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A Neural Monte Carlo Based Approach for Online
Bayesian Change Point Detection

Xiaochuan Ma, Lifeng Lai, and Shuguang Cui

Abstract—Online quickest change-point detection (QCD) is
widely used in many applications such as network monitoring,
power outage detection, etc. The optimal solutions to the QCD
problem under different settings have been extensively studied.
Most of these solutions require a priori information about the
QCD model and i.i.d. data samples. However, in many real-
world applications, these requirements may not be satisfied.
In these situations, the optimal QCD rules are not available.
This paper proposes a Neural Monte Carlo (NMC) based data-
driven change-point detection rule for the online Bayesian QCD
problem. The only required assumption for the NMC-based
method is that the random change point follows a Geometric
distribution. In this method, the posterior probability is treated
as a value function and approximated by a randomized neural
network. Only the linear output layer of the neural network
is trainable. Therefore, trained with the Gradient Monte Carlo
algorithm, this neural network is guaranteed to converge. More
importantly, this method works not only for i.i.d. data samples
but also for non-i.i.d. data. Numerical results illustrate that the
NMC-based method can detect the change point accurately and
timely.

Index Terms—Quickest change-point detection, data-driven,
random neural network, Gradient Monte Carlo algorithm, non-
i.i.d.

I. INTRODUCTION

Quickest change point detection (QCD) is an important
task in many applications, including intrusion detection in
computer networks [1], outage detection in power systems
[2], [3], health care [4], financial market surveillance [5], etc.
Timely and accurate detection of the change is the goal we
want to achieve in the QCD problem [6]–[11].

The QCD problem was extensively studied and many
powerful methods have been proposed for different problem
settings. For the Bayesian QCD problem when the pre-change
and post-change distributions, and the prior probability of
the change point are known, [12] gives the optimal solution.
For the non-Bayesian QCD problem where the change point
is assumed to be unknown but fixed, the solution Cumu-
lative Sum (CUSUM) is given in [13]. As proved in [14],
the CUSUM method is optimal for the non-Bayesian QCD
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problem under Lorden’s criteria. In addition, QCD problems
under different other assumptions of the latent stochastic QCD
process are studied in [15]–[17]. However, two limitations
make these methods hard to be used in many real-world
applications. First, full knowledge of the sample distributions
and their latent statistical structure is required to run these
methods. Although there are some works that assume the
distributions are unknown, they still assume the statistical
structure of the observations is known. For example, in [15],
the distributions of the data samples are unknown but they
are assumed to belong to the multivariate exponential family.
However, in many real-world applications, this knowledge
about the latent stochastic QCD process is also unknown. A
common situation is that the only given information is the
historical ground truth data. Secondly, many of the existing
methods assume the observed data samples are independent
and identically distributed (i.i.d.), which is not always true
in many real-world applications. As a promising approach to
address these issues, the data-driven QCD method becomes
more and more of interest in recent years. At the same
time, machine learning provides many efficient algorithms
to solve data-driven problems. Therefore, machine learning
algorithms have already been applied to QCD problems. For
example, [18]–[22] propose different data-driven algorithms
for non-Bayesian QCD problems. On the other hand, as the
Bayesian QCD process can be viewed as a partially observable
Markov decision process (POMDP), reinforcement learning
based methods can also be applied to solve the data-driven
Bayesian QCD problems. In [23], the tabular Q-learning is
applied to solve the change-point detection in the power
system. A deep Q-network (DQN) based QCD rule is proposed
in [24]. These two papers regard the Bayesian cost as a
negative reward of a POMDP and use reinforcement learning
methods to maximize the total reward. However, [23] still
requires the knowledge of the pre-change distribution, and the
performance of the tabular Q-learning method will be degraded
when the state space is large. As for the DQN-based method
in [24], although the instability in the training of DQN can be
partially addressed by techniques such as experience replay
and target Q-network, the convergence of the algorithm is
still not guaranteed. The instability in the training process can
affect the performance of the DQN-based QCD rule.

In this paper, we propose a Neural Monte Carlo (NMC)
based method to solve the data-driven Bayesian QCD problem.
In the optimal solution of the Bayesian QCD problem for
i.i.d. data samples, an alarm will be raised once the posterior
false alarm probability is lower than a threshold. On the other
hand, the posterior false alarm probability can be regarded
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as a value function and learned from the historical data set.
Concretely, at any time t we get a reward if we raise an alarm.
If the change happens after t, the reward is 1; otherwise, the
reward is 0. In this case, the false alarm probability at time t
is equivalent to the value function of raising an alarm at time
t. Inspired by these facts, we propose a reinforcement learning
based method to solve the data-driven Bayesian QCD problem.
First, we apply a randomized neural network to approximate
the posterior false alarm probability. This neural network
takes the historical data observations as input and outputs the
approximation of the posterior false alarm probability. Since
the posterior false alarm probability is mainly determined
by the recently collected data samples rather than earlier
data samples, the input of the neural network is the data
samples within the most recent sliding window. With this
neural network, the posterior false alarm probability can be
monitored as new data samples come up. In particular, all
the weights in this neural network except the linear output
layer are untrainable. Therefore, training with the Gradient
Monte Carlo algorithm [25], the neural network is guaranteed
to converge. Afterward, following the idea of the optimal
solution of the Bayesian QCD problem for i.i.d. data samples,
the proposed NMC-based QCD rule raises an alarm once the
approximation of the posterior false alarm probability meets
a given threshold. The optimal threshold is chosen based on
the performance on the validation data set. Besides, as a
solution to the data-driven QCD problem, this method does
not require prior knowledge about pre-change and post-change
distributions. The only assumption is that the change point is
a geometric random variable, which is satisfied in many real-
world phenomena, such as failure times. More importantly,
the proposed NMC-base QCD rule also works for non-i.i.d.
data samples. The observation model of the different non-i.i.d.
QCD problems could be different. Data sequences generated
by a hidden Markov model (HMM) is a special case of non-
i.i.d. data. In this paper, we take the HMM QCD problem
as an example of non-i.i.d. QCD problems to explain how to
apply the NMC-base QCD rule to non-i.i.d. observation data.
Finally, numerical experiments are carried out and the results
show that this NMC-based QCD rule has good performance
in different Bayesian QCD problem settings.

The remainder of the paper is organized as follows. In
Section II, we introduce the online Bayesian QCD problems
for the i.i.d. case and HMM case. Then we introduce the
optimal solution for QCD problems for i.i.d. case and HMM
case in Section III. Afterwards, we propose the NMC-based
QCD rule for i.i.d. case, HMM case and other non-i.i.d.
cases in Section IV and V, respectively. Simulation results
are provided in Section VI. Finally, we conclude this paper in
Section VII.

II. PROBLEM FORMULATION

In this section, we introduce the formulation of the QCD
problem with two different observation models, i.e., the i.i.d.
case and the Hidden Markov Model (HMM) case.

A. i.i.d observation model

Consider a probability space (Ω,F ,P) that hosts a stochas-
tic process {Xt}1≤t. Let λ : Ω 7→ {0, 1, . . .} be the time when
the distribution of Xt changes. In the i.i.d. observation case,

the observations {Xi, i ≥ λ} i.i.d∼ f1(x) and {Xi, 0 ≤ i <

λ} i.i.d∼ f0(x). Given λ, {Xt}t≥0 are independent. In addi-
tion, F = (Ft)t≥0 is the filtration generated by the stochas-
tic process {Xt}t≥0; namely, F0 = {∅,Ω} and Ft =
σ(X1, X2 . . . Xt).

B. HMM observation model

Let {Yt, t ≥ 0} be a time-homogeneous Markov chain
on a probability space (ΩY ,FY ,PY ) with finite state space
Y = {1, 2, ..., I}, and transition matrix P in which P (k, i) :=
P(i|k) for i, k ∈ Y . Suppose Y1 = {I0 + 1, I0 + 2, ..., I}
is a closed subset of Y , where I0 < I . The collection of
remaining states Y0 = Y\Y1 = {1, 2, ..., I0} does not have
any closed sets. In other words, in the transition matrix P ,
P (yt, yt+1) = 0 if yt ∈ Y1 and yt+1 ∈ Y0. The change time
λ : Ω 7→ {0, 1, . . .} is the first time the state Yt ∈ Y1, i.e.,
λ is the time when the hidden states change from Y0 to Y1.
In addition, the initial probability P (Y0 = i) = ηi where∑
i∈Y ηi = 1. Let −→η = (η1, η2, ..., ηI).
However, the sequence {Yt, t ≥ 0} can not be directly

observed. {Xt}1≤t is the directly observable process hosted
by a probability space (Ω,F ,P) and the distribution of Xt

depends on the hidden state Yt. Let fy(X ), y ∈ Y be the
probability measures on a measurable space (X ,X), then

P (Y0 = y0, Y1 = y1, . . . , Yt = yt, X1 = x1, · · · , Xt = xt)

= −→η (y0)
∏t
n=1 P (yn−1, yn) fyn(xn)

for t ≥ 1, y0, y1, ..., yt ∈ Y .

C. Bayesian quickest change detection problem

In Bayesian QCD problem, the change point, λ, follows a
prior distribution Pλ. In this paper, we assume Pλ is

P{λ = t} =

{
ρ,
(1− ρ)tρ,

if t = 0
if t 6= 0

.

For the HMM case, the transition matrix satisfies∑
k∈Y1

P (i, k) = ρ for every i ∈ Y0 and the initial
probabilities satisfy

∑
k∈Y1

ηk = ρ.
Our goal is to detect the change point λ quickly and

accurately, based on the observation sequence {Xt, t > 0}.
Let τ be the time we raise an alarm. Then the false alarm
happens if τ < λ and the delay is (λ− τ)+. Hence we define
the expected cost of the change point detection problem as

C(τ) = E[1{τ<λ} + c(λ− τ)+] (1)

where 1{·} the indicator function and c is the unit cost of
detection delay. Therefore, the best expected cost for the
change point detection problem is

V0 = inf
τ∈T

E[1{τ<λ} + c(λ− τ)+] (2)

where T is the space of stopping time τ : Ω→ {1, 2, · · · , T}.
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As will be discussed in Section III, the optimal solution for
online Bayesian QCD problem can be found when ρ, f0 and
f1 or −→η , P and P(x|y) are known. However, the knowledge
is not always available in real-world problems. When the true
underlying model is different from the model used to derive the
optimal solution, the performance could be seriously affected.
In practice, a common situation is that the only information
we have is the historical data about the QCD process. In this
paper, we want to solve the online Bayesian QCD problem
under the data-driven problem setting. Concretely, based on
the historical dataset, our goal is to find a data-driven stopping
rule which can achieve or get close to V0.

III. THE OPTIMAL SOLUTION WITH PRIOR KNOWLEDGE
OF THE QCD PROCESS

Before discussing the proposed data-driven solution, we
introduce the optimal solution of the online Bayesian QCD
problem. The optimal solution only works when prior knowl-
edge of the QCD process is known. However, the structure
of the optimal solution is important for the understanding of
the proposed NMC-based QCD rule, which will be introduced
in Sections IV and V for the i.i.d. and HMM observation
models respectively. Therefore, in this section, we provide a
brief introduction of the optimal solution for Bayesian QCD
problems for the i.i.d. case and the HMM case. For detailed
proof of the optimal QCD rules in these two cases, please
refer to [10], [17].

A. The i.i.d. case

For t ≥ 0, let Πt = (Π
(0)
t ,Π

(1)
t ) ∈ Z be the posterior prob-

ability process defined as Π
(1)
t := P{λ ≤ t|Ft} and Π

(0)
t :=

P{λ > t|Ft} where Z ∆
= {Π ∈ [0, 1]2|Π(1) + Π(0) = 1}.

Following the derivation in [10], the expected cost in (1)
can be expressed as

C(τ) = E
[∑τ−1

n=0
cΠ(1)

n + Π(0)
τ

]
. (3)

Then we can define the cost-to-go function as a function of
the posterior probability,

W (Πt) = min
(

Π
(0)
t , cΠ

(1)
t + E [W (Πt+1)|Ft]

)
. (4)

The first item inside the minimization is the expected cost
of raising an alarm immediately and the second item is the
expected cost of observing more data samples. W (Πt) is the
minimal expectation of the cost we still need to pay in the
future based on the current state Πt.

For the i.i.d case, when the pre-change distribution f0,
post-change distribution f1, and the distribution of change ρ
are known, we are able to update the posterior probability
recursively following:

Π
(0)
t =

(1− ρ)Π
(0)
t−1f0(xt)

(1− ρ)Π
(0)
t−1f0(xt) +

(
Π

(1)
t−1 + Π

(0)
t−1ρ

)
f1(xt)

(5)

and Π
(1)
t = 1 − Π

(0)
t . The initial state, Π0 = (1 − ρ, ρ).

Based on this recursive updating rule, E [W (Πt+1)|Ft] can
be calculated as

E [W (Πt+1)|Ft] =

∫
W (Πt+1(Πt, x))

∑
i∈{0,1}

fi(x)Π
(i)
t dx.

Then, we can use dynamic programming (DP) to solve the
Bellman equation (4) and obtain the cost-to-go W (Π) for all
Π ∈ Z .

After solving (4) using dynamic programming, we have the
cost-to-go function Wt(Πt) for 0 ≤ t ≤ T . The optimal
stopping rule is τ∗ = inf

{
t|Wt(Πt) = Π

(0)
t

}
. As discussed

in [10], when Pλ is a Geometric distribution, then the optimal
solution can be further simplified as

τopt = inf{t ≥ 0|Π(0)
t ≤ π∗} (6)

where π∗ = sup{π ∈ [0, 1]|π = W ((π, 1 − π))}. This rule
indicates that we should raise an alarm once the expected cost
of false alarm is smaller than the expected cost of observing
more data samples.

B. The HMM case
For the HMM case, we can apply a similar solution

as in the i.i.d. case. However, the posterior probability we
used in the i.i.d. case, Πt, can not be recursively updated.
For this reason, we define the posterior probabilities Π̃t =

(Π̃
(1)
t , Π̃

(2)
t , ..., Π̃

(I)
t )t≥0 ∈ Z̃ , where Π̃

(i)
t := P{yt = i|Ft}

for all i ∈ Y and Z̃ = {Π̃ ∈ [0, 1]I |
∑
i∈Y Π̃(i) = 1}. With

this definition, the posterior false alarm probability can be
expressed as

∑
i∈Y0

Π̃(i). Therefore, the expected cost in (3)
can be expressed as

C(τ) = E

[
c
∑τ−1

n=0

∑
i∈Y1

Π̃(i)
n +

∑
i∈Y0

Π̃(i)
τ

]
. (7)

Then we can define the cost-to-go function for this DP problem
as a function of the posterior probability,

W (Π̃t) = min

(∑
i∈Y0

Π̃
(i)
t ,

c
∑

i∈Y1

Π̃
(i)
t + E

[
W (Π̃t+1)|Ft

])
.

(8)

The first item inside the minimization is the expected cost
of raising an alarm immediately and the second item is the
expected cost of observing one more data sample. W (Π̃t) is
the minimal expectation of the cost we still need to take in
the future based on the current state Πt.

For the HMM case, when the sample distributions {fy}y∈Y ,
transition matrix P , and the distribution of change ρ are
known, we are able to update the posterior probability Π̃t

recursively. Concretely, Π̃t can be updated recursively as:

Π̃
(i)
t =

∑
k∈Y Π̃

(k)
t−1P (k, i)fi(xt)∑

j∈Y
∑
k∈Y Π̃

(k)
t−1P (k, j)fj(xt)

, for i ∈ Y, (9)

and Π̃0 = (η1, η2, ..., ηI). Based on this recursive updating
rule, E

[
W (Π̃t+1)|Ft

]
can be calculated as

E
[
W (Π̃t+1)|Ft

]
=

∫
W (Π̃t+1(Π̃t, x))

∑
i∈Y

fi(x)Π̃
(i)
t dx.
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Then, we can use DP method to solve the Bellman equation
(8) and calculate the cost to go W (Π̃) for all Π̃ ∈ Z̃ . The
optimal stopping rule is

τ∗ = inf
{
t|Wt(Π̃t) =

∑
i∈Y0

Π̃
(i)
t

}
. (10)

This rule indicates that we should raise an alarm once the
expected cost of false alarm is smaller than the expected cost
of observing more data samples.

IV. A NEURAL MONTE CARLO BASED QCD RULE FOR
THE I.I.D CASE

As described in Section III, a key step in the optimal QCD
rules is to update posterior probabilities (Πt or Π̃t) recursively.
This updating step can only be implemented when the a-
priori information such as P , −→η , ρ, f0, f1 and fy are known.
However, in many applications, it is common that a historical
dataset with finite data samples is the only given resource.
Concretely, only the observation sequences and the true change
points in the dataset are known. We even do not know if the
data samples are i.i.d., following an HMM, or some other non-
i.i.d. process. In this case, it is hard to accurately extract these
a-priori information from the data set. Therefore, we need a
data-driven method that can help us estimate the posterior
probabilities from the data. In this section, we will propose
the Neural Monte Carlo (NMC) based solution for the i.i.d.
case. In the next section, we will explain why this method also
works for the HMM case and other non-i.i.d. cases.

From (6), we know that the posterior probability Π
(0)
t and

the threshold π∗ are key parts of the optimal QCD rule for the
i.i.d. case. In the data-driven setting, if we can approximate
the posterior probability with Π̂

(0)
t for any time t, then we can

select the optimal threshold π̂∗ using line search and finally
have a data-driven QCD rule similar to (6). To this end, we
propose a Neural Monte Carlo (NMC) based solution for the
data-driven QCD problem. The steps of the NMC-based QCD
rule is given in Algorithm 1. Next, we will introduce these
steps of this NMC-based QCD method.

A. A Neural Monte Carlo approximation model

If the cost of false alarm cF = 1, Π
(0)
t can be seen as

the expected cost of raising an alarm given all data samples
collected by t. In other words, the value function correspond-
ing to the observations {x1, x2, ...xt} is Π

(0)
t . Therefore, the

problem of estimating Π
(0)
t can be seen as a value function

approximation problem.
In the data set, we have the data sequences and the true

change points of these sequences. With this data set, we can
use the Monte Carlo method to approximate Π

(0)
t . Because

continuous observation data samples are common in the QCD
problem, we have a continuous input space. Therefore, we
approximate Π

(0)
t using a randomized neural network in this

paper. In a randomized neural network, only the weights
between the hidden layer and the output layer are trained while
all other weights are frozen since initialized. In particular, the
last layer of the randomized neural network is a linear layer.
Therefore, training the randomized neural network becomes a

convex problem and has a convergence guarantee. More im-
portantly, as proved in [26], [27], a randomized neural network
can accurately approximate any continuous functions with a
sufficiently wide hidden layer. Therefore, in this paper, we
apply a simple shallow neural network with one hidden layer.
If we need a more powerful model for specific applications, a
deep extension to this neural network is immediate.

B. Data Preprocessing

Since the dimension of the input layer of the randomized
neural network is fixed and the size of all observed samples
(X1, · · · , Xt) changes with different time t, we can not input
(X1, · · · , Xt) to the neural network. Therefore, we set the
input of the neural network as the observations in a sliding
window with width w, i.e., Xt = (Xt−w+1, · · · , Xt). From
equation (5), we can see that recently collected data samples
are usually more important than earlier data samples in the
calculation of Π

(0)
t for the i.i.d case. In other words, with an

appropriate value of w, the data samples in the sliding window
Xt are sufficient to make a good estimation of Π

(0)
t . Typically,

we select a large w if earlier data samples are important in
the calculation of posterior probability. Otherwise, we can use
a relatively narrow sliding window. For every time t and the
corresponding input Xt, the reward of raising alarm at t, Rt,
is 1 if t < λ. On the other hand, if t ≥ λ, Rt = 0.

The dataset includes N episodes of the change process. For
the ith episode, the data includes a sequence of T samples,
Si = (Xi,1, · · · , Xi,T ) and the true change point λi. To
make the sequential data fit the sliding window, we need to
preprocess the sequences in the dataset. For the first w − 1
samples in each sequence, they do not have enough previous
samples to make a w long input sequence. To handle this
issue, we add a w − 1 long prefix to every sequence in the
dataset. Firstly, we collect all pre-change data samples in the
training set and obtain a pool of pre-change samples. Then
for each episode, w − 1 samples are randomly picked from
the pool of pre-change samples and added in front of the data
sequence. As a result, for the ith episode, the data sequence
becomes S̃i = (Xi,2−w, · · · , Xi,0, Xi,1, · · · , Xi,T ). For each
data sequence S̃i, we can generate T input data samples
{Xi,1,Xi,2...,Xi,T } where Xi,t = (Xi,t−w+1, · · · , Xi,t). The
corresponding reward samples are {Ri,1, Ri,2..., Ri,T } where
Ri,t = 0 if t > λi and Ri,t = 1 if t ≤ λi. By combining
M episodes of data samples, {S̃i}1≤i≤M , we have the train-
ing data set {XNMC ,

−→
RNMC}. The rest N −M episodes,

{S̃i}M+1≤i≤N , are used for building the validation set and
test set. Typically, we set M as 70% of N .

Following the steps stated above, we have built a training
dataset. However, in some situations, the training set could
be imbalanced. A common imbalanced situation is that, when
the length of the sequence T is very large, then there will
be many more post-change data samples than pre-change data
samples in the training set. With such an unbalanced training
set, the accuracy of the posterior probability approximation
model and the performance of the data-driven QCD rule can be
compromised. In this case, we can use rebalance techniques,
such as data selection or re-sampling, to process the training
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set {XNMC ,
−→
RNMC} if it is unbalanced. Concretely, we can

rebalance the training data set by discarding the data samples
after a threshold time T̃ < T . Since most of the post-change
data samples are at the later part of the sequence, dropping the
later data samples can reduce the fraction of post-change data
and make the training set balanced. In this paper, the threshold
time T̃ is treated as a hyper-parameter that can be tuned using
the validation data set.

C. Training Process of the Neural Monte Carlo model

The randomized neural network is trained using Monte
Carlo methods, as shown in Algorithm 1. Let θ0 ∈ R(w+1)×d

be the weights of the hidden layer, where d is the number
of nodes in the hidden layer. Then the output of the hidden
layer is O0,k = σ(θT0 I0,k), where I0,k = [Xk, 1] and Xk

is an input data sample in the training set. Here σ is the
activation function of the hidden layer. Elements in θ0 are
typically initialized by the standard normal distribution and
will not be changed in the training process. Let θ1 ∈ R(d+1)

be the weights of the output layer. Then the output of the
neural network is θT1 I1,k where I1,k = [O0,k, 1]. θ1 is the
weights we want to optimize in the training process. Since θ0

is fixed, we can get a hidden output data set I1,NMC from
XNMC . In this case, this training problem becomes a linear
value-function approximation problem. In [25], the gradient
Monte Carlo algorithm is introduced to solve this linear value-
function approximation problem and the updating rule of θ1,t

is
θ1,t+1 = θ1,t + α(Rt − θT1,tI1,t)I1,t (11)

for every step t, where α is the step size. Since the approxima-
tion model we apply is linear, the convergence of this training
process is guaranteed.

From the updating rule (11), we can see that

E[θ1,t+1|θ1,t] = θ1,t + α(E[RtI1,t]− E[I1,tI
T
1,t]θ1,t).

Therefore, this algorithm will converge to θ1,GMC at which

E[RtI1,t]− E[I1,tI
T
1,t]θ1,GMC = 0.

Since the data set {I1,NMC ,
−→
RNMC} is given in the

data-driven QCD problem, we can estimate E[RkI1,k]
and E[I1,kI

T
1,k] with the sample mean. Here I1,NMC ∈

R(d+1)×MT ,
−→
RNMC ∈ RMT . If there is enough data such

that E[RkI1,k] and E[I1,kI
T
1,k] can be well estimated by their

sample mean of the data set, the weights can be directly
calculated as

θ1 = (I1,NMCIT1,NMC)−1(I1,NMC
−→
RNMC). (12)

From the perspective of computational complexity, the direct
calculation (12) can only be used if the number of hidden
nodes is relatively small such that a (d+ 1)× (d+ 1) matrix
can be inverted with a reasonable running time and memory.
Therefore, as shown in Algorithm 1, if we have enough
computational resource to invert a (d + 1) × (d + 1) matrix,
we can directly calculate θ1. Otherwise, we can update θ1

following (11) iteratively.

Algorithm 1: NMC-based SCD rule

1 Data preprocessing following Section IV-B. Get data
set {XNMC ,

−→
RNMC};

2 Initialize a random neural network with hyper
parameter d, w, T̃ and weights following standard
gaussian distribution;

3 Get data set I1,NMC ;
4 if a (d+ 1)× (d+ 1) matrix can be inverted with

reasonable computational resource then
5 θ1 = (I1,NMCIT1,NMC)−1(I1,NMC

−→
RNMC);

6 else
7 for Ik ∈ I1,NMC do
8 θ1,t+1 = θ1,t + α(Rt − θT1,tI1,t)I1,t

9 end
10 end
11 Select the threshold π̂∗ by line search method.
12 Fine-tune the hyper-parameters w, d and T̃ .
13 Finally, the NMC-based QCD rule is

τ = inf{t ≥ 0|Π̂(0)
t ≤ π̂∗}.

Although the neural network is designed to approximate
the posterior probability, the output may not necessarily fall
in [0, 1] since the output layer is a linear layer. Therefore, after
getting the output of the neural network, we clip the output to
make sure it is a value in [0, 1] as

Π̂(0)(θ1,Xk) =

 1,
0,
θT1 I1,k,

if θT1 I1,k ≥ 1
if θT1 I1,k ≤ 0
Otherwise

.

D. Threshold Selection

After training the neural network, we can estimate posterior
probability Π̂

(0)
t for any time t. Next, we need to determine the

threshold π̂∗ for our NMC-based QCD rule. First, we apply
the well-trained neural network to approximate the posterior
probability Π̂

(0)
t for every sequence in the validation set.

Second, we run Monte Carlo experiments on sequences of
in the validation set and record the Bayesian costs for all
candidate threshold π ∈ {1/K, 2/K, ..., (K−1)/K, 1}, using
the threshold rule τ = inf{t ≥ 0|Π̂(0)

t ≤ π}. Here, K is the
number of candidates in the line search method. Finally, based
on the Bayesian cost records, we set π̂∗ as the candidate π
which is corresponding to the lowest Bayesian cost. Finally,
we have the NMC-based QCD rule as

τ = inf{t ≥ 0|Π̂(0)
t ≤ π̂∗}. (13)

V. A NEURAL MONTE CARLO BASED QCD RULE FOR THE
HMM CASE

In Section IV, by replacing the two key parts in the optimal
QCD rule, {Π(0)

t , π∗}, with corresponding approximations
{Π̂(0)

t , π̂∗}, we proposed a NMC-based rule (13) for the data-
driven Bayesian QCD problem in the i.i.d. case. It’s natural
to consider if we can do the same thing to the optimal rule
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Figure 1: QCD boundaries of a simple QCD example in HMM
case

in the HMM case. Unfortunately, it is challenging to extract
sufficient information for the optimal HMM QCD rule from
the observations. Concretely, it is hard to estimate the hidden
process from observations, e.g., the number of hidden states,
which state the post-change state is and which state the pre-
change state is, etc.. Without these information, even the
number of elements Π̃t should include is unknown. Hence
it is challenging to directly extend the optimal SCD rule for
the HMM to a data-driven version.

However, although we cannot estimate Π̃t, we can still
estimate the posterior probability Π

(0)
t =

∑
i∈Y0

Π̃
(i)
t , similar

to in the i.i.d. case. As the sufficient statistics Π̃t is unavailable,
the posterior probability Π

(0)
t becomes a reasonable alternative

indicator that can help to detect the change. Concretely, we
can apply the threshold rule as

τ = inf
{
t ≥ 0|Π(0)

t =
∑

i∈Y0

Π̃
(i)
t ≤ π

}
. (14)

To illustrate this threshold rule, a simple example is given
in Fig. 1. Assume we have a HMM QCD problem in which
Y = {1, 2, 3}, Y0 = {1} and Y1 = {2, 3}. In the posterior
probability space Z̃ = {Π̃ ∈ [0, 1]3|

∑
i∈Y Π̃(i) = 1}, the

optimal decision boundary given by (10) is the red curve.
The straight blue line represents the decision boundary of the
QCD rule (14). In general HMM QCD problems, the decision
boundary of the QCD rule (14) is a plane in the space Z̃ while
the decision boundary of the optimal rule (10) is a surface in
Z̃ . Since the information about the HMM is incomplete, we
use a plane as the alternative of the surface. In the data-driven
QCD problem, we apply the NMC-based QCD rule introduced
in Section IV to approximate the plane of the QCD rule (14).
Finally, we obtain the same NMC-based QCD rule as (13).

Due to the difference between the HMM case and the i.i.d.
case, we need to make some adjustments when we apply the
NMC-based SCD rule to HMM QCD problems. In HMM
case, the data samples in one sequence are not independent.
Therefore, the elements in the prefix of the data sequence
should not be independently selected as in the i.i.d. case. In
order to apply the NMC-based QCD rule to the HMM case,
one change is needed for the data preprocessing step. In HMM
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Figure 2: The Bayesian costs of the three QCD methods in
the i.i.d. Bernoulli experiment

case, we collect all pre-change subsequences from the data
sequences {Si}1≤i≤N as the pool of pre-change subsequences.
Note that, we only collect pre-change subsequence longer than
w − 1 samples. After that, for every sequence {Si}, w − 1
continuous data samples are randomly selected from the pool
of pre-change subsequences and added to Si as the prefix.
Afterwards, following the same steps as discussed in Section
IV, we have the NMC-based QCD rule for the HMM case,
which has the same expression as (13).

In the general non-i.i.d case, the posterior analysis and
the detection boundary could be even more complicated than
in the HMM case. That means getting the optimal solution
for a QCD problem in general non-i.i.d. case becomes even
harder. However, the posterior false alarm probability is still a
reasonable indicator for the non-i.i.d. QCD problem and can
be learned by following similar steps as those in the i.i.d. case
and the HMM case. Therefore, the NMC-based rule could still
be used for the QCD problem in different non-i.i.d. settings.
This will be validated in the following section by simulation.

VI. NUMERICAL RESULTS

To evaluate the performance of the proposed Neural Monte
Carlo QCD method, different numerical examples are pro-
vided. In the following examples, we evaluate the performance
of the NMC-based QCD method in i.i.d. and non-i.i.d. cases.
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Table I: Performances of the three QCD rules in the i.i.d. Bernoulli experiment

p0 = 0.2, p1 = 0.8, ρ = 0.01 p0 = 0.3, p1 = 0.7, ρ = 0.01

Delay False alarm probability Bayesian cost Delay False alarm probability Bayesian cost

Optimal

c=0.5 0.1912 0.8427 0.9383 0.0401 0.9505 0.9706
c=0.1 3.6891 0.1733 0.5422 2.7852 0.511 0.7895
c=0.05 5.2904 0.0695 0.334 6.8788 0.2224 0.5663
c=0.01 7.6478 0.0123 0.0888 14.1973 0.03 0.172

c=0.005 8.9288 0.0044 0.049 16.1054 0.0157 0.0962

NMC-based
method

c=0.5 0.2178 0.8316 0.9405 0.0137 0.9688 0.9757
c=0.1 3.5632 0.191 0.5473 2.3779 0.5549 0.79269
c=0.05 5.4253 0.0717 0.343 6.6513 0.2508 0.5832
c=0.01 7.9296 0.0177 0.097 13.8156 0.0639 0.2021

c=0.005 8.4346 0.0113 0.05347 17.3196 0.0382 0.1248

DQN-based
method

c=0.5 0.017 0.9707 0.9792 0.0792 0.9528 0.9924
c=0.1 3.8384 0.2089 0.5928 3.73 0.5373 0.9042
c=0.05 3.2874 0.2423 0.4066 5.4489 0.4519 0.7243
c=0.01 7.4965 0.0268 0.1017 13.0369 0.1922 0.3225

c=0.005 7.4978 0.0539 0.0914 17.4648 0.1199 0.2072
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Figure 3: The Bayesian costs of the Gaussian QCD experiment with change in mean vector

We also test the robustness of the NMC-based QCD method
using data generated by distributions that are different from
the training data. Moreover, we compare the performances of
the optimal solution, the DQN-based solution [24], and the
NMC-based solution in these numerical examples.

In all the following experiments, we assume the pre-change
and post-change distributions, and the prior distribution of the
change point is known for the optimal QCD method. On the
other hand, for training the NMC-based and DQN-based QCD
rules, we only use a limited historical dataset, including data
sequences and the corresponding change points. Concretely,
we build the NMC-based and DQN-based QCD rules with data
set including 20000 observation sequences and corresponding
change points. Each sequence includes 600 observations. For
the NMC-based method and DQN method, 14000 sequences
are used to train the neural network, 3000 sequences are used
for the validation set (tuning hyperparameters such as the size
of the neural network, the width of the sliding window, the
data rebalance parameter T̃ , and the best threshold π̂∗, etc.)
and the rest 3000 sequences are used to test the performance of
these methods. The hidden layer of the neural network in the
NMC-based method has 1000 nodes. The DQN model includes
two hidden layers with 200 and 100 nodes respectively. ReLU

is used as the activation function of all the hidden layers
in these two methods. For the training of the NMC-based
method, the rebalance parameter is set as T̃ = 100. In
addition, the width of sliding windows for the NMC-based
method and the DQN-based method are both 10. In most of
the following experiments, the DQN-based and NMC-based
models are implemented following these instructions. Further
information will be provided if we need to make changes to
these parameters in specific experiments.

A. QCD experiments in i.i.d. case

In the first example, we study the performance of the
optimal QCD solution, the NMC-based solution, and the
DQN-based QCD solution when the observations are i.i.d.
discrete random variables. Concretely, f0 = Bern(p0) and
f1 = Bern(p1), where p0 and p1 are the parameters of the
pre-change and post-change Bernoulli distributions. The prior
distribution of the change-points, Pλ, is a geometric distribu-
tion with parameter ρ = 0.01. Based on this information, we
can calculate the posterior probability and further obtain the
optimal solution by dynamic programming. Using the training
data set, we obtain the DQN-based and NMC-based QCD
rules. After that, we compare the Bayesian costs, C(τ), of
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Table II: Performances of the three QCD rules in the i.i.d. 2D Gaussian experiment: change in mean vector

~µ0 = (0, 0), ~µ1 = (1, 1) ~µ0 = (0, 0), ~µ1 = (2, 2) ~µ0 = (0, 0), ~µ1 = (4, 4)

Delay
False alarm
probability

Bayesian
cost

Delay
False alarm
probability

Bayesian
cost

Delay
False alarm
probability

Bayesian
cost

Optimal

c=0.5 0.2412 0.8059 0.9265 0.6128 0.1707 0.4771 0.0269 0.0091 0.02255
c=0.1 3.4536 0.1447 0.49 1.2526 0.0236 0.1489 0.054 0.0024 0.0078

c=0.05 4.7335 0.0574 0.294 1.4577 0.011 0.0839 0.0015 0.0659 0.0048
c=0.01 6.6182 0.01 0.0783 1.7059 0.0044 0.0215 0.1071 0.0006 0.0017
c=0.005 7.1565 0.0064 0.0422 2.0608 0.0012 0.0115 0.1449 0.0004 0.0011

NMC-based
method

c=0.5 0.1731 0.8521 0.9387 0.227 0.6139 0.5338 0.0495 0.01644 0.04115
c=0.1 3.374 0.1668 0.5041 1.9943 0.00361 0.203 0.109 0.00711 0.018

c=0.05 4.5207 0.0818 0.3077 2.0039 0.0341 0.1036 0.1269 0.00411 0.01045
c=0.01 7.0666 0.01532 0.08567 2.0391 0.0042 0.02459 0.2018 0.0011 0.0031
c=0.005 7.5891 0.0106 0.04855 2.3923 0.002 0.01396 0.2329 0.0005 0.00166

DQN-based
method

c=0.5 0.2645 0.8648 0.9971 0.5649 0.2999 0.5823 0.0589 0.0196 0.049
c=0.1 3.7571 0.2308 0.6066 1.3214 0.0977 0.2298 0.0418 0.0171 0.0213

c=0.05 3.7968 0.2059 0.3958 1.4892 0.0339 0.1084 0.0629 0.0112 0.0144
c=0.01 9.2189 0.0166 0.1088 2.8778 0.0383 0.0671 0.0968 0.0024 0.0034
c=0.005 10.2965 0.0154 0.0668 3.6808 0.0176 0.036 0.493 0.0003 0.0028

Table III: Performances of the three QCD rules in the i.i.d. 2D Gaussian experiment: change in variance

Σ0 = I2, Σ1 = 2I2 Σ0 = I2, Σ1 = 4I2

Delay False alarm probability Bayesian cost Delay False alarm probability Bayesian cost

Optimal

c=0.1 2.6591 0.5368 0.8027 2.9756 0.0875 0.38296
c=0.05 6.762 0.2553 0.5934 3.6813 0.0383 0.2224
c=0.01 15.3527 0.03228 0.1858 4.7954 0.0058 0.05375
c=0.005 18.2008 0.01242 0.1034 5.3881 0.0025 0.02944
c=0.001 23.5036 0.0021 0.0256 5.9819 0.001 0.00698

NMC-based
method

c=0.1 2.5955 0.5637 0.82325 3.1248 0.104 0.41458
c=0.05 6.8413 0.2699 0.6119 3.9871 0.0396 0.2369
c=0.01 15.5789 0.05033 0.206 5.1454 0.0048 0.05625
c=0.005 18.6246 0.02835 0.1214 5.8751 0.0018 0.03117
c=0.001 26.7755 0.007 0.03378 6.801 0.0006 0.0074

DQN-based
method

c=0.1 2.4158 0.7391 0.9807 2.9831 0.2373 0.5357
c=0.05 8.0369 0.4427 0.8445 5.6804 0.0681 0.3521
c=0.01 16.9336 0.1606 0.3299 9.5317 0.019 0.1143
c=0.005 23.093 0.0906 0.2061 11.5702 0.0021 0.06
c=0.001 41.7379 0.0254 0.0671 18.4294 0.0009 0.0193

the optimal QCD solution, DQN-based method, and the NMC-
based method under different Bernoulli settings on the test set.
The results are shown in Fig. 2. From Fig. 2a, compared with
the DQN-based method, the Bayesian costs of the NMC-based
QCD method are generally closer to that of the optimal QCD
method. As the unit delay cost decreases, the performance
gap between the two solutions also decreases. Besides, by
comparing Fig.2a and Fig.2b, we can see that when the KL-
divergence between pre-change and post-change distributions
gets smaller, i.e., the QCD task becomes harder, the costs
of the three solutions increase. Although the Bayesian cost
of the NMC-based solution increases as the QCD problem
becomes harder, the performance gap between the NMC-based
solution and the optimal solution is still small. In addition,
Table I presents the more detailed performance of the three
methods, including the delay and false alarm probability. In
Table I, the DQN-based often achieves a lower delay or false
alarm probability than the NMC-based method. But it still

can not beat the NMC-based method on Bayesian cost. This
result indicates that the NMC-based method achieves a better
balance between the false alarm cost and delay cost than the
DQN-based method. In addition, as the key of the NMC-based
SCD rule, we also evaluate the estimation of the posterior
probability Π

(0)
t . On the test set, the mean absolute errors

of the posterior probability of the two experiment cases, i.e.
the mean value of |Π̂(0)

t − Π
(0)
t |, are 0.0530 and 0.0935,

respectively.
In the second numerical example, we study the performance

of the three QCD methods when the observations are continu-
ous random variables. The observations in this experiment are
2-D Gaussian random variables with f0 = N (~µ0,Σ0) and
f1 = N (~µ1,Σ1). To illustrate the performance of the NMC-
based QCD method facing different kinds of changes, we study
2 different cases : (1). The change happens to the mean vector
of the 2-D Gaussian distribution; (2) The change happens to
the covariance matrix of the 2-D Gaussian distribution. For
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Figure 4: The Bayesian costs of the Gaussian QCD experiment with change in covariance
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Figure 5: Robustness test: testing on 2D Gaussian data which has mean vector different from the training data
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Figure 6: Robustness test: Change from Gaussian distribution
to logistic distribution

the first case, we set Σ0 = Σ1 = I2 and µ0 = (0, 0). Then
we carry out three experiments with µ1 = (1, 1), µ1 = (2, 2),
and µ1 = (4, 4), respectively. In addition, Pλ, is a geometric
distribution with parameter ρ = 0.01. These three NMC-based
models are denoted as model A, B and C. In Fig. 3 and Table
II, we compare the performance of the three QCD methods
in this mean vector QCD problem. On the test set, the mean
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Figure 7: Bayesian costs of 10D Gaussian data

absolute errors of the posterior probability of the three models
are 0.1321, 0.0319 and 0.0315, respectively. For the second
case, we set µ0 = µ1 = (0, 0) and Σ0 = I2. Then we
implement two experiments with Σ1 = 2I2, Σ1 = 4I2. In
Fig. 4 and Table III, we compare the performance of the three
QCD methods in this variance QCD problem. On the test set,
the mean absolute errors of the posterior probability of the
two cases are 0.1320 and 0.1382, respectively. In Fig. 3 and
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Figure 8: Bayesian costs of the NMC-based method and the
DQN-based method in Non-i.i.d. case

4, the Bayesian costs achieved by the NMC-based method are
close to the costs of the optimal QCD rule and are lower than
the costs of the QCD-based methods. These results validate
our conclusion that the NMC-based QCD method has a good
performance for the 2D continuous QCD problem. From Table
II and III, we can also see that the NMC-based method
performs better in balancing the false alarm probability and
delay costs than the DQN-based method. Next, we conduct
another two experiments to test the robustness of the NMC-
based method in the 2D Gaussian experiment. Firstly, we test
the performance of models A, B, and C on data whose mean
vector is different from the training data. Concretely, the mean
vectors of the testing data for Model A, B and C are (3.2, 3.2),
(1.6, 1.6) and (0.8, 0.8), receptively. Other parameters of the
testing data distributions are the same as the training data. The
Bayesian costs of the optimal QCD rules and the NMC-based
model A, B, and C obtained on the testing data are shown
in Fig. 5. Secondly, we investigate the performance of the
NMC-based model C on data whose post-change distribution
is non-Gaussian. For the testing data distribution, we define
a 2-D distribution, FL(1, 1) as the post-change distribution of
the testing data. With FL(1, 1), the two elements in each data
sample are independent and follow the Logistics distributions,
L(1,

√
3/2π). The other parameters of the testing data are

the same as the training data of NMC-based model C. The
Bayesian costs of the optimal QCD rules and the NMC-based
model C are shown in Fig. 6. In Fig. 5 and 6, the optimal
solutions are obtained using the distribution of the testing data.
From the results shown in Fig. 5 and 6, we can see that the
performance of the NMC-based method is close to the optimal
QCD rules for data generated with distributions different from
the training data. These results indicate that the NMC-based
QCD rule is robust to the instability of data.

In addition, we also implement an experiment for high
dimensional data with a more complicated covariance matrix.
Here, the observation data follows a 10D Gaussian distribution
with mean vector µ1 = (1, ..., 1), µ1 = (0, ..., 0). The
covariance matrix is a randomly generated positive-definite
matrix. The width of the sliding window in this experiment is
set as 1. The Bayesian costs of the optimal rule and the NMC-
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Figure 9: The Bayesian costs of the NMC-based and optimal
QCD solutions in the HMM case

based method are shown in Fig. 7. From this figure, we can
see that the NMC-based QCD method works well for high-
dimensional data. On the test set, the mean absolute error of
the posterior probability estimated by the NMC approximation
model is 0.0887.

B. QCD experiments in non-i.i.d. case

To evaluate the performance of the NMC-based method with
non-i.i.d. data, two numerical examples are conducted.

In the first numerical example, the data samples are gener-
ated by the Markov Gaussian sequence

xt =

{
0.5xt−1 + εt,
−0.5xt−1 + εt,

if t <λ
if t ≥λ

where εt
i.i.d∼ N (0, 1) for t > 0. Since the distribution of the

current data sample only depends on the last data sample, we
set w = 2 for both the NMC-based method and the DQN-
based method. The Bayesian cost of the NMC-based rule and
the QCD-based rule are shown in Fig. 8. From the results, we
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Table IV: Performances of the three QCD rules in the HMM experiment

case 1: p0 = 0.1, p1 = 0.9 case 2: p0 = 0.2, p1 = 0.8

Delay False alarm probability Bayesian cost Delay False alarm probability Bayesian cost

Optimal

c=0.1 3.1978 0.4444 0.7642 2.0889 0.6452 0.8541
c=0.05 6.9195 0.1717 0.5177 6.6656 0.3174 0.6507
c=0.01 12.0809 0.0276 0.1484 17.3519 0.0404 0.2139
c=0.005 14.4003 0.0105 0.0825 19.9785 0.0215 0.1214
c=0.001 18.0703 0.0023 0.0204 28.3053 0.0024 0.0307

NMC-based
method

c=0.1 3.4926 0.4485 0.7978 2.3752 0.6522 0.8897
c=0.05 6.7486 0.2073 0.54473 6.3758 0.3634 0.68219
c=0.01 14.6158 0.0217 0.1679 17.5915 0.0681 0.2440
c=0.005 15.4936 0.0171 0.09457 21.1274 0.0389 0.1445
c=0.001 20.4434 0.0055 0.02594 34.2069 0.0114 0.0456

DQN-based
method

c=0.1 3.2805 0.5808 0.9089 1.7592 0.7579 0.9338
c=0.05 7.5862 0.2399 0.6192 6.1065 0.5217 0.827
c=0.01 14.1083 0.1097 0.2508 14.8038 0.2252 0.3733
c=0.005 21.4553 0.06093 0.1682 20.7133 0.1262 0.2298
c=0.001 80.0278 0.00877 0.0888 15.701 0.1394 0.155

can see that the NMC-based QCD method outperforms the
DQN-based methods in this non-i.i.d. QCD problem.

In the second example, we study the performance of the
NMC-based method when the data follows an HMM. There
are two hidden states in the HMM. For state 1: the data will
generate data following Bernoulli distribution with parameter
0.1. For state 2: the data will generate data following a
Bernoulli distribution with parameter 0.9. The change happens
to the transition probability of the HMM. Before the change,
the transition probability between states 1 and 2 is p0. After
change, the transition probability becomes to p1. In addition,
Pλ, is a geometric distribution with parameter ρ = 0.01. In
the HMM experiment, we set the width of the sliding window
w = 15 for both the NMC-based method and the DQN-based
method. In Fig. 9 and Table IV, we compare the performances
of the NMC-based QCD method and the optimal solution with
different values of p0 and p1. Similar to the results of the i.i.d
experiments, the performance of the NMC-based QCD method
is still generally closer to the optimal QCD rule than the QCD
method. In addition, the mean absolute errors of the posterior
probability of the two experiment cases are 0.0957 and 0.1244,
respectively.

VII. CONCLUSION

In this paper, we have studied the online data-driven
Bayesian QCD problem with geometrically distributed change
points. Inspired by the key role that the posterior false alarm
probability plays in the i.i.d. QCD problem, we have proposed
an NMC-based QCD rule for the data-driven Bayesian QCD
problem. Trained by the Gradient Monte Carlo algorithm,
a randomized neural network is applied to approximate the
posterior false alarm probability. By comparing the posterior
false alarm probability with a well-chosen threshold, we obtain
an NMC-based QCD rule. This NMC-based method works
not only for the i.i.d. QCD problem, but also for the HMM
QCD problem or the more general non-i.i.d. QCD problems.
Moreover, this NMC-based method is guaranteed to converge.

Numerical results have been carried out to evaluate the perfor-
mance of the NMC-based method. The results have validated
that the performance of the DQN-based QCD solution is
generally better than the DQN-based method and close to the
performance of the optimal solution.
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