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Abstract—In this paper, we take a first step towards answering
the question of how to design fair machine learning algorithms
that are robust to adversarial attacks. Using a minimax frame-
work, we aim to design an adversarially robust fair regression
model that achieves optimal performance in the presence of an
attacker who is able to add a carefully designed adversarial
data point to the dataset or perform a rank-one attack on
the dataset. By solving the proposed nonsmooth nonconvex-
nonconcave minimax problem, the optimal adversary as well as
the robust fairness-aware regression model are obtained. For
both synthetic data and real-world datasets, numerical results
illustrate that the proposed adversarially robust fair models have
better performance on poisoned datasets than other fair machine
learning models in both prediction accuracy and group-based
fairness measure.

I. INTRODUCTION

Machine learning models have been used in various do-
mains, including several security and safety critical applica-
tions, such as banking, education, healthcare, law enforcement
etc. However, it has been shown that machine learning algo-
rithms can mirror or even amplify biases against population
subgroups [2], [3], for example, based on race or sex. With di-
rect social and economic impact on individuals, it is imperative
to build ML models ethically and responsibly to avoid these
biases. To this end various algorithms have been developed to
find fair machine models (FML) that satisfy different fairness
measures [4]–[10].

In the meantime, a large body of work has shown that
machine learning models are vulnerable to various types of
attacks [11]–[14]. Thus, a major and natural concern for fair
machine learning algorithms is their robustness in adversarial
environments. Recent works show that well-designed adversar-
ial samples can significantly reduce the test accuracy as well
as exacerbating the fairness gap of ML models [15]–[18].

In light of the vulnerabilities of existing fair machine
learning algorithms, there is a pressing need to design fairness-
aware learning algorithms that are robust to adversarial attacks.
As the first step towards this goal, we focus on regression
problems and design a fair regression model that is robust to
adversarial attacks. In particular, we consider two increasingly
complex attack models. We first consider a scenario where
the adversary is able to add one carefully designed adversarial
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data point to the dataset. We then consider a more powerful
adversary who can directly modify the existing data points
in the feature matrix. Particularly, we consider a rank-one
modification attack, where the attacker carefully designs a
rank-one matrix and adds it to the existing data matrix.

To design the robust fairness-aware model, we formulate a
game between a defender aiming to minimize the accuracy loss
and bias, and an attacker aiming to maximize these objectives.
To characterize both the prediction and fairness performance of
a model, the objective function is selected to be a combination
of prediction accuracy loss and group fairness gap. Since the
goals of the adversary and the fairness-aware defender are
opposite, a minimax framework is introduced to characterize
the considered problem. By solving the minimax problem, the
optimal adversary as well as the robust fair regression model
can be derived.

To solve the problem, one major challenge is that the pro-
posed minimax problem is nonsmooth nonconvex-nonconcave,
which may not have a local saddle point in general [19].
Although there exist many iterative methods for finding
stationary points or local optima of nonconvex-concave or
nonconvex-nonconcave minimax problems [20]–[26], there
are usually specific assumptions that are not satisfied in our
proposed realistic problems. To solve the complicated mini-
max problems in hand, we carefully examine the underlying
structure of the inner maximization problem and the outer
minimization problem, and then exploit the identified structure
to design efficient algorithms.

For the scenario where the adversary adds a poisoned data
point into the dataset, when solving the inner maximization
problem, we deal with the non-smooth nature of the objective
function and obtain a structure that characterizes the best
adversary, which is a function of the regression coefficient β of
the defense model. We then analyze the minimization problem
by transforming it to four sub-problems where each sub-
problem is a non-convex quadratic minimization problem with
multiple quadratic constraints, which is usually NP hard [27],
[28], and finding a global minimizer is very challenging. By
exploring the underlying properties of a specific sub-problem,
we investigate 8 different cases, and obtain a global minimizer
to such sub-problem. Then the minimum point of the proposed
four sub-problems, β∗rob, corresponds to the optimal robust
fairness-aware model, and the best adversarial data sample is
obtained by fitting β∗rob to the derived optimal attack strategy.
On both synthetic data and real-world datasets, numerical
results illustrate that the proposed robust fairness-aware re-
gression model has better performance than the unrobust fair



model as well as the ordinary linear regression model in both
prediction accuracy and group-based fairness.

For the rank-one attack scheme, we transform the max-
imization problem into a form with five arguments, four
of which can be solved exactly. With this transformation,
the original nonconvex-nonconcave minimax problem for two
vectors can be converted into several weakly-convex-weakly-
concave minimax problems for one vector and one scalar,
which can be approximately solved using existing algorithms
such as [29]. With the proposed algorithm, the optimal attack
scheme of the adversary and the adversarially robust fairness-
aware model can be obtained simultaneously. On two real-
world datasets, numerical results illustrate that the perfor-
mance of the adversarially robust model relies on the trade-off
parameter between prediction accuracy and fairness guarantee.
By properly choosing such parameter, the robust model can
achieve desirable performance in both prediction accuracy
and group-based fairness. On the other hand, for other fair
regression models, at least one performance metric will be
severely affected by the rank-one attack.

This journal paper is an extension of conference paper [1].
In addition to the rank-one attack considered in [1], in this
journal paper, we also explore another attack scheme where
additional data samples can be added to the existing dataset.
We carefully design the feature vector, outcome variable, and
group membership index of the poisoned sample to explore
the impact of such attack and derive the robust fairness-
aware model. In addition, we conduct more comprehensive
numerical simulations and provide detailed theoretical analysis
and proofs.

The remainder of the paper is organized as follows. In
Section II, we summarize the related work of this paper. In
Section III, we investigate the case when the adversary is
allowed to add a poisoned data point into the dataset. In
Section IV, we consider a more powerful adversary who is able
to perform a rank-one attack on the dataset. In Section V, we
present numerical results. Finally, we offer concluding remarks
in Section VI.

II. RELATED WORK

Adversarial attacks on FML. There are many research works
exploring the design of adversarial examples to reduce the
testing accuracy and fairness of FML models. For example,
[15] develops a gradient-based poisoning attack, [16] presents
anchoring attack and influence attack, [17] provides three on-
line attacks based on different group-based fairness measures,
and [18] shows that adversarial attacks can worsen the model’s
fairness gap on test data while satisfying the fairness constraint
on training data.
Adversarial robustness. A large variety of methods have been
proposed to improve the model robustness against adversarial
attacks [30]–[33]. Although promising to improve the model’s
robustness, those adversarial training algorithms have been ob-
served to result in a large disparity of accuracy and robustness
among different classes while natural training does not present
a similar issue [34].

Intersection of fairness and robustness. Fairness and ro-
bustness are critical elements of trustworthy AI that need to
be addressed together [35]. Firstly, in the field of adversarial
training, several research works are proposed to interpret the
accuracy/robustness disparity phenomenon and to mitigate
the fairness issue [35]–[37]. For example, [36] presents an
adversarially-trained neural network that is closer to achieve
some fairness measures than the standard model on the
Correctional Offender Management Profiling for Alternative
Sanctions (COMPAS) dataset. Secondly, a class-wise loss re-
weighting method is shown to obtain more fair standard and
robust classifiers [38]. Moreover, [39] and [40] argue that
traditional notions of fairness are not sufficient when the model
is vulnerable to adversarial attacks, investigate the class-wise
robustness and propose methods to improve the robustness of
the most vulnerable class, so as to obtain a fairer robust model.

III. ATTACK WITH ONE ADVERSARIAL DATA POINT

In this section, we consider the scenario where the attacker
can add one carefully designed adversarial data point to the
existing dataset.

A. Problem formulation

Using a set of training samples {xi, yi, Gi}ni=1 :=
{X,y,G}, where xi ∈ Rp is the feature vector, yi is the
response variable and Gi indicates the group membership or
sensitive status (for example, race, gender), we aim to develop
a model that can predict the value of a target variable Y from
the input variables X . In this paper, we consider the case
when there are only two groups, i.e., Gi ∈ {1, 2} and assume
that the first m training samples are from group 1 and the
remaining samples are from group 2. For simplification, we
denote X = [X1;X2],y = [y1;y2].

To build a robust model, we assume that there is an
adversary who can observe the whole training dataset and
then carefully design an adversarial data point, {x0, y0, G0},
and add it into the existing dataset. After inserting this
poisoned data point, we have the poisoned dataset {X̂, ŷ, Ĝ},
where X̂ = [x0,x1, · · · ,xn]T , ŷ = [y0, y1, · · · , yn]T , Ĝ =
[G0, G1, · · · , Gn]T . From this poisoned dataset, we aim to
design a robust fairness-aware regression model.

In order to characterize both prediction and fairness perfor-
mance, we consider the following objective function

L = f(β, X̂, ŷ, Ĝ) + λF (β, X̂, ŷ, Ĝ), (1)

where β is the regression coefficient, f(β, X̂, ŷ, Ĝ) corre-
sponds to the prediction accuracy loss, F (β, X̂, ŷ, Ĝ) cor-
responds to the group fairness gap and λ is the trade-off
parameter. The goal of the adversary is to maximize (1)
to make the model less fair and less accurate, while the
robust fairness-aware regression model aims at minimizing
(1). To make the problem meaningful, we introduce an energy



constraint on the adversarial data point and use `2 norm to
measure the energy. Thus, we have the minimax problem

min
β

max
(x0,y0,G0),

s.t. ‖[xT0 ,y0]‖2≤η

L = f(β, X̂, ŷ, Ĝ) + λF (β, X̂, ŷ, Ĝ).

(2)

To measure the prediction accuracy, we consider the mean-
squared error (MSE),

f(β, X̂, ŷ, Ĝ) = E[(Y − Ŷ )2],

where Ŷ is the prediction result. For the group fairness gap,
we consider a measure that is closely related to the accuracy
parity criterion [10],

E[(Y − Ŷ )2|G = 1] = E[(Y − Ŷ )2|G = 2].

Then the absolute difference between two groups can be used
to measure the severity of violations [41] and we have

F (β, X̂, ŷ, Ĝ) = |E[(Y − Ŷ )2|G = 1]−E[(Y − Ŷ )2|G = 2]|.

B. Proposed method

To solve the minimax problem in (2), we will first solve
the inner maximization problem with respect to the adversary
to design the optimal adversarial data point {x0, y0, G0}
under the energy constraint. Then we will solve the outer
minimization problem to find a robust fairness-aware model
that can optimize both prediction accuracy and the group
fairness guarantee.
Maximization Problem
In the following, we want to find the optimal {x0, y0, G0}
for any given β. We first note that there are two choices of
G0, and the form of the objective function L under different
choices of G0 is different. For G0 = 1, the objective function
L can be written as

L1 =
1

n+ 1

(
‖y0 − xT0 β‖22 + ‖y1 −X1β‖22

+‖y2 −X2β‖22
)

+ λ

∣∣∣∣ 1

m+ 1
‖y0 − xT0 β‖22

+
1

m+ 1
‖y1 −X1β‖22 −

1

n−m
‖y2 −X2β‖22

∣∣∣∣ .
For G0 = 2, the objective function L can be written as

L2 =
1

n+ 1

(
‖y0 − xT0 β‖22 + ‖y1 −X1β‖22

+‖y2 −X2β‖22
)

+ λ

∣∣∣∣ 1

m
‖y1 −X1β‖22

− 1

n−m+ 1
‖y0 − xT0 β‖22 −

1

n−m+ 1
‖y2 −X2β‖22

∣∣∣∣ .
It is worth noting that for either L1 or L2, the objective
function of the minimax problem (2) is non-smooth noncovex-
nonconcave. However, we observe that by exploring four
different cases depending on the value of G0 and the signs
of the terms inside | · |, the maximization problem can be
solved exactly as shown in the following theorem.

Theorem 1: For any given β, we have

max
(x0,y0,G0),

s.t. ‖[xT0 ,y0]‖2≤η

L
(a)
= max{g1(β), h1(β), g2(β), h2(β)},

where

g1(β) = Cg1η
2(1 + ‖β‖22) + Cg1‖y1 −X1β‖22

+Dg1‖y2 −X2β‖22,
h1(β) = max{0, Ch1}η2(1 + ‖β‖22) + Ch1‖y1 −X1β‖22

+Dh1‖y2 −X2β‖22,
g2(β) = max{0, Dg2}η2(1 + ‖β‖22) + Cg2‖y1 −X1β‖22

+Dg2‖y2 −X2β‖22,
h2(β) = Dh2η

2(1 + ‖β‖22) + Ch2‖y1 −X1β‖22
+Dh2‖y2 −X2β‖22,

with Cg1 = λ
m+1 + 1

n+1 , Dg1 = − λ
n−m+ 1

n+1 , Ch1
= − λ

m+1 +
1

n+1 , Dh1 = λ
n−m + 1

n+1 , Cg2 = λ
m + 1

n+1 , Dg2 = − λ
n−m+1 +

1
n+1 , Ch2

= − λ
m + 1

n+1 , Dh2
= λ

n−m+1 + 1
n+1 . Denote x̃0 =

[xT0 , y0]T , b = [βT ,−1]T . Then we have
• when either of the following occurs: 1) g1(β) ≥

max{h1(β), g2(β), h2(β)}, 2) h1(β) ≥ max{g1(β),
g2(β), h2(β)} and Ch1

≥ 0, the maximum value of L
(equality (a)) is achieved if x̃∗0(β) = η b

‖b‖2 and G0 = 1;
• when h1(β) ≥ max{g1(β), g2(β), h2(β)} and Ch1

< 0,
(a) is attained as long as x̃∗0(β) ⊥ b and G0 = 1;

• when either of the following occurs: 1) g2(β) ≥
max{g1(β), h1(β), h2(β)} and Dg2 ≥ 0, 2) h2(β) ≥
max{g1(β), h1(β), g2(β)}, (a) is attained if x̃∗0(β) =
η b
‖b‖2 and G0 = 2;

• when g2(β) ≥ max{g1(β), h1(β), h2(β)} and Dg2 < 0,
(a) is attained if x̃∗0(β) ⊥ b and G0 = 2.
Proof: Please refer to Appendix A.

Remark 1: g1(β), h1(β), g2(β) and h2(β) involve β only
through ‖β‖22, ‖y1−X1β‖22 and ‖y2−X2β‖22. Furthermore,
from Theorem 1, for G0 = 1, we have

max
(x0,y0,1),s.t.‖[xT0 ,y0]‖2≤η

L1= max{g1(β), h1(β)},

where g1(β) corresponds to the case in which the terms inside
| · | of L1 is non-negative and h1(β) corresponds to the case
in which the terms inside | · | is negative. Subsequently, for the
conditions of equality, we discuss two cases L1 = g1(β) ≥
h1(β) and L1 = h1(β) > g1(β), where there are two sub-
cases for L1 = h1(β) based on the value of Ch1

. There are
similar observations for G0 = 2.
Minimization Problem
Using Theorem 1, the original minmax problem is converted
to the following problem

min
β

max
(x0,y0,G0)

L = min
β

max{g1(β), h1(β), g2(β), h2(β)}. (3)

As we seek to minimize the largest of four functions, (3) can
be separated into four sub-problems. One of them is

min
β

g1(β),

s.t. g1(β) ≥ g2(β), g1(β) ≥ h1(β), g1(β) ≥ h2(β), (4)



and other sub-problems can be written in a similar manner.
Once these sub-problems are solved, the solution to (3) can
be obtained.

For notation simplicity, we denote 1
2
∂2g1(β)
∂β2 =

Cg1(η2I + XT
1 X1) + Dg1X

T
2 X2 := Mg1 , 1

2
∂2h1(β)
∂β2 =

max {0, Ch1} η2I + Ch1X
T
1 X1 + Dh1X

T
2 X2 := Mh1 ,

1
2
∂2g2(β)
∂β2 = max {0, Dg2} η2I +Cg2X

T
1 X1 +Dg2X

T
2 X2 :=

Mg2 , 1
2
∂2h2(β)
∂β2 = Ch2

XT
1 X1+Dh2

(η2I+XT
2 X2) := Mh2 .

In the following, we focus on solving (4). The analysis of
other sub-problems can be done similarly. Specifically, (4) can
be further written as

min
β

g1(β) = Cg1η
2(1 + ‖β‖22) + Cg1‖y1 −X1β‖22

+Dg1‖y2 −X2β‖22, (5)
s.t. C1(β) = g1(β)− h1(β) ≥ 0,

C2(β) = g1(β)− g2(β) ≥ 0,

C3(β) = g1(β)− h2(β) ≥ 0. (6)

For the objective function in (5), since Dg1 can be negative,
Mg1 is not necessarily positive-semidefinite. Hence, (5) is
a non-convex quadratic minimization problem with several
quadratic constraints (QCQP), which is NP hard in general
[27]. Despite this challenge, we are able to solve this problem
by exploiting the structure inherent to our problem. The
following proposition gives us sufficient conditions for global
minimizers of QCQP, following from Proposition 3.2 in [42].

Proposition 1: If ∃αi ≥ 0, i = 1, 2, 3 such that for β = β∗,

Mg1 −
3∑
i=1

αi
∂2Ci(β)

∂β2
� 0,

∂g1(β)

∂β
|β∗ −

3∑
i=1

αi
∂Ci(β)

∂β
|β∗ = 0,

3∑
i=1

αiCi(β
∗) = 0, (7)

Ci(β
∗) ≥ 0, i = 1, 2, 3,

then β∗ is a global minimizer of QCQP (5).
Remark 2: From (7), we have that for each constraint Ci(β),

there are two possible cases: 1) αi = 0, Ci(β
∗) ≥ 0; 2) αi >

0, Ci(β
∗) = 0. In total, there will be 23 cases of different

combinations of αis. By examining these 8 different cases,
we can obtain the optimal regression coefficient β∗ of the
sub-problem (5).

In the following, we will analyze four types of cases
sequentially: 1) α1 = α2 = α3 = 0; 2) the case with only
one non-zero αi, i.e. ∃!αi > 0 and αk = 0,∀k 6= i; 3) the
case with two non-zero αis, i.e. ∃i, j, i 6= j, αi > 0, αj > 0
and αk = 0,∀k /∈ {i, j}; 4) αi > 0, i = 1, 2, 3.

Case 1: α1 = α2 = α3 = 0
By Proposition 1, if there exists β̃, such that

Mg1 � 0, (8)
∂g1(β)

∂β
|β̃ = 0, (9)

Ci(β̃) ≥ 0, i = 1, 2, 3, (10)

then β̃ is a global minimizer of (5). From (8), we require that
Mg1 is positive-semidefinite, which can be true when λ is
small, e.g. when Dg1 ≥ 0. From (9), when Mg1 is invertible,
we have

β̃ = M−1
g1

[
Cg1X

T
1 Y1 +Dg1X

T
2 Y2

]
. (11)

If (10) is satisfied at (11), then β̃ is a global minimizer of (5).
Otherwise, there does not exist a global minimizer in Case 1
and we will consider Case 2.

Case 2: ∃!αi > 0 and αk = 0,∀k 6= i
We will consider the particular case α1 > 0, α2 = α3 = 0 and
other cases can be analyzed similarly.

By Proposition 1, if there exists β̄ and α1 > 0, such that

Mg1 − α1(Mg1 −Mh1) � 0, (12)
∂g1(β)

∂β
|β̄ − α1

∂C1(β)

∂β
|β̄ = 0, (13)

C1(β̄) = 0, C2(β̄) ≥ 0, C3(β̄) ≥ 0, (14)

then β̄ is a global minimizer of (5).
Proposition 2: Denote the largest eigenvalue of XT

1 X1 as
vX1,p and the largest eigenvalue ofXT

2 X2 as vX2,p. Assuming
that η2 ≥ η2

min = max
{

(n+1)vX1,p

m(m+1) ,
(n+1)vX2,p

(n−m+1)(n−m)

}
, we

have Ag1h1 = {α : Mg1 − α(Mg1 −Mh1) � 0} 6= ∅.
By randomly selecting an α∗1 ∈ Ag1h1 , for

β̌ = [(1− α∗1 − γ∗)Mg1 + (α∗1 + γ∗)Mh1
]
−1

· [(1− α∗1 − γ∗)Eg1 − (α∗1 + γ∗)Eh1
] ,

where γ∗ is a certain Lagrangian multiplier, and Eg1 =
Cg1X

T
1 y1 + Dg1X

T
2 y2, Eh1

= Ch1
XT

1 y1 + Dh1
XT

2 y2,
if we have C2(β̌) ≥ 0, C3(β̌) ≥ 0, then β̌ satisfies (12), (13),
(14) and is a global minimizer of (5).

Proof: Please refer to Appendix B.
Case 3: ∃i, j, i 6= j, αi > 0, αj > 0 and αk = 0,∀k /∈ {i, j}

We will consider the particular case α1 > 0, α2 > 0, α3 =
0 and other cases can be analyzed in a similar manner. By
Proposition 1, if there exists β̂ and α1 > 0, α2 > 0, such that

Mg1 − α1(Mg1 −Mh1)− α2(Mg1 −Mg2) � 0, (15)
∂g1(β)

∂β
|β̂ − α1

∂C1(β)

∂β
|β̂ − α2

∂C2(β)

∂β
|β̂ = 0, (16)

C1(β̂) = 0, C2(β̂) = 0, (17)

C3(β̂) ≥ 0, (18)

then β̂ is a global minimizer of (5).
Proposition 3: For

β̌ = [(1− α∗1 − γ∗1 − γ∗2 )Mg1 + (α∗1 + γ∗1 )Mh1
+ γ∗2Mg2 ]

−1

· [(1− α∗1 − γ∗1 − γ∗2 )Eg1 + (α∗1 + γ∗1 )Eh1
+ γ∗2Eg2 ] ,

where γ∗1 , γ
∗
2 are certain Lagrangian multipliers, and Eg2 =

Cg2X
T
1 y1 +Dg2X

T
2 y2, if C3(β̌) ≥ 0, then β̌ satisfies (15),

(16), (17), (18) and is a global minimizer of (5).
Proof: Please refer to Appendix C.



Case 4: αi > 0, i = 1, 2, 3
By Proposition 1, if there exists β́ and αi > 0, i = 1, 2, 3,
such that

Mg1 − α1(Mg1 −Mh1)− α2(Mg1 −Mg2)

−α3(Mg1 −Mh2) � 0, (19)
∂g1(β)

∂β
|β́ − α1

∂C1(β)

∂β
|β́ − α2

∂C2(β)

∂β
|β́

−α3
∂C3(β)

∂β
|β́ = 0, (20)

C1(β́) = 0, C2(β́) = 0, C3(β́) = 0, (21)

then β́ is a global minimizer of (5). From Remark 1, we note
that with (21), there are three equations on ‖β‖22, ‖y1−X1β‖22
and ‖y2 −X2β‖22, which indicates that there will be deter-
ministic solutions for them or the feasible set is empty.

When the feasible set of (21) is nonempty (for ex-
ample, when λ > max{m+1

n+1 ,
n−m+1
n+1 }), the value of

g1(β), C1(β), C2(β), C3(β) is determined as there have been
deterministic solutions for ‖β‖22, ‖y1 − X1β‖22 and ‖y2 −
X2β‖22. Then the process of finding β́ is
1. Solve (21) and derive the solution for ‖β‖22, ‖y1−X1β‖22
and ‖y2 −X2β‖22.
2. Calculate the value of g1(β), C1(β), C2(β), C3(β).
3. Select α1, α2, α3 such that (19) is satisfied. Then (20) is sat-
isfied naturally as g1(β), C1(β), C2(β), C3(β) are constants.

IV. RANK-ONE ATTACK

In Section III, we have discussed how to design one adver-
sarial point to attack the fair regression model. In this section,
we consider a more powerful adversary who can observe the
whole training dataset and then perform a rank-one attack on
the feature matrix. This type of attack covers many practical
scenarios, for example, modifying one entry of the feature
matrix, deleting one feature, changing one feature, replacing
one feature, etc [33]. In particular, the attacker will carefully
design a rank-one feature modification matrix ∆ and add it
to the original feature matrix X , so as to obtain the modified
feature matrix X̂ = X + ∆. Since ∆ is of rank 1, we can
write ∆ = cdT , where c ∈ Rn and d ∈ Rp. Moreover,
recall that there are samples from two groups, we denote the
modification matrix of the first group as ∆1, i.e., the first m
rows of ∆, and assume that ∆1 = c1d

T , where c1 consists of
the first m components of c. Similarly, for the second group,
the modification matrix is ∆2 = c2d

T . Then the modified
feature matrices for two groups are X̂1 = X1 + ∆1 and
X̂2 = X2 + ∆2.

Similar to Section III, we introduce an energy constraint on
the rank-one attack. We use the Frobenius norm to measure
the energy of the modification matrix ∆. Recall that y,G
remain unchanged in this attack scheme, we have the minimax
problem

min
β

max
‖∆‖F≤η

f(β, X̂) + λF (β, X̂). (22)

To solve (22), we will first investigate the inner maximiza-
tion problem. We will perform various variable augmentations,

and convert the maximization problem into a form with five
arguments, four of which can be solved exactly. Then we
will transform the original nonconvex-nonconcave minimax
problem into several weakly-convex-weakly-concave minimax
problems.
Maximization problem
For the objective function in (22), we have

f(β, X̂) + λF (β, X̂) =
1

n
‖y − X̂β‖22

+λ

∣∣∣∣ 1

m
‖y1 − X̂1β‖22 −

1

n−m
‖y2 − X̂2β‖22

∣∣∣∣
= max{g(β, X̂), h(β, X̂)},

in which

g(β, X̂) = Cg‖y1 − X̂1β‖22 +Dg‖y2 − X̂2β‖22,

h(β, X̂) = Ch‖y1 − X̂1β‖22 +Dh‖y2 − X̂2β‖22,

with Cg = 1
n + λ

m , Dg = 1
n −

λ
n−m , Ch = 1

n −
λ
m , Dh =

1
n + λ

n−m .
Lemma 1: For g(β, X̂) and h(β, X̂), we have that
1) if Dg ≥ 0, g(β, X̂) is convex in c1 for any given c2,d,

and also convex in c2 for any given c1,d; otherwise,
g(β, X̂) is convex in c1 for any given c2,d, and concave
in c2 for any given c1,d;

2) if Ch ≥ 0, h(β, X̂) is convex in c1 for any given c2,d,
and also convex in c2 for any given c1,d; otherwise,
h(β, X̂) is concave in c1 for any given c2,d, and
convex in c2 for any given c1,d.

Based on Lemma 1, we now solve the maximization prob-
lem in (22). First, note that

max
‖cdT ‖F≤η

max{g(β, X̂), h(β, X̂)}

= max

{
max

‖cdT ‖F≤η
g(β, X̂), max

‖cdT ‖F≤η
h(β, X̂)

}
,

which indicates that the maximization problem can be sep-
arated into two sub-problems. For simplicity of presentation,
we will only explore the sub-problem of g(β, X̂) in detail and
the sub-problem of h(β, X̂) can be analyzed similarly.

1) Sub-problem of g(β, X̂)
According to Lemma 1, the value of Dg will affect the
property of g(β, X̂). In the following, we will first explore the
case Dg ≥ 0 and obtain Lemma 2 as well as Proposition 4,
and then explore the case Dg < 0 and obtain Lemma 3 as
well as Proposition 5.

Lemma 2: For Dg ≥ 0, we have

max
‖cdT ‖F≤η

g(β, X̂)

= max
0<ηc≤η

max
0≤ηc1≤ηc

max
‖d‖2≤1

max
‖c2‖2=

√
η2c−η2c1

max
‖c1‖2=ηc1

g(β, X̂)

= max
0<ηc≤η

max
0≤ηc1≤ηc

max
‖d‖2≤1

gm1(ηc1 ,β,d),

where

gm1(ηc1 ,β,d) = Cg(‖y1 −X1β‖2 + ηc1d
Tβ)2

+Dg(‖y2 −X2β‖2 +
√
η2
c − η2

c1d
Tβ)2.



Proof: Please refer to Appendix D.
Note that gm1

(ηc1 ,β,d) is a quadratic function with respect
to dTβ, we have the following proposition.

Proposition 4:

max
‖cdT ‖F≤η

g(β, X̂) = max
0≤ηc1≤η

ga(ηc1 ,β),

where ga(ηc1 ,β) = Cg(‖y1−X1β‖2+ηc1‖β‖2)2+Dg(‖y2−
X2β‖2 +

√
η2 − η2

c1‖β‖2)2.
Proof: Please refer to Appendix E.

Lemma 3: For Dg < 0, we have

max
‖cdT ‖F≤η

g(β, X̂)= max
0<ηc≤η

max
0≤ηc1≤ηc

max
‖d‖2≤1

gm2(ηc1 ,β,d),

where

gm2
(ηc1 ,β,d) =



Cg(‖y1 −X1β‖2 + ηc1d
Tβ)2,

if ‖y2 −X2β‖2 ≤ η‖β‖2,
Cg(‖y1 −X1β‖2 + ηc1d

Tβ)2

+Dg(‖y2 −X2β‖2 −
√
η2
c − η2

c1d
Tβ)2,

otherwise,

Proof: Please refer to Appendix F.
From the above lemma, we have the following proposition.
Proposition 5:

max
‖cdT ‖F≤η

g(β, X̂) = max
0≤ηc1≤η

gb(ηc1 ,β),

where

gb(ηc1 ,β) =

{
gb1(ηc1 ,β), if ‖y2 −X2β‖2 ≤ η‖β‖2,
gb2(ηc1 ,β), otherwise.

gb1(ηc1 ,β) = Cg(‖y1 −X1β‖2 + ηc1‖β‖2)2,

gb2(ηc1 ,β) =
[
Cg(‖y1 −X1β‖2 + ηc1‖β‖2)2

+Dg(‖y2 −X2β‖2 −
√
η2 − ηc1‖β‖2)2

]
.

Proof: Please refer to Appendix G.
2) Sub-problem of h(β, X̂)

Following similar process in analyzing the sub-problem of
g(β, X̂), we have that
• if Ch ≥ 0, we have

max
‖cdT ‖F≤η

h(β, X̂) = max
0≤ηc1≤η

ha(ηc1 ,β),

where ha(ηc1 ,β) = Ch(‖y1 − X1β‖2 + ηc1‖β‖2)2 +
Dh(‖y2 −X2β‖2 +

√
η2 − η2

c1‖β‖2)2;
• if Ch < 0, we have

max
‖cdT ‖F≤η

h(β, X̂) = max
0≤ηc1≤η

hb(ηc1 ,β),

where

hb(ηc1 ,β) =

{
hb1(ηc1 ,β), if ‖y1 −X1β‖2 ≤ η‖β‖2,
hb2(ηc1 ,β), otherwise,

hb1(ηc1 ,β) = Dh(‖y2 −X2β‖2 +
√
η2 − η2

c1‖β‖2)2,

hb2(ηc1 ,β) = Ch(‖y1 −X1β‖2 − ηc1‖β‖2)2

+Dh(‖y2 −X2β‖2 +
√
η2 − ηc1‖β‖2)2.

Transformation of the minimax problem
After solving sub-problems above, the minimax problem (22)
can be transformed to a minimax problem for one vector and
one scalar with a piece-wise max-type objective function. For
example, if Dg ≥ 0 and Ch < 0, (22) can be represented as

min
β

max
0≤ηc1≤η

max{ga(ηc1 ,β), hb(ηc1 ,β)}. (23)

Then we have the following two lemmas characterizing the
nice properties of the sub-functions in the objective function.

Lemma 4: If the norm of β is bounded, i.e. ‖β‖2 ≤ Bβ ,
then we have

1) ga is weakly-concave in ηc1 for any given β and weakly-
convex in β for any given ηc1 ;

2) hb is a piece-wise function and each piece (hb1 or hb2 )
is weakly-concave in ηc1 for any given β and weakly-
convex in β for any given ηc1 .

Proof: Please refer to Appendix H.
Lemma 5: For any given β, ga, gb2 , ha and hb2 are all

unimodal functions with respect to ηc1 that increase first and
then decrease.

Proof: Please refer to Appendix I.
Moreover, to deal with the piece-wise structure in the objective
function, we further transform the minimax problem to several
sub-problems. For example, (23) can be transformed to three
sub-problems:

1) min
β

max
0≤ηc1≤η

hb1(ηc1 ,β),

s.t. ga(ηc1 ,β) < hb1(ηc1 ,β), ‖y1 −X1β‖2 ≤ η‖β‖2;
2) min

β
max

0≤ηc1≤η
hb2(ηc1 ,β),

s.t. ga(ηc1 ,β) < hb2(ηc1 ,β), ‖y1 −X1β‖2 > η‖β‖2.
3) min

β
max

0≤ηc1≤η
ga(ηc1 ,β), s.t. ga(ηc1 ,β) ≥ hb(ηc1 ,β);

For the sub-problem 1), the maximization on ηc1 can be
solved exactly and the saddle-point can be easily derived.

For sub-problems 2) and 3), we will ignore the constraints
first and derive the saddle-point of the minimax problem, and
then check the constraints. For example, for sub-problem 2),
we assume that ‖β‖2 ≤ Bβ , which is reasonable in reality,
and have that:
• the feasible set {β : ‖β‖2 ≤ Bβ} × [0, η] is convex and

compact;
• the objective function is weakly-convex-weakly-concave

by Lemma 4;
• the saddle-point exists by Lemma 5.

Based on those properties, we are able to apply a first-
order algorithms proposed by [29] to solve the non-convex
non-concave minimax problem as in sub-problem 2) and
derive the nearly ε-stationary solution. In particular, define
Z = {β : ‖β‖2 ≤ Bβ} × [0, η] and the mapping H(z) :=
(∂βhb2(ηc1 ,β), ∂ηc1 [−hb2(ηc1 ,β)])T , where z = (β, ηc1).
The minty variational inequality (MVI) problem corresponding
to the saddle-point problem in sub-problem 2) is to find
z∗ ∈ Z such that 〈ξ, z − z∗〉 ≥ 0,∀z ∈ Z,∀ξ ∈ H(z).
Then the saddle-point problem can be solved through the lens
of MVI. In [29], the proposed inexact proximal point method



consists of approximately solving a sequence of strongly
monotone MVIs constructed by adding a strongly monotone
mapping to H(z) with a sequentially updated proximal center.
Thus, the complex non-convex non-concave minmax problem
can be decomposed into a sequence of easier strongly-convex
strongly-concave problems.

V. NUMERICAL RESULTS

In this section, we provide numerical examples to illustrate
the results in this paper. We conduct experiments on a synthetic
dataset and two real-world datasets:
1. Synthetic Dataset (SD): it contains 200 rows for two groups
with 5 features. We suppose that the numbers of samples in
two groups are the same, i.e. m = n − m = 100. For two
different groups, the samples are generated by

y1 = X1β0,1 + c1 + ε, y2 = X2β0,2 + ε, (24)

where elements in X1 and X2 are uniformly distributed on
(0, 10), β0,1 = [1, 1, 1, 1, 1]T , c1 = [1, · · · , 1]T , β0,2 =
[1.1, 1.1, 1.1, 1.1, 1.1]T and noise ε ∼ N (0, 1). Under this
setup, we verify the assumption in Propositions 2 and have that
η2 ≥ η2

min = max
{

(n+1)vX1,p

m(m+1) ,
(n+1)vX2,p

(n−m+1)(n−m)

}
= 15.982

while the mean energy of a sample is ηD = 29.08, which
indicates that the assumption on η is reasonable.
2. Law School Dataset (LSD) [43]: it contains 1,823 records
for law students who took the bar passage study for law
school admission, with gender as the sensitive attribute and
undergraduate GPA as the target variable. The dimension of
features is 8. There are 999 samples and 824 samples for
two genders respectively. For the assumption on η, we have
η ≥ ηmin = 2.44 and ηD = 2.86.
3. Medical Insurance Cost Dataset (MICD) [44]: it contains
1,338 medical expense examples for patients in the United
States. In our experiment, we use gender as the sensitive
attribute, charged medical expenses as the target variable, and
consider 5 features. There are 662 samples and 676 samples
for two genders respectively. Then we verify the assumption
on η and have that η ≥ ηmin = 1.58 with ηD = 2.34.

For comparison purpose, we will introduce an unrobust fair
regression model that does not consider the existence of the
adversary and minimizes the objective function with respect
to the original dataset {X,y,G}. In particular, the unrobust
fair model is

βfair = arg min
β
f(β,X,y,G) + λF (β,X,y,G).

Moreover, for the rank-one attack scheme, we also compare
our proposed adversarially robust model with other fair re-
gression models, including the fair linear regression (FLR)
model and fair kernel learning (FKL) model [45]. The optimal
regression coefficient for each model is derived by fitting
the model on the original dataset {X,y,G}. To obtain the
performance of each model on the poisoned dataset, we apply
the derived optimal regression coefficient on the poisoned
dataset, {X̂, ŷ, Ĝ}, and calculate the MSE as well as the
group fairness gap.

A. Attack with one adversarial data point

Firstly, for SD, by choosing η = ηD, we explore the
performance differences among the proposed robust fairness-
aware model, unrobust fair model and traditional linear model
(ordinary linear regression model). In Fig. 1(a) and Fig. 1(b),
following (24), we construct 500 datasets relying on the
randomness in ε. For λ = 0.2 < min{m+1

n+1 ,
n−m+1
n+1 } (which

implies Ch1 ≥ 0, Dg2 ≥ 0), according to Theorem 1,
the best adversarial point is x̃0 = η b

‖b‖2 . As shown in
Fig. 1(a), the group fairness gap for the proposed robust
fairness-aware model is smaller than that of the unrobust
fair model, while the measure of goodness of fit R2 remains
similar. In the meantime, since βfair has taken the fairness
issue into consideration, its performance is better than the
traditional linear regression model. Likewise, for λ = 0.8 >
max{m+1

n+1 ,
n−m+1
n+1 } (which implies Ch1

< 0, Dg2 < 0),
according to Theorem 1, the best adversarial point will be
in the form x̃0 ⊥ b or x̃0 = η b

‖b‖2 based on the value of
gi(β

∗
rob) and hi(β

∗
rob), i = 1, 2. As shown in Fig. 1(b), the

performance results are similar to the case λ = 0.2.
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Fig. 1. SD: comparison of robust fair model, unrobust fair model and
traditional linear model (attack with one adversarial data point).

Secondly, we explore the effects of the energy constraint
parameter η as well as the trade-off parameter λ on two real-
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Fig. 2. Effects of λ and η on MSE and the group fairness gap (attack with
one adversarial data point).



world datasets, LSD and MICD. We have three energy levels,
η = ηmin, η = ηD and η = 1.5ηD. As shown in Fig. 2,
when η is small, under different choices of λ, MSE and the
group fairness gap for the robust fairness-aware model are both
smaller than those for the unrobust fair model, which indicates
that the proposed model has better robustness and achieves
better performance in both accuracy and fairness. However, for
MICD, when η = 1.5ηD, the MSE for the robust fair model
becomes larger than that of the unrobust model as the power
of the adversarial data point is large, which in turn affects the
prediction performance considerably.

B. Rank-one attack

In the first experiment, we explore the effects of the energy
constraint parameter η as well as the trade-off parameter λ.
We carry out the attack with three different energy levels, η =
0.2σ, η = 0.5σ and η = 0.8σ, where σ is the smallest singular
value of the feature matrix of the training data. As shown in
Fig. 3, we first observe that MSE and the group fairness gap
for the adversarially robust model are almost always smaller
than those for the unrobust fair model, which illustrates that
the proposed robust model achieves better performance in both
accuracy and fairness. We also notice that the performance of
the adversarially robust model differs under different choices
of λ. In particular, as λ increases, the value of MSE also
increases because we care more about fairness and give more
weight to the fairness-related term in the objective function.
Especially, as shown in Fig. 3(c), when the energy constraint is
comparable to the smallest singular value of the feature matrix
(η = 0.8σ) and the trade-off parameter λ is large (λ = 5.2),
the MSE of the robust model becomes larger than that of the
unrobust model as the limitation on the adversary is small,
which in turn affects the prediction performance considerably.
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Fig. 3. Effects of λ and η on MSE and fairness gap (rank-one attack)

In the second experiment, we compare our proposed adver-
sarially robust fair model with other fair regression models.

In Fig. 4, we provide the performance of different regression
models on the original dataset as well as the poisoned dataset
with η = 0.5σ. For the unrobust fair model and adversarially
robust fair model, since the choice of the trade-off parameter
λ will affect the model performance, we explore models
with various choices of λ. As shown in Fig. 4(a), on the
original dataset, the overall performance of FKL is better than
other models, since it is a nonlinear model based on kernels.
FLR has similar performance with the proposed unrobust fair
regression model (with certain choice of λ). Moreover, for
the unrobust fair model, it is observed that as λ increases,
the group fairness gap decreases while the MSE increases.
However, on the poisoned dataset, as shown in Fig. 4(b), the
performance of FKL and FLR has been severely impacted. In
particular, for FKL (which is the optimal model on the original
dataset), the value of the group fairness gap has been increased
from 4.3 × 10−3 to 2.8 × 10−2, and the value of MSE also
increases. Similar observations can be found for FLR. Besides,
for the unrobust fair model, we observe a concave curve in
the group fairness gap v.s. MSE plot, which is convex in the
original dataset. Thus, we conclude that fair regression models
are vulnerable to adversarial attacks and may not preserve their
performance in adversarial environment. On the contrary, for
the adversarially robust model, the curve between the group
fairness gap and MSE locates in the lower left corner and
is convex. Thus, by appropriately choosing the value of λ,
a model that performs well in terms of both fairness and
prediction accuracy can be obtained.
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Fig. 4. MICD: Group fairness gap v.s. MSE (rank-one attack).

VI. CONCLUSION

In this paper, we have proposed a minimax framework
to characterize the best attacker that generates the optimal
poisoned point or rank-one attack for the original dataset,
as well as the adversarially robust fair defender that can
achieve the best performance in terms of both prediction
accuracy and fairness guarantee, in the presence of the best
attacker. We have discussed two types of attack schemes and
provided the corresponding methods to solve the proposed
nonsmooth nonconvex-nonconcave minimax problems. More-
over, we have performed numerical experiments on synthetic
data and two real-world datasets, and shown that the proposed
adversarially robust fair models can achieve better perfor-
mance in both prediction accuracy and fairness guarantee than
other fair regression models with a proper choice of λ.



APPENDIX A
PROOF OF THEOREM 1

We will prove the maximum value of L under two cases:
G0 = 1 and G0 = 2 separately. For G0 = 1, we
will show max

(x0,y0,1),

s.t. ‖[xT0 ,y0]‖2≤η

L1
(b)
= max{g1(β), h1(β)}. Simi-

larly, for G0 = 2, we will have that max
(x0,y0,2),

s.t. ‖[xT0 ,y0]‖2≤η

L2
(c)
=

max{g2(β), h2(β)}. Then (a) follows directly from (b) and
(c). Since the case G0 = 2 is similar to the case G0 = 1, we
will only verify the equality (b).

Firstly, for the adversarial point, under the constraint that
‖x̃T0 ‖2 = ‖[xT0 , y0]‖2 ≤ η, we have

0 ≤ ‖x̃T0 b‖22 ≤ η2‖b‖22 = η2(1 + ‖β‖22). (25)

Then we notice that

L1

(d)

≤ max

{(
λ

m+ 1
+

1

n+ 1

)
η2(1 + ‖β‖22)

+

(
λ

m+ 1
+

1

n+ 1

)
‖y1 −X1β‖22

+

(
− λ

n−m
+

1

n+ 1

)
‖y2 −X2β‖22,

max{0,− λ

m+ 1
+

1

n+ 1
}η2(1 + ‖β‖22)

+

(
− λ

m+ 1
+

1

n+ 1

)
‖y1 −X1β‖22

+

(
λ

n−m
+

1

n+ 1

)
‖y2 −X2β‖22

}
= max{g1(β), h1(β)},

where (d) is from (25). Then we verify the achievability
of the equality in (d). Define a set B1 := {β : g1(β) ≥
h1(β) = {β : 1

m+1‖y1 − X1β‖22 − 1
n−m‖y2 − X2β‖22 ≥

max
{
− 1

2(m+1) −
1

2λ(n+1) ,−
1

m+1

}
· η2(1 + ‖β‖22). In the

sequel, we will verify the achievability of the equality in (d)
with two cases: β ∈ B1 and β ∈ Bc1.

Case 1: β ∈ B1: For β ∈ B1, by taking x̃0 = η b
‖b‖2 , we

have
1

m+ 1
(‖y0 − xT0 β‖22 + ‖y1 −X1β‖22)

− 1

n−m
‖y2 −X2β‖22

=
1

m+ 1

[
η2(1 + ‖β‖22) + ‖y1 −X1β‖22

]
− 1

n−m
‖y2 −X2β‖22

(e)

≥ max

{
1

2(m+ 1)
− 1

2λ(n+ 1)
, 0

}
η2(1 + ‖β‖22)}, (26)

where (e) is from the definition of set B1. Then we have

L1
(f)
= g1(β), where (f) follows from (26). Therefore, for

β ∈ B1, we have h1(β) ≤ g1(β) and L1 ≤ g1(β), in which
the equality can be achieved for x̃0 = η b

‖b‖2 .

Case 2: β ∈ Bc1: On the one hand, if 1
m+1 −

1
λ(n+1) ≤ 0,

by taking x̃0 = η b
‖b‖2 , we have

1

m+ 1
(‖y0 − xT0 β‖22 + ‖y1 −X1β‖22)

− 1

n−m
‖y2 −X2β‖22

(g)
< max

{
1

2(m+ 1)
− 1

2λ(n+ 1)
, 0

}
η2(1 + ‖β‖22)}

(h)
= 0, (27)

where (g) is from the definition of set B1 and (h) is because
1

m+1 −
1

λ(n+1) ≤ 0. Then we have

L1
(j)
=

1

n+ 1

[
η2(1 + ‖β‖22) + ‖y1 −X1β‖22

+‖y2 −X2β‖22
]

−λ
[

1

m+ 1
η2(1 + ‖β‖22) +

1

m+ 1
‖y1 −X1β‖22

− 1

n−m
‖y2 −X2β‖22

]
(k)
= h1(β),

where (j) is from (27) and (k) is true because 1
m+1−

1
λ(n+1) ≤

0. Therefore, for β ∈ Bc1 and 1
m+1 −

1
λ(n+1) ≤ 0, we have

h1(β) ≥ g1(β) and L1 ≤ h1(β), in which the equality can
be achieved for x̃0 = η b

‖b‖2 .
On the other hand, if 1

m+1 −
1

λ(n+1) > 0, by taking x̃0 to
be a vector such that x̃0 ⊥ b, we have

1

m+ 1
(‖y0 − xT0 β‖22 + ‖y1 −X1β‖22)

− 1

n−m
‖y2 −X2β‖22

=
1

m+ 1
‖y1 −X1β‖22 −

1

n−m
‖y2 −X2β‖22

(l)
< max{− 1

2(m+ 1)
− 1

2λ(n+ 1)
,− 1

m+ 1
}η2(1 + ‖β‖22)}

< 0, (28)

where (l) is from the definition of set B1. Then we have

L1
(s)
=

1

n+ 1

(
‖y1 −X1β‖22 + ‖y2 −X2β‖22

)
−λ
[

1

m+ 1
‖y1 −X1β‖22 −

1

n−m
‖y2 −X2β‖22

]
(t)
= h1(β),

where (s) is from (28) and (t) is because 1
m+1 −

1
λ(n+1) > 0.

Therefore, for β ∈ Bc1 and 1
m+1 −

1
λ(n+1) > 0, we have

h1(β) ≥ g1(β) and L1 ≤ h1(β), in which the equality can
be achieved when x̃0 ⊥ b.

APPENDIX B
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First, we summarize the process of finding β̄ as follows.
1. Check whether A = {α1 : Mg1 − α1(Mg1 −Mh1) �



0} 6= ∅. If A = ∅, there does not exist a global minimizer in
this case.
2. By randomly selecting an α∗1 ∈ Ag1h1

:= {α : Mg1 −
α(Mg1 −Mh1) � 0}, we solve the optimization problem

min
β

k(β) = g1(β)− α∗1[g1(β)− h1(β)],

s.t. C1(β) = g1(β)− h1(β) = 0, (29)

where k(β) is positive-definite and the choice of α∗1 does not
affect the solution to the problem.
3. For the solution to (29), check whether α1 > 0, (12), (13)
and (14) are satisfied.

Now we explore the details of steps 1, 2 and 3.
In step 1, the assumption η2 ≥ η2

min =

max
{

(n+1)vX1,p

m(m+1) ,
(n+1)vX2,p

(n−m+1)(n−m)

}
will guarantee that

A is nonempty. To be exact, we denote Ag1g2 = {α :
Mg1−α(Mg1−Mg2) � 0}, Ag1h2

= {α : Mg1−α(Mg1−
Mh2) � 0}, Ah1g2 = {α : Mh1 − α(Mh1 − Mg2) �
0}, Ah1h2 = {α : Mh1 − α(Mh1 −Mh2) � 0}, Ag2h2 =
{α : Mg2−α(Mg2−Mh2) � 0}. Then under the assumption
that η2 ≥ η2

min = max
{

(n+1)vX1,p

m(m+1) ,
(n+1)vX2,p

(n−m+1)(n−m)

}
, we are

able to derive that Ag1h1
6= ∅, Ag1g2 6= ∅, Ag1h2

6= ∅, Ah1g2 6=
∅, Ah1h2

6= ∅, Ag2h2
6= ∅. The detailed proof is omitted here.

Particularly, in this case study, we have Ag1h1
⊂ A and

A 6= ∅.
In step 2, (29) is a strictly convex quadratic optimization

problem with one quadratic equality constraint, which has been
discussed in [46]. Define the Lagrangian function of (29) as

L(β, γ) = k(β)− γC1(β)

= g1(β)− (α∗1 + γ)(g1(β)− h1(β))

= (1− α∗1 − γ)g1(β) + (α∗1 + γ)h1(β),

where γ is the Lagrangian multiplier. According to [46],
the global minimizer β̌ and the corresponding multiplier γ∗

of (29) satisfy first-order, second-order and the constraint
conditions

∂L
∂β
|β̌ = (1− α∗1 − γ)

∂g1(β)

∂β
|β̌ + (α∗1 + γ)

∂h1(β)

∂β
|β̌

= 0, (30)
∂2L
∂β2

= 2 [(1− α∗1 − γ)Mg1 + (α∗1 + γ∗)Mh1
] � 0,

C1(β̌) = 0. (31)

From (30), we have

β̌ = [(1− α∗1 − γ∗)Mg1 + (α∗1 + γ∗)Mh1
]
−1

· [(1− α∗1 − γ∗)Eg1 − (α∗1 + γ∗)Eh1
] . (32)

Substituting (32) into (31), we derive an equation for γ,
K(γ) = C1(β̌) = 0, whose root is γ∗. By plugging γ = γ∗

back into (32), the exact solution for β̌ is obtained.
For step 3, if C2(β̌) ≥ 0, C3(β̌) ≥ 0, then we have that:
1) if α∗1 + γ∗ > 0, β = β̌ is a global minimizer satisfying

(12), (13), (14) with α1 = α∗1 + γ∗;

2) if α∗1 + γ∗ = 0, β = β̌ is a global minimizer in Case 1
that satisfies (8), (9), (10);

3) if α∗1 + γ∗ < 0, β = β̌ satisfies global optimality con-
ditions for the minimization of h1(β) with multipliers
α′1 = 1− α∗1 − γ∗, α′2 = α′3 = 0.

APPENDIX C
PROOF OF PROPOSITION 3

First, we summarize the process of finding β̂ as follows.
1. Check AA = {(α1, α2) : Mg1 − α1(Mg1 −
Mh1) − α2(Mg1 − Mg2) � 0} 6= ∅. Under the as-
sumption made in Proposition 2 that η2 ≥ η2

min =

max
{

(n+1)vX1,p

m(m+1) ,
(n+1)vX2,p

(n−m+1)(n−m)

}
, we have Ag1h1 = {α :

Mg1 − α(Mg1 − Mh1) � 0} 6= ∅ and Ag1g2 = {α :
Mg1 − α(Mg1 −Mg2) � 0} 6= ∅, which implies AA 6= ∅.
2. Solve the optimization problem

min
β

k(β) = g1(β)− α∗1[g1(β)− h1(β)],

s.t. C1(β) = C2(β) = 0. (33)

3. For the solution to (33), check whether α1 > 0, α2 > 0,
and (18) are satisfied.

We now provide more details of steps 2 and 3. In step 2,
define the Lagrangian function of (33) as

L(β, γi) = k(β)− γ1C1(β)− γ2C1(β)

= (1− α∗1 − γ1 − γ2)g1(β) + (α∗1 + γ1)h1(β) + γ2h1(β).

Then the derived optimal solution β̌ and the corresponding
Lagrangian multipliers γ∗1 , γ

∗
2 satisfy first-order, second-order

and the constraint conditions
∂L
∂β
|β̌ = (1− α∗1 − γ∗1 − γ∗2 )

∂g1(β)

∂β
|β̌

+(α∗1 + γ∗1 )
∂h1(β)

∂β
|β̌ + γ∗2

∂g2(β)

∂β
|β̌ = 0,(34)

∂2L
∂β2

= 2[(1− α∗1 − γ∗1 − γ∗2)Mg1

+(α∗1 + γ∗1 )Mh1 + γ∗2Mg2 ] � 0, (35)
C1(β̌) = 0, C2(β̌) = 0. (36)

From (34), we have

0 = [(1− α∗1 − γ∗1 − γ∗2 )Mg1 + (α∗1 + γ∗1 )Mh1

+γ∗2Mg2 ] β̌ − (1− α∗1 − γ∗1 − γ∗2 )Eg1

−(α∗1 + γ∗1 )Eh1
− γ∗2Eg2 ,

where Eg2 = Cg2X
T
1 y1 +Dg2X

T
2 y2. Then we have

β̌ = [(1− α∗1 − γ∗1 − γ∗2)Mg1 + (α∗1 + γ∗1)Mh1
+ γ∗2Mg2 ]

−1

· [(1− α∗1 − γ∗1 − γ∗2)Eg1 + (α∗1 + γ∗1)Eh1
+ γ∗2Eg2 ] . (37)

Plugging (37) into (36), we have

K1(γ1, γ2) = C1(β̌) = 0,K2(γ1, γ2) = C2(β̌) = 0,

with solution (γ∗1 , γ
∗
2 ). By substituting γ1 = γ∗1 , γ2 = γ∗2 into

(37), we obtain the solution for β̌.
For step 3, the verification process is given as follows.



1) If α∗1 +γ∗1 > 0 and γ∗2 > 0, (15), (16), (17) are satisfied
for α1 = α∗1 + γ∗1 , α2 = γ∗2 and β = β̌ based on (34),
(35), (36). If we further have C3(β̌) ≥ 0, then β̌ is a
global minimizer of (5).

2) If α∗1 + γ∗1 < 0, we could consider the minimization of
h1(β).

3) If γ∗2 < 0, we consider the minimization of g2(β).

APPENDIX D
PROOF OF LEMMA 2

Note that c1 and c2 are independent without considering
the optimization on ηc1 . In particular, the first term in g(β, X̂)
only involves c1 and the second term in g(β, X̂) only involves
c2. Thus, we firstly focus on the first term in g(β, X̂) and
solve the maximization with respect to c1.

max
ηc1

max
‖d‖2≤1

max
‖c1‖2=ηc1

‖y1 −X1β − c1d
Tβ‖22

= max
ηc1

max
‖d‖2≤1

max
‖c1‖2=ηc1

(dTβ)2‖e1‖22

= max
ηc1

max
‖d‖2≤1

(dTβ)2 max
‖c1‖2=ηc1

‖e1‖22,

in which e1 = f1 − c1 with f1 = 1
dTβ

(y1 −X1β). For the
maximization problem on c1, we have

max
c1
‖e1‖22, s.t. ‖c1‖2 = ηc1 ,

⇐⇒ min
e1
−‖e1‖22, s.t. ‖f1 − e1‖22 = η2

c1 . (38)

Although (38) is not a convex optimization problem, we can
first investigate its KKT necessary conditions. The Lagrangian
function of (38) is

L(e1, γe1) = −‖e1‖22 + γe1(‖f1 − e1‖22 − η2
c1),

where γe1 is the Lagrangian multiplier. According to the KKT
conditions, we have

∂L(e1, γe1) = −2eT1 − 2γe1(f1 − e1)T = 0,

‖f1 − e1‖22 = η2
c1 ,

from which we can derive that the solution to (38) is e∗1 =
f1 +

ηc1
‖f1‖2f1, and the maximum value is

max
‖c1‖2=ηc1

‖e1‖22 = ‖e∗1‖22 =

(
1 +

ηc1
‖f1‖2

)2

‖f1‖22.

Then we focus on the second term in g(β, X̂), solve
the maximization on ηc2 , and derive the formulation for
gm1(ηc1 ,β,d).
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We observe that gm1
(ηc1 ,β,d) is a quadratic function with

respect to dTβ, i.e.

gm1(ηc1 ,β,d) = A(dTβ)2 +B(dTβ) + C, (39)

in which A,B,C are three coefficients. In particular, we have

A = (Cg −Dg) η
2
c1 +Dgη

2
c , (40)

B = 2 [Cgηc1‖y1 −X1β‖2 +Dgηc2‖y2 −X2β‖2] ≥ 0,

C = Cg‖y1 −X1β‖22 +Dg‖y2 −X2β‖22. (41)

Since A > 0, − B
2A ≤ 0 and dTβ ∈ [−‖β‖2, ‖β‖2], we can

conclude that the maxima of gm1(d|ηc1 ,β) is attained when
dTβ = ‖β‖2 and the maximum value is

max
‖d‖2≤1

gm1
(ηc1 ,β,d)

= Cg(‖y1 −X1β‖2 + ηc1‖β‖2)2

+Dg(‖y2 −X2β‖2 +
√
η2
c − η2

c1‖β‖2)2,

which provides the form of ga.

APPENDIX F
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In this case, the analysis for the first term in g(β, X̂)
remains the same. However, for the second term, we have

min
ηc2

min
‖d‖2≤ η

ηc2

min
‖c2‖2≤ηc2

‖y2 −X2β − c2d
Tβ‖22

= min
ηc2

min
‖d‖2≤ η

ηc2

(dTβ)2 min
‖f2−e2‖2≤ηc2

‖e2‖22,

where ηc2 =
√
η2
c − η2

c1 , f2 = 1
dTβ

(y2 −X2β) and e2 =
f2−c2. Thus, the minimization on e2 is a convex problem. By
exploring the KKT conditions of the minimization problem,
we are able to find the optimal solution. Particularly, the
Lagrangian function of the minimization problem on e2 is

L(e2, γe2) = ‖e2‖22 + γe2(‖f2 − e2‖22 − η2
c2),

in which γe2 is the Lagrangian multiplier. By exploring the
KKT conditions, we have

∇L(e2, γe2) = 2eT2 − 2γe2(f2 − e2)T = 0, (42)
‖f2 − e2‖22 ≤ η2

c2 ,

γe2(‖f2 − e2‖22 − η2
c ) = 0, (43)

γe2 ≥ 0.

By inspecting the complementary slackness condition (43), we
consider two cases based on the value of γe2 .

Case 1: γe2 = 0. In this case, we have e2 = 0 according
to (42), which can be true when ‖f2‖2 ≤ ηc2 . Moreover, note
that

‖f2‖2 ≤ ηc2 ⇐⇒ ‖y2 −X2β‖2 ≤ dTβηc2
(a)

≤ η
ηc2
‖β‖2ηc2 = η‖β‖2,

where the equality in (a) is achieved if d = η
ηc2‖β‖2

β. Thus,
as long as ‖y2 − X2β‖2 ≤ η‖β‖2, the minimum value of
‖e2‖22 is 0.

Case 2: γe2 > 0. If there is no feasible solution in Case
1, we can conclude that ‖f2‖2 > ηc2 . Moreover, by (42) and
(43), we have e∗2 =

γ∗
e2
f2

γ∗
e2

+1 , ηc2 = ‖f2−e∗2‖2 = 1
γe∗2

+1‖f2‖2,



which implies γ∗e2 = ‖f2‖2
ηc2
−1, e∗2 = f2−

ηc2
‖f2‖2f2. Then we

have

min
‖f2−e2‖2≤ηc2

‖e2‖22 = ‖e∗2‖22 =

(
1− ηc2
‖f2‖2

)2

‖f2‖22.

By combining these two cases, Lemma 3 is proved.
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Now we solve the maximization problem on d. Firstly,
consider the case when ‖y2 − X2β‖2 ≤ η‖β‖2. In this
case, we notice that as long as ηc1 6= 0, gm2

(ηc1 ,β,d)
is a quadratic function for dTβ with A = Cgη

2
c1 > 0,

B = 2Cgηc1‖y1 − X1β‖2 ≥ 0 and − B
2A ≤ 0. Thus, the

maxima is attained when dTβ = ‖β‖2 and the maximum
value of g(β, X̂) is

gb1(ηc1 ,β) = Cg(‖y1 −X1β‖2 + ηc1‖β‖2)2.

For ηc1 = 0, the attacker only changes the feature matrix of
the second group and the maximum value of g(β, X̂) can also
be derived as gb1(ηc1 ,β).

Secondly, consider the case when ‖y2 −X2β‖2 > η‖β‖2.
In this case, gm2

(ηc1 ,β,d) can also be written in the form
of (39) with coefficients A,B,C. In particular, A and C are
defined the same as (40) and (41), and B is defined as B =
2Cgηc1‖y1 −X1β‖2 − 2Dgηc2‖y2 −X2β‖2 ≥ 0. Since the
coefficient of the quadratic term A can be positive, negative
or zero, the maxima of gm2

varies. By investigating into these
three different cases, we have that when ‖y2 − X2β‖2 >
η‖β‖2, the maximum value of g(β, X̂) is gb2(ηc1 ,β).

If A > 0, we have − B
2A ≤ 0 and the maxima is

attained when dTβ = ‖β‖2 with the maximum value to be
max‖d‖2≤1 gm2(ηc1 ,β,d) = Cg(‖y1−X1β‖2 +ηc1‖β‖2)2 +
Dg(‖y2 −X2β‖2 − ηc2‖β‖2)2, which implies that

max
‖cdT ‖F≤η

g(β, X̂)

= max
0<ηc≤η

max
0≤ηc1≤ηc

max
‖d‖2≤1

gm2
(ηc1 ,β,d)

(a)
= max

0≤ηc1≤η

[
Cg(‖y1 −X1β‖2 + ηc1‖β‖2)2

+Dg(‖y2 −X2β‖2 − max
0<ηc≤η

ηc2‖β‖2)2

]
= max

0≤ηc1≤η
gb2(ηc1 ,β),

where (a) follows from the fact that Dg < 0 and ‖y2 −
X2β‖2 > η‖β‖2 ≥ ηc2‖β‖2.

If A = 0, from the expression of A, we have η2
c1 =

− 1
n+ λ

n−m
λ
m+ λ

n−m
η2
c , which is feasible as

− 1
n+ λ

n−m
λ
m+ λ

n−m
∈ (0, 1). Then

since B ≥ 0, gm2
is a linearly non-decreasing function in

dTβ and the maxima is attained when dTβ = ‖β‖2 with the
maximum value to be the same as gb2(ηc1 ,β).

Otherwise, if A < 0, gm2
is a concave quadratic function in

dTβ with − B
2A >

( λ
n−m−

1
n )ηc2‖y2−X2β‖2

−( λ
n−m−

1
n )η2c1+( λ

n−m−
1
n )η2c

(g)
>

ηc2η‖β‖2
η2c2

≥
‖β‖2, in which (g) is from the fact that ‖y2 − X2β‖2 >

η‖β‖2. Thus, the maxima is attained when dTβ = ‖β‖2 and
the maximum value is also gb2(ηc1 ,β).

APPENDIX H
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Since the forms of ga, gb1 , gb2 , ha, hb1 , hb2 are similar, we
only show the weakly-convex-weakly-concave property of ga.
For ηc1 , we have

∂2ga(ηc1 ,β)

∂η2
c1

= 2

(
λ

m
+

λ

n−m

)
‖β‖22 − 2Dg

η2

η3
c2

‖β‖2‖y2 −X2β‖2.

Since Dg ≥ 0, as long as ‖β‖2 is bounded, there always exist
a constant ρ1 <∞ such that ∂

2ga(ηc1 ,β)

∂η2c1
≤ ρ1, which indicates

that ga is weakly-concave in ηc1 .
For β, we have

∂2ga(ηc1 ,β)

∂β2
≥ 2Cg

[
ηc1

(
ηc1 − 2

Tr(XT
1 X1)

‖X1‖F

)
+XT

1 X1

]
+2Dg

[
ηc2

(
ηc2 − 2

Tr(XT
2 X2)

‖X2‖F

)
+XT

2 X2

]
.

Since X1 and X2 are feature matrices with finite norm, there
always exist ρ2 < ∞ such that ∂2ga(ηc1 ,β)

∂β2 ≥ −ρ2I , which
indicates that ga is weakly-convex in β.

APPENDIX I
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For ga, we have

∂ga(ηc1 ,β)

∂ηc1
= 2Cg‖β‖2‖y1 −X1β‖2 +

2 (Cg −Dg) ηc1‖β‖22 − 2Dg
ηc1
ηc2
‖β‖2‖y2 −X2β‖2 = 0,

which implies(
ηc1‖β‖2 +

Cg
Cg −Dg

‖y1 −X1β‖2
)

·
(
ηc2‖β‖2 −

Dg

Cg −Dg
‖y2 −X2β‖2

)
= − CgDg(

λ
n−m + λ

m

)2 ‖y1 −X1β‖2‖y2 −X2β‖2. (44)

From (44), we note that ηc1 and ηc2 are inversely proportional.
Since we also have η2

c1 +η2
c2 = η2, ηc1 ≥ 0 and ηc2 ≥ 0, there

is a unique solution for (44) (which can be seen geometrically),
denoted as η∗c1 . Moreover, we have

• ηc1 < η∗c1 , left hand side of (44) is positive;
• ηc1 > η∗c1 , left hand side of (44) is negative.

Thus, ga is a unimodal function that increases first and then
decreases. The results can be easily generalized to other sub-
functions.
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Chova, and G. Camps-Valls, “Fair kernel learning,” in Proc. Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases, (Skopje, Macedonia), pp. 339–355, Springer, Sep. 2017.

[46] H. Hmam, “Quadratic optimisation with one quadratic equality con-
straint,” tech. rep., Defence Science and Technology Organisation Ed-
inburgh (Australia) Electronic Warfare and Radar Division, Jun. 2010.


