MZ(t))− t−1 lnα

}
. (3)

[19] shows that EVaR is the tightest upper bound for both VaR and CVaR. Similar to CVaR, EVaR is a
coherent risk measure and EVaRα is decreasing in α, i.e, EVaRα tends to max(Z) as α decreasing to 0
and EVaR1(Z) equals E(Z). One appealing feature of EVaR is its dual representation [19]:

EVaRα(Z) = sup
Q∈UEVaR

EQ(Z), (4)

where
UEVaR = {Q� P : DKL(Q ‖ P ) ≤ − lnα}.

Here DKL refers to KL divergence between probability measures Q and P . Since KL divergence is
also called relative entropy, this measure is then called entropic value-at-risk. From (4), we can see that
EVaRα(Z) has a very nice interpretation: it is the largest mean of Z computed using distribution Q, who
is in the − lnα-neighborhood (defined using KL distance) of P . Compared with the dual representation
of CVaR, it’s more common and natural to use KL distance rather than the Radon-Nikodym derivative to
define the distance between distributions in machine learning applications. Therefore, EVaR might be a
natural risk measure for RL.

III. EVAR OPTIMIZATION

As mentioned in Section I, solving risk-sensitive decision making with a coherent risk measure ensures
the robustness of the developed algorithms. In addition, as discussed in Section II, the dual representation
of EVaR has a very natural way of defining the uncertainty set, which is widely used in machine learning
problems. Motivated by these observations, in this paper, we apply EVaR to design robust algorithms for
risk-sensitive RL.

In particular, we consider a Markov decision process represented by a tuple (X ,A, C, P, γ, x0), where
X is the state space, A is the action space, C(x, a) ∈ [−Cmax, Cmax] is a bounded deterministic cost,
P (·|x, a) is the transition probability distribution, γ ∈ [0, 1] is the discounting factor, and x0 is the initial
state. For each state x ∈ X , A(x) denotes the corresponding action set. For convenience, here we define
some feasible set of policies µ. For t ≥ 1, let Ht = Ht−1×A×X with H0 = X denote the space of possible
histories up to time t and ht = (x0, a0, . . . , xt−1, at−1, xt) is an element in Ht. For each time t, the policy
µt is a mapping from ht to the probability distribution over the action space A. Let ΠH,t be the set of all t-
step history-dependent policies, i.e., ΠH,t := {µ0 : H0 → A, µ1 : H1 → A, . . . , µt : Ht → A|µj(·|hj) ∈ A
for all hj ∈ Hj, 1 ≤ j ≤ t}. Let ΠH = limt→∞ΠH,t be the set of all history-dependent policies. Similarly,
we can define the Markovian policies as ΠM = limt→∞ΠM,t where ΠM,t := {µ0 : X → A, µ1 : X →
A, . . . , µt : X → A|µj(·|xj) ∈ A for all xj ∈ X , 1 ≤ j ≤ t}. One special case is the stationary Markovian
policy denoted by ΠM,S , where the policies are time-homogeneous, i.e., µj = µ for all j ≥ 0.

The goal of this paper is to minimize the EVaR value of the total discounted cost and determine the
corresponding optimal policies. As a result, the problem formulation of EVaR optimization in risk-sensitive
reinforcement learning can be written as

min
µ∈ΠH

EVaRα

(
lim
T→∞

T∑
t=0

γtC(xt, at)

∣∣∣∣∣x0, µ

)
, (5)
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where µ = {µ0, µ1, . . . } is the policy sequence with action at = µt(ht) for t = {0, 1, . . . }, C(xt, at) is
the state-wise cost observed along a trajectory at time t and T is the length of time horizons.

Now, let PS be the true probability measure of the total discounted cost under policy µ and QS denote
another probability measure over this space. Using the dual representation (4) of EVaR, we can write the
optimization problem (5) as

min
µ∈ΠH

sup
QS∈UEVaR(α,PS)

EQS

(
lim
T→∞

T∑
t=0

γtC(xt, at)

∣∣∣∣∣x0, µ

)
,

where
UEVaR(α, PS) = {QS � PS : DKL(QS ‖ PS) ≤ − lnα}.

However, it is challenging to optimize over this uncertainty set on the probability distribution of the
total discounted cost. As will be discussed in the sequel, we will solve this problem by using the EVaR
decomposition theorem proposed in Section IV, which reveals the connection between the current state
and next state in EVaR computation and allows us to optimize over the uncertainty set defined on the
transition kernel P (·|x, a) using KL distance.

Note that in standard RL, we only aim to minimize the total discounted cost under the transition kernel
P (·|x, a). Now with EVaR and its dual representation, the objective is to minimize the worst cost for all
kernels in the neighborhood of P (·|x, a) as defined in KL distance, so as to achieve robustness.

IV. VALUE ITERATION FOR EVAR
In order to solve the primary optimization problem (5), we follow the idea of dynamic programming and

apply the decomposition theorem of version independent risk measures used in [11] [20]. One important
function in reinforcement learning is the Bellman operator, which describes a recursively update for value
function. Our approach follows the similar idea to derive the EVaR Bellman operator and then uses the
value iteration process to obtain the optimal solution of (5).

To begin with, we introduce the decomposition theorem for conditional EVaR. Firstly, equipped with
the dual representation for EVaR in [19] and the definition of conditional risk measures in [20], the
conditional EVaR at random confidence level can be defined as following.

Definition 1. Let Ft be a sub-σ-algebra over the space (Ω, P ), i.e., Ft ⊂ F and ξt be a measurable
random variable w.r.t. Ft, then the conditional EVaR with confidence level α ∈ [0, 1] is defined as

EVaRα(Z|Ft) = esssupEP (ξtZ|Ft),

where the ′esssup′ is taken over the set {ξt : E[ξt|Ft] = 1, DKL(ξtP ||P ) ≤ − lnα}.

Then, we introduce version independent risk measures mentioned in [20]. Let Z1 and Z2 be two random
variables in Z , then a risk measure ρ is version independent if ρ(Z1) = ρ(Z2) whenever Z1 and Z2 shares
the same law, i.e., P (Z1 ≤ z) = P (Z2 ≤ z) for all z ∈ R. By Corollary 3.1 in [19], we know EVaR
is a version independent risk functional. Now, we can apply Theorem 21 in [20] to propose the EVaR
decomposition theorem.

Theorem 1. For any τ > t ≥ 0, let Ft ⊂ Fτ be two sub-σ-algebra of F . The conditional EVaR at random
confidence level α (α ∈ [0, 1] a.s.) obeys the nested decomposition

EVaRα(Z|Ft) = esssupEP [ξτ · EVaRα;ξτ (Z|Fτ )|Ft]

where the essential supremum is taken among all feasible dual random variables ξτ measurable with
respect to Fτ .
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Remark 1. In this paper, Q and P are two probability mass functions (PMFs) and P is the true transition
probability of the underlying MDP model. Since we are more interested in the EVaR decomposition between
the current state xt and the next state xt+1 under policy µ, here we choose Fτ to be Ht+1 and Ft to be
Ht. Therefore, ξτ can be represented as

ξ(xt+1) =
Q(xt+1|xt, at)
P (xt+1|xt, at)

≥ 0

for any t ≥ 0, where at is the action induced by µ at xt. Recall the uncertainty set in EVaR dual
representation,

UEVaR = {Q� P : DKL(Q ‖ P ) ≤ − lnα}.

Note that in discrete case, the KL distance is

DKL(Q ‖ P ) =
∑

xt+1∈X

Q(xt+1|xt, at) log
Q(xt+1|xt, at)
P (xt+1|xt, at)

.

Inserting Q(xt+1|xt, at) = ξ(xt+1) · P (xt+1|xt, at) to the above equation and using the fact that Q is a
PMF, then we know ξ(xt+1) should be in the set

UEVaR(α, P (·|xt, at)) =

{
ξ :

∑
xt+1∈X

ξ(xt+1)P (xt+1|xt, at) log ξ(xt+1) ≤ − lnα,

∑
xt+1∈X

ξ(xt+1)P (xt+1|xt, at) = 1

}
.

Then the decomposition in Theorem 1 can be rewritten as

EVaRα(Z|Ht, µ) = esssupEP [ξ(xt+1) · EVaRαξ(xt+1)(Z|Ht+1, µ)|Ht, µ], (6)

where the ′esssup′ is taken over ξ ∈ UEVaR(α, P (·|xt, at)).

Note that the ′esssup′ can be replaced by ′max′ since the set UEVaR is convex and compact. Theorem 1
establishes a connection between the current state and the next state for EVaR computation. Comparing
with directly computing EVaR value based on its definition, which involves the sum of infinitely many
random variables and an uncertainty set depending on the policy, it provides a recursive method to compute
EVaR that involves optimization over uncertainty set of the one-step transition kernel P (·|x, a). Due to
the difference of confidence level on both side in equation (6), following the idea in [11], we augment the
state space X with an additional continuous space Y = (0, 1], which represents the space of confidence
level. Following the idea of standard dynamic programming, we define the value function for EVaR as
follows.

Definition 2. For any x ∈ X , y ∈ Y , the value-function V (x, y) is defined as:

V (x, y) = min
µ∈ΠH

EVaRy

(
lim
T→∞

T∑
t=0

γtC(xt, at)|x0 = x, µ

)
. (7)

Equipped with Theorem 1 and Definition 2, we can define the EVaR Bellman operator.

Definition 3. The EVaR Bellman operator T : X × Y → X × Y is defined as:

T[V ](x, y) = min
a∈A

[
C(x, a) + γ max

ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

ξ(x′)V (x′, yξ(x′))P (x′|x, a)

]
. (8)

Here we introduce some useful properties of the EVaR Bellman operator.
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Lemma 1. The Bellman operator T : X × Y → X × Y has the following properties:
(1) Monotonicity: If V1 ≤ V2 component-wisely, then T[V1] ≤ T[V2].
(2) Transition invariance: For a constant c, T[V + c] = T[V ] + γc.
(3) Contraction: ‖ T[V1]−T[V2] ‖∞≤ γ ‖ V1 − V2 ‖∞, where ‖ f ‖∞= supx∈X ,y∈Y |f(x, y)|.
(4) Concavity preserving in y: For any x ∈ X , suppose yV (x, y) is concave in y ∈ Y . Then the
maximization problem in (8) is concave. Furthermore, yT[V ](x, y) is concave in y.

Proof. Please refer to Appendix A for details.

Similar with standard dynamic programming, Property 3 shows that the EVaR Bellman operator is
contraction, which is important and useful for the design of convergent value iteration algorithms based
on EVaR. Property 4 indicates that the optimization problem in our value iteration update process is
concave and therefore computationally tractable.

After defining the Bellman operator for EVaR, we need to determine the optimal condition and the
optimal policy. In the following theorem, we show that for any x ∈ X and y ∈ Y , the fixed point solution
of T[V ](x, y) = V (x, y) exists and it is unique. Moreover, the solution for the original optimization
problem (5) is equal to the fixed point solution with x0 = x and α = y.

Theorem 2. For any (x, y) ∈ X ×Y , T[V ](x, y) = V (x, y) has a unique solution V ∗(x, y). Furthermore,
this unique solution is equal to the optimal value of (5), i.e.,

V ∗(x, y) = min
µ∈ΠH

EVaRy

(
lim
T→∞

T∑
t=0

γtC(xt, at)|x0 = x, µ

)
. (9)

Proof. Please refer to Appendix B.

We now discuss how to determine the optimal policy from V ∗. Although the original optimization
problem (5) is based on history-dependent policies, we can show that the optimal condition in Theorem 2
can be obtained by following a stationary Markovian policy, which can be constructed as a greedy policy
with respect to the optimal condition V ∗. Compared to historic-dependent policies, stationary Markovian
policies are more structured, i.e., actions only depend on current states and the mappings from states to
actions are time-independent, and hence are easier for implementation.

Theorem 3. Given initial conditions x0, y0 = α and the unique fixed-point solution V ∗(x, y) for all
(x, y) ∈ X × Y , let u∗ be a stationary Markovian policy defined as:

u∗(xk, yk) = a∗k,∀k ≥ 0, (10)

and for k ≥ 1, the state transitions are

xk ∼ P
(
· |xk−1, a

∗
k−1

)
, yk = yk−1ξxk−1,yk−1,a

∗
k−1

(xk), (11)

where a∗ and ξx,y,a∗(·) are solutions of the min-max optimization problem in T[V ∗](x, y). Then u∗ is an
optimal policy for problem (5) with initial state x0 and confidence level α.

Proof. Please refer to Appendix C.

Equipped with Theorem 2 and Theorem 3, we can now design a value iteration process to solve the
EVaR optimization problem in (5).

However, Algorithm 1 is not practical enough due to the augmented continuous space Y . To address
this issue, we follow the idea of applying linear interpolation from the paper of CVaR in [11]. Moreover,
in order to ensure the computational tractability of our approach, the initial value function should satisfy
the following assumption to preserve the concavity of the EVaR Bellman operator T.
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Algorithm 1: EVaR Value Iteration
1: For any x ∈ X and y ∈ Y , arbitrarily choose V0(x, y).
2: For t = 0, 1, 2, . . . and all (x, y) ∈ X × Y , recursively applying the EVaR Bellman operator as

Vt+1(x, y) = T[Vt](x, y),

and then get the optimal value function by V ∗(x, y) = limt→∞ Vt(x, y).
3: Selecting the specific initial state x0 and confidence level α, the solution of EVaR optimization
problem can be immediately obtained as V ∗(x0, α).

4: Following Theorem 3, one can derive an optimal Markovian policy w.r.t V ∗(x, y).

Assumption 1. The initial value function V0(x, y) satisfies the following properties:
(1) yV0(x, y) is concave in y ∈ Y;
(2) V0(x, y) is continuous and bounded in y ∈ Y for any x ∈ X .

In the linear interpolation, for the confidence level, we choose a finite set from the continuous space Y .
For each x ∈ X , let N(x) be the number of interpolation points of confidence level and the corresponding
set is Y (x) = {y1, y2, . . . , yN(x)} ∈ [0, 1]N(x) with y1 = 0 and yN(x) = 1. Then the linear interpolation of
the concave function yV (x, y) can be written as

Ix[V ](y) = yiV (x, yi) +
yi+1V (x, yi+1)− yiV (x, yi)

yi+1 − yi
(y − yi)

where yi = max{y′ ∈ Y (x) : y′ ≤ y} and yi+1 is the closet point such that y ∈ [yi, yi+1].
Now we can define the interpolated Bellman operator as follows:

TI [V ](x, y) = min
a∈A

[
C(x, a) + γ max

ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V ](yξ(x′))

y
P (x′|x, a)

]
. (12)

Notice that when the confidence level y tends to 0, by L’ Hospital’s rule, one has limy→0
Ix′ [V ](yξ(x′))

y
=

V (x, 0)ξ(x), which means at y = 0 the interpolated Bellman operator TI is equivalent to the original
Bellman operator, i.e, TI[V ](x, 0) = mina∈A

[
C(x, a) + γmaxx′∈X :P (x′|x,a)>0 V (x′, 0)

]
.

Similar with the EVaR Bellman operator, we can show that the interpolated EVaR Bellman operator
has the following useful properties: (1) monotonicity; (2) transition invariance; (3) contraction; and (4)
concavity preserving in y. Property 3 helps us to construct the value iteration process with linear interpo-
lation and ensures the existence of the unique fixed-point solution. Property 4 indicates the computational
tractability of the inner maximization problem in (12). Moreover, property 4 will be used in bounding
the error of our approximate algorithm. Details of the proofs of these properties are omitted as they are
very similar to the corresponding proofs for the EVaR Bellman operator. Combining with Theorem 1 and
these properties, we can design an approximate version of Algorithm 1.

Since the EVaR bellman operator has the concavity preserving property, Theorem 7 in [11] can be used
to bound the error between EVaR value iteration and approximate EVaR value iteration. In particular,
suppose that Assumption 1 is satisfied and ε > 0 is an error tolerance parameter. For any state x ∈ X
and step t ≥ 0, choose y2 > 0 such that Vt(x, y2) − Vt(x, 0) ≥ −ε and update the interpolation points
according to: yi+1 = θyi,∀i ≥ 2 with θ ≥ 1. Then following same steps as in Theorem 7 in [11], one can
show that Algorithm 2 has the following error bound:

−γ
1− γ

O((θ − 1) + ε) ≤ V̂ ∗(x0, a)− min
µ∈ΠH

EVaRα( lim
T→∞

T∑
t=0

γtC(xt, at)|x0, µ) ≤ 0

8



Algorithm 2: EVaR Value Iteration with Linear Interpolation
1: Choose the set of interpolation points Y (x) and the initial value function V0(x, y) satisfying

Assumption 1.
2: For t = 1, 2, . . . , for each x ∈ X and each yi ∈ Y (x), update the estimate of value function by

Vt(x, yi) = TI [Vt−1](x, yi),

and then get the near-optimal value function by V̂ ∗(x, yi) = limt→∞ Vt(x, yi).
3: Selecting the specific initial state x0 and confidence level α, the solution of EVaR optimization
problem with linear interpolation can be immediately obtained as V̂ ∗(x0, α).

4: Following Theorem 3, one can derived an optimal policy w.r.t V̂ ∗(x, y).

and the following finite time convergence error bound:∣∣∣∣∣Tn
I [V0](x0, α)− min

µ∈ΠH
EVaR( lim

T→∞

T∑
t=0

γtC(xt, at)|x0, µ)

∣∣∣∣∣ ≤ O((θ − 1) + ε)

1− γ
+O(γn).

From these bounds, we know that when the number of interpolated points becomes large enough, i.e.,
θ → 1 and the tolerance parameter ε→ 0, the error tends to 0.

V. LINEAR INTERPOLATED EVAR WITH SAMPLE AVERAGE APPROXIMATION

In Section IV, we assume that the transition probability of the underlying MDP model are known,
which is often not the case in practice. Therefore, in this section, we propose a sample-based counterpart
for Algorithm 2, which also approximates the solution of the primary EVaR optimization problem in (5).
In previous sections, we only define the value function. Now, without the model information, to obtain
the policy, we need to define the state-action value function, state-action Bellman operator as well as the
state-action interpolated Bellman operator for EVaR. Notice that we use the set of interpolation points
Y (x) rather than the whole continuous space Y .

Definition 4. For any x ∈ X , y ∈ Y (x) and a ∈ A, the state-action value function for EVaR MDP is
defined as

Q∗(x, y, a) = min
µ∈ΠH

EVaRy

(
lim
T→∞

T∑
t=0

γtC(xt, at)|x0 = x, a0 = a, u

)
.

Definition 5. For any x ∈ X , y ∈ Y (x) and a ∈ A, the state-action Bellman operator F is defined as

F[Q](x, y, a) = C(x, a) + γ max
ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

ξ(x′)V (yξ(x′))P (x′|x, a),

where
V (x, y) = min

a∈A
Q(x, y, a).

Definition 6. For any x ∈ X , y ∈ Y (x), the state-action interpolated Bellman operator is defined as

FI [Q](x, y, a) = C(x, a) + γ max
ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V ](yξ(x′))

y
P (x′|x, a),

and the corresponding interpolated value iteration update:

Q(x, y, a) := C(x, a) + γ max
ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V ](yξ(x′))

y
P (x′|x, a). (13)
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Similar with the estimate of optimal value function V̂ ∗, Q̂∗(x, y, a) denotes the unique solution of
FI [Q](x, y, a) = Q(x, y, a),∀x ∈ X , y ∈ Y (x), a ∈ A. According to the similar contraction argument,
we can show the existence as well as the uniqueness of the fixed-point solution of FI. Without loss of
generality, we assume that the set of EVaR-level interpolation points Y(x) is uniform at any state x ∈ X .
We consider synchronous setting where all the state-action value functions are updated at each time step.

When the transition probability P is unknown, we utilize a sample average approximation (SAA)
approach introduced in [21] and [22] to estimate it. Let Nk denote the number of episodes and for each
(x, a) ∈ X ×A, we run Nk episodes and then get the sampled transitions {x′,1, . . . , x′,Nk} ∼ P (x′|x, a).
Based on these samples, we can calculate the empirical transition probability PNk(x

′|x, a) by

PNk(x
′|x, a) =

1

Nk

Nk∑
i=1

1{x′,i = x′|x, a}, ∀x, x′ ∈ X , a ∈ A, (14)

and replace the inner maximization problem in (13) with the following one:

max
ξ∈UEVaR(y,PNk (·|x,a))

1

Nk

Nk∑
i=1

Ix′,i [Vk](yξ(x′,i))
y

.

As shown in [24], SAA is consistent, which means the solution of maximization problem equipped
with SAA converges to the original solution as Nk → ∞. The details of the consistency can be found
in [21]. Now we can derive a sample-based EVaR algorithm as described in Algorithm 3.

Algorithm 3: Sample-based EVaR algorithm
1: Choose the set of interpolation points Y (x) and the initial state-action value function
Q0(x, y, a) = 0 for any x ∈ X , y ∈ Y (x) and a ∈ A(x).

2: Sample Nk ≥ 1 for states (x′,1, . . . , x′,Nk) and calculate the empirical transition probability
PNk(x

′|x, a) by (14). Then, at iteration k = 1, 2, . . . , for each state x and action a, update the
state-action value function as follows:

Qk+1(x, y, a) =Qk(x, y, a) + βk(x, y, a) ·
(
−Qk(x, y, a) + C(x, a)

+ γ max
ξ∈UEVaR(y,PNk (·|x,a))

1

Nk

Nk∑
i=1

Ix′,i [Vk](yξ(x′,i))
y

)
.

(15)

where the value function is Vk(x, y) = mina∈AQk(x, y, a), and the step size βk(x, y, a) satisfies∑
k

βk(x, y, a) =∞,
∑
k

β2
k(x, y, a) <∞. (16)

3: After the state-action value function converges, a near-optimal policy can be constructed as

µ̃∗(x, y) ∈ argmin
a∈A

Qk̄(x,y,a), ∀x ∈ X ,∀y ∈ Y (17)

where k̄ is the iteration index when the learning is stopped.

In Algorithm 3, we first choose the set of interpolation points Y (x) according to yi+1 = θyi,∀i ≥ 2
with θ ≥ 1 and randomly assign values to the initial state-action value function Q0(x, y, a) for any
x ∈ X , y ∈ Y and a ∈ A(x), e.g., Q0(x, y, a) = 0. Since the exact transition probability of the underlying
model is unknown, we use Monte Carlo method to sample Nk trajectories for states (x′,1, . . . , x′,Nk) and
calculate the empirical transition probability PNk(x

′|x, a) by (14). In the iteration process, we update
the state-action value function by equation (15) with step size satisfying (16) until the state-action value
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function converges. Lastly, a near-optimal policy can be constructed as a greedy policy with respect to
the near-optimal value.In the following theorem, we provide the convergence of Algorithm 3.

Theorem 4. Suppose the step size βk(x, y, a) follows the update rule in (16) and the sample size Nk →∞
as k → ∞. Then recursively applying (15) makes {Qk(x, y, a)}k∈N converges to the fixed-point solution
Q̂∗(x, y, a) component-wise with probability 1.

Proof. Please refer to Appendix D.

VI. EXPERIMENTS

In this section, we provide some numerical examples to illustrate the algorithms developed in this paper.
In the first experiment, we set the environment to be a rectangular grid world, where the state space is

consisted of positions in the map. An agent starts at a safe position (i.e., the initial state) and its goal is
to travel to a given destination. In each step, there are four available actions to take: left, right, up and
down. After taking an action, the agent will move to the corresponding neighboring state with probability
1− δ while the agent will move to any of the other three neighboring states with equal probability δ/3.
In the grid world, there are some obstacles which differ from safe positions in the following setup. The
cost of each movement between safe regions is 1 while the cost of hitting an obstacle is 40. Also, the
mission will be terminated if the agent hits obstacles. The goal here is to find a safe path with small cost.

In order to compare with the CVaR application in risk-sensitive decision making in [11], we use the same
parameters for the grid world setup. We use a 64× 53 grid world and put 80 obstacles (printed in bright
yellow), which results in a total of 3, 312 states. The start point is (60, 50) and the destination is (60, 2).
For the confidence level set, we choose the number of interpolated points be 21. In order to make the
error smaller, here we use the update rule mentioned in the bounds, i.e., yi+1 = θyi for i = 2, 3, . . . , 20.
We choose δ = 0.05 and a discount factor γ = 0.95 for an effective horizon of 200 steps [11]. For
the initialization, we apply the standard value iteration process, i.e., use the risk-neutral method. In the
EVaR value iteration, we use an optimization tool named Gurobi [25], [26]. Furthermore, considering the
cases where the transition probability is unknown, we also validate the algorithm equipped with SAA
(Algorithm 3) in the same setup. Note that the choice of Nk affects the accuracy of the approximation
of the transition probability, thus further has influence on the near-optimal value function as well as the
optimal policy. Here we choose the sample size Nk = 100, Nk = 500 and Nk = 1000 to compare the
influence.

After applying Algorithm 2 and Algorithm 3 (with three different value of Nk), we plot the near-optimal
value function and the corresponding optimal path at α = 0.01, α = 0.11 and α = 1.00 in Figures 1, 2
and 3 respectively, to compare the agent’s preference about risk. In the figures, we use bright yellow color
to mark the positions of the obstacles, and use color bar to represent the value functions for different states.
More specifically, as shown in the color bar, the bluer the color, the smaller the value function. From the
figures, we can see that the closer the states are to the obstacles, the higher the cost are. Comparing the
results generated by applying Algorithm 2 in Figures 1, 2 and 3, we can find that, with confidence level
α increasing, the difference between the value function of safe states is getting smaller, i.e, the states
near obstacles are becoming less risky, which leads to the case that the agent’s strategy becomes more
aggressive, i.e., the optimal path tends to be shorter and closer to the obstacles. For this part, we also
reproduce the CVaR algorithm in [11] and the results are almost same with ours, which indicates that our
approach is also practical in solving risk-sensitive RL. As for the results generated by Algorithm 3, when
Nk = 100, the value function and the path are not near-optimal since the estimated transition probability
is not accurate enough. But for Nk = 500 and Nk = 1000, the overall tendency is almost the same as the
one in Algorithm 2 despite some minor difference that can be further alleviated by choosing larger Nk.

In the second experiment, we apply both Algorithm 2 and Algorithm 3 in cliffwalk’s setup. In this
setting, we choose the map to be 14 × 16 and put 23 cliffs, which leads to a total of 201 states. The
difference between cliff and obstacle in the first example is that hitting cliff will send the agent back to
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Fig. 1. The value function and corresponding optimal path for α = 0.01 generated by Algorithm 2 and Algorithm 3 (with different values
of Nk) in the obstacle’s setting.

the start point while hitting an obstacle in the first example ends the mission. Similar to the first example,
we use bright yellow color to mark the positions of the cliffs, and use color bar to represent the value
functions for different states. As shown in Figures 4, 5, 6, we know that for both algorithms, with the
confidence level increasing, the agent becomes more and more aggressive and the optimal path becomes
shorter and closer to the cliffs. This tendency is exactly the same as the one we get in the first experiment.
Moreover, for the results generated by Algorithm 3, when Nk = 100, all these optimal policies generated
by Algorithm 3 are quite different with these in Algorithm 2. For Nk = 500 and Nk = 1000, the optimal
path is same when α = 0.11 and α = 1.00 while the optimal path is a little different when α = 0.01.

VII. CONCLUSION

In this paper, we have applied EVaR to risk-sensitive reinforcement learning. We have proposed an
EVaR value iteration algorithm based on Markov decision process and a more practical approximate
version. Moreover, we have showed the convergence for these value iteration algorithms and bounded
the approximation error. Furthermore, for the cases where the transition kernel of the underlying MDP is
unknown, we have presented a sample-based EVaR synchronous Q-value update algorithm along with its
convergence analysis. We have validated our approaches in simulation experiments.
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Fig. 2. The value function and corresponding optimal path for α = 0.11 generated by Algorithm 2 and Algorithm 3 (with different values
of Nk) in the obstacle’s setting.

In terms of future work, it is important to analyze the the sample complexity, i.e., to analyze the scaling
of the sample size Nk as the number of states and actions, and approximation error tolerance level etc.
Furthermore, the algorithms developed in this paper are all offline algorithms, it is important to develop
online algorithms for EVaR optimization. Finally, as the algorithms in the paper are value function based
algorithms, it is interesting to develop policy gradient type algorithms.
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APPENDIX A
PROOF OF LEMMA 1

Note that
∑

x′∈X ξ(x
′)P (x′|x, a) = 1 holds for any ξ ∈ UEVaR(y, P (·|x, a)) and ξ(x′)P (x′|x, a) is non-

negative, then the monotonicity and constant shift properties can be directly obtained from the definition of
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Fig. 5. The value function and corresponding optimal path for α = 0.11 generated by Algorithm 2 and Algorithm 3 (with different values
of Nk) in the cliff’s setting.

EVaR Bellman operator. For the contraction property, by the definition of sup norm, for any x ∈ X , y ∈ Y ,
we have

−||V1 − V2||∞ ≤ V1(x, y)− V2(x, y) ≤ ||V1 − V2||∞.

Using the monotonicity and constant shift property, we obtain

−γ||V1 − V2||∞ ≤ T[V1](x, y)−T[V2](x, y) ≤ γ||V1 − V2||∞.

This further implies that
|T[V1](x, y)−T[V2](x, y)| ≤ γ||V1 − V2||∞

and the contraction property holds.
It remains to prove the concavity preserving property. Assume that yV (x, y) is concave in y ∈ Y . Let
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Fig. 6. The value function and corresponding optimal path for α = 1.00 generated by Algorithm 2 and Algorithm 3 (with different values
of Nk) in the cliff’s setting.

y1, y2 ∈ Y and λ ∈ [0, 1] and define yλ = (1− λ)y1 + λy2. Then,

(1− λ)y1T[V ](x, y1) + λy2T[V ](x, y2)

= (1− λ)y1 min
a1∈A

[
C(x, a1) + γ max

ξ1∈UEVaR(y1,P (·|x,a1))

∑
x′∈X

ξ1(x′)V (x′, y1ξ(x
′))P (x′|x, a1)

]
+ λy2 min

a2∈A

[
C(x, a2) + γ max

ξ2∈UEVaR(y2,P (·|x,a2))

∑
x′∈X

ξ2(x′)V (x′, y2ξ(x
′))P (x′|x, a2)

]
(1)

≤ min
a∈A

[
yλC(x, a) + γ max

ξ1∈UEVaR(y1,P (·|x,a))
ξ2∈UEVaR(y2,P (·|x,a))

∑
x′∈X

P (x′|x, a)
(
(1− λ)y1ξ1(x′)V (x′, y1ξ1(x′))

+ λy2ξ2(x′)V (x′, y2ξ2(x′))
)]

(2)

≤ min
a∈A

[
yλC(x, a) + γ max

ξ1∈UEVaR(y1,P (·|x,a))
ξ2∈UEVaR(y2,P (·|x,a))

∑
x′∈X

P (x′|x, a)
(
(1− λ)y1ξ1(x′) + λy2ξ2(x′))

V (x, (1− λ)y1ξ1(x′) + λy2ξ2(x′)
)]
.

(18)
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The inequality (1) is by the concavity of min and (2) is by the assumption of concavity of yV (x, y). Now
define

ξ =
(1− λ)y1ξ1 + λy2ξ2

yλ
=

(1− λ)y1ξ1 + λy2ξ2

(1− λ)y1 + λy2

.

To prove the the concavity preserving property, it remains to show that ξ ∈ UEVaR(yλ, P (·|x, a)). Note that
ξ1 ∈ UEVaR(y1, P (·|x, a)) and ξ2 ∈ UEVaR(y2, P (·|x, a)), we obtain∑

x′∈X ξ(x
′)P (x′|x, a) =

∑
x′∈X

(1−λ)y1ξ1+λy2ξ2
(1−λ)y1+λy2

P (x′|x, a) = 1.

It remains to show that ∑
x′∈X

ξ(x′)P (x′|x, a) log ξ(x′) ≤ − ln yλ.

Recall that ξ is the ratio of two PMFs, then we have

Q = ξP =
(1− λ)y1Q1 + λy2Q2

(1− λ)y1 + λy2

,

where Q1 = ξ1P and Q2 = ξ2P .
Then it is equivalent to show

DKL(Q ‖ P ) ≤ − ln yλ.

Since KL divergence is convex when P is fixed, we have

DKL(Q ‖ P ) = DKL

(
(1− λ)y1Q1 + λy2Q2

(1− λ)y1 + λy2

‖ P
)

= DKL

(
(1− λ)y1

(1− λ)y1 + λy2

Q1 +
λy2

(1− λ)y1 + λy2

Q2 ‖ P
)

≤ (1− λ)

(1− λ)y1 + λy2

y1DKL(Q1 ‖ P ) +
λ

(1− λ)y1 + λy2

y2DKL(Q2 ‖ P ).

Since DKL(Q1 ‖ P ) ≤ − ln y1 and DKL(Q2 ‖ P ) ≤ − ln y2, we obtain(
(1− λ)y1 + λy2

)
DKL(Q ‖ P ) ≤ −

(
(1− λ)y1 ln y1 + λy2 ln y2

)
.

We will also use the fact that y ln y is convex, i.e,(
(1− λ)y1 ln y1 + λy2 ln y2

)
≥
(
(1− λ)y1 + λy2

)
ln((1− λ)y1 + λy2).

Combining these two inequalities, we can get(
(1− λ)y1 + λy2

)
DKL(Q ‖ P ) ≤ −

(
(1− λ)y1 + λy2

)
ln((1− λ)y1 + λy2),

i.e,
DKL(Q ‖ P ) ≤ − ln((1− λ)y1 + λy2) = − ln yλ.

Thus, we have shown that ξ also belongs to UEVaR(yλ, P (·|x, a)). Then, combining this fact with (18), we
obtain

(1− λ)y1T[V ](x, y1) + λy2T[V ](x, y2)

≤ min
a∈A

[
yλC(x, a) + γ max

ξ∈UEVaR(yλ,P (·|x,a))

∑
x′∈X

P (x′|x, a)yλξ(x
′)V (x, yλξ(x

′))
]

= yλT[V ](x, yλ).

We have shown that yT[V ](x, y) is concave in y under the assumption that yV (x, y) is concave. Finally,
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to show that the inner maximization problem in (8) is concave, we need to show the following function:

Gx,y,a(z) :=

{
zV (x′, z)P (x′|x, a)/y if y 6= 0

0 otherwise

is concave in z ∈ R for any given x ∈ X , y ∈ Y and a ∈ A. Suppose zV (x, z) is a concave function in
z, then for y = 0, the function is concave in z. For y ∈ Y\{0}, since P (x′|x, a) ≥ 0, we also have that
Gx,y,a(z) is concave in z. This further implies∑

x′∈X

ξ(x′)V (x′, yξ(x′))P (x′|x, a) =
∑
x′∈X

Gx,y,a(yξ(x
′))

is concave in ξ. Combining this result with the fact that the envelope set of ξ is a polytope, we can prove
the Property 4.

APPENDIX B
PROOF OF THEOREM 2

The proof of Theorem 2 follows the idea in the proof of Theorem 4 in [11].
Let C0,T =

∑T
t=0 γ

tC(xt, at) denotes the total discounted cost from time 0 up to time T . For any
(x, y) ∈ X × Y , V0(x, y) is the bounded arbitrarily selected initial value. We divide the proof into three
parts and the first part is to show that for any (x, y) ∈ X × Y ,

Vn(x, y) := Tn[V0](x, y)

= min
µ∈ΠM

EVaRy

(
C0,n + γnV0(xn, yn)|x0 = x, µ

)
, (19)

where x0 = x, y0 = y and at = µ(xt, yt).
By induction hypothesis, firstly we need to verify (19) holds when n = 1. For n = 1, let (x1, y1)

denotes (x′, yξ(x′)), from definition we have

V1(x, y) = T[V0](x, y) = min
µ∈ΠM

[
C(x0, a0) + γEV aRy(C(x1, a1) + V0(x1, y1)|x0 = x, µ)

]
Note that when n = 1, a1 only depends on x1 and y1, therefore, µ is a Markovian policy, i.e., µ ∈ ΠM .
Hence, we obtain V1(x, y) = minµ∈ΠM EVaRy

(
C0,1 + γV0(x1, y1)|x0 = x, µ

)
.

Next, we assume that (19) holds at n = k.
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Then for n = k + 1,

Vk+1(x, y) := Tk+1[V0](x, y) = T[Vk](x, y)

(1)
= min

a∈A

[
C(x, a) + γ max

ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

ξ(x′)Vk(x
′, yξ(x′))P (x′|x, a)

]
(2)
= min

a∈A

[
C(x, a) + γ max

ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

ξ(x′)P (x′|x, a) min
µ∈ΠM

EVaRyξ(x′)(C0,k + γkV0|x0 = x′, µ)

]
(3)
= min

a∈A
[C(x, a) + γ max

ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

ξ(x′)P (x′|x, a) min
µ∈ΠM

EVaRy1(C0,k + γkV0|x0 = x1, µ)]

= min
a∈A

[
C(x, a) + max

ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

ξ(x′)P (x′|x, a) min
µ∈ΠM

EVaRy1(γC0,k + γk+1V0|x0 = x1, µ)

]
(4)
= min

a∈A

[
C(x, a) + max

ξ∈UEVaR(y,P (·|x,a))
EξP

[
min
µ∈ΠM

EVaRy1(C1,k+1 + γk+1V0|x1, µ)
]]

(5)
= min

a∈A

[
min
µ∈ΠM

EVaRy(C0,k+1 + γk+1V0|x0 = x, µ)
]

= min
µ∈ΠM

EVaRy(C0,k+1 + γk+1V0|x0 = x, µ),

(20)

where x0 = x and y0 = y. The equality (1) is by the definition of T, (2) is by plugging in the induction
that (19) holds at n = k, (3) is by denoting (x′, yξ(x′)) = (x1, y1), (4) is by the definition of C0,k, i.e,

γC0,k|x0 = x1, µ

= γC(x1, a1) + γ2C(x2, a2) + · · ·+ γk+1C(xk+1, ak+1)

=
k+1∑
t=1

γtC(xt, at)

= C1,k+1,

and (5) is by the EVaR decomposition theorem. Thus, (20) is proved by induction.
The second part of the proof is to show that

V ∗(x0, y0) = min
µ∈ΠM

EVaRy0

(
lim
n→∞

C0,n|x0, µ
)
. (21)

Recall the contraction property of T and the boundedness of V0, for any (x, y) ∈ X ×Y , we can get the
result that

V ∗(x, y) = T[V ∗](x, y)

= lim
n→∞

Tn[V0](x, y) = lim
n→∞

Vn(x, y).

The first equality is by the definition of V ∗. The second equality can be obtained by Proposition 2.2 in [2].
The third equation is derived from the definition of Vn. Combining the above results, we have

V ∗(x0, y0) = lim
n→∞

Vn(x0, y0)

= min
µ∈ΠM

EVaRy0

(
lim
n→∞

(C0,n + γnV0(xn, yn))|x0, µ
)
.

The second equality is due to the boundedness of both state-wise cost and V0. Recall the subadditivity
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property of EVaR, we obtain

V ∗(x0, y0) ≤ min
µ∈ΠM

[
EVaRy0( lim

n→∞
C0,n|x0, µ) + lim

n→∞
γn ‖ V0 ‖∞

]
≤ min

µ∈ΠM
EVaRy0( lim

n→∞
C0,n|x0, µ) + lim

n→∞
γn ‖ V0 ‖∞

≤ min
µ∈ΠM

EVaRy0( lim
n→∞

C0,n|x0, µ) +
∣∣ lim
n→∞

γn ‖ V0 ‖∞
∣∣

which implies

− lim
n→∞

γn ‖ V0 ‖∞≤ V ∗(x0, y0)− min
µ∈ΠM

EVaRy0

(
lim
n→∞

C0,n|x0, µ
)
≤ lim

n→∞
γn ‖ V0 ‖∞ .

Since γ ∈ (0, 1], the term limn→∞ γ
n ‖ V0 ‖∞→ 0 when n→∞ . Thus, we obtain that

V ∗(x0, y0) = min
µ∈ΠM

EVaRy0

(
lim
n→∞

C0,n|x0, µ
)

holds for any (x0, y0) ∈ X × Y .
So far, we have established the optimal value over Markovian policies, the third part is to get the

optimal value over all historic-dependent policies, i.e., for the initial conditions (x0, y0), we have that

V ∗(x0, y0) = min
µ∈ΠH

EVaRy0( lim
n→∞

C0,n|x0, µ).

For each (xt, yt) ∈ X × Y , we first define the tth tail-subproblem as follow:

V(xt, yt) = min
µ∈ΠH

EVaRyt( lim
n→∞

Ct,n|xt, µ)

where the tail policy sequence is equal to µ = {µt, µt+1, . . . } and the action is given by aj = µj(hj) for
j ≥ t.

For any history depend policy µ̃ ∈ ΠH , we also define the µ̃-induced value function as EVaRyt(limn→∞ Ct,n|xt, µ̃)
where µ̃ = {µ̃t, µ̃t+1, . . . } and aj = µ̃j(hj) for j ≥ t.

Let µ∗ denote the optimal policy of the tth-subproblem mentioned above, then the policy µ̃ = {µ∗t+1, µ
∗
t+2, . . . }

is a feasible policy for the (t+ 1)th-subproblem for any state xt+1 and confidence level yt+1:

min
µ∈ΠH

EVaRyt+1( lim
n→∞

Ct+1,n|xt+1, µ).

Combining all the above results, for any (xt, yt) ∈ X × Y with at = µ∗t (xt), we can write

V(xt, yt) = min
π∈ΠH

EVaRyt( lim
n→∞

Ct,n|xt, µ)

= EVaRyt( lim
n→∞

Ct,n|xt, µ∗)

= C(xt, at) + γEVaRyt( lim
n→∞

Ct+1,n|xt+1, µ̃)

(1)
= C(xt, at) + γ max

ξ∈UEVaR(yt,P (·|xt,at))
E
[
ξ(xt+1) · EVaRyt+1( lim

n→∞
Ct+1,n|xt+1, µ̃)

]
(2)
= C(xt, at) + γ max

ξ∈UEVaR(yt,P (·|xt,at))
Eξ
[
Vµ̃(xt+1, ytξ(xt + 1))|xt, yt, at

]
(3)

≥ C(xt, at) + γ max
ξ∈UEVaR(yt,P (·|xt,at))

Eξ
[
V(xt+1, ytξ(xt + 1))|xt, yt, at

]
(4)

≥ T[V](xt, yt)

where (1) is by the decomposition theorem, (2) is by defining Vµ̃(xt, yt) = EVaRyt(limn→∞ Ct,n|xt, µ̃),
(3) is by Vµ̃(x, y) ≥ V(x, y) for any (x, y) ∈ X × Y and (4) is by the definition of T.

On the other hand, for any state xt+1 and confidence level yt+1, let µ∗ = {µ∗t+1, µ
∗
t+2, . . . } ∈ ΠH be

21



an optimal policy for the (t + 1)th tail subproblem. Given (xt, yt) ∈ X × Y , we can construct policy
µ̃ = {µ̃t, µ̃t+1, . . . } ∈ ΠH for the tth subproblem from µ∗ by µ̃t(xt) = u∗(xt, yt) and µ̃j(hj) = µ∗j(hj),
where

u∗(xt, yt) ∈ arg min
a∈A

[
C(xt, a) + γ max

ξ∈UEVaR(yt,P (·|xt,a))
Eξ[V(xt+1, ytξxt+1)|xt, yt, a]

]
,

with yt is the given confidence level to the tth tail-subproblem and the transition from yt to yt+1 is given
by yt+1 = ytξ

∗(xt+1) where

ξ∗ ∈ arg max
ξ∈UEVaR(yt,P (·|xt,a∗))

E
[
ξ(xt+1)EVaRytξ(xt+1)( lim

n→∞
Ct+1,n|xt+1,n, µ̃)

]
.

Notice that µ∗ is an optimal and hence is a feasible policy for the tail subproblem from time t+1. Then the
policy µ̃ ∈ ΠH is a feasible policy for the tail subproblem from time t: minµ∈ΠH EVaRyt(limn→∞ Ct+1,n|xt, µ).
Hence,

V(xt, yt) ≤ C(xt, µ̃t(xt)) + γEVaRyt( lim
n→∞

Ct+1,n|xt, µ̃).

Recall the definition of µ∗, we can immediately get

V(xt, yt)

≤ C(xt, u
∗(xt, yt)) + γ max

ξ∈UEVaR(yt,P (·|xt,u∗(xt,yt)))
E
[
ξ(xt+1) · EVaRytξ(xt+1)( lim

n→∞
Ct+1,n|xt+1, µ̃)|xt, yt, u∗(xt, yt)

]
≤ C(xt, u

∗(xt, yt)) + γ max
ξ∈UEVaR(yt,P (·|xt,u∗(xt,yt)))

Eξ
[
V(xt+1, ytξ(xt+1))|xt, yt, u∗(xt, yt)

]
= T[V](xt, yt).

Combining the result V(xt, yt) ≥ T[V](xt, yt) and V(xt, yt) ≤ T[V](xt, yt), we show that V is a fixed-
point solution of V(xt, yt) = T[V](xt, yt) for any (x, y) ∈ X ×Y . Since the fixed-point solution is unique,
we can obtain V ∗(x, y) = V(x, y) for any (x, y) ∈ X × Y . Therefore, we have

V ∗(x, y) = V(x, y) = min
π∈ΠH

EVaRy( lim
n→∞

C0,n|x0 = x, µ).

Equipped with the results from the above three parts, this claim is proved.

APPENDIX C
PROOF OF THEOREM 3

The proof of Theorem 3 follow the similar idea with the proof of Theorem 5 in [11].
Firstly, for any u ∈ ΠM,S , we define the policy induced Bellman operator Tu as follows:

Tu[V ](x, y) = C(x, u(x, y)) + γ max
ξ∈UEVaR(y,P (·|x,u(x,y)))

∑
x′∈X

ξ(x′)V (x′, yξ(x′))P (x′|x, u(x, y)).

Following the arguments in the proof of Theorem 2, we can show that the unique fixed-point solution
to Tu[V ](x, y) = V (x, y) exists. Therefore, we need to show that the stationary Markovian policy u∗ is
optimal if and only if for any (x, y) in X × Y

T[V ∗](x, y) = Tu∗ [V
∗](x, y), (22)

where V ∗(x, y) is the unique fixed-point solution of T[V ](x, y) = V (x, y).
The first step is to show that, if u∗ ∈ ΠM,S is optimal, equation (22) holds. From Theorem 2, we know

that
V ∗(x, y) = min

µ∈ΠH
EVaRy

(
lim
T→∞

C0,T |x0 = x, µ
)
.
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Let Vu∗ be the fixed-point solution to Tu∗ [V ](x, y) = V (x, y) for any (x, y) and combine the definition
of u∗ as described in Theorem 3, we can obtain V ∗(x, y) = Vu∗(x, y). Then, we have

T[V ∗](x, y) = V ∗(x, y) = Vu∗(x, y) = Tu∗ [Vu∗ ](x, y).

The second step is to assume that equation (22) holds, we need to show u∗ ∈ ΠM,S is optimal. Recall
that T[V ∗](x, y) = V ∗(x, y) holds for any (x, y), we obtain V ∗(x, y) = Tu∗(x, y). Due to the uniqueness
of fixed-point solution and the result from Theorem 2, we have

T[V ∗](x, y) = V ∗(x, y) = Vu∗(x, y) = min
µ∈ΠH

EVaRy( lim
T→∞

C0,T |x0 = x, µ).

APPENDIX D
PROOF OF THEOREM 5

The proof of Theorem 4 follows the idea of the proof of Theorem 7 in [11].
We can rewrite the (15) as

Qk+1(x, y, a) = (1− ζk(x, y, a))Qk(x, y, a) + ζk(x, y, a)·(
γ max
ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [Vk](yξ(x′))
y

P (x′|x, a) + γMk(x, y, a) + C(x, a)

)
,

where the noise term is given by

Mk(x, y, a) = max
ξ∈UEVaR(y,PNk (·|x,a))

1

Nk

Nk∑
i=1

Ix′,i [Vk](yξ(x′,i))
y

− max
ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [Vk](yξ(x′))
y

P (x′|x, a)

for which Mk(x, y, a)→ 0 almost surely as Nk →∞ (consistency property of SAA shown in Chapter 5
of [21]) and for any k ∈ N, let

T1 = C(x, a) + max
ξ∈UEVaR(y,PNk (·|x,a))

1

Nk

Nk∑
i=1

Ix′,i [Vk](yξ(x′,i))
y

,

T2 = C(x, a) + max
ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [Vk](yξ(x′))
y

P (x′|x, a).

We can rewrite the noise term as
Mk(x, y, a) = T1 − T2

≤ |T1 − T2|.
Then

M2
k (x, y, a) ≤ |T1 − T2|2

≤ |T1|2 + |T2|2

≤ 2 max
x,y,a

Q2
k(x, y, a).

Then the assumptions in Proposition 4.5 in [2] on the noise term Mk(x, y, a) are verified.
Now, we need to show that the operator FI is contraction. Firstly, we prove the monotonicity property.

Based on the definition of Ix[V ](y), if V1(x, y) ≥ V2(x, y),∀x ∈ X , y ∈ Y , we have that for y ∈ Ii+1(x)

Ix[V1](y) =
yi+1V1(x, yi+1)(y − yi) + yiV1(x, yi)(yi+1 − y)

yi+1 − yi
.

Since yi, yi+1 ∈ Y and (yi+1 − y), (y − yi) ≥ 0, we can easily see that Ix[V1](y) ≥ Ix[V2](y). As y ∈ Y
and ξ(·)P (·|x, a) ≥ 0 for any ξ ∈ UEVaR(y, P (·|x, a)), this further implies FI [V1](x, y) ≥ FI [V2](x, y).
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Next we prove the constant shift property. From the definition of Ix[V ](y) that for a constant K, we
have that

Ix[V +K](y) = yi(V (x, yi) +K) +
yi+1(V (x, yi+1) +K)− yi(V (x, yi) +K)

yi+1 − yi
(y − yi)

= yK + yiV (x, yi) +
yi+1V (x, yi+1)− yiV (x, yi)

yi+1 − yi
(y − yi)

= yK + Ix[V ](y).

Therefore, by definition of FI [V ](x, y), the constant shift property:

TI [V +K](x, y) = TI [V ](x, y) + γK,∀x ∈ X , y ∈ Y

follows directly from the above arguments. Based on these two properties, we can prove the contraction
of FI directly follow steps in Lemma 1, which means, for any two state-action value function Q1(x, y, a)
and Q2(x, y, a) such that V1(x, y) = mina∈AQ1(x, y, a) and V2(x, y) = mina∈AQ2(x, y, a), we have that
||FI [Q1]− FI [Q2]|| ≤ γ||Q1 −Q2||∞.

By combining these arguments, all assumptions in Proposition 4.5 in [2] are justified. This in turns
implies the convergence of {Qk(x, y, a)}k∈N to Q∗(x, y, a) component-wise, where Q∗ is the unique fixed-
point solution of FI [Q](x, y, a) = Q(x, y, a).
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