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Abstract

In recent years, machine learning has witnessed remarkable progress, finding diverse applica-

tions and achieving notable success in addressing complex problems. However, these achievements

have been accompanied by growing ethical concerns, rooted in the potential of machine learning

systems to produce unreliable decisions, inadvertently disclose sensitive information, and exhibit

biases. The need for trustworthy machine learning systems, characterized by attributes like privacy,

fairness, and robustness, has become increasingly pressing. This dissertation attempts to address-

ing these critical challenges through an investigation into algorithmic adversarial robustness, the

preservation of privacy within cloud-based frameworks, and the development of adversarially ro-

bust fairness-aware models.

In the first part, we investigate the adversarial robustness of hypothesis testing rules. In the

considered model, after a sample is generated, it will be modified by an adversary before being

observed by the decision maker. The decision maker needs to decide the underlying hypothesis

that generates the sample from the adversarially-modified data. We formulate this problem as a

minimax hypothesis testing problem, in which the goal of the adversary is to design attack strategy

to maximize the error probability while the decision maker aims to design decision rules so as

to minimize the error probability. We consider both hypothesis-aware case, in which the attacker

knows the true underlying hypothesis, and hypothesis-unaware case, in which the attacker does

not know the true underlying hypothesis. We solve this minimax problem and characterize the

corresponding optimal strategies for both cases.

In the second part, we propose a general framework to provide a desirable trade-off between

inference accuracy and privacy protection in the inference as service scenario (IAS). Instead of

sending data directly to the server, the user will preprocess the data through a privacy-preserving

mapping, which will increase privacy protection but reduce inference accuracy. To properly address

the trade-off between privacy protection and inference accuracy, we formulate an optimization

problem to find the optimal privacy-preserving mapping. Even though the problem is non-convex
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in general, we characterize nice structures of the problem and develop an iterative algorithm to find

the desired privacy-preserving mapping, with convergence analysis provided under certain assump-

tions. From numerical examples, we observe that the proposed method has better performance than

gradient ascent method in the convergence speed, solution quality and algorithm stability.

In the third part, we take a first step towards answering the question of how to design fair

machine learning algorithms that are robust to adversarial attacks. Using a minimax framework,

we aim to design an adversarially robust fair regression model that achieves optimal performance

in the presence of an attacker who is able to add a carefully designed adversarial data point to

the dataset or perform a rank-one attack on the dataset. By solving the proposed nonsmooth

nonconvex-nonconcave minimax problem, the optimal adversary as well as the robust fairness-

aware regression model are obtained. For both synthetic data and real-world datasets, numerical

results illustrate that the proposed adversarially robust fair models have better performance on

poisoned datasets than other fair machine learning models in both prediction accuracy and group-

based fairness measure.
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Chapter 1

Introduction

Machine learning (ML) has found extensive applications across various industrial sectors, spanning

from autonomous vehicles [2–4] and medical diagnostics [5,6] to robotics [7,8]. In these domains,

ML performs a wide range of tasks, including speech recognition [9,10], object detection [11,12],

and decision making [13–16]. However, the proliferation of ML solutions has ushered in a new

era, accompanied by significant challenges. These challenges are particularly pronounced in the

areas of security [17–22], privacy [23–27], and fairness [28–30], especially within safety-critical

applications.

In this chapter, we provide the introduction of this dissertation. In Chapter 1.1, we introduce

the background. In Chapter 1.2, we introduce basic tools that are used in this dissertation. We then

discuss main contributions of this dissertation in Chapter 1.3.

1.1 Background

In this section, we review recent research on security, privacy and fairness issues associated with

machine learning in the following domains:

(1) Security issues;

(2) Privacy concern;
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(3) Fairness issues.

1.1.1 Security issues

Machine learning models are not robust to adversarial attacks and are extremely susceptible to a

phenomenon called adversarial examples [31]. By adding hardly perceptible perturbations on the

input data, the decision of a deep network can be easily manuplicated. For example, an original

image of an ice bear is concludes as “ice bear” with 85.8% confidence by the network [1]. Then by

adding the carefully constructed adversarial perturbation, an image that looks exactly the same to a

human is obtained, which the network thinks with 100% confidence as a “dishwasher”. In practical

applications, it has been observed that these adversarial examples are consistently misclassified

at a notably higher rate than examples perturbed by random noise, even when the magnitude of

the noise greatly surpasses that of the adversarial perturbation [31]. Moreover, the issue extends

beyond individual models, as adversarial examples often possess a transferability property. An

adversarial example engineered to confound one model, say M1, frequently has the same effect

on another model, such as M2. This property allows for the generation of adversarial examples

and the execution of misclassification attacks on machine learning systems without access to the

underlying model [32].

There are many works design attack algorithms to find adversarial examples more efficiently

[33–35]. At the same time, there are significant amount of research works that focus on developing

defense strategies with the goal of constructing robust classifiers that can work well in the presence

of adversarial perturbations [32, 36, 37]. While a proposed defense is often empirically shown to

be successful against the set of attacks known at the time, new stronger attacks are subsequently

discovered that render the defense useless. For example, defensive distillation [32] and adversarial

training against the Fast Gradient Sign Method [33] were two defenses that were later shown to

be ineffective against stronger attacks [38, 39]. In order to break this arms race between attackers

and defenders, there are many studies establishing the fundamental limits on the robustness of

classifiers [40, 41]. Most of these works rely on tools from concentration of measure [42] and

2



Figure 1.1: Adversarial example [1].

provide interesting results when the dimension of data is high and the distribution of data satisfies

certain conditions.

At the meantime, motivated by growing applications of various signal processing and statistical

inference algorithms in safety and security-related applications [18,19], there is also an increasing

interest in the study of adversary robustness of statistical inference algorithms [31, 33–35, 43–46].

The purpose of these studies is to understand the robustness of these algorithms in the adversarial

setup, so as to properly design systems that are safe and secure even under adversarial attacks.

The investigation of adversary robustness of statistical algorithms is related to but different from

the large volume of work on classic robust statistics [47–52]. The classic robust statistical infer-

ence mainly focuses on distributional robustness, in which the true distributions of data lie in the

neighborhood of nominal distributions [50, 53, 54]. On the other hand, the attack in the adversary

robustness model is more powerful. In particular, in the adversarial robustness models, an adver-

sary is typically assumed to have access to the data sample and can make data-dependent changes.

The decision maker then has to make statistical inference based on the adversarially-modified data

[55].
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Hence, it is of our interest to study the performance bound of the powerful adversarial models.

Under this setting, to reveal the structures of the optimal attack and defense strategies, as the

adversary and the defender perform opposite rules, the game between them can be formulated as a

minimax problem and will be studied in Chapter 2.

1.1.2 Privacy concern

The impressive accuracy achieved by modern ML models in business, medicine and communica-

tion motivates many data holders to apply ML to their own datasets. Existing ML frameworks,

however, are not easy to deploy by non-expert users due to a large number of configuration param-

eters and general lack of understanding of why and how modern ML works [56]. Furthermore, ML

expertise is scarce and often unrelated to data holders’ primary competency. At the same time, the

Internet of Things (IoT) is an emerging communication paradigm that aims at connecting different

kinds of devices to the Internet [57–59]. Within the past decade, the number of IoT devices being

introduced in the market has increased dramatically due to its low cost and convenience [60]. Sen-

sors of IoT devices could generate contexts at a high velocity and the inference with the contexts

becomes an essential component for IoT applications [61]. However, considering the complexity

of state-of-the-art machine learning models, it is difficult to run them on IoT devices. Thus, one

of the emerging solutions to solve the two problems mentioned above is so called inference-as-a-

service (IAS) [62, 63]. IAS is known as a cloud service that manages various types of inferences

effectively.

With cloud services, machine learning algorithms can be run on the cloud providers’ infras-

tructure where training and deploying machine learning models are performed on cloud servers.

Once the models are deployed, users can use these models to make predictions without having to

worry about maintaining the models and the service [64]. Several such services are currently of-

fered including Microsoft Azure Machine Learning, Google Prediction API, GraphLab, and Ersatz

Labs. However, such service brings privacy issues, as the devices will send their data to the cloud

without knowing where these data is stored or what future purposes these data might serve.
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There are some interesting works that attempt to address this issue using Homomorphic En-

cryption (HE) technique [65–67]. Unfortunately, the complexity of HE based solution is very high,

and its privacy relies on the (unproved) assumption that certain mathematical problems are diffi-

cult to solve. The most notable shortcoming of practical Homomorphic Encryption schemes is that

operations in practical schemes are limited to addition and multiplication. Consequently, we need

to adopt algorithms within these limitations. However, the computation performed over sensitive

data by machine learning models, especially neural networks, is usually very complex and cannot

be simply translated to encrypted versions without modification.

There exist many other privacy-preserving techniques that are based on perturbations of data,

which provide privacy guarantees at the expense of a loss of accuracy [25–27]. For example, k-

anonymity is proposed by Samarati and Sweeney [23], which requires that each record is indistin-

guishable from at least k–1 other records within the dataset. Differential privacy works by adding a

pre-determined amount of randomness into a computation performed on a data set [24]. These con-

cepts and techniques are very useful for the privacy protection of data analysis through a dataset

or database. Moreover, various minimax formulations and algorithms have also been proposed

to defend against inference attack in different scenarios [68–70]. Bertran et al. [68] proposed an

optimization problem where the terms in the objective function were defined in terms of mutual

information, showed the performance bound for the optimization problem and learned the sanitiza-

tion transform in a data-driven fashion using an adversarial approach with Deep Neural Networks

(DNNs). Under their formulation, they analyzed a trade-off between utility loss and attribute ob-

fuscation under the constraint of the attribute obfuscation I(A;Z) ≤ k. Feutry et al. [69] measured

the utility and privacy by expected risks, formulated the utility-privacy trade-off as a min-diff-max

optimization problem and proposed a learning-based and task-dependent approach to solve this

problem, while only deterministic mechanisms are considered. To address this issue, a privacy-

preserving adversarial network was proposed in [70] by employing adversarially-trained neural

networks to implement randomized mechanisms and to perform a variational approximation of

mutual information privacy.
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Hence, it is of our interest to address the fundamental trade-off between inference accuracy

and privacy protection from information theory perspective. Instead of sending data directly to

the server, the user will preprocess the data through a privacy-preserving mapping. This privacy-

preserving mapping has two opposing effects. On one hand, it will prevent the server from observ-

ing the data directly and hence enhance the privacy protection. On the other hand, this might reduce

the inference accuracy. To properly address the trade-off between these two competing goals, an

optimization problem can be formulated and will be studied in Chapter 3.

1.1.3 Fairness issues

ML models have been used in various domains, including several security and safety critical ap-

plications, such as banking, education, healthcare, law enforcement etc. However, it has become

increasingly evident that ML algorithms can inadvertently perpetuate or even exacerbate biases

[28, 29], particularly those related to race or gender, thereby raising concerns about fairness and

equity in their outcomes. For instance, notable instances of bias have been observed in systems

like the Correctional Offender Management Profiling for Alternative Sanctions (COMPAS), a tool

used by judges to assess an offender’s risk of recommitting a crime [71]. Investigations into COM-

PAS revealed that it displayed bias against African-American individuals, assigning them higher

risk scores than their Caucasian counterparts with similar profiles [71]. Similar findings have been

made in other areas, such as an AI system that judges beauty pageant winners but was biased

against darker-skinned contestants [28], or facial recognition software in digital cameras that over-

predicts Asians as blinking [72].

These fairness issues in machine learning outcomes can be attributed to at least two main

sources: biases present in the data and biases introduced by the algorithms themselves. Data, es-

pecially in big data scenarios, often reflect inherent heterogeneities arising from subgroups with

distinct characteristics and behaviors. These variations can introduce bias into the data, which,

when used to train models, may result in unfair and inaccurate predictions. Bias in data can stem

from multiple sources, such as historical bias, representation bias, measurement bias, evaluation
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bias, aggregation bias,population bias, etc. [73]. In order to mitigate the effects of bias in data,

some general methods have been proposed that advocate having good practices while using data.

For example, [74] proposes having labels, just like nutrition labels on food, to better categorize

each data for each task.

For the algorithmic fairness, one should first define the notion of fairness to fight against dis-

crimination and achieve fairness. However, the absence of a universally accepted definition of

fairness highlights the complexity of this challenge. Different cultures and perspectives may fa-

vor distinct interpretations of fairness, making it difficult to arrive at a single, universally appli-

cable definition. Consequently, a range of fairness definitions and corresponding methods have

emerged, tailored to specific applications or preferences. These methods can be categorized into

pre-processing, which modifies the data that the algorithm learns from [75]; in-processing, which

modifies the algorithm’s objective function to incorporate a fairness constraint or penalty [76–78];

post-processing, which modifies the predictions produced by the algorithm [79].

In the meantime, a large body of work has shown that ML models are vulnerable to various

types of attacks [20–22]. Thus, a major and natural concern for fair machine learning algorithms

is their robustness in adversarial environments. Recent works show that well-designed adversarial

samples can significantly reduce the test accuracy as well as exacerbating the fairness gap of ML

models [80–83].

In light of the vulnerabilities of existing fair machine learning algorithms, there is a pressing

need to design fairness-aware learning algorithms that are robust to adversarial attacks. As the first

step towards this goal, we focus on regression problems and design a fair regression model that is

robust to adversarial attacks, as discussed in Chapter 4.

1.2 Preliminaries

In this section, we introduce basic tools that will be used in this dissertation.
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1.2.1 Minimax problem and saddle points property

Given ϕ : X × Z → R, where X ⊂ Rn, Z ⊂ Rm, consider

inf
x∈X

sup
z∈Z

ϕ(x, z),

and

sup
z∈Z

inf
x∈X

ϕ(x, z).

The minimax inequality gives that

sup
z∈Z

inf
x∈X

ϕ(x, z) ≤ inf
x∈X

sup
z∈Z

ϕ(x, z). (1.1)

Definition 1. (x∗, z∗) is called a saddle point of ϕ if

ϕ(x∗, z) ≤ ϕ(x∗, z∗) ≤ ϕ(x, z∗),∀x ∈ X, ∀z ∈ Z. (1.2)

Proposition 1. (x∗, z∗) is a saddle point of ϕ if and only if the minimax equality holds and

x∗ ∈ arg inf
x∈X

sup
z∈Z

ϕ(x, z), z∗ ∈ arg sup
z∈Z

inf
x∈X

ϕ(x, z). (1.3)

Then we have the minimax theorem,

Theorem 1. If

• X and Z are convex and compact sets;

• ϕ(·, z) is a continuous function;

• For each z ∈ Z, the function ϕ(·, z) is convex;

• For each x ∈ X , the function ϕ(x, ·) is closed and concave;
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then the minimax equality holds [84].

The saddle point analysis will be used in our proposed minimax problem in Chapter 2.

1.2.2 Robust Hypothesis Testing

The detection of the presence or absence of an event with a specified accuracy is fundamental to

statistical inference and binary hypothesis testing is the usual starting point. Formally, any real

world example of binary decision making problem can be modeled by a binary hypothesis test,

where under each hypothesis Hj , a received data x = (x1, x2, · · · , xn) follows a particular proba-

bility distribution fj, j ∈ {0, 1}, i.e.

• H0: X ∼ f0.

• H1: X ∼ f1.

Consider the general decision function δ(x1, x2, · · · , xn), where δ(x1, x2, · · · , xn) = 0 means that

H0 is accepted and δ(x1, x2, · · · , xn) = 1 means that H1 is accepted. Since the function takes on

only two values, the test can also be specified by the set A over which δ(x1, x2, · · · , xn) = 0 while

the complement of this set is the set where δ(x1, x2, · · · , xn) = 1. Define two probabilities of error

α = Pr[δ(x1, x2, · · · , xn) = 1|H0 is true], (1.4)

β = Pr[δ(x1, x2, · · · , xn) = 0|H1 is true]. (1.5)

In general, we wish to minimize both probabilities, but there is a trade-off between them. We can

either minimize one of the probabilities of error subject to a constraint on the other probability of

error or construct an error probability function consisting of both probabilities of error. Assuming

that the prior probability of two hypotheses are Pr(H0) and Pr(H1), then the error probability PE

can be written as

PE(δ(·)) = αPr(H0) + βPr(H1). (1.6)
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Suppose P0 and P1 under H0 and H1 are known and using Bayes’ rule, we can obtain the

posterior probabilities of H0 and H1:

P (H0|x1, x2, · · · , xn) =
fX(x1, x2, · · · , xn|H0)Pr(H0)

fX(x1, x2, · · · , xn)
, (1.7)

P (H1|x1, x2, · · · , xn) =
fX(x1, x2, · · · , xn|H1)Pr(H1)

fX(x1, x2, · · · , xn)
. (1.8)

If one further assumes that the prior probability of each hypothesis is the same, then the optimal

way to decide between H0 and H1 is to compare P (H0|x1, x2, · · · , xn) and P (H1|x1, x2, · · · , xn),

and accept the hypothesis with the higher posterior probability. This is the idea behind the maxi-

mum a posterior (MAP) test. Recall the definition of error probability in (1.6), and we can see that

the error probability is minimized by the MAP test since we are choosing the hypothesis with the

highest posterior probability.

However, in practice, for random observation Y ∈ R, when the true distribution gj(y) deviates

from the assumed nominal distribution fj(y), the performance of the likelihood ratio detector is

no longer optimal and it may perform poorly. Various robust hypothesis testing frameworks have

been developed to address the issue with distribution misspecification and outliers [85, 86].

The robust detectors are constructed by introducing various uncertainty sets for the distributions

under the null and the alternative hypotheses. In non-parametric setting, Huber’s work [49] con-

siders the so-called ϵ-contamination sets, which contain distributions that are close to the nominal

distributions in terms of total variation metric. [54] considers uncertainty set induced by Kullback-

Leibler divergence around a nominal distribution. Under this setup, the actual density gj(y) of Y

under Hj is not known exactly and belongs to the neighborhood

Fj = {gj : DKL(gj|fj) ≤ ϵj},
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where

DKL(g|f) =
∫ ∞

−∞
log

[
g(y)

f(y)

]
dy.

Use D to denote the class of pointwise randomized decision rules δ(y) such that if Y = y, H1

is selected with probability δ(y) and H0 is selected with probability 1 − δ(y). Then denote the

probability of false alarm and the probability of miss detection as

PF (δ, g0) =

∫ ∞

−∞
δ(y)g0(y)dy,

PM(δ, g1) =

∫ ∞

−∞
(1− δ(y))g1(y)dy.

Then PF (δ, g0) is separately linear in δ and g0. PM(δ, g1) is separately linear in δ and g1. Assume

that the two hypotheses are equally likely, then the probability of error is given by

PE(δ, g0, g1) =
1

2
[PF (δ, g0) + PM(δ, g1)] .

Then the robust hypothesis testing problem is solved via the minimax problem

min
δ∈D

max
(g0,g1)∈F0×F1

PE(δ, g0, g1). (1.9)

Note that PE(δ, g0, g1) is convex in δ and concave in g0 and g1. The set F0 × F1 is convex and

compact. D is convex and compact with respect to the infinity norm. By Theorem 1, there exists a

saddle point (δR, (gL0 , g
L
1 )) for the minimax problem. Here, δR is the robust/minimax test, whereas

gL0 and gL1 are the least favorable densities in F0 ×F1. Then the saddle point has the property

PE(δ, g
L
0 , g

L
1 ) ≥ PE(δR, g

L
0 , g

L
1 ) ≥ PE(δR, g0, g1). (1.10)

Then the first inequality indicates that the robust test δR is the optimal Bayesian test for the least-

11



favorable pair (gL0 , g
L
1 ). In particular, for the likelihood ratio function defined as LL(y) =

gL1 (y)

gL0 (y)
, the

decision test is

δR(y) =


1, LL(y) > 1

arbitrary, LL(y) = 1

0, LL(y) < 1.

Thus, robust detectors usually depend on the least-favorable distributions, which are designed by

solving the second inequality of (1.10). Given δR, to solve the maximization problem

max
(g0,g1)∈F0×F1

PE(δR, g0, g1),

[54] made two strong assumptions: 1) the nominal likelihood ratio LL(y) = f1(y)
f0(y)

is a monotone

increasing function of y; 2) f0 and f1 admit the symmetry f1(y) = f0(−y).

Moreover, [50, 53] also explore the robust hypothesis testing problem with different assump-

tions and different measures in defining the neighborhoods Fj . Although there has been much

success in theoretical results, computation remains a major challenge in finding robust detectors

and finding he least-favorable distributions in general.

1.2.3 ADMM

The alternating direction method of multipliers (ADMM) is an algorithm that solves complex

optimization problems by breaking them into smaller problems, each of which is then easier to

handle. It takes the form of a decomposition-coordination procedure, in which the solutions to

small local sub-problems are coordinated to find a solution to a large global problem [87]. ADMM

can be viewed as an attempt to blend the benefits of dual decomposition and augmented Lagrangian

methods for constrained optimization [87].
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With f(·), g(·) being convex functions, ADMM solves problems in the form

min f(x) + g(y),

subject to Ax+By = c, (1.11)

with variables x ∈ Rn, y ∈ Rm and A ∈ Rp×n, B ∈ Rp×m, c ∈ A ∈ Rp.

As in the method of multipliers, the augmented Lagrangian function is

Lρ(x, y;λ) = f(x) + g(y)− < λ,Ax+By − c > +
ρ

2
∥Ax+By − c∥2. (1.12)

With ρ > 0, ADMM consists of the iterations

• xk+1 = argminx Lρ(x, y
k;λk),

• yk+1 = argminy Lρ(x
k+1, y;λk),

• λk+1 = λk − ρ(Axk+1 +Byk+1 − c).

The procedure consists of an x-minimization step, a y-minimization step and a dual variable up-

date. The convergence properties of ADMM have been studied extensively in the literature [88–90].

Because of its wide applicability in multiple fields, ADMM is a popular means of solving optimiza-

tion problems. However, the original method only considers the two-block separable structure.

For the case of n ≥ 3, numerous research efforts have been devoted to analyzing the con-

vergence of multi-block ADMM and its variants for the linearly constrained separable convex

optimization model. Recent work [91] has shown that the n-block ADMM does not necessarily

converge, even for a nonsingular square system of linear equations. Various methods have been

proposed to overcome the divergence issue of multi-block ADMM. One typical solution is to com-

bine correction steps with the output of n-block ADMM [89, 92]. If at least n− 2 functions in the

objective are strongly convex, it has been shown that the ADMM process is globally convergent,

provided that the penalty parameter λ is restricted to a specific range [93,94]. Without strong con-

vexity, it has been shown in [95] that the n-block ADMM with a small dual step size is linearly
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convergent provided that the objective function satisfies certain error bound conditions. Some re-

cent studies [96] have demonstrated the convergence of multi-block ADMM under some other

conditions, and some convergent proximal variants of the multi-block ADMM have been proposed

for solving convex linear or quadratic conic programming problems [94]. Moreover, [97] pro-

posed a randomly modified variant of the multi-block ADMM, called randomly permuted ADMM

(RPADMM). At each step, RPADMM forms a random permutation of {1, 2, · · · , n} (known as

block sampling without replacement), and updates the primal variables xi, i = {1, 2, · · · , n} in the

order of the chosen permutation followed by the regular multiplier update. Surprisingly, RPADMM

is convergent in expectation for any non-singular square system of linear equations.

In contrast to the separable case, studies on the convergence properties of n-block ADMM with

non-separable objective, even for n = 2, are limited. In [98], the authors demonstrated that when

the problem is convex but not necessarily separable, and certain error bound conditions are satis-

fied, the ADMM iteration converges to some primal-dual optimal solution, provided that the step

size in the update of the multiplier is sufficiently small. However, the step size usually depends on

some unknown parameters associated with the error bound, and may thus be difficult to compute,

which often makes the algorithm less efficient. [99] investigated the convergence of a majorized

ADMM for the convex optimization problem with a coupled smooth objective function, which in-

cludes the 2-block ADMM as a special case. Convergence was established for the case when some

restrictions are satisfied and the sub-problems of the ADMM admit unique solutions. [100] studied

the convergence and ergodic complexity of a 2-block proximal ADMM and its variants for the

non-separable convex optimization by assuming some additional conditions on the problem data.

1.2.4 Privacy metrics

A technical privacy metric takes properties of a system as an input (e.g., the amount of sensitive

information leaked or the number of users who are indistinguishable with respect to some charac-

teristic) and yields a numerical value, which allows us to quantify the privacy level in a system.

Privacy metrics can be used in different contexts, and they can differ with regard to the kind of
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adversary they consider, the data sources they assume to be available to the adversary, and the

aspects of privacy they measure. However, the diversity and complexity of privacy metrics in the

literature makes an informed choice of metrics challenging. As a result, instead of using existing

metrics, new metrics are proposed frequently, and privacy studies are often incomparable. In the

following, we will explain and discuss a selection of privacy metrics.

• Uncertainty

Uncertainty metrics assume that an adversary who is uncertain of his estimate cannot breach pri-

vacy as effectively as one who is certain. Many uncertainty metrics build on entropy, an information

theoretic notion to measure uncertainty [101].

Shannon entropy is the basis for many other metrics. In general, entropy measures the uncer-

tainty associated with predicting the value of a random variable. As a privacy metric, it can be

interpreted as the number of bits of additional information the adversary needs to identify a user

[102].

Rényi entropy is a generalization of Shannon entropy that also quantifies the uncertainty in a

random variable. It uses an additional parameter α, and Shannon entropy is the special case with

α → 1. In particular, we have the privacy with respect to Rényi entropy as

privacyRE = Hα(X) =
1

1− α
log2

∑
x∈X

p(x)α.

Hartley entropy H0 or max-entropy is the special case with α = 0. It depends only on the number

of users and is a best-case scenario because it represents the ideal privacy situation for a user. Min-

entropy H∞ is the special case with α = ∞ which is a worst-case scenario because it only depends

on the user for whom the adversary has the highest probability [103].

• Data Similarity

Data similarity metrics measure properties of observable or published data. They are usually inde-

pendent of the adversary and derive the privacy level solely from the features of observable data.

15



k-Anonymity was originally proposed to prepare statistical databases for publication. For ex-

ample, a medical database would contain both identifying information (e.g., the names of individu-

als) and sensitive information (e.g., their medical conditions). k-Anonymity assumes that identify-

ing columns are removed from a database before publication, and then demands that the database

table can be grouped into equivalence classes with at least k rows that are indistinguishable with

respect to their quasi-identifiers q [104]. Each equivalence class E contains all rows that have the

same values for each quasi-identifier q. To increase the size of equivalence classes to a minimum of

k rows, several algorithms exist to transform a given database to make it k-anonymous, such as sup-

pression, generalization and random sampling [105]. However, studies have shown k-anonymity

to be insufficient, especially for high-dimensional data and against correlation with other data sets

[106], because it fails to protect against attribute disclosure [107].

The l-diversity principle modifies k-anonymity to bound the diversity of published sensitive

information. It states that every equivalence class E must contain at least l well-represented sen-

sitive values. This general principle can be instantiated in different ways. In the simplest form,

the l-diversity principle requires l distinct values in each equivalence class. However, this simple

instantiation does not prevent probabilistic inference attacks [108]. Although l-diversity is an im-

provement to k-anonymity, it has been shown to offer insufficient protection against some attacks.

In particular, it does not protect privacy when the distribution of sensitive values is skewed, or

when sensitive attributes are semantically similar [108].

• Indistinguishability

Indistinguishability metrics indicate whether the adversary can distinguish between two items of

interest. Many of these metrics are associated with privacy mechanisms that provide formal privacy

guarantees.

First, we discuss differential privacy. In statistical databases, differential privacy guarantees

that any disclosure is equally likely (within a small multiplicative factor ϵ) regardless of whether

or not an item is in the database [109]. This guarantee is usually achieved by adding a small amount

of random noise to the results of database queries. Formally, differential privacy is defined using
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two data sets D1 and D2 that differ in at most a single row, i.e., the Hamming distance between the

two data sets is at most 1. A privacy mechanism, realized as a randomized function K, operating

on these data sets is ϵ-differentially private if for all sets of query responses, the output random

variables for the two data sets differ by at most exp(ϵ). However, the choice of the parameter ϵ

is difficult. It has also been shows that differential privacy’s guarantees degrade in the case of

correlated data, for example when nodes are added to a social network graph [110].

Distributional privacy extends differential privacy to a setting in which the data sets themselves

do not need to be protected, but instead the parameters governing the generation of data need to be

protected. Distributional privacy assumes a distributed setting in which smart meters apply noise

to their local data, limiting the energy provider to querying this distributed database. Formally,

distributional privacy uses two parameter sets θ1 and θ2 which govern the creation of two data

sets and differ in at most one element. Furthermore, The privacy mechanism K is distributionally

ϵ-differentially private if the probability of generating query response Kj is roughly the same,

regardless of whether the underlying parameter set is θ1 or θ2 [111].

• Error

Error-based metrics quantify the error an adversary makes in creating his estimate. The adversary’s

expected estimation error measures the adversary’s correctness by computing the expected distance

between the true location x∗ and the estimated location x using a distance metric d(), for example

the Euclidean distance or an indicator function (in this case, the metric reduces to the adversary’s

probability of error). The expectation is computed over the posterior probability of the adversary’s

estimated locations x based on the observations y [112].

privacyAEE =
∑
x∈X

p(x|y)d(x, x∗).

In statistical parameter estimations, a common goal is to minimize the mean squared error. As a

privacy metric, the mean squared error describes the error between observations y by the adversary
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and the true outcome x∗.

privacyMSE =
1

|X∗|
∑

x∗∈X∗

∥x∗ − y∥2.

1.2.5 Fairness metrics

In recent years, the research community has put forth many formal and mathematical definitions

of fairness to assist practitioners in developing equitable risk assessment tools. Broadly speaking,

there are two main categories of definitions for algorithmic fairness: group fairness and individual

fairness.

• Group fairness

Group fairness partition individuals into “protected groups” (often based on race, gender, or some

other binary protected attribute) and ask that some statistic of a machine learning model (error

rate, false positive rate, positive classification rate, etc.) be approximately equalized across those

groups. To this end, numerous group fairness measures have been proposed, such as demographic

parity [113], equality of opportunity [79], equalized odds [79], envy-free group fairness [114], etc.

Suppose that A is the protected attribute, Y is the outcome and Ŷ is the predictor. In the following,

we present several commonly used definitions of group fairness.

Definition 2. (Demographic Parity) Ŷ satisfies demographic parity if Ŷ is independent of A, i.e.

P(Ŷ = 1|A = 0) = P(Ŷ = 1|A = 1).

This definition indicates that positive outcome is given to the two groups at the same rate.

However, demographic parity may cripple the utility, especially in the common scenario when

P(A = 0, Y = 1) ̸= P(A = 1, Y = 1) [79]. In light of this, an alternative definition is equal odds

or equal opportunity.
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Definition 3. (Equal odds) Ŷ satisfies equal odds if Ŷ and A are independent conditional on Y ,

i.e.

P(Ŷ = 1|A = 0, Y = y) = P(Ŷ = 1|A = 1, Y = y), y ∈ {0, 1}.

This metric essentially requires equal true positive and false positive rates between different

groups. A relaxed version of equal odds is equal opportunity, which demands only the equality of

true positive rates.

Definition 4. (Equal opportunity) Ŷ satisfies equal opportunity if

P(Ŷ = 1|A = 0, Y = 1) = P(Ŷ = 1|A = 1, Y = 1).

However, in certain decision making scenarios, the existing parity-based fairness notions may

be too stringent and precluding more accurate decisions. To relax these parity-based notions, a

preference-based notions of fairness is proposed–given the choice between various sets of decision

treatments or outcomes, any group of users would collectively prefer its treatment or outcomes,

regardless of the (dis)parity as compared to the other groups [114]. Other definitions of group

fairness include calibration [115,116], disparate mistreatment [117], counterfactual fairness [118],

etc.

One problem for group fairness measures is that they are only suited to a limited number

of coarse-grained, prescribed protected groups [119]. For groups at the intersection of multiple

discriminations, or groups that have not yet been defined but may need protection [120], group

fairness measures may ignore the underlying bias.

• Individual fairness

Individual definitions of fairness have no notion of protected groups, and instead ask for constraints

on pairs of individuals. These constraints can have the semantics that “similar individuals should

be treated similarly” [121], or that “less qualified individuals should not be preferentially favored

over more qualified individuals” [122]. In particular, [121] first proposed a technical definition
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of individual fairness by presupposing a task-specific quality metric on individuals and proposing

that fair algorithms should satisfy a Lipschitz condition on this metric. [122] has similar definition

of fairness and requires equal false positive rate across all pairs of individuals who have negative

labels.

1.3 Main contributions

In this dissertation, we contribute to the advancement of machine learning models by addressing

three primary concerns: security, privacy protection, and fairness.

1.3.1 Adversarial Robustness of Hypothesis Testing

For the analysis of adversarial robustness, our goal is to understand adversarial robustness of hy-

pothesis testing rules. In the considered model, after data samples are generated by the underlying

hypothesis, an adversary can observe the samples and then modify them to other values. The deci-

sion maker only observes the modified data but still needs to determine which underlying hypothe-

sis is true. We formulate this as a minimax hypothesis testing problem, in which the adversary aims

at designing attack strategies to modify the data so as to maximize the error probability while the

goal of the decision maker is to design decision rules to minimize the error probability. Our work is

related to several recent interesting papers [123–125], which characterize the asymptotic equilib-

rium of the games between the attacker and detector, as the number of samples increases. Different

from these papers, we focus on the non-asymptotic case and use the exact error probability as the

performance metric to characterize the corresponding optimal attack and defense strategies.

We first focus on the hypothesis-aware scenario, in which the adversary knows which hypoth-

esis is used to generate the data sample. The study of this powerful adversarial model can provide

performance bounds for other attack models. Under this setting, we show that the formulated min-

imax problem has a saddle-point solution, which reveals the structures of the optimal attack and

defense strategies. In this dissertation, we solve this problem for a special case where the optimal
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Bayesian decision regions corresponding to the PMFs before attack consist of two consecutive re-

gions. Under this assumption, we first derive an upper-bound on the prediction error, which only

depends on the PMFs before attack. Afterwards, we design a specific attack scheme and show that

the designed attack scheme achieves the upper-bound. This implies that the specific attack scheme

is optimal. We also note that the attack strategy that achieves the maximum error probability is not

unique.

We then study a more practical and challenging hypothesis-unaware scenario, where the at-

tacker does not know the prior information about the underlying hypothesis. Despite the additional

challenge, we show that the method developed for the hypothesis-aware case can be properly modi-

fied and extended to this scenario. In particular, following a similar saddle-point analysis, we reveal

the structure of the optimal attack and defense strategy and convert the problem into a complicated

non-convex optimization problem over the attack strategy. We then derive an upper-bound on the

error probability and design a specific attack strategy to achieve the upper-bound.

The derived algorithms could potentially be useful for the quickest detection setup [126–140].

In particular, consider a system where an attacker appears at an unknown time, and we are inter-

ested in detecting the presence of attacks with minimum delay (under certain delay metric). The

presence of the attacker is reflected on the change of the distribution of the data, and hence the

quickest detection framework can be employed. Most of the existing works on quickest detection

assume that post-change distribution is known. In the setup with an attacker, this assumption may

not be practical. The algorithms developed in our work could be used to identify which distribution

is most beneficial to the attacker and hence could be the most likely post-change distribution used

by the attacker. This work has been published in [21, 141].

1.3.2 Privacy-Accuracy Trade-off

To analyze the privacy-protection, we address the fundamental trade-off between inference accu-

racy and privacy protection from information theory perspective.

There exist many privacy-preserving techniques that are based on perturbations of data, which
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provide privacy guarantees at the expense of a loss of accuracy [25–27]. For example, k-anonymity

is proposed by Samarati and Sweeney [23], which requires that each record is indistinguishable

from at least k–1 other records within the dataset. Differential privacy works by adding a pre-

determined amount of randomness into a computation performed on a data set [24]. These con-

cepts and techniques are very useful for the privacy protection of data analysis through a dataset

or database, which is different from the setup considered in this dissertation. Moreover, various

minimax formulations and algorithms have also been proposed to defend against inference attack

in different scenarios [68–70]. Bertran et al. [68] proposed an optimization problem where the

terms in the objective function were defined in terms of mutual information, showed the perfor-

mance bound for the optimization problem and learned the sanitization transform in a data-driven

fashion using an adversarial approach with Deep Neural Networks (DNNs). Under their formula-

tion, they analyzed a trade-off between utility loss and attribute obfuscation under the constraint

of the attribute obfuscation I(A;Z) ≤ k. Feutry et al. [69] measured the utility and privacy by

expected risks, formulated the utility-privacy trade-off as a min-diff-max optimization problem

and proposed a learning-based and task-dependent approach to solve this problem, while only

deterministic mechanisms are considered. To address this issue, a privacy-preserving adversarial

network was proposed in [70] by employing adversarially-trained neural networks to implement

randomized mechanisms and to perform a variational approximation of mutual information pri-

vacy.

Different from them, we propose a more general privacy metric and avoid the reliance on

DNNs to derive the privacy-mapping. In our problem formulation, instead of using a specific pri-

vacy leakage measure, we propose a general framework to measure privacy leakage. The proposed

privacy leakage metric is defined by a continuous function f with certain properties. Different

choices of f lead to different privacy measures. For example, if f is chosen to be log function,

the proposed privacy leakage metric is the same as mutual information, a widely used information

leakage measure. Moreover, we introduce a parameter β to represent the relative weight between

these two measures. Thus, the trade-off problem between privacy and accuracy can be solved
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through a maximization problem where the objective function is composed of a weighted sum of

accuracy and privacy terms. To solve the maximization problem, if we optimize over the space

of the privacy-preserving mapping directly, the formulated problem is a complicated non-concave

problem with multiple constraints. Through various transformations and variable augmentations,

we transform the optimization problem into a form that has three dominating arguments with cer-

tain nice concavity properties. In particular, if any two arguments are fixed, the problem is concave

in the remaining argument. We then exploit this structure and design an algorithm with two nested

loops to solve the optimization problem for general f by iterating between those three dominating

arguments until reaching convergence. For the outer loop, we solve the optimization on the first

dominating argument, for which we have a closed-form update formula. For the inner loop, using

certain concavity properties of the objective function on the other two dominating arguments, we

apply the Alternating Direction Method of Multipliers (ADMM) to solve the non-convex problem

efficiently. Compared with solving the optimization problem using gradient ascent in the space

of the privacy-preserving mapping directly, the proposed method does not need parameter tuning,

converges much faster and finds solutions that have much better qualities. Moreover, we provide

the convergence analysis of the proposed method. Since there are two nested loops in the pro-

posed method, we first prove the convergence of the inner loop, which is the convergence proof of

the ADMM process. Although there exists convergence proof for typical ADMM, it handles two-

block separable problems only. In our case, the considered optimization problem is non-convex

and multi-block with a non-separable structure. Hence, we come up with two proofs with different

assumptions on f . Based on the convergence proof of the ADMM procedure, we further prove that

the function value is non-decreasing between two iterations in the outer-loop. Then with a guar-

antee that the objective function is upper-bounded, the proposed algorithm is shown to converge.

To further illustrate the proposed framework and algorithm, we also provide several examples by

specializing f to particular function choices and provide numerical results.

This work has been published in [142, 143].
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1.3.3 Robust and Fairness-aware regression

Fairness and robustness are critical elements of trustworthy artificial intelligence that need to be

addressed together [144]. Firstly, in the field of adversarial training, several research works are

proposed to interpret the accuracy/robustness disparity phenomenon and to mitigate the fairness

issue [144–146]. For example, [145] presents an adversarially-trained neural network that is closer

to achieve some fairness measures than the standard model on the Correctional Offender Man-

agement Profiling for Alternative Sanctions (COMPAS) dataset. Secondly, a class-wise loss re-

weighting method is shown to obtain more fair standard and robust classifiers [147]. Moreover,

[148] and [149] argue that traditional notions of fairness are not sufficient when the model is

vulnerable to adversarial attacks, investigate the class-wise robustness and propose methods to

improve the robustness of the most vulnerable class, so as to obtain a fairer robust model.

In this dissertation, we focus on regression problems and design a fair regression model that is

robust to adversarial attacks. In particular, we consider two increasingly complex attack models.

We first consider a scenario where the adversary is able to add one carefully designed adversarial

data point to the dataset. We then consider a more powerful adversary who can directly modify the

existing data points in the feature matrix. Particularly, we consider a rank-one modification attack,

where the attacker carefully designs a rank-one matrix and adds it to the existing data matrix.

To design the robust fairness-aware model, we formulate a game between a defender aiming

to minimize the accuracy loss and bias, and an attacker aiming to maximize these objectives. To

characterize both the prediction and fairness performance of a model, the objective function is

selected to be a combination of prediction accuracy loss and group fairness gap. Since the goals of

the adversary and the fairness-aware defender are opposite, a minimax framework is introduced to

characterize the considered problem. By solving the minimax problem, the optimal adversary as

well as the robust fair regression model can be derived.

To solve the problem, one major challenge is that the proposed minimax problem is nonsmooth

nonconvex-nonconcave, which may not have a local saddle point in general [150]. Although there

exist many iterative methods for finding stationary points or local optima of nonconvex-concave or
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nonconvex-nonconcave minimax problems [151–154], there are usually specific assumptions that

are not satisfied in our proposed realistic problems. To solve the complicated minimax problems

in hand, we carefully examine the underlying structure of the inner maximization problem and the

outer minimization problem, and then exploit the identified structure to design efficient algorithms.

For the scenario where the adversary adds a poisoned data point into the dataset, when solving

the inner maximization problem, we deal with the non-smooth nature of the objective function and

obtain a structure that characterizes the best adversary, which is a function of the regression coeffi-

cient β of the defense model. We then analyze the minimization problem by transforming it to four

sub-problems where each sub-problem is a non-convex quadratic minimization problem with mul-

tiple quadratic constraints, which is usually NP hard [155, 156], and finding a global minimizer is

very challenging. By exploring the underlying properties of a specific sub-problem, we investigate

8 different cases, and obtain a global minimizer to such sub-problem. Then the minimum point of

the proposed four sub-problems, β∗
rob, corresponds to the optimal robust fairness-aware model, and

the best adversarial data sample is obtained by fitting β∗
rob to the derived optimal attack strategy.

On both synthetic data and real-world datasets, numerical results illustrate that the proposed robust

fairness-aware regression model has better performance than the unrobust fair model as well as the

ordinary linear regression model in both prediction accuracy and group-based fairness.

For the rank-one attack scheme, we transform the maximization problem into a form with five

arguments, four of which can be solved exactly. With this transformation, the original nonconvex-

nonconcave minimax problem for two vectors can be converted into several weakly-convex-

weakly-concave minimax problems for one vector and one scalar, which can be approximately

solved using existing algorithms such as [157]. With the proposed algorithm, the optimal attack

scheme of the adversary and the adversarially robust fairness-aware model can be obtained si-

multaneously. On two real-world datasets, numerical results illustrate that the performance of the

adversarially robust model relies on the trade-off parameter between prediction accuracy and fair-

ness guarantee. By properly choosing such parameter, the robust model can achieve desirable per-

formance in both prediction accuracy and group-based fairness. On the other hand, for other fair
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regression models, at least one performance metric will be severely affected by the rank-one attack.

This work has been published in [158, 159].
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Chapter 2

Adversarial Robustness of Hypothesis

Testing

In this chapter, we investigate the adversarial robustness of hypothesis testing rules. In the consid-

ered model, after a sample is generated, it will be modified by an adversary before being observed

by the decision maker. The decision maker needs to decide the underlying hypothesis that gen-

erates the sample from the adversarially-modified data. We formulate this problem as a minimax

hypothesis testing problem, in which the goal of the adversary is to design attack strategy to maxi-

mize the error probability while the decision maker aims to design decision rules so as to minimize

the error probability. We consider both hypothesis-aware case, in which the attacker knows the true

underlying hypothesis, and hypothesis-unaware case, in which the attacker does not know the true

underlying hypothesis.

Particularly, in Chapter 2.1, we present our problem formulation. In Chapter 2.2, we depict

the optimal solution for the hypothesis-aware setting. In Chapter 2.3, we focus on the hypothesis-

unaware case. In Chapter 2.4, we provide numerical examples to illustrate the analytical results. In

Chapter 2.5, we offer concluding remarks.
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2.1 Problem Formulation

Suppose there is a discrete random variable X defined on a finite set X = {x1, x1, ..., xn}. Consider

the binary hypothesis testing problem:

H0 : X ∼ p0,

H1 : X ∼ p1,

in which p0 is a 1× n PMF vector with p0,j = Pr(X = xj|H0). p1 is defined in a similar manner.

Here, p0 and p1 are assumed to be known to both the adversary and the decision maker.

In this chapter, we focus on adversary hypothesis testing problem. In the considered model,

after a sample is generated, an adversary can modify it to another value. The decision maker then

observes the corrupted data. We consider two different adversary models with different capabilities.

2.1.1 Hypothesis-aware adversary

We first consider a powerful hypothesis-aware adversary, who knows the true underlying hypoth-

esis with which the sample is generated. The study of this worst-case scenario will provide per-

formance limits of other adversary models. In the considered model, the attacker can conduct

randomized attacks. In particular, after observing sample X = xi, the adversary can change it to

an attacked sample X ′ = xj with a certain probability, where X ′ is also a random variable defined

on X . Since the adversary knows the true underlying hypothesis, different attack rules can be ap-

plied depending on whether the true hypothesis is H0 or H1. We denote the attack strategy of the

attacker as (A,B), in which the components of A are Ai,j = Pr(X ′ = xj|X = xi,H0) and the

components of B are Bi,j = Pr(X ′ = xj|X = xi,H1).

Motivated by adversarial example phenomena studied in deep neural networks, we assume

that the change introduced by the adversary has limited amplitude. In particular, an adversarial

example is data that has been modified by the attacker to fool the classifier. However, to avoid
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human eye detection, the amplitude of these modifications should be limited so that they are not

perceptible to human eyes [31–37,40,41,44,160,161]. Formally, we assume Ai,j = Bi,j = 0 when

|i − j| > δ, in which δ denotes the largest change allowed. We will use A,B to denote the whole

sets of all amplitude-constrained attackers under H0,H1 correspondingly. For any given attack rule

(A,B) ∈ A× B, the PMF of X ′ can be written as q0 = p0A under H0 and q1 = p1B under H1,

with qk,j = Pr(X ′ = xj|Hk), with k = 0, 1.

Let T = [0, 1]n be the set of all decision rules. Denote t = [t1, · · · , tn] ∈ T as a randomized

decision rule such that if X = xi, the detector selects H1 with probability ti, where 0 ≤ ti ≤ 1.

For decision rule t, the probability of false alarm and miss detection are

PF (p0,A, t) = p0AtT , PM(p1,B, t) = p1B(1− t)T . (2.1)

Assuming that the prior probability of two hypotheses are equal, i.e., Pr(H0) = Pr(H1), the

error probability PE can be written as

PE(p0,p1,A,B, t) =
1

2
[PF (p0,A, t) + PM(p1,B, t)]. (2.2)

In the following, to simplify the notation, we will drop p0,p1 from the expression of PE and will

simply write it as PE(A,B, t).

The goal of the attacker is to choose the attack rule (A,B) to maximize the error probabil-

ity (2.2), while the goal of the defender is to choose the decision rule t to minimize the error

probability (2.2). In this chapter, we seek to characterize the optimal (A∗,B∗) and t∗ by solving

the minimax problem

min
t∈T

max
(A,B)∈A×B

PE(A,B, t). (2.3)

2.1.2 Hypothesis-unaware adversary

We also consider a more practical scenario, in which the attacker does not know the true underlying

hypothesis when it sees a sample. In this hypothesis-unaware adversary case, there is only one
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attack matrix A, with Ai,j = Pr(X ′ = xj|X = xi) being the probability that the attacker will

change xi to xj .

Correspondingly, for a decision rule t, the probability of false alarm and miss detection are

PF (p0,A, t) = p0AtT , PM(p1,A, t) = p1A(1− t)T . (2.4)

And the error probability PE can be written as

PE(p0,p1,A, t) =
1

2
[PF (p0,A, t) + PM(p1,A, t)]. (2.5)

Similarly, we will drop p0,p1 from the expression of PE and will simply write it as PE(A, t).

Moreover, we seek to characterize the optimal A∗ and t∗ by solving the minimax problem

min
t∈T

max
A∈A

PE(A, t). (2.6)

In the problem formulations (4.2) and (2.6) discussed above, the distributions under H0 and

H1, i.e. p0 and p1, are known to the attacker and decision maker. These problem formulations can

be generalized to the scenario where there are uncertainties about the distributions. Suppose the

actual distribution pt, t = 0, 1 under Ht belongs to the neighborhood of a nominal distribution.

The neighborhood, denoted by Pt can be defined by KL-divergence [54], α-divergence [50], etc.

The optimal (A∗,B∗) and t∗ for the hypothesis-aware case can be found by solving the complex

optimization problem

min
t∈T

max
(A,B)∈A×B

min
(p0,p1)∈P0×P1

PE(A,B, t,p0,p1).

Similarly, the optimal A∗ and t∗ for the hypothesis-unaware case can be found by solving the

optimization problem

min
t∈T

max
A∈A

min
(p0,p1)∈P0×P1

PE(A, t,p0,p1).
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These problem formulations are much more complex than (4.2) and (2.6), and are left as future

work.

2.2 Optimal hypothesis-aware adversary

In this section, we focus on the hypothesis-aware case and characterize the optimal solution to the

complicated minimax optimization problem (4.2). To achieve this, we will first conduct a saddle-

point analysis to reveal the structure of the optimal solution. Based on this, we will derive an

upper-bound on the error probability. We will then develop an attack strategy to achieve this bound.

2.2.1 Saddle-point Analysis

In this subsection, we characterize the structure of the optimal decision rules by analyzing the

saddle-point of the minimax problem (4.2).

Note that, given t, PE(A,B, t) is continuous and linear, and therefore is both convex and

concave in (A,B). Similarly, given (A,B), PE(A,B, t) is continuous and linear, and therefore

is both convex and concave in t. Furthermore, sets A × B and T are both compact and convex.

Therefore, using Von Neumann minimax theorem [162] (which allows the swapping of the min

and max operators under certain conditions), we have

min
t∈T

max
(A,B)∈A×B

PE(A,B, t) = max
(A,B)∈A×B

min
t∈T

PE(A,B, t). (2.7)

This implies that the solution (A∗,B∗, t∗) to this minimax problem satisfies the saddle-point prop-

erty

PE(A
∗,B∗, t) ≥ PE(A

∗,B∗, t∗) ≥ PE(A,B, t∗). (2.8)

From these two inequalities, we can characterize the structure of the optimal attack and decision

strategies.

The first inequality in (2.8) indicates that the best decision rule must be the Bayesian test with
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respect to the best adversary (A∗,B∗). It is well known that, for a given arbitrary adversary attack

rule (A,B), the optimal detection rule, denoted as t∗(A,B), is simply a threshold rule

t∗i (A,B) =


0 q0,i > q1,i,

arbitrary q0,i = q1,i,

1 q0,i < q1,i,

(2.9)

where q0 = p0A, q1 = p1B. For the optimal adversary (A∗,B∗), the optimal decision rule is

t∗ = t∗(A∗,B∗).

With the optimal form of t∗ in terms of (A,B) characterized in (2.9), we can then use the

second inequality in (2.8) to characterize the optimal (A∗,B∗) by solving

max
A,B

1

2
[p0A(t∗(A,B))T + p1B(1− (t∗(A,B))T )], (2.10)

s.t. Ai,j ≥ 0, Bi,j ≥ 0, i, j = 1, .., n, (2.11)
n∑

j=1

Ai,j = 1,
n∑

j=1

Bi,j = 1, i = 1, .., n, (2.12)

1|i−j|>δAi,j = 1|i−j|>δBi,j = 0, i, j = 1, .., n, (2.13)

in which 1{·} is the indicator function. Here, constraints (2.11) and (2.12) guarantee that each row

of A and B is a conditional PMF, while constraint (2.13) makes sure that the changes introduced

by the attacker has a limited amplitude.

Once we solve (2.10) and obtain (A∗,B∗), the optimal t∗(A∗,B∗) can be obtained by us-

ing (2.9). Due to the decision rule in (2.9), the objective function in (2.10) is a complicated func-

tion of (A,B). In the following, we will characterize the optimal solution to this challenging

optimization problem under the following assumptions on p0 and p1. Let R0 = {i|p0,i ≥ p1,i}

and R1 = {i|p0,i < p1,i}, i.e., R0 is the set of index where p0,i is larger while R1 is the set of

index where p1,i is larger. We will assume that R0 (and hence R1) is a consecutive region in [1, n].

Without loss of generality, we write R0 = {i|1 ≤ i ≤ m} and R1 = {i|m+ 1 ≤ i ≤ n}.
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We now compare this assumption with the assumptions used in the study of classic robust

hypothesis testing [54], in which the nominal PMF is assumed to satisfy certain monotonicity

and symmetry properties. Specifically, in [54], monotonicity means that p1,i
p0,i

is a monotonically

increasing function of i and symmetry means p1,n−i+1 = p0,i, 1 ≤ i ≤ n. It is easy to check that the

monotonicity assumption implies the assumption made in this chapter. Moreover, our assumption

does not require the symmetry condition. Hence, our assumption is significantly weaker than the

assumptions in [54].

2.2.2 Upper-bound for PE

In this section, we develop an upper-bound on the objective function (2.10) that holds for any attack

strategy.

We first present a lemma that simplifies PE(A,B, t∗) into two equivalent forms, both of which

will be used in the sequel.

Lemma 1. PE(A,B, t∗) can be written as

PE(A,B, t∗) =
1

2
− 1

4

n∑
i=1

|q0,i − q1,i| (2.14)

=
1

2

n∑
i=1

min{q0,i, q1,i}. (2.15)

Proof. Please see Appendix A.1.

From (2.14), we can see that the most powerful attacker is the one that minimizes the ℓ1 distance

between q0 and q1, which inspires us to optimize the error probability by components.

To proceed further, we denote the mass moved into [1, i] as It,i for t = 0 (i.e., under hypothesis

H0) and t = 1 (i.e., under hypothesis H1) respectively. Similarly, define the mass moved out from

[1, i] as Kt,i. For example, for region [1,m], we have

I1,m =
m+δ∑

j=m+1

p1,j

(
m∑

i=j−δ

Bj,i

)
,
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R0 R1

K0,m

I1,m

Figure 2.1: Mass moved between two regions

K0,m =
m∑

j=m+1−δ

p0,j

(
j+δ∑

i=m+1

Aj,i

)
,

as shown in Fig. 2.1.

Define

F0 = F0(A,B) =
n∑

i=1

q0,i,

Fj(A,B) =

j∑
i=1

min{q0,i, q1,i}+
n∑

i=j+1

q0,i.

Then we can see that

Fj+1(A,B) = Fj(A,B) + min{q1,j+1 − q0,j+1, 0},

and thus

2PE(A,B) = Fn(A,B) ≤ ... ≤ Fm(A,B) ≤ ... ≤ F0.

We are now ready to derive an upper-bound on the error probability PE that holds for any attack

strategy (A,B).
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Theorem 2. For ∀(A,B) ∈ A× B,

Fm(A,B)≤min

{
1, min

1+δ≤j≤m
{Gj(p0,p1)}

}
, (2.16)

2PE = Fn(A,B)≤min

{
1, min

1+δ≤j≤n
{Gj(p0,p1)}

}
, (2.17)

in which

Gj(p0,p1) = 1−
j−δ∑
i=1

p0,i +

min{n,j+δ}∑
i=1

p1,i. (2.18)

Furthermore, for j∗ = argmin1+δ≤j≤n {Gj(p0,p1)} , if Gj∗(p0,p1) ≤ 1, the equality in (2.17)

holds when there exists (A,B) ∈ A× B such that:

(i) q1,i ≤ q0,i, 1 ≤ i ≤ j∗;

(ii)

K0,j∗ − I0,j∗ =

j∗∑
i=j∗−δ+1

p0,i, (2.19)

I1,j∗ −K1,j∗ =

min{n,j∗+δ}∑
i=j∗+1

p1,i; (2.20)

(iii) Fk(A,B) = Fj∗(A,B), j∗ < k ≤ n.

If Gj∗(p0,p1) > 1, the equality is achieved when

Fi(A,B) = 1, 1 ≤ i ≤ n. (2.21)

Proof. Please see Appendix A.2.

We note that the bound in Theorem 2 depends only on (p0,p1), the original PMFs before

attack.
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2.2.3 Optimal Adversary Design

In this section, we design the attack matrix (A,B) to achieve the upper-bound in (2.17). As the

designed attack matrix achieves the upper-bound, it is an optimal solution to (2.10).

The construction process is motivated by the form in (2.14), which shows that the component-

wise absolute difference (ℓ1 distance) between q0 and q1 needs to be minimized. To minimize

the ℓ1 distance, we find the optimal (A,B) column by column. In particular, at the first step,

we determine A:,1,B:,1 (based on some criteria to be detailed in the sequel). Once A:,1,B:,1 are

determined, qt,1 and F1 are also determined. We denote these values as q̂t,1 and F̂1 respectively.

We also have the constrained attack set A1 ×B1 = {(A,B)|q̂0,1 and q̂1,1 are obtained}. After step

j − 1, the first j − 1 columns have been determined, and the constrained set is Aj−1 ×Bj−1. Then

at step j, among all valid attack matrices in Aj−1 × Bj−1, we determine A:,j , B:,j (based on a

process to be detailed in the sequel) and obtain q̂t,j, F̂j . The constrained set is further refined to be

Aj × Bj = {(A,B)|q̂0,j and q̂1,j are obtained} ⊂ Aj−1 × Bj−1. The process ends at step n.

In the following, we describe our design of (A,B) to achieve the upper-bound. We will first

focus on 1 ≤ j ≤ m, i.e., j ∈ R0, to obtain the equality in (2.16). Then focus on m + 1 ≤ j ≤ n,

i.e., j ∈ R1, to achieve the equality in (2.17).

Column design for j ∈ R0:

In R0, we design the columns of (A,B) to satisfy

1) q̂1,1 =
∑1+δ

i=1 p1,i;

2) q̂1,j = p1,j+δ, 2 ≤ j ≤ m;

3) q̂0,j = q̂1,j, 1 ≤ j ≤ δ;

4) q̂0,j = max{p0,j−δAj−δ,j, q̂1,j}, δ + 1 ≤ j ≤ m,

which will then be shown to achieve the optimal value of Fm(A,B) in (2.16). These conditions

are also listed in Table 2.1.
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j = 1 2 ≤ j ≤ δ δ + 1 ≤ j ≤ m

H0 : q̂0,j
∑1+δ

i=1 p1,i p1,j+δ max{p0,j−δAj−δ,j, p1,j+δ}
H1 : q̂1,j

∑1+δ
i=1 p1,i p1,j+δ p1,j+δ

Table 2.1: PMF design in R0

First, we specify how to design each element of (Â, B̂) so that q̂0,js and q̂1,js are set to be these

values.

For the first step, by 1), 3), we have q̂0,1 = q̂1,1 =
∑1+δ

i=1 p1,i, and thus F̂1 = F0 = 1. Moreover,

we can achieve this by setting the first column of (Â, B̂) as

Â1,1 = min

{
1,

q̂0,1
p0,1

}
,

Âi,1 = min

1,
max

{
0, q̂0,1 −

∑i−1
k=1 p0,k

}
p0,i

 , 2 ≤ i ≤ n,

B̂i,1 = 1, 1 ≤ i ≤ 1 + δ, Bi,1 = 0, 2 + δ ≤ i ≤ n.

We continue to next columns. For columns 2 ≤ j ≤ δ, from 2) and 3), we have q̂0,j = q̂1,j =

p1,j+δ, then F̂j = F̂j−1. We can achieve this by setting the j-th columns of (Â, B̂) as

∀1 ≤ i ≤ n, Âi,j = min

{
1−

j−1∑
k=1

Âi,k, (2.22)

max
{
q̂0,j −

∑i−1
k=1 p0,k

(
1−

∑j−1
t=1 Âk,t

)
, 0
}

p0,i

 ,

B̂j+δ,j = 1, B̂i,j = 0,∀i ̸= j + δ. (2.23)

For columns δ + 1 ≤ j ≤ m, Â:,j and B̂:,j are also designed by (2.22) and (2.23).

In Appendix A.3, we show that, with this design of Â:,j and B̂:,j , the requirements in

1), 2), 3), 4) are satisfied.
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Remark 1. The column design for A in (2.22) indicates that

∀1 ≤ i ≤ n, Âi,j = min
{
A

(1)
i,j ,max

{
A

(2)
i,j , A

(3)
i,j

}}
,

in which

A
(1)
i,j = 1−

j−1∑
k=1

Âi,k = max
A∈Aj−1

Ai,j,

A
(2)
i,j =

q̂0,j −
∑i−1

k=1 p0,k

(
1−

∑j−1
t=1 Âk,t

)
p0,i

,

A
(3)
i,j = 0 = min

A∈Aj−1

Ai,j.

For a given component j, looking at i which starts from 1 and goes to n, we notice that the value

of Âi,j will goes from A
(1)
i,j , to A

(2)
i,j and then A

(3)
i,j .

Second, we show that F̂m achieves the equality in (2.16) by checking the values of F̂j one by

one from j = δ + 1 to j = m. We have three cases that will occur in order as j increases.

Case 1: q̂0,j = q̂1,j , then F̂j = F̂j−1.

Case 2: j is the first component such that q̂0,j > q̂1,j , or equivalently, j is the smallest component

satisfying

j∑
i=1

q̂0,i >

j∑
i=1

q̂1,i =

j+δ∑
i=1

p1,i.

This means that we have F̂j−1 = F̂j−2 = ... = 1. As for q̂0,j , if q̂0,j ̸= q̂1,j , then q̂0,j =

p0,j−δÂj−δ,j > 0 and thus

j∑
i=1

q̂0,i
(a)
=

j−δ∑
i=1

p0,i >

j∑
i=1

q̂1,i =

j+δ∑
i=1

p1,i. (2.24)

To derive (a), as discussed above, we have Âj−δ,j > 0, which indicates Âj−δ,j−1 ̸= A
(1)
j−δ,j−1. Then
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K0,j =
∑j

i=j−δ+1 p0,i and (a) is true. Therefore,

F̂j = 1 + q̂1,j − q̂0,j = 1 +

j∑
i=1

(q̂1,j − q̂0,j)

= 1 +

j+δ∑
i=1

p1,i −
j−δ∑
i=1

p0,i = Gj(p0,p1). (2.25)

Case 3: Suppose k is the largest component with

F̂k = Gk(p0,p1) = 1 +
k+δ∑
i=1

p1,i −
k−δ∑
i=1

p0,i. (2.26)

Similar to Case 2, we have

j∑
i=k+1

q̂0,i =

j−δ∑
i=k−δ+1

p0,i >

j∑
i=k+1

q̂1,i =

j+δ∑
i=k+δ+1

p1,i. (2.27)

Therefore,

F̂i = F̂k, k + 1 ≤ i ≤ j − 1,

F̂j = F̂k +

j∑
i=k+1

(q̂1,i − q̂0,i)

(b)
= F̂k +

j+δ∑
i=k+δ+1

p1,i −
j−δ∑

i=k−δ+1

p0,i

(c)
= 1 +

j+δ∑
i=1

p1,i −
j−δ∑
i=1

p0,i = Gj(p0,p1), (2.28)

where (b) is from (2.27) and (c) is true due to (2.26).

Taking all three cases into consideration, we have

F̂j = min
{
F̂j−1, Gj(p0,p1)

}
, (2.29)

and thus F̂m = min {1,min1≤j≤m Gj(p0,p1)} , which achieves the equality in (2.16).
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Column design for j ∈ R1:

In R1, we design the columns of (A,B) to satisfy

1) q̂0,j = max

{
min

A∈Aj−1

q0,j,

min

{
max

B∈Bj−1

q1,j, max
A∈Aj−1

q0,j

}}
, (2.30)

2) q̂1,j = max

{
min

B∈Bj−1

q1,j,

min

{
q̂0,j, max

B∈Bj−1

q1,j

}}
, (2.31)

where

min
A∈Aj−1

q0,j = p0,j−δAj−δ,j,

max
A∈Aj−1

q0,j = K0,j−1 − I0,j−1 +

j+δ∑
i=j

p0,i,

max
B∈Bj−1

q1,j =

j+δ∑
i=j

p1,i − I1,j−1 +K1,j−1,

min
B∈Bj−1

q1,j = p1,j−δBj−δ,j.

First, we describe the construction of (Â, B̂). Note that, the first m columns of (Â, B̂) have

already been selected in R0. For columns from m + 1 to n, Â is constructed by (2.22) and B̂ is

constructed by

B̂i,j = min

{
1−

j−1∑
k=1

B̂i,k,
q̂1,j −

∑i−1
k=1 p1,kB̂k,j

p1,i

}
. (2.32)

In Appendix A.3, we show that such (Â, B̂) design satisfies the conditions on q̂0, q̂1 in 1), 2).

Second, we verify that F̂n achieves the equality in (2.17) if the conditions on q̂0, q̂1 in 1), 2)

are satisfied. The main idea is to derive the value of F̂j based on the value of F̂j−1 by calculating
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q̂0,j − q̂1,j . According to the previously designed columns, the relationship between q̂0,j and q̂1,j

has three different cases.

Case 1: q̂0,j ≤ q̂1,j , then F̂j = F̂j−1. Moreover, we have q̂0,j ̸= p0,j−δAj−δ,j in this case.

Case 2: Assume that j is the smallest component in R1 with q̂0,j > q̂1,j . Specifically, by 1), 2), for

this component, we have

q̂0,j = min
A∈Aj−1

q0,j

= p0,j−δAj−δ,j = K0,j−1 − I0,j−1 −
j−1∑

i=j−δ+1

p0,i,

q̂1,j = max
B∈Bj−1

q1,j =

min{j+δ,n}∑
i=j

p1,i − I1,j−1 +K1,j−1.

Then

q̂0,j − q̂1,j = p0,j−δAj−δ,j − max
B∈Bj−1

q1,j

= (K0,j−1 − I0,j−1 −
j−1∑

i=j−δ+1

p0,i)

−

min{j+δ,n}∑
i=j

p1,i − I1,j−1 +K1,j−1


(a)
= F̂j−1 − 1 +

j−1∑
i=1

(p0,i − p1,i)−
j−1∑

i=j−δ+1

p0,i −
min{j+δ,n}∑

i=j

p1,i

= F̂j−1 −Gj(p0,p1),
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in which (a) comes from the following fact,

Fj(A,B) = 1 +

j∑
i=1

min{(q1,i − q0,i), 0}

(b)

≤ 1 +

j∑
i=1

(q1,i − q0,i) = 1 +

j∑
i=1

q1,i −
j∑

i=1

q0,j

= 1−
j∑

i=1

(p0,i − p1,i) +K0,j −K1,j + I1,j − I0,j,

where the equality in (b) is attained when q1,i ≤ q0,i, 1 ≤ i ≤ j. Recall that for i ∈ R0, we have

q̂0,i ≥ q̂1,i. Then based on the assumption, we have q̂1,i ≤ q̂0,i, 1 ≤ i ≤ j and hence (a) is true.

Recall that j∗ = argmin1≤j≤n {Gj(p0,p1)} and we prove that j∗ ∈ R1 by contradiction.

Suppose j∗ ∈ R0. Then note that F̂m = Gj∗(p0,p1) ≤ Gj(p0,p1),∀j ∈ R1 and thus

q̂0,j − q̂1,j = F̂j−1 −Gj(p0,p1)

≤ F̂m −Gj(p0,p1) ≤ 0,

which contradicts with the assumption that q̂0,j > q̂1,j . Hence, j∗ ∈ R1 and we have F̂j =

Gj(p0,p1).

Case 3: For k > j such that q̂0,j = p0,j−δAj−δ,j > q̂1,j , by the similar idea of proving (2.28) in R0,

we will also have F̂j = Gj(p0,p1).

Taking all three cases into consideration, in R1, (2.29) also holds, which indicates that the

equality in Theorem 2 is obtained for the designed adversary.

2.3 Optimal hypothesis-unaware adversary

In Section 2.2, we have considered a powerful hypothesis-aware adversary who knows the true

underlying hypothesis before attack. In this section, we consider a more practical scenario with a

hypothesis-unaware adversary who does not know the true underlying hypothesis that generates
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the observed data. In this section, we will investigate the optimal solution to the minimax problem

characterized in (2.6).

Under the hypothesis-unaware setting, as the adversary has less information, the attack is more

difficult to carry out. However, the approach in Section 2.2 can be modified and applied here.

First, the saddle point analysis in Section 2.2.1 can be easily extended to the hypothesis-

unaware case to simplify (2.6). In particular, following a similar saddle-point analysis, for any

given attack matrix A, we have that the optimal form of the decision rule is

t∗i (A) =


0 q0,i > q1,i,

arbitrary q0,i = q1,i,

1 q0,i < q1,i,

(2.33)

where q0 = p0A, q1 = p1A. The optimal attack matrix A∗ is the solution to

max
A

1

2
[p0A(t∗(A)T + p1A(1− t∗(A)].

This can be further rewritten as

max
A

1

2
[1 + (p0 − p1)At∗(A)T ], (2.34)

subject to Ai,j ≥ 0, i, j = 1, .., n,
n∑

j=1

Ai,j = 1,

1|i−j|>δAi,j = 0, i, j = 1, .., n.

In the following, we will generalize the approach in Section 2.2 to characterize the optimal

solution to (2.34).
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2.3.1 Upper-bound for PE

Let Fm−δ(A) =
∑m−δ

i=1 q1,i +
∑n

i=m−δ+1 q0,i and

f(j,A) =
m−δ∑
i=1

q1,i +

j∑
i=m−δ+1

min{q0,i, q1,i}+
n∑

i=j+1

q0,i.

Define

Fj(A) =


Fm−δ(A) 1 ≤ j ≤ m− δ,

f(j,A) m− δ + 1 ≤ j ≤ m+ δ,

f(m+ δ,A) m+ δ + 1 ≤ j ≤ n.

Then from the definition, we have

Fj+1(A,B) = Fj(A,B) + min{q1,j+1 − q0,j+1, 0},

and thus

2PE(A,B)
(a)
= Fn(A,B) = ... = Fm+δ(A,B) ≤ ...

≤ Fm(A,B) ≤ ... ≤ Fm−δ = Fm−δ−1 = ... = F0,

where (a) is due to the fact that

m−δ∑
i=1

q1,i +
m+δ∑

i=m−δ+1

min{q0,i, q1,i}+
n∑

i=m+δ+1

q0,i

=
n∑

i=1

min{q0,i, q1,i}.

Similar to Theorem 2, we have the following bound.
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Theorem 3. For ∀A ∈ A,

Fm(A) ≤ min
m−δ≤j≤m

{Ej(p0,p1)} , (2.35)

2PE(A) = Fm+δ(A) ≤ min
m−δ≤j≤m+δ

{Ej(p0,p1)}

:= Ej∗(p0,p1), (2.36)

in which

Em−δ(p0,p1) = 1−
m−2δ∑
i=1

(p0,i − p1,i),

Ej(p0,p1) = 1−
j−δ∑
i=1

(p0,i − p1,i) +

min{n,j+δ}∑
i=m+1

(p1,i − p0,i),

j∗ = arg min
m−δ≤j≤m+δ

{Ej(p0,p1)} . (2.37)

If Ej∗(p0,p1) ≤ Em−δ(p0,p1), the equality in (2.36) holds when there exists A ∈ A such that:

(i) K0,m−δ −K1,m−δ =
∑m−δ

i=m−2δ+1(p0,i − p1,i);

(ii) q1,i ≤ q0,i,m− δ + 1 ≤ i ≤ j∗;

(iii) K0,j∗ −K1,j∗ =
∑min{j∗,m}

i=j∗−δ+1 (p0,i − p1,i),

I1,j∗ − I0,j∗ =
∑min{n,j∗+δ}

i=max{m+1,j∗+1}(p1,i − p0,i);

(iv) Fk(A) = Fj∗(A), j∗ < k ≤ m+ δ.

If Ej∗(p0,p1) > Em−δ(p0,p1), the equality is achieved when

Fi(A) = Em−δ(p0,p1),m− δ ≤ i ≤ m+ δ.

Proof. Please see Appendix A.4.
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j[1,j-1]

bt,j ct,jat,j

ft,j et,j dt,j

Figure 2.2: Moved mass between different regions at component j

2.3.2 Attack strategy design

In this section, we design an attack matrix Â to achieve the upper-bound in (2.36). As the de-

signed matrix achieves the upper-bound, it is an optimal solution to (2.34). Similar to the design of

hypothesis-aware attack matrix, we construct the optimal A column by column.

Before proceeding further, we need to define quantities related to mass moving between differ-

ent regions. In particular, for t = 0, 1, define

• at,j: [1, j − 1] → j,

• bt,j: [1, j − 1] → [j + 1, n],

• ct,j: j → [j + 1, n],

• dt,j: [j + 1, n] → j,

• et,j: [j + 1, n] → [1, j − 1],

• ft,j: j → [1, j − 1].

These quantities are illustrated in Fig. 2.2.

Moreover, we will use â, b̂, ĉ, d̂, ê, f̂ to denote the value of a, b, c, d, e, f determined by Â while

using F̂j to denote the value of Fj achieved by Â.

Column design for j ∈ R0:

In R0, for t = 0, 1, we design columns of attack matrix Â to achieve
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(1) q̂t,j = pt,j, 1 ≤ j ≤ m− 2δ;

(2) q̂t,j = 0,m− 2δ + 1 ≤ j ≤ m− δ;

(3) q̂t,j = pt,j−δ + d̂t,j,m− δ + 1 ≤ j ≤ m, where d̂t,j is selected to satisfy

d̂1,j − d̂0,j = min{p0,j−δ − p1,j−δ, F̂m−δ − F̂j−1

+

min{n,j+δ}∑
i=m+1

(p1,i − p0,i) +

j−δ−1∑
i=m−2δ+1

(p1,i − p0,i)}.

To summarize, these conditions listed in Table 2.2.

Ht : q̂t,j
1 ≤ j ≤ m− 2δ pt,j

m− 2δ + 1 ≤ j ≤ m− δ 0

m− δ + 1 ≤ j ≤ m pt,j−δ + d̂t,j

Table 2.2: PMF design in R0 for the hypothesis-unaware adversary

Here, again, we will first describe how to design Â so that 1), 2) and 3) are satisfied. We will

then show that, once these conditions are satisfied, the equality in (2.35) is achieved. Hence, the

designed Â is optimal.

In particular, we set columns 1 to m of Â to be

a) 1 ≤ j ≤ m− 2δ, Âj,j = 1, Âi,j = 0, i ̸= j;

b) m− δ + 1 ≤ j ≤ m, Âj−δ,j = 1,

Âi,j = min

{
1,max

{
d̂1,j−d̂0,j−

∑i−1
k=m+1(p1,k−p0,k)

p1,i−p0,i
, 0

}}
, m+ 1 ≤ i ≤ n.

Following the same proof in Appendix A.3, we can show that using design specified in a), b), the

equalities in 1), 2), 3) are satisfied for 1 ≤ j ≤ m. Details of the proofs are omitted for brevity.

We now verify that we can achieve the equality in the upper-bound (2.35) once conditions 1),
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2) and 3) are satisfied.

F̂m−δ =
m−δ∑
i=1

(p1,i − p0,i) + I1,m−δ − I0,m−δ −K1,m−δ

+K0,m−δ + 1

= 1−
m−2δ∑
i=1

(p0,i − p1,i) := Em−δ(p0,p1).

For ∀m− δ ≤ j ≤ m,

F̂j = F̂j−1 +min{0, q̂1,j − q̂0,i}

= min{F̂j−1, F̂j−1 + q̂1,j − q̂0,i}

= min{F̂j−1, F̂j−1 + p1,j−δ − p0,j−δ + d̂1,j − d̂0,i}

= min
{
F̂j−1,

1−
j−δ∑
i=1

(p0,i − p1,i) +

min{n,j+δ}∑
i=m+1

(p1,i − p0,i)


:= min

{
F̂j−1, Ej(p0,p1)

}
,

and thus

F̂m = min
m−δ≤j≤m

{Ej(p0,p1)} , (2.38)

which reaches the equality in (2.35).

Column design for j ∈ R1:

In R1, the first m columns of Â have been determined in R0 and for j ∈ R1, we further design

A:,m+1:n to achieve

q̂1,j − q̂0,j = max{ min
A∈Aj−1

(q1,j − q0,j),

min{0, max
A∈Aj−1

(q1,j − q0,j)}}.
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We will design A:,m+1:n in two cases. For the first case, we always have j∗ ∈ R0 and A:,m+1:n

can be designed in a simple way. For the second case, similar procedure in Section 2.2.3 Case 2

can be applied. In the following part, we will provide the assumptions of two cases and analyze the

first scenario in detail while skip the details for the second scenario.

Case 1:

min
m−δ≤j≤m−1

{
m∑

i=j−δ+1

(p0,i − p1,i)−
m+δ∑

i=j+δ+1

(p1,i − p0,i)} ≤ 0.

By applying (2.38), this condition is equivalent to

F̂m ≤ 1 +
m+δ∑
i=1

(p1,i − p0,1),

and thus ∀j ∈ [m+ 1,m+ δ],

Ej(p0,p1) = 1−
j−δ∑
i=1

(p0,i − p1,i) +

j+δ∑
i=m+1

(p1,i − p0,i)

≥ 1−
m∑
i=1

(p0,i − p1,i) +
m+δ∑

i=m+1

(p1,i − p0,1) ≥ F̂m.

Therefore, we will be able to find an Â ∈ Am, such that F̂m+δ = F̂m.

The desired A:,m+1:n is designed by

(1) ∀m− δ + 1 ≤ j ≤ m, Âj,m+1 = 1;

(2) ∀m+ 1 ≤ j ≤ m+ δ, Âj,m+1 = 1−
∑m

i=1 Âj,i;

(3) ∀m+ δ + 1 ≤ j ≤ n, Âj,j = 1.
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Then we have

q̂1,m+1 − q̂0,m+1 =
m+δ+1∑

k=m−δ+1

(p1,k − p0,k)Âk,m+1

= K1,m −K0,m +
m+δ+1∑
k=m+1

(p1,k − p0,k)(1−
m∑
i=1

Âk,i)

= K1,m −K0,m +
m+δ+1∑
k=m+1

(p1,k − p0,k)− I1,m +K0,m

(a)
= 1 +

m+δ∑
i=1

(p1,i − p0,1)− F̂m ≥ 0,

where (a) is because ∀m− δ + 1 ≤ j ≤ m+ δ, ∀A ∈ A,

Fj(A) = Fm−δ(A) +

j∑
i=m−δ+1

min{(q1,i − q0,i), 0}

(b)

≤ Fm−δ(A) +

j∑
i=m−δ+1

(q1,i − q0,i)

=

j∑
i=1

q1,i +
n∑

i=j+1

q0,i

= 1 +

j∑
i=1

(q1,i − q0,i)

= 1−
j∑

i=1

(p0,i − p1,i)

+K0,j −K1,j + I1,j − I0,j,

and the equality in (b) holds when q1,i− q0,i ≤ 0,m− δ+1 ≤ i ≤ j. For here, j = m and we have

q1,i − q0,i ≤ 0 in R0 and (a) is true.

Furthermore, we have q̂1,j = q̂0,j = 0,m+ 2 ≤ j ≤ m+ δ. Therefore, for the designed Â, we
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have

F̂m+δ(Â) = F̂m+1(Â)

= F̂m(Â) + min{q̂1,m+1 − q̂0,m+1, 0} = F̂m(Â),

and thus the equality in Theorem 3 is achieved.

Case 2:

min
m−δ≤j≤m−1

{
m∑

i=j−δ+1

(p0,i − p1,i)−
m+δ∑

i=j+δ+1

(p1,i − p0,i)} > 0.

Under this condition, by the same idea in 2.2.3 Case 2, we will have F̂j =

min{F̂j−1, Ej(p0,p1)}. Therefore, the equality in Theorem 3 is attained.

2.4 Numerical Results

In this section, we provide numerical examples to illustrate results obtained in this chapter.

In the first example, we give two specific PMFs with a few components and perform hypothesis-

aware and hypothesis-unaware attacks to show how the adversary works. In this example, the PMF

before attack is provided in (2.39) and Fig. 2.3. It is easy to calculate that for this PMF, if there is no

adversary, the error probability corresponding to the optimal Bayesian detection rule is PE = 11
32

.

Assume that the attack amplitude is δ = 1. Following the design process in Section 2.2.3 and

2.3.2, the optimal hypothesis-aware attack strategy Âa, B̂a and the optimal hypothesis-unaware

attack strategy Âu are

Âa =



1 0 0 0 0 0

0 3
7

4
7

0 0 0

0 0 1
3

2
3

0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 1 0


,
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Figure 2.3: PMFs p0 and p1

B̂a =



1 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


,

Âu =



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1


.

Thus, the PMFs after attack can be calculated and are provided in (2.40) and Fig. 2.4 for

the hypothesis-aware model and the PMFs of hypothesis-unaware model are provided in (2.41)

and Fig. 2.5. It is easy to check that, for the constructed adversary, the error probabilities are

PE(Âa, B̂a, t
∗(Âa, B̂a)) =

1
2

and PE(Âu, t
∗(Âu)) =

7
16

correspondingly. Since the error proba-

bility is 1/2 (the largest possible value) for the hypothesis-aware attack, the designed attack matrix
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Figure 2.4: PMFs p0Âa and p1B̂a for the hypothesis-aware case
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Figure 2.5: PMFs p0Âu and p1Âu for the hypothesis-unaware case
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is clearly optimal. For the hypothesis-unaware attack, the error probability under Âu is less than 1
2
.

This already achieves the maximal value of PE(Au, t
∗(Au)) by Theorem 3, 2PE(Au, t

∗(Au)) ≤

E4(p0,p1) =
7
8
. Therefore, for this particular example, the hypothesis-unaware attacker is not as

powerful as the hypothesis-aware attacker.

p0 8/32 7/32 6/32 3/32 4/32 4/32

p1 4/32 4/32 3/32 6/32 7/32 8/32
(2.39)

p0Âa 8/32 3/32 6/32 7/32 8/32 0

p1B̂a 8/32 3/32 6/32 7/32 8/32 0
(2.40)

p0Âu 8/32 0 10/32 10/32 0 4/32

p1Âu 4/32 0 10/32 10/32 0 8/32
(2.41)

In the second example, we explore how δ affects the prediction error for a randomly selected

p0 and p1 under two attack models. In our simulation, we generate 2n random numbers in [0, 1]

by uniform distribution, divide them into two sequences and normalize each sequence to make it

a PMF while maintaining two consecutive regions to meet the assumption made in Section 2.2.1.

After p0 and p1 are generated, they are fixed throughout the experiment. We then apply the pro-

posed attack schemes to find one of the optimal attackers and calculate its prediction error under

the Bayesian test. The results are shown in Fig. 2.6, where both the upper-bounds for the error

probability and the error probability under constructed optimal attackers are presented. There are

only two lines in Fig. 2.6 since the upper-bounds are achieved by the designed adversary and they

overlap each other, which verifies the correctness of the construction process. From Fig. 2.6, we

can see that, for each adversary, the attacker becomes more powerful as δ increases. In particular,

for the hypothesis-aware case, when δ is large enough, the prediction error will reach 1
2
, the largest

possible value.

In the third example, we investigate the impact of the alphabet size n on the prediction er-

ror. The PMFs before the attack are generated in the same manner as the second example. From
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Figure 2.6: Prediction error v.s. δ, n = 200,m = 97

Fig. 2.7, we have that, for a fixed attack amplitude δ = 50, the prediction error decreases as the

alphabet size n increases. The reason is that, as n increases, the relative attack strength δ/n de-

creases, and hence the impact of the attack on the error probability also decreases. However, if

the ratio between δ and n is fixed (for example, δ/n = 0.03, 0.06, 0.1 as shown in Fig. 2.8 and

δ/n = 0.1, 0.15, 0.2 as shown in Fig. 2.9), there is no significant change in the prediction error

as the alphabet size increases. In particular, from the hypothesis-aware result given in Fig. 2.8, we

see that the prediction error reaches 0.5 when δ = 0.1n for n varies from 400 to 1000, indicating

that even a relatively small perturbation could have a big impact on the prediction accuracy. On

the other hand, for the hypothesis-unaware model, from Fig. 2.9, we see that it is harder for the

prediction error to reach 1
2
, indicating that the strength of attack has been highly restricted if the

hypothesis information is hidden from the adversary.

In the fourth example, we illustrate the characteristic of PMFs before and after attack. First,

we generate the PMFs by truncating a Poisson distribution with parameter λt, t = 0, 1, since the

normal Poisson distribution is defined on an infinite set. To normalize the distribution, we then

move the mass on the tails to the finite alphabet equally and name the distribution as truncated

Poisson distribution. Thus, the PMFs can be written as pt,i = p0
t,i + d, t = 0, 1, 1 ≤ i ≤ n,

where p0
t,i =

(λi
te

−λt )

i!
and d =

1−
∑n

i=1 p
0
t,i

n
. By setting n = 110 and λ0 = 35, λ1 = 75 for H0,H1

respectively, the PMFs before attack are shown in Fig. 2.10. Under this setup, the PMFs after attack
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Figure 2.7: Prediction error v.s. alphabet size n for δ = 50
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Figure 2.8: Prediction error v.s. alphabet size n (hypothesis-aware)
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Figure 2.9: Prediction error v.s. alphabet size n (hypothesis-unaware)
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Figure 2.10: The PMF before and after attack (hypothesis-aware)

are shown in Fig. 2.10 and Fig. 2.11 for the hypothesis-aware and hypothesis-unaware attackers

respectively. In these figures, we set δ = 24. The results show that, for both hypothesis-aware and

hypothesis-unaware adversary, the PMFs after attack can be made the same under two hypotheses.

As the result, for both adversary models, PE = 1
2

after the attack.

Fig. 2.12 illustrates the PMFs before and after attack for the hypothesis-unaware case when

δ = 20. From this figure, we can see that, q0 and q1, the PMFs after attack for different hypothe-

ses, are not the same under the optimal hypothesis-unaware adversary. On the other hand, for the

hypothesis-aware attacker, the error probability is equal to 1/2.

Fig. 2.13 illustrates how PE increases as the attack amplitude δ increases. From this figure, we

can see that, for both attack models, PE increases with δ. Furthermore, the prediction error in the

hypothesis-aware case is always larger than hypothesis-unaware case and reaches 1/2 earlier than

the hypothesis-unaware case. This is consistent with the simulation result in the previous random

distribution scenario.

2.5 Conclusion

In this chapter, we have investigated the adversarial robustness of hypothesis testing rules. We have

formulated this as a minimax hypothesis testing problem. We have characterized the optimal attack

and the corresponding optimal decision rules for both hypothesis-aware and hypothesis-unaware
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Figure 2.11: The PMF before and after attack (hypothesis-unaware)
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Figure 2.12: The PMF before and after attack (hypothesis-unaware) when δ = 20
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Figure 2.13: Prediction error v.s. δ for truncated Poisson distribution
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adversary models. We have also provided numerical examples to illustrate the analytical results

obtained in this chapter.

Building on the problem formulation and analysis in this chapter, there are several interesting

future research directions. Firstly, it is important to extend the analysis to the scenario where the

true underlying distributions are unknown to both the attacker and decision-maker. Secondly, the

application to steganography and steganalysis [163], in which steganography aims to hide secret

messages in the cover media while steganalysis tries to detect hidden secret information embedded

in the cover media, is another interesting research direction. Thirdly, our work can be applied to the

decentralized detection setup [164–166], with a fusion center and distributed nodes, some of which

might be compromised. The compromised nodes may send fake messages to the fusion center, and

the goal of the fusion center is to make correct decisions in spite of the presence of misbehaving

nodes. Finally, other than the amplitude constraint considered in this chapter, it is important to

investigate other types of constraints on the adversary.
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Chapter 3

Privacy-accuracy Trade-off of Inference as

Service

In this chapter, we propose a general framework to provide a desirable trade-off between inference

accuracy and privacy protection in the inference as service scenario (IAS). Instead of sending data

directly to the server, the user will preprocess the data through a privacy-preserving mapping. This

privacy-preserving mapping has two opposing effects. On one hand, it will prevent the server from

observing the data directly and hence enhance the privacy protection. On the other hand, this might

reduce the inference accuracy. To properly address the trade-off between these two competing

goals, we formulate an optimization problem to find the optimal privacy-preserving mapping.

Particularly, in Chapter 3.1, we introduce the problem formulation. In Chapter 3.2, we present

the proposed algorithm and provide the convergence analysis to find the local optimal privacy-

mapping. In Chapter 3.3, we present numerical results. In Chapter 3.4, we offer concluding re-

marks.

3.1 Problem formulation

Consider an inference problem, in which one would like to infer the parameter S ∈ S of data

Y ∈ Y , in which Y has a finite alphabet. In the inference as service scenario, one would send
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Y to the server who will determine the parameter S using its sophisticated models and powerful

computing capabilities. However, directly sending data Y to the server brings the privacy issue, as

now the server knows Y perfectly. To reduce the privacy leakage, instead of sending Y directly, one

can employ a privacy-preserving mapping to transform data Y to U ∈ U and send U to the server.

Here, U also has a finite alphabet and is allowed to be different from Y . Without loss of generality,

we will employ a randomized privacy-preserving mapping and use p(u|y) to denote the probability

that data Y = y will be mapped to U = u and the whole mapping is denoted as PU |Y . Furthermore,

we use PS to denote the prior distribution of S and PY |S to denote the conditional distribution Y

given S, while the lower-case letter p is used to denote the component-wise probability (e.g.,

p(s), p(y), p(y|s) will be used in the sequel).

To measure the inference accuracy, note that the distributional difference between PS and PS|U

characterizes the information about S contained in U . Since the inference at the server side is solely

based on U , such information determines the inference accuracy. As I(S;U) is the averaged Kull-

back–Leibler (KL) divergence between PS and PS|U , we use it to measure the inference accuracy.

We would like to make I(S;U) as large as possible, which means that we would like to retain as

much information about the parameter of interest S in U as possible so that the server can make a

more accurate inference.

To measure the privacy leakage, instead of choosing one particular privacy metric, we in-

tend to investigate a general form EY,U [d(y, u)] that is applicable for different privacy metrics.

Here, d(y, u) = f( p(y)
p(y|u)) and f is a continuous function defined on (0,+∞). We note that

EY,U [d(y, u)] = EY,U [f(
p(y)
p(y|u))] measures the distributional distance between PY and PY |U , where

PY is the prior distribution of Y and PY |U is the posterior distribution of Y after observing U .

Hence, the smaller the distance, the less information U can provide about Y and the better the

privacy protection. Note that p(y)
p(y|u) =

p(u)
p(u|y) . Hence we will also use p(u)

p(u|y) as the argument to f in

the sequel. Since p(u|y) shows in the denominator, we assume that ϵ ≤ p(u|y) ≤ 1,∀y, u, where

ϵ > 0.

To balance the inference accuracy and privacy protection, we propose to find the privacy-
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preserving mapping PU |Y by solving the following optimization problem

max
PU|Y

F [PU |Y ] ≜ I(S;U)− βEY,U

[
f

(
p(y)

p(y|u)

)]
, (3.1)

s.t. p(u|y) ≥ ϵ,∀y, u,∑
u

p(u|y) = 1,∀y. (3.2)

Here, β ∈ (0,∞) is a trade-off parameter that indicates the relative importance of maximizing

I(S;U) (i.e., maximizing inference accuracy) and minimizing the distance EY,U [d(y, u)] between

PY and PY |U (i.e., maximizing the privacy).

Another possible problem formulation is to maximize the inference accuracy under the con-

straint that the privacy leakage is less than certain threshold δ:

max
PU|Y

I(S;U) (3.3)

s.t. EY,U

[
f

(
p(y)

p(y|u)

)]
≤ δ,

p(u|y) ≥ ϵ,∀y, u,∑
u

p(u|y) = 1,∀y.

However, directly solving such constrained optimization problems is very challenging. A typical

way to solve this kind of problems is to form the Lagrangian of the maximization problem, whose

objective is written as the weighted sum of the original objective and the constraints. Hence, our

problem formulation can be viewed as the Lagrangian of the problem formulation (3.3). The trade-

off parameter β can be treated as the Lagrangian multiplier. Different value of β corresponds to

different privacy constraint δ in (3.3), whose value depends on different applications. In particular,

using the proposed algorithms, solutions can be computed for a broad range of β. We can then

obtain the Pareto optimal curve for accuracy and privacy leakage, where each point corresponds to

one sub-problem solved to maximize the inference performance subject to a certain upper bound

of privacy leakage. Then the user can select an operating point from the Pareto optimal curve
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depending on the user’s preference and the constraint imposed by the applications.

For the privacy measure function f , we assume that

(a) f(·) is strictly convex;

(b) f(·) is twice-differentiable;

(c) f
′
(t) is lf - Lipschitz continuous of t.

Here we provide some comments about these assumptions. (a) guarantees certain convexity of

the problem. In particular, under (a), the sub-problems are shown to be convex, which ensures

the feasibility and simplification of the proposed method. (b) and (c) are needed to ensure the

convergence of the proposed method. These assumptions are fairly weak. As will be discussed in

Section 3.3, most of the widely used distance measures satisfy these assumptions.

The proposed framework in (3.1) is very general. Different choices of f will lead to different

privacy measures. For example, if we choose f to be − log(·), then we have

EY,U [d(y, u)] = −
∑
y,u

p(y)p(u|y) log
(

p(u)

p(u|y)

)
=
∑
y

p(y)DKL[PU |y ∥ PU ] = I[U ;Y ],

in which DKL(· ∥ ·) is the KL divergence. As the result, choosing f to be the − log function

means we will use mutual information between U and Y to measure the information leakage, a

very common choice in information theory study. More examples will be provided in Section 3.3.

3.2 Algorithms and Convergence Proof

In this section, we discuss how to solve the optimization problem defined in (3.1) for general f . One

natural approach to solving (3.1) is to apply the gradient ascent (GA) algorithm. However, GA faces

several challenges such as proper step size, computation complexity, convergence speed and the

quality of the optimal point found etc. To overcome these challenges, we propose a new algorithm
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that transforms the maximization problem over single argument to an alternative maximization

problem over multiple arguments and then employ ideas from ADMM to solve the transformed

problem.

3.2.1 Algorithm

We first have the following lemma that are useful for transforming the objective function.

Lemma 2.

I(S;U) = I(S;Y )−
∑
u,y

p(y)p(u|y)DKL[PS|y ∥ PS|u].

Proof. Please refer to Appendix B.1.

By Lemma 2, the objective function defined in (3.1) can be written as

F [PU |Y , PU , PS|U ] = I(S;Y )− βEY,U [d(y, u)]

−
∑
u,y

p(y)p(u|y)DKL[PS|y ∥ PS|u].

Note that I(S;Y ), p(y) and p(s|y) are fixed, hence the cost function can be viewed as a function

of three arguments PU |Y , PU and PS|U . For consistency, we require the following equations to be

satisfied simultaneously

p(u) =
∑
y

p(u|y)p(y),∀u, (3.4)

p(s|u) =
∑

y p(u|y)p(s, y)
p(u)

,∀u,∀s. (3.5)

By (3.5), we further require that p(u) > 0, ∀u. As the result, we can reformulate (3.1) as the

following alternative optimization problem
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max
PS|U ,PU ,PU|Y

F [PU |Y , PU , PS|U ]. (3.6)

s.t. p(u|y) ≥ ϵ,∀y,∀u,
∑
u

p(u|y) = 1,∀y,

p(u) > 0,∀u,
∑
u

p(u) = 1,

p(u) =
∑
y

p(u|y)p(y),∀u,

p(s|u) ≥ 0,∀u,∀s,
∑
s

p(s|u) = 1,∀u,

p(s|u) =
∑

y p(u|y)p(s, y)
p(u)

,∀u,∀s.

The following lemma illustrates the nice property of the alternative formulation (3.6): the al-

ternative optimization problem is convex in each argument given the other two arguments.

Lemma 3. Suppose that f(·) is a strictly convex function. Then for given PU , PS|U ,

F [PU |Y , PU , PS|U ] is concave in each PU |yi ,∀yi ∈ Y . Similarly, for given PU |Y , PS|U ,

F [PU |Y , PU , PS|U ] is concave in PU . For given PU |Y , PU , F [PU |Y , PU , PS|U ] is concave in PS|U .

Proof. Please refer to Appendix B.2.

Using this lemma, a natural approach to maximizing the objective function in (3.6) is to alter-

nately iterate between PU |Y , PU and PS|U until reaching convergence. In particular, we propose

an iterative algorithm with two blocks to obtain a solution to (3.6): update of PS|U and update of

PU |Y , PU . Firstly, for a given PU and PU |Y , we update PS|U by solving the maximization on PS|U

and derive an analytical result as a function of PU and PU |Y . Secondly, for the derived PS|U , we

update PU and PU |Y by using the ADMM scheme to solve the maximization on PU and PU |Y . In

the following, we show that the proposed algorithm will converge. We would like to note that, how-

ever, as the problem in (3.6) is non-convex in the product space of {PU |Y , PU , PS|U}, the derived

limit point is not expected to be the global optimal solution of (3.6). In the following, we provide

details for each iteration. The convergence proof of the proposed algorithm will be presented in
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Section 3.2.2.

Updating PS|U

For the PS|U subproblem, the maximization problem is

max
PS|U

F [PS|U |PU |Y , PU ],

s.t. p(s|u) ≥ 0,∀u,∀s, (3.7)∑
s

p(s|u) = 1,∀u, (3.8)

p(s|u) =
∑

y p(u|y)p(s, y)
p(u)

,∀u,∀s. (3.9)

Lemma 4. The solution to the PS|U subproblem is

p(s|u) =
∑

y p(u|y)p(s, y)
p(u)

. (3.10)

Proof. Please refer to Appendix B.3.

Updating PU |Y and PU

Now, for a given PS|U , we discuss how to update PU |Y and PU by solving

max
PU|Y ∈PU|Y ,PU∈PU

F [PU |Y , PU |PS|U ], (3.11)

s.t. δ(u) = p(u)−
∑
y

p(u|y)p(y) = 0,∀u, (3.12)

where

PU |Y = {PU |Y : p(u|y) ≥ ϵ,
∑
u

p(u|y) = 1}, (3.13)

PU = {PU : p(u) > 0,
∑
u

p(u) = 1}, (3.14)
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and (3.12) corresponds to the consistency requirement (3.4).

Moreover, note that each row in the matrix PU |Y is independent and we further show that the

objective function in (3.11) can be written as the sum of |Y| terms, each of which depends only on

one row of PU |Y .

F [PU |Y , PU |PS|U ] = −β

|Y|∑
i=1

[
p(yi)

∑
u

p(u|yi)d
(

p(u)

p(u|yi)

)]

−
|Y|∑
i=1

[
p(yi)

∑
u

p(u|yi)DKL[PS|yi ∥ PS|u]

]
+ I(S;Y )

=

|Y|∑
i=1

F ′
i

[
PU |Y , PU |PS|U

]
+ I(S;Y ), (3.15)

where

F ′
i

[
PU |Y , PU |PS|U

]
= p(yi)

[
−β
∑
u

p(u|yi)f
(

p(u)

p(u|yi)

)

−
∑
u

p(u|yi)DKL[PS|yi ∥ PS|u]

]
. (3.16)

Thus, the optimization on PU |Y can be divided into |Y|-problems, each of which corresponds to

one row in PU |Y .

As the result, although (3.11) is a non-convex problem in (PU |Y , PU) jointly, it is a convex

problem of one argument given the others, as shown in Lemma 3. This motivates us to apply the

ADMM approach to solve the problem.

The augmented Lagrangian for the above problem is

L[PU |Y , PU , PS|U ; Λ]

=F [PU |Y , PU |PS|U ] +
∑
u

λ(u)δ(u)− ρ

2

∑
u

δ2(u), (3.17)

where Λ is a vector of size |U| and each component is denoted as λ(u). Since PS|U is given, we

will omit it from the expression of L.
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In the ADMM approach, there are updates of PU |Y , PU and Λ respectively. Exploiting the

structure in (3.15), we can solve (3.11) using the following iterative procedure

P t+1
U |yi = arg max

PU|yi∈PU|yi

L[PU |yi , P
t+1
U |Y (i−) , P

t
U |Y (i+) , P

t
U ; Λ

t],

i = 1, 2, · · · , |Y|, (3.18)

P t+1
U = arg max

PU∈PU

L[P t+1
U |Y , PU ; Λ

t], (3.19)

Λt+1 = Λt − ρ(P t+1
U − (P t+1

U |Y )
TPY ), (3.20)

or λt+1(u) = λt(u)− ρ[pt+1(u)−
∑
y

pt+1(u|y)p(y)]

= λt(u)− ρδt+1(u),

where PU |yi = {PU |yi : p(u|y) ≥ ϵ,
∑

u p(u|yi) = 1}, PU |Y (i−) denotes all rows before the i-

th row in the matrix PU |Y and PU |Y (i+) denotes all rows after the i-th row. Note that here we use

Gauss–Seidel ADMM where the local variables are updated sequentially in the Gauss–Seidel order

and current conditional distributions (P t+1
U |Y i− and P t

U |Y i+) are used to obtain P t+1
U |yi . Another update

approach is to use P t
U |Y i− to update PU |yi in the (t + 1)-th iteration. It has been shown that for

multi-block problems, Gauss–Seidel ADMM often performs numerically better in practice than

the directly extended ADMM [?, ?, ?, 93, 94], as the updated information P t+1
U |Y i− is immediately

utilized.

For PU |yi , the optimization problem is

max
PU|yi

L[PU |yi , P
t+1
U |Y (i−) , P

t
U |Y (i+) , P

t
U ; Λ

t], (3.21)

s.t. p(u|yi) ≥ ϵ,∀u,
∑
u

p(u|yi) = 1.

We have the following lemma regarding the objective function in (3.21). The proof follows similar

steps to the proof of Lemma 3.

Lemma 5. The objective function in (3.21) is a strictly concave function.
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Proof. Please refer to Appendix B.4.

Hence, each sub-problem is a convex optimization problem with |U| inequality constraints

and one equality constraint. In practice, under a specified f(·), the sub-problem can be solved

numerically.

The sub-problem with respect to PU is

max
PU

L[P t+1
U |Y , PU ; Λ

t], (3.22)

s.t. p(u) > 0,∀u,
∑
u

p(u) = 1.

Following similar steps of Lemma 3, we can prove the following lemma.

Lemma 6. The objective function in (3.22) is a strictly concave function.

Proof. Please refer to Appendix B.4.

Although there is a constraint, PU ∈ PU , in this sub-problem, we can ignore it first and in the

convergence proof, we will show that for the limit point, the constraint is naturally satisfied. We

represent the solution to the unconstrained problem as P t+1
U = argmaxPU

L[P t+1
U |Y , PU ; Λ

t].

After solving two sub-problems on PU |Y and PU respectively, we update the value of Λ.

In summary, we employ two nested loops to find the privacy-preserving mapping. In the outer

loop, there are two update steps: update of PS|U and update of (PU |Y , PU), where the update of

(PU |Y , PU) is performed by ADMM (which will be referred to as the inner loop). In the inner

loop, we update PU |Y and PU by going through the process of (3.18), (3.19), (3.20). We will

use (j) to denote the j-th outer iteration and use (j), t to denote the arguments at the t-th inner

iteration of the j-th outer iteration. The algorithm is summarized in Algorithm 3.1. To quantify

the matrix differences, we use the Frobenius norm [?], where for an m × n matrix A, ∥A∥F =√∑m
i=1

∑n
j=1 |ai,j|2. To quantify the vector differences, we use the ℓ2 norm, where for vector

b = (b1, b2, · · · , bn), ∥b∥22 =
∑n

i=1 b
2
i . For the thresholds, η is chosen to be a small value such that
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the function value is converged and ηp is chosen to be a small value such that L[P t+1
U |Y , P

t+1
U ; Λt] ≥

L[P t+1
U |Y , P

t
U ; Λ

t] ≥ L[P t
U |Y , P

t
U ,Λ

t] is true.

Algorithm 3.1 Design the privacy-preserving mapping
Input:

Prior distribution PS and conditional distribution PY |S .
Trade-off parameter β.
Converge parameter η, ηp, ηd.
Output:

A mapping PU |Y from Y ∈ Y to U ∈ U .
Initialization:

Randomly initiate PU |Y and calculate PU , PS|U by (3.4) and (3.5).
1: j = 1.
2: while

∥∥∥P (j)
S|U − P

(j−1)
S|U

∥∥∥
F
> η do

3: P
(j),1
U = P

(j−1)
U .

4: P
(j),1
U |Y = P

(j−1)
U |Y .

5: t = 1.
6: while t = 1 or

∥∥∥P (j),t
U − P

(j),t−1
U

∥∥∥2
2
> ηp do

7: Update PU |yi by solving (3.21).
8: Update PU by solving (3.22).
9: Update Λ by (3.20).

10: t = t+ 1.
11: Update P

(i)
S|U by (3.10).

12: j = j + 1.
13: return PU |Y

3.2.2 Convergence Analysis

In this section, we provide the convergence proof for Algorithm 3.1. To prove the convergence

of the proposed iterative algorithm, we need to verify that the value of the functional F does not

decrease while iterating, and that this functional is bounded from above.

The following lemma shows that F is upper-bounded.

Lemma 7. For a continuous function f(·), F [PU |Y , PU , PS|U ] is bounded from above.

Proof. Please refer to Appendix B.5.

70



Then we prove that the value of F is non-decreasing between two iterations of the outer loop.

There are two steps in the outer loop, updating PS|U by (3.10), and updating (PU |Y , PU) by ap-

plying ADMM. For the update of PS|U , since the optimization with respect to PS|U is a convex

optimization problem and has a closed-form solution as the update function, the objective func-

tion F is non-decreasing in this step. To show that the value of F is non-decreasing for the limit

point found by ADMM, it is necessary to prove that the proposed ADMM procedure converges

subsequently. Otherwise, the consistency requirement between PU and PU |Y may not be satisfied.

In particular, in the following we prove that any sequence generated by the proposed ADMM pro-

cedure is bounded and has a limit point that is also the stationary point of (3.11), and the value of

F is upper-bounded and non-decreasing between iterations of ADMM.

We note that the convergence proof of the proposed ADMM procedure for our problem setup

is non-trivial, as the considered objective function has more than 2 local variables and is non-

separable with respect to these local variables. Directly using multi-block ADMM may be non-

convergent, even if the functions are separable with respect to these blocks of variables [91], and

numerous research efforts have been devoted to analyzing the convergence of multi-block ADMM

under certain assumptions [?,93,94]. In contrast to the separable case, studies on the convergence

properties of n-block ADMM with non-separable objective, even for n = 2, are limited [?, 167],

and the convergence is not guaranteed and has to be handled differently.

To make the presentation clear, in the following, we consider the case |Y| = 2 and the proof

can be easily generalized to the case when Y has a finite alphabet. For |Y| = 2, the optimization
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problem in (3.1) can be further represented as

max −

[
p(y1)

∑
u

p (u|y1)DKL[PS|y1 ∥ PS|u]

+p(y2)
∑
u

p (u|y2)DKL[PS|y2 ∥ PS|u]

]

−β
∑
u

[
p (u|y1) p(y1)f

(
p(u)

p(u|y1)

)
+p(u|y2)p(y2)f

(
p(u)

p(u|y2)

)]
,

s. t p(u|yi) ≥ ϵ,∀u,
∑
u

p(u|yi) = 1, i = 1, 2,

p(u) > 0, ∀u,
∑
u

p(u) = 1,

−p(u|y1)p(y1)− p(u|y2)p(y2) + p(u) = 0,∀u,

in which the last constraint can also be written in the vector form, −p(y1)PU |y1−p(y2)PU |y2+PU =

0.

For presentation convenience, we denote

hi(PU |yi) = −p(yi)
∑
u

p(u|yi)DKL[PS|yi ∥ PS|u],

i = 1, 2,

g(PU |y1 , PU |y2 , PU) = −β
∑
u

[
p(u|y1)p(y1)f

(
p(u)

p(u|y1)

)
+p(u|y2)p(y2)f

(
p(u)

p(u|y2)

)]
.

Thus, the objective function is

h1(PU |y1) + h2(PU |y2) + g(PU |y1 , PU |y2 , PU),
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and the augmented Lagrangian is

L[PU |Y , PU , PS|U ; Λ]

= F [PU |Y , PU |PS|U ] +
∑
u

λ(u)δ(u)− ρ

2

∑
u

δ(u)2

= h1(PU |y1) + h2(PU |y2) + g(PU |y1 , PU |y2 , PU)

+
∑
u

λ(u)δ(u)− ρ

2

∑
u

δ(u)2.

For the update of the dual variable Λ, we have the following lemma which characterizes the

relationship between the dual variable Λ and the primal variables.

Lemma 8. Suppose that f(·) is twice-differentiable and f
′
(t) is lf - Lipschitz continuous of t. We

have ∥∥Λt+1 − Λt
∥∥2
2
≤lΛ

(∥∥∥P t+1
U |y1 − P t

U |y1

∥∥∥2
2
+
∥∥∥P t+1

U |y2

−P t
U |y2

∥∥2
2
+
∥∥P t+1

U − P t
U

∥∥2
2

)
,

(3.23)

with lΛ =
16β2l2f

ϵ4
.

Proof. Please refer to Appendix B.6.

For the ascent of L between two iterations, we have the following lemma.

Lemma 9. Suppose that f(·) is twice-differentiable and f
′
(t) is lf - Lipschitz continuous of t. We

have

L
[
P t+1
U |Y , P

t+1
U ; Λt+1

]
− L

[
P t
U |Y , P

t
U ; Λ

t
]

≥
[
ρ

2
p(y1)

2 − ly1
2

− lΛ
ρ

]
∥P t+1

U |y1 − P t
U |y1∥

2
2

+

[
ρ

2
p(y2)

2 − ly2
2

− lΛ
ρ

] ∥∥∥P t+1
U |y2 − P t

U |y2

∥∥∥2
2

+

(
ρ− lu
2

− lΛ
ρ

)∥∥P t+1
U − P t

U

∥∥2
2
, (3.24)

where ly1 = ly2 =
βlf
ϵ3
, lu =

βlf
ϵ

.
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Proof. Please refer to Appendix B.7.

With these supporting results, we now analyze the convergence of the proposed ADMM pro-

cedure. We first show that L is monotonic and upper-bounded, and the sequence {PU |Y , PU ,Λ}t

generated by ADMM is bounded.

Proposition 2. Suppose that f(·) is twice-differentiable and f
′
(t) is lf -Lipschitz continuous of t.

We have that

(1) if min{ρ
2
p(y1)

2 − ly1
2

− lΛ
ρ
, ρ
2
p(y2)

2 − ly2
2

− lΛ
ρ
, ρ−lu

2
− lΛ

ρ
} ≥ 0, L[P t+1

U |Y , P
t+1
U ; Λt+1] ≥

L[P t
U |Y , P

t
U ,Λ

t];

(2) ∀t ∈ N, L[P t
U |Y , P

t
U ; Λ

t] is upper-bounded;

(3) {PU |Y , PU ,Λ}t is bounded.

Proof. Please refer to Appendix B.8.

We then show the asymptotic regularity of the sequence {PU |Y , PU ,Λ}t.

Proposition 3. Suppose that f(·) is twice-differentiable and f
′
(t) is lf - Lipschitz continuous of t.

When ρ is sufficiently large such that min{ρ
2
p(y1)

2 − ly1
2
− lΛ

ρ
, ρ
2
p(y2)

2 − ly2
2
− lΛ

ρ
, ρ−lu

2
− lΛ

ρ
} ≥ 0,

as t → ∞, we have

(1)
∥∥∥P t+1

U |y1 − P t
U |y1

∥∥∥2
2
→ 0,

(2)
∥∥∥P t+1

U |y2 − P t
U |y2

∥∥∥2
2
→ 0,

(3)
∥∥P t+1

U − P t
U

∥∥2
2
→ 0.

(4) ∥Λt+1 − Λt∥22 → 0,

(5) P t+1
U − p (y1)P

t+1
U |y1 − p (y2)P

t+1
U |y2 → 0.

Proof. Please refer to Appendix B.9.
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Proposition 4. The sequence {PU |Y , PU ,Λ}t has a limit point (P̂U |Y , P̂U , Λ̂), which is also a sta-

tionary point of (3.11).

Proof. Please refer to Appendix B.10.

We now summarize the convergence results in the following theorem.

Theorem 4. Suppose that f(·) is twice-differentiable and f
′
(t) is lf -Lipschitz continuous of t.

Choose ρ such that min{ρ
2
p(y1)

2− ly1
2
− lΛ

ρ
, ρ
2
p(y2)

2− ly2
2
− lΛ

ρ
, ρ−lu

2
− lΛ

ρ
} ≥ 0. The proposed ADMM

procedure could converge subsequently, that is, staring from any (P 0
U |Y , P

0
U ,Λ

0), it generates a

sequence that is bounded, has a limit point (P̂U |Y , P̂U , Λ̂), and the limit point is a stationary point

of (3.11).

Proof. Please refer to Appendix B.11.

Therefore, for the limit point (P̂U |Y , P̂U , Λ̂), the value of F is non-decreasing after the ADMM

procedure. Then F is also non-decreasing between two iterations of the outer loop, which indicates

that the proposed algorithm will converge.

For the case |Y | = k, there will be (k + 1) terms on the right hand side of (3.23) and (3.24).

Then Propositions 2, 3, 4 and Theorem 4 still hold in a similar manner and the convergence analysis

also applies.

3.2.3 Stronger Convergence for f with More Assumptions

In Section 3.2.2, for the convergence analysis of ADMM, the value of ρ should be chosen large

enough such that min{ρ
2
p(y1)

2 − ly1
2
− lΛ

ρ
, ρ
2
p(y2)

2 − ly2
2
− lΛ

ρ
, ρ−lu

2
− lΛ

ρ
} ≥ 0. Thus, the feasible

set of ρ will depend on the choice of ϵ. In this subsection, we propose another ADMM procedure

with Bregman distance and make stronger assumptions on f to provide a convergence analysis

with weaker constraints on ρ.

First we introduce the definition of Bregman distance. Let ϕ : Rn → R be a continuously

differentiable and strictly convex function. Denote ∇ϕ(y) as the gradient of ϕ on y. Then the
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Bregman distance induced by ϕ is defined as

∆ϕ(x, y) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x− y⟩, (3.25)

where ϕ is called the kernel function or distance-generating function. From the property of Breg-

man distance, we have that ∆ϕ(x, y) is convex in x for fixed y [168]. The Bregman distance plays

an important role in iterative algorithms. In particular, Bregman divergences are used to replace the

quadratic penalty term in the standard ADMM (see δ2(u) in (3.17)). Then we can choose a suitable

Bregman divergence so that the sub-problems can be solved more efficiently [168].

To solve the optimization problem in (3.11), for notation simplicity, we denote x1 : PU |y1 ,

x2 : PU |y2 , and v : PU .

Recall the definition of h1(·), h2(·), g(·) in Section 3.2.2. We propose an algorithm starting

with (x0
1, x

0
2, v

0) and Λ0. Suppose that φ1, φ2, ϕ are differentiable and strictly convex functions.

Then with the given iteration point wk =
(
xk
1, x

k
2, v

k,Λk
)
, the new iteration point wk+1 =(

xk+1
1 , xk+1

2 , vk+1,Λk+1
)

is given as:

xk+1
1 = argmax

{
h1 (x1) +

(
x1 − xk

1

)T ∇x1g
(
xk
1, x

k
2, v

k
)

−ρ

2

∥∥∥∥p(y1)x1 + p(y2)x
k
2 − vk − Λk

ρ

∥∥∥∥2
2

−∆φ1

(
x1, x

k
1

)}
,

xk+1
2 = argmax

{
h2 (x2) +

(
x2 − xk

2

)T ∇x2g
(
xk
1, x

k
2, v

k
)

−ρ

2

∥∥∥∥p(y1)xk+1
1 + p(y2)x2 − vk − Λk

ρ

∥∥∥∥2
2

−∆φ2

(
x2, x

k
2

)}
,

vk+1 = argmax
{
g
(
xk+1
1 , xk+1

2 , v
)

−ρ

2

∥∥∥∥p(y1)xk+1
1 + p(y2)x

k+1
2 − v − Λk

ρ

∥∥∥∥2
2

−∆ϕ

(
v, vk

)}
,

Λk+1 = Λk − ρ
(
p(y1)x

k+1
1 + p(y2)x

k+1
2 − vk+1

)
, (3.26)

where ∆φ1

(
x1, x

k
1

)
,∆φ2

(
x2, x

k
2

)
, and ∆ϕ

(
v, vk

)
are the Bregman distances associated with

φ1, φ2, and ϕ respectively. Here, φ1, φ2, and ϕ should be properly chosen with respect to different
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f(·) adopted in the privacy measure.

To guarantee that the algorithm converges, we assume that

(i) ∇g is lg-Lipschitz continuous;

(ii) ∇φ1,∇φ2,∇ϕ are Lipshitz continuous with the modulus lφ1 , lφ2 , lϕ, respectively;

(iii) φ1, φ2, ϕ are strongly convex with the modulus δφ1 , δφ2 , δϕ, and δφ1 , δϕ2 > lg.

Then we have

Lemma 10. ∥∥Λk+1 − Λk
∥∥2
2

≤ 3l2g

(∥∥xk+1
1 − xk

1

∥∥2
2
+
∥∥xk+1

2 − xk
2

∥∥2
2

)
+ 3

(
l2g + l2ϕ

) ∥∥vk+1 − vk
∥∥2
2
+ 3l2ϕ

∥∥vk − vk−1
∥∥2
2
.

(3.27)

Proof. Please refer to Appendix B.12.

By considering the updates of 3 primal variables, we have

Lemma 11.

(
L
(
wk+1

)
−

3l2ϕ
ρ

∥∥vk+1 − vk
∥∥2
2

)
−
(
L
(
wk
)
−

3l2ϕ
ρ

∥∥vk − vk−1
∥∥2
2

)
≥

(
δφ1 − lg

2
−

3l2g
ρ

)∥∥xk+1
1 − xk

1

∥∥2
2

+

(
δφ2 − lg

2
−

3l2g
ρ

)∥∥xk+1
2 − xk

2

∥∥2
2

+

(
δϕ
2

−
3l2g + 6l2ϕ

ρ

)∥∥vk+1 − vk
∥∥2
2
.

Proof. Please refer to Appendix B.13.

Proposition 5. Under assumptions (i), (ii), (iii), we have
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(1) if ρ ≥ max{ 6l2g
δφ1−lg

,
6l2g

δφ2−lg
,
6l2g+12l2ϕ

δϕ
} (feasible under assumption (iii)),

(
L
(
wk+1

)
− 3l2ϕ

ρ

∥∥vk+1 − vk
∥∥2
2

)
−
(
L
(
wk
)
− 3l2ϕ

ρ

∥∥vk − vk−1
∥∥2
2

)
≥ 0;

(2) ∀k ∈ N, L[wk] is upper-bounded;

(3) {w}k is bounded.

Then following similar analysis in Section 3.2.2, when ρ is chosen properly such that

≥ max{ 6l2g
δφ1−lg

,
6l2g

δφ2−lg
,
6l2g+12l2ϕ

δϕ
}, we have

∥∥xk+1
1 − xk

1

∥∥2
2

→ 0,
∥∥xk+1

2 − xk
2

∥∥2
2

→ 0, and∥∥vk+1 − vk
∥∥2
2
→ 0. By Lemma 10, we have

∥∥Λk+1 − Λk
∥∥2
2
→ 0. Moreover, the limit point of

{w}k can also be shown to be the stationary point of (3.11). Thus, when replacing the ADMM

procedure in Section 3.2.1 with this ADMM procedure with Bregman distance, Algorithm 3.1

converges in a similar manner.

3.3 Examples and Numerical results

In this section, we first give examples of different choices of f and then provide numerical results

with specific f to show the performance of the proposed method.

3.3.1 Examples of f

We now provide examples of f , each of which leads to a well-known and widely used divergence

measure.

In the first example, we consider f(t) = − log(t). As shown in Section 3.1, if f(t) = − log(t),

the privacy measure is then the mutual information. For the algorithm proposed in this chapter, we

check whether all the assumptions are satisfied. Since ϵ ≤ p(u|y) ≤ 1, we have ϵ ≤ p(u)
p(u|y) ≤ 1

ϵ
.

Then we first have that − log(·) is strictly convex on
[
ϵ, 1

ϵ

]
. Secondly, we have that f ′(t) = −1

t
is

Lipschitz continuous since it is everywhere differentiable on
[
ϵ, 1

ϵ

]
and the absolute value of the

derivative is bounded above by 1
ϵ2

.
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In the second example, we consider the following strictly convex function f(t) =

t log 2t
t+1

+ log 2
t+1

. This choice leads to the Jensen-Shannon divergence [169]: EY,U [d(y, u)] =∑
y p(y)JS[PU |y, PU ], in which JS[PU |y, PU ] =DKL

[
PU |y ∥

PU|y+PU

2

]
+DKL

[
PU ∥ PU|y+PU

2

]
. To

check the assumption (b), we have f ′(t) = log 2t
t+1

, f ′′(t) = 1
t(t+1)

≤ 1
ϵ(ϵ+1)

, and thus it is Lipschitz

continuous.

In the third example, consider the strictly convex function f(t) = (1−t)2/(2t+2), which leads

to the Le Cam divergence [170] as the privacy measure, EY,U [d(y, u)] =
∑

y p(y)LC[PU |y ∥ PU ],

in which

LC[PU |y ∥ PU ] =
1

2

∑
u

[p(u)− p(u|y)]2

p(u|y) + p(u)
. (3.28)

For this choice of f , again, assumptions (b) and (c) are satisfied.

In the fourth example, we consider the following function f(t) = (1−
√
t)2, which corresponds

to the squared Hellinger distance [171]. It is easy to check that the assumptions are satisfied.

3.3.2 Numerical results

In this subsection, we provide numerical examples to show that our methods converge much faster

than GA, and the solution found by our methods has much better quality than the one found by GA.

Moreover, we explore how the weight parameter β and the alphabet size of U affects the privacy

protection as well as the inference accuracy.

In the first example, we set the prior distribution PS = {1
3
, 1
3
, 1
3
} and let |Y| = 10, |U| = 12. The

conditional distributions PY |S under each s are shown in Fig. 3.1. Under this setup, we will perform

both Algorithm 3.1 and GA to find the transition mapping PU |Y that maximizes the functional

defined in (3.1). Suppose that the trade-off parameter β = 2 and Jensen-Shannon divergence is

used as the privacy metric. The initial mapping PU |Y is obtained by selecting random numbers

conforming to uniform distribution and normalizing them.

For the convergence speed, we investigate the relationship between F and the outer iteration,
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Figure 3.1: Conditional distribution p(y|s)
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Figure 3.2: Function value v.s. iteration (Algorithm 3.1)

which is illustrated in Fig 3.2. We notice that the function value is increasing and converges as the

iterative process progresses. For comparison purposes, we also plot the corresponding figures for

GA in Fig. 3.3 (with step size 0.0001) and Fig. 3.4 (with step size 0.00005). From these figures,

we can see that Algorithm 1 converges within 20 iterations. On the other hand, for gradient ascent

algorithm, even for a pretty small step size 0.0001, the function value fails to keep increasing,

which indicates that the step size is too large. Then for a smaller step size 0.00005, the function

value converges as shown in Fig. 3.4. However, the value of the objective function found by GA is

smaller than the value found by Algorithm 3.1.

For the relationship between β and the privacy protection, after random initialization, we run
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Figure 3.3: Function value v.s. iteration (GA)
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Figure 3.4: Function value v.s. iteration (GA)
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Figure 3.5: β v.s. privacy protection (Algorithm 3.1 and GA)

Algorithm 3.1 and GA until they terminate. The stopping criterion is either ||P t+1
U |Y − P t

U |Y ||F <

10−5 (convergence case) or a maximum number of iterations is reached (divergence case). We re-

peat this procedure 100 times for each β. Recall that the smaller the term E[d(y, u)], the better

the privacy protection. In particular, we set E[d(y, u)] to be 1 for divergence cases since the maxi-

mum E[d(y, u)] under the converge scenario is smaller than 1. As shown in Fig. 3.5, we notice that

E[d(y, u)] decreases as β increases for our proposed method while it is non-decreasing for GA. By

setting the maximum number of iterations to be 3000, GA diverges under many choices of β. Even

for the scenarios where GA converges, compared with Algorithm 3.1, the privacy protection ob-

tained by GA is weaker. Therefore, the privacy-preserving mapping designed by GA could hardly

guarantee the protection of privacy. In addition, we also explore the relationship between β and

the information accuracy. As shown in Fig. 3.6, the inference accuracy measure I(S;U) decreases

as β increases, which indicates that the predictive ability becomes weaker. The reason is that as

U leaks less information about Y when β increases, it also provides less information about the

parameter of interest, which will reduce the predictive performance. However, Fig. 3.6 shows that

the reduction of I(S;U) is not very large, which implies that the model still has good predictive
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Figure 3.6: β v.s. inference accuracy (Algorithm 3.1)

ability when there are stronger protections for privacy.

To explore other privacy measures, we now set f as f(t) = (1−t)2/(2t+2), which corresponds

to the Le Cam divergence as discussed in Section 3.3.1. We again compare Algorithm 3.1 and GA.

The results are shown in Table 3.1. From the table, we can see that the maximum function value

found by our method is greater than those found by GA.

Methods Convergent value
Algorithm 3.1 -6.697e-14

Gradient ascent(α = 0.05) -0.251
Gradient ascent(α = 0.07) -0.245
Gradient ascent(α = 0.1) -0.317
Gradient ascent(α = 0.15) -0.235
Gradient ascent(α = 0.2) Diverge

Table 3.1: Convergent value of Algorithm 3.1 and GA

To compare different privacy measures, we set the trade-off parameter β = 8, which indicates

that the privacy term is dominant in the objective function. As shown in Fig. 3.7, although the

function values under JS-divergence and LC-divergence are different, the convergence speed and

convergence curve are almost the same, which shows that the proposed algorithm can converge

in a similar manner under different metrics. However, the optimal privacy-preserving mapping

PU |Y found by those two privacy measures are different. Therefore, in practical applications, an

appropriate task-oriented privacy measure needs to be chosen.

Finally, we explore the relationship between |U| and the privacy protection. Note that in the

proposed method, the alphabet sizes of Y and U are not necessarily equal. Thus, for |Y| = 10,

we explore how |U| affects the convergent function value. Here, we set β = 8 and use the LC-
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Figure 3.7: Convergence process for JS and LC divergences (Algorithm 3.1)

Figure 3.8: Function value v.s. Alphabet size of U (Algorithm 3.1)

divergence to measure the privacy leakage. From Fig. 3.8, it is shown that although the function

value is increasing as |U| increases, the alphabet size |U| has limited effects on the function value

when |U| ≥ 7, which indicates that a large alphabet size of U is not necessary to derive a satisfac-

tory privacy-preserving mapping. By setting |Y| to different values, we notice that when |U|
|Y| ≥ 0.8,

the convergent function value is relatively large.

3.4 Conclusion

We have proposed a general framework to design privacy-preserving mapping to achieve privacy-

accuracy trade-off in the IAS scenarios. We have formulated optimization problems to find the

desirable mapping. We have discussed the structure of the formulated problems and designed an

iterative method to solve these complicated optimization problems. We have also proved the con-

vergence of the proposed method under certain assumptions. Moreover, we have provided numer-

ical results showing that this method has better performance than GA in the convergence speed,

solution quality and algorithm stability.
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In terms of future work, we will address the limitations of the currently work along the follow-

ing lines. Firstly, we have several technical assumptions on the function f . In the future, we will

try to weaken those assumptions. Secondly, for the proposed algorithm, we are only able to show

the convergence, but we have not characterized the convergence rate, of the proposed algorithms.

Moreover, the proposed method is only guaranteed to converge but not to the global optima. Thus,

it is of interest to further modify the proposed method to find the global optimal solution and

determine the corresponding convergence rate. Thirdly, we are also interested in comparing our

proposed privacy protection scheme with other existing private mechanisms. Finally, in this work,

we only consider the case when Y is discrete and generate the privacy-preserving mapping PU |Y .

In the future, we will consider the continuous case and find the optimal conditional pdf fU |Y .
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Chapter 4

Fairness-aware Regression Robust to

Adversarial Attacks

In this chapter, we take a first step towards answering the question of how to design fair machine

learning algorithms that are robust to adversarial attacks. Using a minimax framework, we aim to

design an adversarially robust fair regression model that achieves optimal performance in the pres-

ence of an attacker who is able to add a carefully designed adversarial data point to the dataset

or perform a rank-one attack on the dataset. By solving the proposed nonsmooth nonconvex-

nonconcave minimax problem, the optimal adversary as well as the robust fairness-aware regres-

sion model are obtained. For both synthetic data and real-world datasets, numerical results illustrate

that the proposed adversarially robust fair models have better performance on poisoned datasets

than other fair machine learning models in both prediction accuracy and group-based fairness mea-

sure.

In Chapter 4.1, we summarize the related work. In Chapter 4.2, we investigate the case when

the adversary is allowed to add a poisoned data point into the dataset. In Chapter 4.3, we consider

a more powerful adversary who is able to perform a rank-one attack on the dataset. In Chapter 4.4,

we present numerical results. Finally, we offer concluding remarks in Chapter 4.5.

The main notations used in the chapter are listed in Table 4.1.
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Notation Description
{X,y,G} Clean dataset
{X̂, ŷ, Ĝ} Poisoned dataset
(x0, y0, G0) Adversarial data point

∆ rank-one feature modification matrix
β Regression coefficient
η Energy constraint parameter
λ Trade-off parameter
n Number of training samples
m Number of training samples from group 1

Table 4.1: Main notations
4.1 Related work

Adversarial attacks on FML. There are many research works exploring the design of adversarial

examples to reduce the testing accuracy and fairness of FML models. For example, [80] develops

a gradient-based poisoning attack, [81] presents anchoring attack and influence attack, [82] pro-

vides three online attacks based on different group-based fairness measures, and [83] shows that

adversarial attacks can worsen the model’s fairness gap on test data while satisfying the fairness

constraint on training data.

Adversarial robustness. A large variety of methods have been proposed to improve the model

robustness against adversarial attacks [172–175]. Although promising to improve the model’s ro-

bustness, those adversarial training algorithms have been observed to result in a large disparity of

accuracy and robustness among different classes while natural training does not [176].

Intersection of fairness and robustness. Fairness and robustness are critical elements of trustwor-

thy AI that need to be addressed together [144]. Firstly, in the field of adversarial training, several

research works are proposed to interpret the accuracy/robustness disparity phenomenon and to

mitigate the fairness issue [144–146]. For example, [145] presents an adversarially-trained neural

network that is closer to achieve some fairness measures than the standard model on the Correc-

tional Offender Management Profiling for Alternative Sanctions (COMPAS) dataset. Secondly, a

class-wise loss re-weighting method is shown to obtain more fair standard and robust classifiers

[147]. Moreover, [148] and [149] argue that traditional notions of fairness are not sufficient when
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the model is vulnerable to adversarial attacks, investigate the class-wise robustness and propose

methods to improve the robustness of the most vulnerable class, so as to obtain a fairer robust

model.

4.2 Attack with one adversarial data point

In this section, we consider the scenario where the attacker can add one carefully designed adver-

sarial data point to the existing dataset.

4.2.1 Problem formulation

Using a set of training samples {xi, yi, Gi}ni=1 := {X,y,G}, where xi ∈ Rp is the feature vector,

yi is the response variable and Gi indicates the group membership or sensitive status (for example,

race, gender), we aim to develop a model that can predict the value of a target variable Y from

the input variables X . In this chapter, we consider the case when there are only two groups, i.e.,

Gi ∈ {1, 2} and assume that the first m training samples are from group 1 and the remaining

samples are from group 2. For simplification, we denote X = [X1;X2],y = [y1;y2].

To build a robust model, we assume that there is an adversary who can observe the whole train-

ing dataset and then carefully design an adversarial data point, {x0, y0, G0}, and add it into the

existing dataset. After inserting this poisoned data point, we have the poisoned dataset {X̂, ŷ, Ĝ},

where X̂ = [x0,x1, · · · ,xn]
T , ŷ = [y0, y1, · · · , yn]T , Ĝ = [G0, G1, · · · , Gn]

T . From this poi-

soned dataset, we aim to design a robust fairness-aware regression model.

In order to characterize both prediction and fairness performance, we consider the following

objective function

L = f(β, X̂, ŷ, Ĝ) + λF (β, X̂, ŷ, Ĝ), (4.1)

where β is the regression coefficient, f(β, X̂, ŷ, Ĝ) corresponds to the prediction accuracy loss,
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F (β, X̂, ŷ, Ĝ) corresponds to the group fairness gap and λ is the trade-off parameter. The goal of

the adversary is to maximize (4.1) to make the model less fair and less accurate, while the robust

fairness-aware regression model aims at minimizing (4.1). To make the problem meaningful, we

introduce an energy constraint on the adversarial data point and use ℓ2 norm to measure the energy.

The energy constraint serves two main purposes. Firstly, it helps to prevent certain kinds of easily

detectable adversarial data points, which have a large energy and can be identified as outliers.

Secondly, the energy constraint is essential for the MSE-based accuracy and fairness metrics since

the absence of energy constraints can significantly affect the MSE value, thereby reducing the

significance of the analysis. Thus, we have the minimax problem

min
β

max
(x0,y0,G0),

s.t. ∥[xT
0 ,y0]∥2≤η

L = f(β, X̂, ŷ, Ĝ) + λF (β, X̂, ŷ, Ĝ).

(4.2)

Given that Mean Squared Error (MSE) is the standard error metric for regression tasks,

we leverage it to quantify the predictive accuracy of our model, and have f(β, X̂, ŷ, Ĝ) =

E[(Y − Ŷ )2], where Ŷ is the prediction result. For the group fairness gap, various metrics have

been proposed, including demographic parity [113], equality of opportunity [79], equalized odds

[79], and accuracy parity [177]. While many of these metrics are well-suited for classification

problems, they may not be directly applicable to regression problems. However, accuracy par-

ity stands out as a fairness criterion that remains relevant across both classification and regres-

sion contexts. In particular, accuracy parity focuses on achieving equal accuracy losses among

different groups [177], E[(Y − Ŷ )2|G = 1] = E[(Y − Ŷ )2|G = 2]. Then the absolute differ-

ence between two groups can be used to measure the severity of violations [178] and we have

F (β, X̂, ŷ, Ĝ) = |E[(Y − Ŷ )2|G = 1]− E[(Y − Ŷ )2|G = 2]|.
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4.2.2 Proposed method

To solve the minimax problem in (4.2), we will first solve the inner maximization problem with

respect to the adversary to design the optimal adversarial data point {x0, y0, G0} under the energy

constraint. Then we will solve the outer minimization problem to find a robust fairness-aware

model that can optimize both prediction accuracy and the group fairness guarantee.

Maximization Problem

We first note that there are two choices of G0, and the form of the objective function L under

different choices of G0 is different. For G0 = 1, the objective function L can be written as

L1 =
1

n+ 1

(
∥y0 − xT

0 β∥22 + ∥y1 −X1β∥22

+∥y2 −X2β∥22
)
+ λ

∣∣∣∣ 1

m+ 1
∥y0 − xT

0 β∥22

+
1

m+ 1
∥y1 −X1β∥22 −

1

n−m
∥y2 −X2β∥22

∣∣∣∣ .
For G0 = 2, the objective function L can be written as

L2 =
1

n+ 1

(
∥y0 − xT

0 β∥22 + ∥y1 −X1β∥22

+∥y2 −X2β∥22
)
+ λ

∣∣∣∣ 1m∥y1 −X1β∥22

− 1

n−m+ 1
∥y0 − xT

0 β∥22 −
1

n−m+ 1
∥y2 −X2β∥22

∣∣∣∣ .
It is worth noting that for either L1 or L2, the objective function of the minimax problem (4.2)

is non-smooth noncovex-nonconcave. However, we observe that by exploring four different cases

depending on the value of G0 and the signs of the terms inside | · |, the maximization problem can

be solved exactly as shown in the following theorem.

Theorem 5. For any given β, we have

max
(x0,y0,G0),

s.t. ∥[xT
0 ,y0]∥2≤η

L
(a)
= max{g1(β), h1(β), g2(β), h2(β)},
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where

g1(β) = Cg1η
2(1 + ∥β∥22) + Cg1∥y1 −X1β∥22

+Dg1∥y2 −X2β∥22,

h1(β) = max{0, Ch1}η2(1 + ∥β∥22) + Ch1∥y1 −X1β∥22

+Dh1∥y2 −X2β∥22,

g2(β) = max{0, Dg2}η2(1 + ∥β∥22) + Cg2∥y1 −X1β∥22

+Dg2∥y2 −X2β∥22,

h2(β) = Dh2η
2(1 + ∥β∥22) + Ch2∥y1 −X1β∥22

+Dh2∥y2 −X2β∥22,

with Cg1 =
λ

m+1
+ 1

n+1
, Dg1 = − λ

n−m
+ 1

n+1
, Ch1 = − λ

m+1
+ 1

n+1
, Dh1 =

λ
n−m

+ 1
n+1

, Cg2 =
λ
m
+

1
n+1

, Dg2 = − λ
n−m+1

+ 1
n+1

, Ch2 = − λ
m
+ 1

n+1
, Dh2 =

λ
n−m+1

+ 1
n+1

. Denote x̃0 = [xT
0 , y0]

T , b =

[βT ,−1]T . Then we have

• when either of the following occurs: 1) g1(β) ≥ max{h1(β), g2(β), h2(β)}, 2) h1(β) ≥

max{g1(β), g2(β), h2(β)} and Ch1 ≥ 0, the maximum value of L (equality (a)) is achieved

if x̃∗
0(β) = η b

∥b∥2 and G0 = 1;

• when h1(β) ≥ max{g1(β), g2(β), h2(β)} and Ch1 < 0, (a) is attained as long as x̃∗
0(β) ⊥

b and G0 = 1;

• when either of the following occurs: 1) g2(β) ≥ max{g1(β), h1(β), h2(β)} and Dg2 ≥ 0,

2) h2(β) ≥ max{g1(β), h1(β), g2(β)}, (a) is attained if x̃∗
0(β) = η b

∥b∥2 and G0 = 2;

• when g2(β) ≥ max{g1(β), h1(β), h2(β)} and Dg2 < 0, (a) is attained if x̃∗
0(β) ⊥ b and

G0 = 2.

Proof. Please refer to Appendix C.1.
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Remark 2. g1(β), h1(β), g2(β) and h2(β) involve β only through ∥β∥22, ∥y1 − X1β∥22 and

∥y2 −X2β∥22. Furthermore, from Theorem 5, for G0 = 1, we have

max
(x0,y0,1),s.t.∥[xT

0 ,y0]∥2≤η
L1=max{g1(β), h1(β)},

where g1(β) corresponds to the case in which the terms inside | · | of L1 is non-negative and h1(β)

corresponds to the case in which the terms inside | · | is negative. Subsequently, for the conditions

of equality, we discuss two cases L1 = g1(β) ≥ h1(β) and L1 = h1(β) > g1(β), where there

are two sub-cases for L1 = h1(β) based on the value of Ch1 . There are similar observations for

G0 = 2.

Minimization Problem

Using Theorem 5, the original minmax problem is converted to the following problem

min
β

max
(x0,y0,G0)

L = min
β

max{g1(β), h1(β), g2(β), h2(β)}. (4.3)

As we seek to minimize the largest of four functions, (4.3) can be separated into four sub-problems.

One of them is

min
β

g1(β),

s.t. g1(β) ≥ g2(β), g1(β) ≥ h1(β), g1(β) ≥ h2(β), (4.4)

and other sub-problems can be written in a similar manner. Once these sub-problems are solved,

the solution to (4.3) can be obtained.

For notation simplicity, we denote 1
2
∂2g1(β)
∂β2 = Cg1(η

2I + XT
1 X1) + Dg1X

T
2 X2 := Mg1 ,

1
2
∂2h1(β)
∂β2 = max {0, Ch1} η2I+Ch1X

T
1 X1+Dh1X

T
2 X2 := Mh1 , 1

2
∂2g2(β)
∂β2 = max {0, Dg2} η2I+

Cg2X
T
1 X1 +Dg2X

T
2 X2 := Mg2 , 1

2
∂2h2(β)
∂β2 = Ch2X

T
1 X1 +Dh2(η

2I +XT
2 X2) := Mh2 .

In the following, we focus on solving (4.4). The analysis of other sub-problems can be done
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similarly. Specifically, (4.4) can be further written as

min
β

g1(β) = Cg1η
2(1 + ∥β∥22) + Cg1∥y1 −X1β∥22

+Dg1∥y2 −X2β∥22, (4.5)

s.t. C1(β) = g1(β)− h1(β) ≥ 0,

C2(β) = g1(β)− g2(β) ≥ 0,

C3(β) = g1(β)− h2(β) ≥ 0.

For the objective function in (4.5), since Dg1 can be negative, Mg1 is not necessarily positive-

semidefinite. Hence, (4.5) is a non-convex quadratic minimization problem with several quadratic

constraints (QCQP), which is NP hard in general [155]. Despite this challenge, we are able to solve

this problem by exploiting the structure inherent to our problem. The following proposition gives

us sufficient conditions for global minimizers of QCQP, following from Proposition 3.2 in [179].

Proposition 6. If ∃αi ≥ 0, i = 1, 2, 3 such that for β = β∗,

Mg1 −
3∑

i=1

αi
∂2Ci(β)

∂β2
⪰ 0,

∂g1(β)

∂β
|β∗ −

3∑
i=1

αi
∂Ci(β)

∂β
|β∗ = 0,

3∑
i=1

αiCi(β
∗) = 0, (4.6)

Ci(β
∗) ≥ 0, i = 1, 2, 3,

then β∗ is a global minimizer of QCQP (4.5).

Remark 3. From (4.6), we have that for each constraint Ci(β), there are two possible cases:

1) αi = 0, Ci(β
∗) ≥ 0; 2) αi > 0, Ci(β

∗) = 0. In total, there will be 23 cases of different

combinations of αis. By examining these 8 different cases, we can obtain the optimal regression

coefficient β∗ of the sub-problem (4.5).
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In the following, we will analyze four types of cases sequentially: 1) α1 = α2 = α3 = 0; 2) the

case with only one non-zero αi, i.e. ∃!αi > 0 and αk = 0,∀k ̸= i; 3) the case with two non-zero

αis, i.e. ∃i, j, i ̸= j, αi > 0, αj > 0 and αk = 0,∀k /∈ {i, j}; 4) αi > 0, i = 1, 2, 3.

Case 1: α1 = α2 = α3 = 0

By Proposition 6, if there exists β̃, such that

Mg1 ⪰ 0, (4.7)

∂g1(β)

∂β
|β̃ = 0, (4.8)

Ci(β̃) ≥ 0, i = 1, 2, 3, (4.9)

then β̃ is a global minimizer of (4.5). From (4.7), we require that Mg1 is positive-semidefinite,

which can be true when λ is small, e.g. when Dg1 ≥ 0. From (4.8), when Mg1 is invertible, we

have

β̃ = M−1
g1

[
Cg1X

T
1 Y1 +Dg1X

T
2 Y2

]
. (4.10)

If (4.9) is satisfied at (4.10), then β̃ is a global minimizer of (4.5). Otherwise, there does not exist

a global minimizer in Case 1 and we will consider Case 2.

Case 2: ∃!αi > 0 and αk = 0,∀k ̸= i

We will consider the particular case α1 > 0, α2 = α3 = 0 and other cases can be analyzed

similarly.

By Proposition 6, if there exists β̄ and α1 > 0, such that

Mg1 − α1(Mg1 −Mh1) ⪰ 0, (4.11)

∂g1(β)

∂β
|β̄ − α1

∂C1(β)

∂β
|β̄ = 0, (4.12)

C1(β̄) = 0, C2(β̄) ≥ 0, C3(β̄) ≥ 0, (4.13)

then β̄ is a global minimizer of (4.5).
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Proposition 7. Denote the largest eigenvalue of XT
1 X1 as vX1,p and the largest eigenvalue of

XT
2 X2 as vX2,p. Assuming that η2 ≥ η2min = max

{
(n+1)vX1,p

m(m+1)
,

(n+1)vX2,p

(n−m+1)(n−m)

}
, we have Ag1h1 =

{α : Mg1 − α(Mg1 −Mh1) ≻ 0} ≠ ∅. By randomly selecting an α∗
1 ∈ Ag1h1 , for

β̌ = [(1− α∗
1 − γ∗)Mg1 + (α∗

1 + γ∗)Mh1 ]
−1

· [(1− α∗
1 − γ∗)Eg1 − (α∗

1 + γ∗)Eh1 ] ,

where γ∗ is a certain Lagrangian multiplier, and Eg1 = Cg1X
T
1 y1 + Dg1X

T
2 y2, Eh1 =

Ch1X
T
1 y1 +Dh1X

T
2 y2, if we have C2(β̌) ≥ 0, C3(β̌) ≥ 0, then β̌ satisfies (4.11), (4.12), (4.13)

and is a global minimizer of (4.5).

Proof. Please refer to Appendix C.2.

Case 3: ∃i, j, i ̸= j, αi > 0, αj > 0 and αk = 0, ∀k /∈ {i, j}

We will consider the particular case α1 > 0, α2 > 0, α3 = 0 and other cases can be analyzed in a

similar manner. By Proposition 6, if there exists β̂ and α1 > 0, α2 > 0, such that

Mg1 − α1(Mg1 −Mh1)− α2(Mg1 −Mg2) ⪰ 0, (4.14)

∂g1(β)

∂β
|β̂ − α1

∂C1(β)

∂β
|β̂ − α2

∂C2(β)

∂β
|β̂ = 0, (4.15)

C1(β̂) = 0, C2(β̂) = 0, (4.16)

C3(β̂) ≥ 0, (4.17)

then β̂ is a global minimizer of (4.5).

Proposition 8. For

β̌ = [(1− α∗
1 − γ∗

1 − γ∗
2)Mg1 + (α∗

1 + γ∗
1)Mh1 + γ∗

2Mg2 ]
−1

· [(1− α∗
1 − γ∗

1 − γ∗
2)Eg1 + (α∗

1 + γ∗
1)Eh1 + γ∗

2Eg2 ] ,

where γ∗
1 , γ

∗
2 are certain Lagrangian multipliers, and Eg2 = Cg2X

T
1 y1+Dg2X

T
2 y2, if C3(β̌) ≥ 0,
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then β̌ satisfies (4.14), (4.15), (4.16), (4.17) and is a global minimizer of (4.5).

Proof. Please refer to Appendix C.3.

Case 4: αi > 0, i = 1, 2, 3

By Proposition 6, if there exists β́ and αi > 0, i = 1, 2, 3, such that

Mg1 − α1(Mg1 −Mh1)− α2(Mg1 −Mg2)

−α3(Mg1 −Mh2) ⪰ 0, (4.18)

∂g1(β)
∂β

|β́ − α1
∂C1(β)

∂β
|β́ − α2

∂C2(β)
∂β

|β́ − α3
∂C3(β)

∂β
|β́ = 0, (4.19)

C1(β́) = 0, C2(β́) = 0, C3(β́) = 0, (4.20)

then β́ is a global minimizer of (4.5). From Remark 2, we note that with (4.20), there are three

equations on ∥β∥22, ∥y1−X1β∥22 and ∥y2−X2β∥22, which indicates that there will be deterministic

solutions for them or the feasible set is empty.

When the feasible set of (4.20) is nonempty (for example, when λ > max{m+1
n+1

, n−m+1
n+1

}), the

value of g1(β), C1(β), C2(β), C3(β) is determined as there have been deterministic solutions for

∥β∥22, ∥y1 −X1β∥22 and ∥y2 −X2β∥22. Then the process of finding β́ is

1. Solve (4.20) and derive the solution for ∥β∥22, ∥y1 −X1β∥22 and ∥y2 −X2β∥22.

2. Calculate the value of g1(β), C1(β), C2(β), C3(β).

3. Select α1, α2, α3 such that (4.18) is satisfied. Then (4.19) is satisfied naturally as

g1(β), C1(β), C2(β), C3(β) are constants.

Algorithm 4.1 summarizes the process of finding the robust fairness-aware model and the op-

timal adversary data point, which does not involve any transformation gap.

In comparison to [155], our proposed QCQP (4.5) is different from the setting considered in

[155]. Notably, the objective function in (4.5) is nonconvex, and the constraints are not concave,

which distinguishes our problem from the one in [155]. Moreover, while [155] provides approxi-

mation bounds for a norm minimization problem with multiple concave quadratic constraints, our

objective is to find a global minimizer of (4.5) based on the sufficient conditions of global mini-
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Algorithm 4.1 Attack with one adversarial point
Input: {X,y,G}, λ, η.
Output: Optimal adversarial point (x∗

0, y
∗
0, G

∗
0). Robust fairness-aware regression coefficient β∗

rob.
Procedure:
1: Separate (4.2) into 4 sub-problems.
2: for each sub-problem do
3: step through Case 1 to Case 4 until a β that satisfies the sufficient conditions in Proposition 6 is

found.
4: Select β that minimizes max{g1(β), h1(β), g2(β), h2(β)} from the solution set as β∗

rob.
5: Plug β∗

rob into the optimal attack strategy to obtain (x∗
0, y

∗
0, G

∗
0).

mizers to QCQP, as stated in Proposition 6. Consequently, the methods proposed in [155] are not

applicable to our problem.

4.3 Rank-one attack

In Section 4.2, we have discussed how to design one adversarial point to attack the fair regression

model. In this section, we consider a more powerful adversary who can observe the whole training

dataset and then perform a rank-one attack on the feature matrix. This type of attack covers many

practical scenarios, for example, modifying one entry of the feature matrix, deleting one feature,

changing one feature, replacing one feature, etc [175]. In particular, the attacker will carefully

design a rank-one feature modification matrix ∆ and add it to the original feature matrix X , so as

to obtain the modified feature matrix X̂ = X +∆. Since ∆ is of rank 1, we can write ∆ = cdT ,

where c ∈ Rn and d ∈ Rp. Moreover, recall that there are samples from two groups, we denote

the modification matrix of the first group as ∆1, i.e., the first m rows of ∆, and assume that

∆1 = c1d
T , where c1 consists of the first m components of c. Similarly, for the second group, the

modification matrix is ∆2 = c2d
T . Then the modified feature matrices are X̂1 = X1 + ∆1 and

X̂2 = X2 +∆2.

Similar to Section 4.2, we introduce an energy constraint on the rank-one attack. We use the

Frobenius norm to measure the energy of ∆. Recall that y,G remain unchanged in this attack
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scheme, we have the minimax problem

min
β

max
∥∆∥F≤η

f(β, X̂) + λF (β, X̂). (4.21)

To solve (4.21), we will first investigate the inner maximization problem. We will perform

various variable augmentations, and convert the maximization problem into a form with five ar-

guments, four of which can be solved exactly. Then we will transform the original nonconvex-

nonconcave minimax problem into several weakly-convex-weakly-concave minimax problems.

Maximization problem

For the objective function in (4.21), we have

f(β, X̂) + λF (β, X̂) =
1

n
∥y − X̂β∥22

+λ

∣∣∣∣ 1m∥y1 − X̂1β∥22 −
1

n−m
∥y2 − X̂2β∥22

∣∣∣∣
= max{g(β, X̂), h(β, X̂)},

in which g(β, X̂) = Cg∥y1−X̂1β∥22+Dg∥y2−X̂2β∥22, h(β, X̂) = Ch∥y1−X̂1β∥22+Dh∥y2−

X̂2β∥22, with Cg =
1
n
+ λ

m
, Dg =

1
n
− λ

n−m
, Ch = 1

n
− λ

m
, Dh = 1

n
+ λ

n−m
.

Lemma 12. For g(β, X̂) and h(β, X̂), we have that

(1) if Dg ≥ 0, g(β, X̂) is convex in c1 for any given c2,d, and also convex in c2 for any given

c1,d; otherwise, g(β, X̂) is convex in c1 for any given c2,d, and concave in c2 for any given

c1,d;

(2) if Ch ≥ 0, h(β, X̂) is convex in c1 for any given c2,d, and also convex in c2 for any given

c1,d; otherwise, h(β, X̂) is concave in c1 for any given c2,d, and convex in c2 for any

given c1,d.
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Based on Lemma 12, we now solve the maximization problem in (4.21). First, note that

max
∥cdT ∥F≤η

max{g(β, X̂), h(β, X̂)}

= max

{
max

∥cdT ∥F≤η
g(β, X̂), max

∥cdT ∥F≤η
h(β, X̂)

}
,

which indicates that the maximization problem can be separated into two sub-problems. For sim-

plicity of presentation, we will only explore the sub-problem of g(β, X̂) in detail and the sub-

problem of h(β, X̂) can be analyzed similarly.

1) Sub-problem of g(β, X̂)

According to Lemma 12, the value of Dg will affect the property of g(β, X̂). In the following, we

will first explore the case Dg ≥ 0 and obtain Lemma 13 as well as Proposition 9, and then explore

the case Dg < 0 and obtain Lemma 14 as well as Proposition 10.

Lemma 13. For Dg ≥ 0, we have

max
∥cdT ∥F≤η

g(β, X̂)

= max
0<ηc≤η

max
0≤ηc1≤ηc

max
∥d∥2≤1

max
∥c2∥2=

√
η2c−η2c1

max
∥c1∥2=ηc1

g(β, X̂)

= max
0<ηc≤η

max
0≤ηc1≤ηc

max
∥d∥2≤1

gm1(ηc1 ,β,d),

where gm1(ηc1 ,β,d) = Cg(∥y1 −X1β∥2 + ηc1d
Tβ)2 +Dg(∥y2 −X2β∥2 +

√
η2c − η2c1d

Tβ)2.

Proof. Please refer to Appendix C.4.

Note that gm1(ηc1 ,β,d) is a quadratic function with respect to dTβ, we have the following

proposition.

Proposition 9.

max
∥cdT ∥F≤η

g(β, X̂) = max
0≤ηc1≤η

ga(ηc1 ,β),

where ga(ηc1 ,β) = Cg(∥y1 −X1β∥2 + ηc1∥β∥2)2 +Dg(∥y2 −X2β∥2 +
√

η2 − η2c1∥β∥2)
2.
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Proof. Please refer to Appendix C.5.

Lemma 14. For Dg < 0, we have

max
∥cdT ∥F≤η

g(β, X̂)= max
0<ηc≤η

max
0≤ηc1≤ηc

max
∥d∥2≤1

gm2(ηc1 ,β,d),

where

gm2(ηc1 ,β,d) =



Cg(∥y1 −X1β∥2 + ηc1d
Tβ)2,

if ∥y2 −X2β∥2 ≤ η∥β∥2,

Cg(∥y1 −X1β∥2 + ηc1d
Tβ)2

+Dg(∥y2 −X2β∥2 −
√

η2c − η2c1d
Tβ)2,

otherwise,

Proof. Please refer to Appendix C.6.

From the above lemma, we have the following proposition.

Proposition 10.

max
∥cdT ∥F≤η

g(β, X̂) = max
0≤ηc1≤η

gb(ηc1 ,β),

where

gb(ηc1 ,β) =


gb1(ηc1 ,β), if ∥y2 −X2β∥2 ≤ η∥β∥2,

gb2(ηc1 ,β), otherwise.

gb1(ηc1 ,β) = Cg(∥y1 −X1β∥2 + ηc1∥β∥2)2,

gb2(ηc1 ,β) =
[
Cg(∥y1 −X1β∥2 + ηc1∥β∥2)2

+Dg(∥y2 −X2β∥2 −
√

η2 − η2c1∥β∥2)
2
]
.

Proof. Please refer to Appendix C.7.

2) Sub-problem of h(β, X̂)
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Following similar process in analyzing the sub-problem of g(β, X̂), we have that

• if Ch ≥ 0, we have

max
∥cdT ∥F≤η

h(β, X̂) = max
0≤ηc1≤η

ha(ηc1 ,β),

where ha(ηc1 ,β) = Ch(∥y1−X1β∥2+ηc1∥β∥2)2+Dh(∥y2−X2β∥2+
√

η2 − η2c1∥β∥2)
2;

• if Ch < 0, we have

max
∥cdT ∥F≤η

h(β, X̂) = max
0≤ηc1≤η

hb(ηc1 ,β),

where

hb(ηc1 ,β) =


hb1(ηc1 ,β), if ∥y1 −X1β∥2 ≤ η∥β∥2,

hb2(ηc1 ,β), otherwise,

hb1(ηc1 ,β) = Dh(∥y2 −X2β∥2 +
√

η2 − η2c1∥β∥2)
2,

hb2(ηc1 ,β) = Ch(∥y1 −X1β∥2 − ηc1∥β∥2)2

+Dh(∥y2 −X2β∥2 +
√

η2 − η2c1∥β∥2)
2.

Transformation of the minimax problem

After solving sub-problems above, the minimax problem (4.21) can be transformed to a minimax

problem for one vector and one scalar with a piece-wise max-type objective function. For example,

if Dg ≥ 0 and Ch < 0, (4.21) can be represented as

min
β

max
0≤ηc1≤η

max{ga(ηc1 ,β), hb(ηc1 ,β)}. (4.22)

Then we have the following two lemmas characterizing the nice properties of the sub-functions

in the objective function.

Lemma 15. If the norm of β is bounded, i.e. ∥β∥2 ≤ Bβ , then we have

(1) ga is weakly-concave in ηc1 for any given β and weakly-convex in β for any given ηc1;
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(2) hb is a piece-wise function and each piece (hb1 or hb2) is weakly-concave in ηc1 for any given

β and weakly-convex in β for any given ηc1 .

Proof. Please refer to Appendix C.8.

Lemma 16. For any given β, ga, gb2 , ha and hb2 are all unimodal functions with respect to ηc1 that

increase first and then decrease.

Proof. Please refer to Appendix C.9.

Moreover, to deal with the piece-wise structure in the objective function, we further transform

the minimax problem to several sub-problems. For example, (4.22) can be transformed to three

sub-problems:

(1) min
β

max
0≤ηc1≤η

hb1(ηc1 ,β),

s.t. ga(ηc1 ,β) < hb1(ηc1 ,β), ∥y1 −X1β∥2 ≤ η∥β∥2;

(2) min
β

max
0≤ηc1≤η

hb2(ηc1 ,β),

s.t. ga(ηc1 ,β) < hb2(ηc1 ,β), ∥y1 −X1β∥2 > η∥β∥2.

(3) min
β

max
0≤ηc1≤η

ga(ηc1 ,β), s.t. ga(ηc1 ,β) ≥ hb(ηc1 ,β).

For the sub-problem 1), the maximization on ηc1 can be solved exactly and the saddle-point

can be easily derived.

For sub-problems 2) and 3), we will ignore the constraints first and derive the saddle-point

of the minimax problem, and then check the constraints. For example, for sub-problem 2),

we assume that ∥β∥2 ≤ Bβ , which is reasonable in reality, and have that: the feasible set

{β : ∥β∥2 ≤ Bβ}× [0, η] is convex and compact; the objective function is weakly-convex-weakly-

concave by Lemma 15; the saddle-point exists by Lemma 16. Based on those properties, we are

able to apply a first-order algorithms proposed by [157] to solve the non-convex non-concave min-

imax problem as in sub-problem 2) and derive the nearly ϵ-stationary solution. In particular, define

Z = {β : ∥β∥2 ≤ Bβ} × [0, η] and the mapping H(z) := (∂βhb2(ηc1 ,β), ∂ηc1 [−hb2(ηc1 ,β)])
T ,
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where z = (β, ηc1). The minty variational inequality (MVI) problem corresponding to the saddle-

point problem in sub-problem 2) is to find z∗ ∈ Z such that ⟨ξ, z− z∗⟩ ≥ 0,∀z ∈ Z,∀ξ ∈ H(z).

Then the saddle-point problem can be solved through the lens of MVI. In [157], the proposed in-

exact proximal point method consists of approximately solving a sequence of strongly monotone

MVIs constructed by adding a strongly monotone mapping to H(z) with a sequentially updated

proximal center. Thus, the complex non-convex non-concave minmax problem can be decomposed

into a sequence of easier strongly-convex strongly-concave problems.

In comparison to [157], our focus is on investigating fairness issues in predictive models while

ensuring robustness, rather than a general analysis of weakly-convex-weakly-concave minimax

problems. Consequently, the proposed transformation and corresponding analysis are crucial in our

work. Furthermore, the problem setup here differs from that in [157]. In our transformed minimax

problem (4.22), the objective function is a max-type function, which is not an exact weakly-convex-

weakly-concave minimax problem.

4.4 Numerical Results

In this section, we provide numerical examples to illustrate the results in this chapter. We conduct

experiments on a synthetic dataset and two real-world datasets:

1. Synthetic Dataset (SD): it contains 200 rows for two groups with 5 features. We suppose that

the numbers of samples in two groups are the same, i.e. m = n − m = 100. For two different

groups, the samples are generated by

y1 = X1β0,1 + c1 + ϵ, y2 = X2β0,2 + ϵ, (4.23)

where elements in X1 and X2 are uniformly distributed on (0, 10), β0,1 = [1, 1, 1, 1, 1]T , c1 =

[1, · · · , 1]T , β0,2 = [1.1, 1.1, 1.1, 1.1, 1.1]T and noise ϵ ∼ N (0, 1). Under this setup, we verify

the assumption in Propositions 7 and have that η2 ≥ η2min = max
{

(n+1)vX1,p

m(m+1)
,

(n+1)vX2,p

(n−m+1)(n−m)

}
=

15.982 while the mean energy of a sample is ηD = 29.08, which indicates that the assumption on
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η is reasonable.

2. Law School Dataset (LSD) [180]: it contains 1,823 records for law students who took the bar

passage study for law school admission, with gender as the sensitive attribute and undergraduate

GPA as the target variable. The dimension of features is 8. There are 999 samples and 824 samples

for two genders respectively. For the assumption on η, we have η ≥ ηmin = 2.44 and ηD = 2.86.

3. Medical Insurance Cost Dataset (MICD) [181]: it contains 1,338 medical expense examples

for patients in the United States. In our experiment, we use gender as the sensitive attribute, charged

medical expenses as the target variable, and consider 5 features. There are 662 samples and 676

samples for two genders respectively. Then we verify the assumption on η and have that η ≥

ηmin = 1.58 with ηD = 2.34.

For comparison purpose, we will introduce an unrobust fair regression model that does not

consider the existence of the adversary and minimizes the objective function with respect to the

original dataset {X,y,G}. In particular, the unrobust fair model is

βfair = argmin
β

f(β,X,y,G) + λF (β,X,y,G).

Moreover, for the rank-one attack scheme, we also compare our proposed adversarially robust

model with other fair regression models, including the fair linear regression (FLR) model and fair

kernel learning (FKL) model [182]. The optimal regression coefficient for each model is derived by

fitting the model on the original dataset {X,y,G}. To obtain the performance of each model on

the poisoned dataset, we apply the derived optimal regression coefficient on the poisoned dataset,

{X̂, ŷ, Ĝ}, and calculate the MSE as well as the group fairness gap.

4.4.1 Attack with one adversarial data point

Firstly, for SD, by choosing η = ηD, we explore the performance differences among the proposed

robust fairness-aware model, unrobust fair model and traditional linear model (ordinary linear re-

gression model). In Fig. 4.1(a) and Fig. 4.1(b), following (4.23), we construct 500 datasets relying
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on the randomness in ϵ. For λ = 0.2 < min{m+1
n+1

, n−m+1
n+1

} (which implies Ch1 ≥ 0, Dg2 ≥ 0), ac-

cording to Theorem 5, the best adversarial point is x̃0 = η b
∥b∥2 . As shown in Fig. 4.1(a), the group

fairness gap for the proposed robust fairness-aware model is smaller than that of the unrobust fair

model, while the measure of goodness of fit R2 remains similar. In the meantime, since βfair has

taken the fairness issue into consideration, its performance is better than the traditional linear re-

gression model. Likewise, for λ = 0.8 > max{m+1
n+1

, n−m+1
n+1

} (which implies Ch1 < 0, Dg2 < 0),

according to Theorem 5, the best adversarial point will be in the form x̃0 ⊥ b or x̃0 = η b
∥b∥2 based

on the value of gi(β∗
rob) and hi(β

∗
rob), i = 1, 2. As shown in Fig. 4.1(b), the performance results are

similar to the case λ = 0.2.
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Figure 4.1: SD: comparison of robust fair model, unrobust fair model and traditional linear model
(attack with one adversarial data point).

Secondly, we explore the effects of the energy constraint parameter η as well as the trade-off

parameter λ on two real-world datasets, LSD and MICD. We have three energy levels, η = ηmin,

η = ηD and η = 1.5ηD. As shown in Fig. 4.2, when η is small, under different choices of λ,

MSE and the group fairness gap for the robust fairness-aware model are both smaller than those
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Figure 4.2: Effects of λ and η on MSE and the group fairness gap (attack with one adversarial data
point, samples with energy greater than 5ηD are removed).
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Figure 4.3: Effects of λ and η on MSE and fairness gap (rank-one attack, samples with energy
greater than 10σ are removed).

for the unrobust fair model, which indicates that the proposed model has better robustness and

achieves better performance in both accuracy and fairness. However, for MICD, when η = 1.5ηD,

the MSE for the robust fair model becomes larger than that of the unrobust model as the power of

the adversarial data point is large, which in turn affects the prediction performance considerably.

4.4.2 Rank-one attack

In the first experiment, we explore the effects of the energy constraint parameter η as well as the

trade-off parameter λ. We carry out the attack with three different energy levels, η = 0.2σ, η =

0.5σ and η = 0.8σ, where σ is the smallest singular value of the feature matrix of the training data.

As shown in Fig. 4.3, we first observe that MSE and the group fairness gap for the adversarially

robust model are almost always smaller than those for the unrobust fair model, which illustrates

that the proposed robust model achieves better performance in both accuracy and fairness. We also

notice that the performance of the adversarially robust model differs under different choices of λ.

In particular, as λ increases, the value of MSE also increases because we care more about fairness

and give more weight to the fairness-related term in the objective function. Especially, as shown in

Fig. 4.3(c), when the energy constraint is comparable to the smallest singular value of the feature

matrix (η = 0.8σ) and the trade-off parameter λ is large (λ = 5.2), the MSE of the robust model

becomes larger than that of the unrobust model as the limitation on the adversary is small, which

in turn affects the prediction performance considerably.

In the second experiment, we compare our proposed adversarially robust fair model with other
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fair regression models and ordinary least square (OLS). In Fig. 4.4, we provide the performance of

different regression models on the original dataset as well as the poisoned dataset with η = 0.5σ.

For the unrobust fair model and adversarially robust fair model, since the choice of the trade-off

parameter λ will affect the model performance, we explore models with various choices of λ from

the range [0.5, 1.2]. As shown in Fig. 4.4(a), on the original dataset, the overall performance of FKL

is better than other models, since it is a nonlinear model based on kernels. FLR has similar perfor-

mance with the proposed unrobust fair regression model (with certain choice of λ). Moreover, for

the unrobust fair model, it is observed that as λ increases, the group fairness gap decreases while

the MSE increases. However, on the poisoned dataset, as shown in Fig. 4.4(b), the performance

of FKL and FLR has been severely impacted. In particular, for FKL (which is the optimal model

on the original dataset), the value of the group fairness gap has been increased from 4.3 × 10−3

to 2.8 × 10−2, and the value of MSE also increases. Similar observations can be found for FLR.

Besides, for the unrobust fair model, we observe a concave curve in the group fairness gap v.s.

MSE plot, which is convex in the original dataset. Thus, we conclude that fair regression models

are vulnerable to adversarial attacks and may not preserve their performance in adversarial envi-

ronment. On the contrary, for the adversarially robust model, the curve between the group fairness

gap and MSE locates in the lower left corner and is convex. Thus, by appropriately choosing λ, a

model that performs well in terms of both fairness and prediction accuracy can be obtained.
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Figure 4.4: MICD: Group fairness gap v.s. MSE (rank-one attack).
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4.5 Conclusion

In this chapter, we have proposed a minimax framework to characterize the best attacker that

generates the optimal poisoned point or rank-one attack for the original dataset, as well as the

adversarially robust fair defender that can achieve the best performance in terms of both predic-

tion accuracy and fairness guarantee, in the presence of the best attacker. We have discussed two

types of attack schemes and provided the corresponding methods to solve the proposed nonsmooth

nonconvex-nonconcave minimax problems. Moreover, we have performed numerical experiments

on synthetic data and two real-world datasets, and shown that the proposed adversarially robust

fair models can achieve better performance in both prediction accuracy and fairness guarantee

than other fair regression models with a proper choice of λ.
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Chapter 5

Conclusion and Future Directions

In this chapter, we summarize contributions presented in this dissertation. In addition, we discuss

potential directions for further exploration.

5.1 Summary and conclusions

This dissertation has provided an exploration into the multifaceted challenges and opportunities

in ML algorithms. Three overarching concerns, namely security, privacy protection, and fairness,

have been addressed to advance ML models in different scenarios.

In Chapter 2, we have investigated the adversarial robustness of hypothesis testing rules. We

have formulated it as a minimax hypothesis testing problem, in which the adversary aims at de-

signing attack strategies to maximize the error probability, while the goal of the decision maker is

to design decision rules to minimize the error probability. We have shown that the formulated min-

imax problem has a saddle-point solution, which reveals the structures of the optimal attack and

defense strategies. Under certain assumptions, we have derived an upper-bound on the prediction

error, which only depends on the PMFs before the attack. Afterwards, we have designed a specific

attack scheme and have shown that the designed attack scheme achieves the upper-bound. In this

way, we have characterized the optimal attack and the corresponding optimal decision rules for

both hypothesis-aware and hypothesis-unaware adversary models.
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In chapter 3, we have proposed a general framework to design privacy-preserving mapping to

achieve privacy-accuracy trade-off in the IAS scenarios. We have formulated optimization prob-

lems to find the desirable mapping. However, the formulated problem is a complicated non-concave

problem with multiple constraints. To deal with that, we have transformed the optimization prob-

lem into a form that has three dominating arguments with certain nice concavity properties, through

various transformations and variable augmentations. Then we have designed an iterative method

to solve the complicated optimization problem, and have proved the convergence of the proposed

method under certain assumptions.

In chapter 4, we have proposed a minimax framework to characterize the best adversarial at-

tack as well as the adversarially robust fair model that can achieve the best performance in terms of

both prediction accuracy and fairness guarantee. We have discussed two types of attack schemes

and provided the corresponding minimax problems. However, the proposed minimax problems

are nonsmooth nonconvex-nonconcave, which may not have a local saddle point in general. We

have carefully examined the underlying structure of the inner maximization problem and the outer

minimization problem, and then exploited the identified structure to design efficient algorithms. In

particular, for the attack with poisoned data point, when solving the inner maximization problem,

we have dealt with the non-smooth nature of the objective function and obtained a structure that

characterizes the best adversary. We have then analyzed the minimization problem by transforming

it to four sub-problems where each sub-problem is a non-convex quadratic minimization problem

with quadratic constraints. For the rank-one attack scheme, we have transformed the maximization

problem into a form with five arguments, four of which can be solved exactly. With this trans-

formation, the original problem has been converted into several weakly-convex-weakly-concave

minimax problems, which are approximately solvable using existing algorithms. Through numeri-

cal examples, we have shown that by properly choosing the trade-off parameter, the robust model

can achieve desirable performance in both prediction accuracy and group-based fairness.
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5.2 Extensions

The research in this dissertation can be extended in the following directions.

• Adversarial robustness: While our investigation into the adversarial robustness of hypoth-

esis testing rules in Chapter 2 has provided valuable insights, the assumption of known un-

derlying distributions may not hold in practical scenarios. Future work should extend this

analysis to situations where the true underlying distributions are approximated or entirely

unknown to both the attacker and decision-maker. In practical applications, there are cases

where we have some knowledge of underlying distributions, but it’s only an approximation

due to data collection or modeling limitations. In such instances, the developed methods

should account for distributional uncertainties and their effects on adversarial attacks. One

promising approach to address these challenges is to utilize robust optimization methods.

These techniques enable us to address a wider range of scenarios, even when distribution in-

formation is uncertain or hidden. By embracing robust optimization, we may design optimal

attack and defense strategies even in the presence of distributional ambiguities.

• Fairness in Adversarial Environments: Chapter 4 of this dissertation has illuminated the

intricate relationship between adversarial robustness, standard accuracy, and accuracy-based

fairness measures. However, it is unclear whether such a trade-off is inherent, even in the

linear setting. Consequently, there is a pressing need to understand the fundamental limits of

adversarial attacks to fair machine learning models and to design new fairness-aware models

that can withstand adversarial attacks and maintain robustness in adversarial environments.

While this dissertation has primarily focused on the regression problem, classifiers are more

commonly employed in decision-making tasks. However, the fairness measure in such tasks

is often non-differentiable with respect to the model parameters, posing challenges in analyz-

ing the impact of adversarial attacks. Furthermore, aside from devising specific adversarially

robust fair models, it is vital to comprehend the impact of adversarial attacks on the model’s

performance and to analyze how enforcing robustness influences the fairness measure in con-
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trast to standard training. To explore the impact of adversarial robustness to fair classifiers,

we may initiate our investigation with a Gaussian mixture model and linear classifiers. In the

absence of an adversary, unfairness in classification problems often arises from imbalances

between different classes. However, when an adversarial attack is introduced, the impact

of enforcing adversarial robustness can be divided into two parts: the first part stems from

the inherent constraints of adversarial robustness itself, leading to the degradation of stan-

dard accuracy due to changes in the decision boundary; the second part may be attributed

to the class imbalance ratio between the two classes under consideration. Additionally, it

is also important to quantify the robustness of fair models. Specifically, we may design a

framework that measures the model’s robustness against adversarial attacks performed on

the training data. By assessing the maximum change in any fairness measure, we can gain

insights into the model’s robustness against adversarial attacks. If the presence of poisoned

training samples does not significantly alter the disparity in unfairness, it indicates a higher

level of robustness. Through an in-depth analysis of the impact of adversarial attacks on fair-

ness, we may enhance our understanding of the vulnerabilities and sensitivities inherent in

fair machine learning models. These insights will be instrumental in the development of fair

machine learning models that are robust to adversarial attacks.
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Appendix A

Appendix of Chapter 2

A.1 Proof of Lemma 1

We first prove (2.14):

PE(A,B, t∗) =
1

2
[PF (p0,A, t∗) + PM(p1,B, t∗)]

=
1

2

[
n∑

i=1

q0,it
∗
i +

n∑
i=1

q1,i(1− t∗i )

]
(a)
=

1

2
+

1

2

∑
i:q0,i<q1,i

(q0,i − q1,i)

=
1

2
− 1

2

∑
i:q0,i<q1,i

|q0,i − q1,i| (A.1)

(b)
=

1

2
− 1

4

n∑
i=1

|q0,i − q1,i| .
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Here, (a) is true to due to the form of t∗ specified in (2.9). We now show (b) is true:

0 =
n∑

i=1

(q0,i − q1,i)

=
∑

i:q0,i≥q1,i

(q0,i − q1,i) +
∑

i:q0,i<q1,i

(q0,i − q1,i)

=
∑

i:q0,i≥q1,i

|q0,i − q1,i| −
∑

i:q0,i<q1,i

|q0,i − q1,i| ,

which implies

∑
i:q0,i≥q1,i

|q0,i − q1,i| =
∑

i:q0,i<q1,i

|q0,i − q1,i|

=
1

2

n∑
i=1

|q0,i − q1,i| .

We now prove (2.15). Using step (a) of (A.1), we have

PE(A,B, t∗) =
1

2
− 1

2

∑
i:q0,i<q1,i

(q1,i − q0,i)

=
1

2

 ∑
i:q0,i≥q1,i

q1,i +
∑

i:q0,i<q1,i

q1,i −
∑

i:q0,i<q1,i

(q1,i − q0,i)


=
1

2

 ∑
i:q0,i>q1,i

q1,i +
∑

i:q0,i=q1,i

q1,i +
∑

i:q0,i<q1,i

q0,i


=
1

2

n∑
i=1

min{q0,i, q1,i}.
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A.2 Proof of Theorem 2

For ∀(A,B) ∈ A× B, we have

Fj(A,B) = 1 +

j∑
i=1

min{(q1,i − q0,i), 0}

(a)

≤ 1 +

j∑
i=1

(q1,i − q0,i)

= 1 +

j∑
i=1

q1,i −
j∑

i=1

q0,j

−

(
j∑

i=1

p0,i −K0,j + I0,j

)

= 1−
j∑

i=1

(p0,i − p1,i) +K0,j −K1,j + I1,j − I0,j,

(b)

≤ 1−
j∑

i=1

(p0,i − p1,i) +

j∑
i=max{1,j−δ+1}

p0,i

+

min{j+δ,n}∑
i=j+1

p1,i

= 1−
j−δ∑
i=1

p0,i +

j+δ∑
i=1

p1,i = Gj(p0,p1), (A.2)

Here, the equality in (a) holds when q1,i − q0,i ≤ 0, 1 ≤ i ≤ j, inequality (b) comes from the

natural restrictions on I,K, in which the equality holds when K0,j − I0,j =
∑j

i=max{1,j−δ+1} p0,i,

and I1,j −K1,j =
∑min{j+δ,n}

i=j+1 p1,i.

Note that 2PE(A,B) = Fn(A,B) ≤ ... ≤ Fm(A,B) ≤ ... ≤ F0 = 1. As (A.2) holds for

∀A,B ∈ Ω, we have Fn(A,B) ≤ Gj(p0,p1),∀1 ≤ j ≤ n. Therefore,

Fm(A,B) ≤ min
1≤j≤m

{1, Gj(p0,p1)},

Fn(A,B) ≤ min
1≤j≤n

{1, Gj(p0,p1)}.

Let j∗ = argmin1≤j≤n {Gj(p0,p1)}. If Gj∗(p0,p1) ≤ 1, we have Fn(A,B) ≤ Gj∗(p0,p1)
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and the equality is achieved when

• Fj∗(A,B) = Gj∗(p0,p1), which is equivalent to

q1,i − q0,i ≤ 0, 1 ≤ i ≤ j∗,

K0,j∗ − I0,j∗ =

j∗∑
i=max{1,j∗−δ+1}

p0,i,

I1,j∗ −K1,j∗ =

min{j∗+δ,n}∑
i=j∗+1

p1,i.

• Fk(A,B) = Fj∗(A,B), j∗ < k ≤ n.

If Gj∗(p0,p1) > 1, we have Fn(A,B) ≤ 1 and the equality is achieved if

• Fi(A,B) = 1, 1 ≤ i ≤ n.

A.3 Proof of the designed attack matrices achieving q̂0, q̂1

We will calculate the PMF q̂0, q̂1 achieved by the attack matrices (Â, B̂) designed according

to (2.22) and (2.23) for columns 2, · · · ,m, and according to (2.22) and (2.32) for columns m +

1, · · · , n. We will show that these satisfy the desired conditions specified in Section 2.2.3.

For j = 1,

q0,1 =
1+δ∑
i=1

p0,iÂi,1

= min{p0,1, q̂0,1}

+
1+δ∑
i=2

min{p0,i,max{0, q̂0,1 −
i−1∑
k=1

p0,k}} (A.3)

(a)
= q̂0,1,

q0,1 =
1+δ∑
i=1

p1,iB̂i,1 =
1+δ∑
i=1

p1,i.
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Here, (a) is true because 1) if p0,1 ≥ q̂0,1, then min{p0,1, q̂0,1} = q̂0,1 and max{0, q̂0,1 −∑i−1
k=1 p0,k} = 0, which indicates q0,1 = q̂0,1; 2) if p0,1 < q̂0,1, then

min{p0,1, q̂0,1}+
1+δ∑
i=2

min

{
p0,i,max

{
0, q̂0,1 −

i−1∑
k=1

p0,k

}}

= p0,1 +
1+δ∑
i=2

min

{
p0,i,max

{
0, q̂0,1 −

i−1∑
k=1

p0,k

}}
= min{p0,2,max{0, q̂0,1}}

+
1+δ∑
i=3

min

{
p0,i,max

{
0, q̂0,1 −

i−1∑
k=1

p0,k

}}
= min{p0,2, q̂0,1}

+
1+δ∑
i=3

min

{
p0,i,max

{
0, q̂0,1 −

i−1∑
k=1

p0,k

}}
. (A.4)

Note that (A.3) and (A.4) are in the same form. Then by continuing this process, we will have

q0,1 = q̂0,1.

For 2 ≤ j ≤ m, under (Â, B̂), we have

q1,j =

j+δ∑
i=1

p1,iB̂i,j = p1,j+δ,

q0,j =

j+δ∑
i=1

p0,iÂi,j =

j+δ∑
i=1

min

{
p0,i(1−

j−1∑
k=1

Âi,k),

max

{
q̂0,j −

i−1∑
k=1

p0,k

(
1−

j−1∑
t=1

Âk,t

)
, 0

}}
(A.5)

(b)
= q̂0,j,

in which (b) can be derived using the similar steps discussed in j = 1. Specifically, for i = 1, the

index term in (A.5) is min
{
p0,1(1−

∑j−1
k=1 Â1,k),max {q̂0,j, 0}

}
. If p0,1(1−

∑j−1
k=1 Â1,k) ≥ q̂0,j , we

have q0,j = q̂0,j directly. On the other hand, if p0,1(1−
∑j−1

k=1 Â1,k) < q̂0,j , the index term for i = 1

is p0,1(1−
∑j−1

k=1 Â1,k), which will cancel out with a term in q̂0,j −
∑i−1

k=1 p0,k

(
1−

∑j−1
t=1 Âk,t

)
and

we will have q0,j = q̂0,j after a series of cancellations.

116



For j ∈ R1, since the formula of Âi,j stays the same, q0,j = q̂0,j still holds. Under B̂i,j , suppose

l is the smallest component with B̂l,j > 0, then we have

q1,j =

j+δ∑
i=1

p1,iB̂i,j

=

j+δ∑
i=1

min

{
p1,i(1−

j−1∑
k=1

B̂i,k), q̂1,j −
i−1∑
k=1

p1,kB̂k,j

}

=

j+δ∑
i=l

min

{
p1,i(1−

j−1∑
k=1

B̂i,k), q̂1,j −
i−1∑
k=1

p1,kB̂k,j

}

= min

{
p1,l(1−

j−1∑
k=1

B̂l,k), q̂1,j −
l−1∑
k=1

p1,kB̂k,j

}

+

j+δ∑
i=l+1

min

{
p1,i(1−

j−1∑
k=1

B̂i,k), q̂1,j −
i−1∑
k=l

p1,kB̂k,j

}

= min

{
p1,l(1−

j−1∑
k=1

B̂l,k), q̂1,j

}
(A.6)

+

j+δ∑
i=l+1

min

{
p1,i(1−

j−1∑
k=1

B̂i,k), q̂1,j −
i−1∑
k=l

p1,kB̂k,j

}
(c)
= q̂1,j,

in which (c) can be proved by considering two different cases. First, if p1,l(1−
∑j−1

k=1 B̂l,k) ≥ q̂1,j ,

in (A.6), we have min
{
p1,l(1−

∑j−1
k=1 B̂l,k), q̂1,j

}
= q̂1,j = p1,lB̂l,j and q̂1,j − p1,lB̂l,j = 0,

which implies B̂l+1,j = 0 and thus B̂i,j = 0, n ≥ i ≥ l + 1. Therefore, (c) holds. Second,

if p1,l(1 −
∑j−1

k=1 B̂l,k) ≤ q̂1,j , in (A.6), we have min
{
p1,l(1−

∑j−1
k=1 B̂l,k), q̂1,j

}
= p1,l(1 −∑j−1

k=1 B̂l,k) = p1,lB̂l,j , which will cancel out with a term in q̂1,j −
∑i−1

k=l p1,kB̂k,j and thus after

a series of cancellation, we have q0,j = q̂0,j .
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A.4 Proof of Theorem 3

For j = m− δ, we have

Fm−δ(A)

=
m−δ∑
i=1

q1,i +
n∑

i=m−δ+1

q0,i

= 1−
m−δ∑
i=1

(p0,i − p1,i) +K0,m−δ −K1,m−δ

+I1,m−δ − I0,m−δ

(a)

≤ 1−
m−δ∑
i=1

(p0,i − p1,i) +
m−δ∑

i=m−2δ+1

(p0,i − p1,i) + 0

= 1−
m−2δ∑
i=1

(p0,i − p1,i)

= Em−δ(p0,p1).

118



For ∀m− δ + 1 ≤ j ≤ m+ δ, ∀A ∈ A, we have

Fj(A) = Fm−δ(A) +

j∑
i=m−δ+1

min{(q1,i − q0,i), 0}

(b)

≤ Fm−δ(A) +

j∑
i=m−δ+1

(q1,i − q0,i)

=

j∑
i=1

q1,i +
n∑

i=j+1

q0,i

= 1 +

j∑
i=1

(q1,i − q0,i)

= 1−
j∑

i=1

(p0,i − p1,i) +K0,j −K1,j

+I1,j − I0,j

(c)

≤ 1−
j∑

i=1

(p0,i − p1,i) +

min{j,m}∑
i=j−δ+1

(p0,i − p1,i)

+

min{n,j+δ}∑
i=max{m+1,j+1}

(p1,i − p0,i)

= 1−
j−δ∑
i=1

(p0,i − p1,i) +

min{n,j+δ}∑
i=m+1

(p1,i − p0,i)

= Ej(p0,p1),

in which the inequalities in (a), (c) follow from the observation about I,K and the equality in (b)

holds when q1,i ≤ q0,i,m− δ + 1 ≤ i ≤ j.

Since the above inequality holds for ∀A ∈ A and we have shown that Fm+δ(A) ≤

Fm+δ−1(A) ≤ ... ≤ Fm−δ(A), then

Fm(A) ≤ min
m−δ≤j≤m

{Ej(p0,p1)},

Fm+δ(A) ≤ min
m−δ≤j≤m+δ

{Ej(p0,p1)}.

Furthermore, if j∗ > m− δ, Fm+δ(A) ≤ Ej∗(p0,p1) and the equality is achieved when
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(i)

K0,m−δ −K1,m−δ =
m−δ∑

i=m−2δ+1

(p0,i − p1,i);

(ii) q1,i ≤ q0,i,m− δ + 1 ≤ i ≤ j∗;

(iii)

K0,j∗ −K1,j∗ =

min{j∗,m}∑
i=j∗−δ+1

(p0,i − p1,i),

I1,j∗ − I0,j∗ =

min{n,j∗+δ}∑
i=max{m+1,j∗+1}

(p1,i − p0,i);

(iv) Fk(A) = Fj∗(A), j∗ < k ≤ m+ δ.

If Ej∗(p0,p1) > Em−δ(p0,p1), the equality is achieved when

Fi(A) = Em−δ(p0,p1),m− δ ≤ i ≤ m+ δ.
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Appendix B

Appendix of Chapter 3

B.1 Proof of Lemma 2

I(S;U) +
∑
u,y

p(y)p(u|y)DKL[PS|y ∥ PS|u]

=
∑
s,u,y

p(s, u, y) log
p(s|u)
p(s)

+
∑
s,u,y

p(y)p(u|y)p(s|y) log p(s|y)
p(s|u)

(a)
=

∑
s,u,y

p(s, u, y)

[
log

p(s|u)
p(s)

+ log
p(s|y)
p(s|u)

]
=

∑
s,y

p(s, y) log
p(s|y)
p(s)

= I(S;Y ),

where (a) uses the fact that S → Y → U is a Markov chain since given Y , S and U are indepen-

dent.
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B.2 Proof of Lemma 3

First, prove that F [PU |Y ] is concave with respect to PS|U . By applying Lemma 2, (3.1) can be

written in the following form,

F [PU |Y ] = I(S;Y )− βEY,U [d(y, u)]

−
∑
u,y

p(y)p(u|y)DKL[PS|y ∥ PS|u]. (B.1)

Note that I(S;Y ) is a constant under our setup. Given PU |Y and PU , EY,U [d(y, u)] is inde-

pendent of PS|U . Moreover, PS|u and PS|u′ are two independent vectors. For given u and y, we

have

DKL[PS|y ∥ PS|u] =
∑
s

p(s|y) log p(s|y)
p(s|u)

. (B.2)

Since a log(x) is concave in x, (B.2) is convex in PS|u and F [PU |Y ] is concave with respect to PS|U .

Second, we prove that F [PU |Y ] is concave w.r.t PU when f is strictly convex. Note that PU

only shows up in EY,U [d(y, u)] and since f is strictly convex, taking the sum doesn’t change the

concavity and F [PU |Y ] is also concave in PU .

Third, we consider PU |Y . There are |Y| conditional distributions in the mapping PU |Y , where

PU |y and PU |y′ are independent when y ̸= y′. Then we consider a particular row PU |y and prove the

concavity. The Hessian matrix of F with respect to PU |y is

HF =


∂2F [p(u|y)]
∂p(u1|y)2 · · · ∂2F [PU|Y ]

∂p(u1|y)∂p(u|U||y)

· · · · · · · · ·
∂2F [p(u|y)]

∂p(u|U||y)∂p(u1|y) · · · ∂2F [p(u|y)]
∂p(u|U||y)2

 .

Then we calculate each element in HF . Assume that i ̸= j. Taking derivative based on the
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form in (B.1), we have

∂2F [PU |Y ]

∂p(ui|y)2
= −β

∂2EY,U [d(y, u)]

∂p(ui|y)2
,

∂2F [PU |Y ]

∂p(ui|y)∂p(uj|y)
= −β

∂2EY,U [d(y, u)]

∂p(ui|y)∂p(uj|y)
,

in which

∂2EY,U [d(y, u)]

∂p(ui|y)2
= p(y)

[
f ′(t)

−p(ui)

p(ui|y)2
− f ′(t)

−p(ui)

p(ui|y)2

−tf ′′(t)
−p(ui)

p(ui|y)2

]
= p(y)f ′′(t)

t2

p(ui|y)
> 0,

∂2EY,U [d(y, u)]

∂p(ui|y)∂p(uj|y)
(a)
= 0,

where t = p(ui)
p(ui|y) and (a) is due to the fact that t is independent of p(uj|y) when i ̸= j and PU

is given. Then we have ∂2F [PU|Y ]

∂p(ui|y)2 < 0 and ∂2F [PU|Y ]

∂p(ui|y)∂p(uj |y) = 0. Thus, the Hessian matrix HF is a

diagonal matrix with negative entries, which indicates that the objective function F is concave in

PU |yi and the lemma is proved.

B.3 Proof of Lemma 4

We first ignore (3.7), (3.9) and solve the optimization problem subject to (3.8) only. We will then

check that the obtained solution satisfy constraints (3.7), (3.9).

For a u ∈ U , the Lagrangian is

LS|u = F [PS|U |PU |Y , PU ] + α

(∑
s

p(s|u)− 1

)
,

where α is the Lagrangian multiplier with respect to constraint (3.8) . Since PU and PU |Y are given,
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LS|u is a convex function with respect to PS|u. By taking the derivative, we have

∂LS|u

∂p(s|u)
=

∑
y p(y)p(u|y)p(s|y)

p(s|u)
+ α = 0,

which indicates

p(s|u) =
∑

y p(y)p(u|y)p(s|y)
−α

. (B.3)

Since
∑

s p(s|u) = 1, we have

∑
s

p(s|u) =
∑
s

∑
y p(y)p(u|y)p(s|y)

−α
= 1

=⇒ α = −
∑
s

∑
y

p(y)p(u|y)p(s|y)

= −
∑
y

p(y)p(u|y)
∑
s

p(s|y)

= −
∑
y

p(y)p(u|y) = −p(u).

Plugging the value of α into (B.3), we have

p(s|u) =
∑

y p(u|y)p(s, y)
p(u)

≥ 0,

which guarantees the non-negativity condition in (3.7). It is also easy to check that this satisfies the

constraint in (3.9) exactly, preserves the consistency of different arguments and thus is the solution

to the PS|U subproblem.
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B.4 Proof of Lemma 5 and 6

Note that for i ̸= j,

∂2
∑m

i=1 λ(ui)δ(ui)− ρ
2

∑m
i=1 δ(ui)

2

∂p(ui|y)2
= −ρp2(y) ≤ 0,

∂2
∑m

i=1 λ(ui)δ(ui)− ρ
2

∑m
i=1 δ(ui)

2

∂p(ui|y)∂p(uj|y)
= 0.

In Lemma 3, we have shown that ∂2F [PU|Y ]

∂p(ui|y)2 < 0 and ∂2F [PU|Y ]

∂p(ui|y)∂p(uj |y) = 0. Hence, we have

∂2L[PU |Y ]

∂p(ui|y)2
=

∂2F [PU |Y ]

∂p(ui|y)2
− ρp2(y) < 0,

∂2L[PU |Y ]

∂p(ui|y)∂p(uj|y)
= 0,

and that the Hessian matrix HL is negative-definite. Moreover, the constraint
∑m

i=1 p(ui|y) =

1,∀y ∈ Y defines a convex set and thus the sub-problem on PU |yi is a convex problem. Similarly,

we also have ∂2L[PU ]
∂p(ui)2

< 0 and ∂2L[PU ]
∂p(ui)∂p(uj)

= 0, which indicates that the Hessian matrix of L with

respect to PU is negative-definite. Combined with the fact that the constraint set is convex, the

sub-problem on PU is a convex optimization problem.

B.5 Proof of Lemma 7

First, note that I(S;U) ≤ H(S), which is bounded. Thus, F [PU |Y ] is upper bounded if

EY,U [d(y, u)] is bounded from above. Let t(y, u) = p(u)
p(u|y) . We have that

EY,U [d(y, u)] =
∑
y,u

p(y)p(u|y)f(t(y, u))

=
∑
y,u

p(y)p(u)
f(t(y, u))

t(y, u)
,
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where p(y)p(u) ≤ 1. Since ϵ ≤ p(u|y) ≤ 1, we have that t(y, u) ∈
[
ϵ, 1

ϵ

]
,∀y, u. Since f is

continuous, it’s natural to have f(t(y,u))
t(y,u)

< +∞. Then EY,U [d(y, u)] is bounded from above.

B.6 Proof of Lemma 8

By the optimality of PU , we have


0 = ∇PU

g
(
P t+1
U |y1 , P

t+1
U |y2 , P

t+1
U

)
− ρ

(
−p(y1)P

t+1
U |y1 − p(y2)P

t+1
U |y2 + P t+1

U

)
+ Λt,

Λt+1 = Λt − ρ
(
−p(y1)P

t+1
U |y1 − p(y2)P

t+1
U |y2 + P t+1

U

)
,

which implies

0 = ∇PU
g
(
P t+1
U |y1 , P

t+1
U |y2 , P

t+1
U

)
+ Λt+1. (B.4)

Then we have

∥∥Λt+1 − Λt
∥∥2
2

=
∥∥∥∇PU

g
(
P t+1
U |y1 , P

t+1
U |y2 , P

t+1
U

)
−∇PU

g
(
P t
U |y1 , P

t
U |y2 , P

t
U

)∥∥2
2

=
∑
u∈U

(
∂g(P t+1

U |y1 , P
t+1
U |y2 , P

t+1
U )

∂pt+1(u)

−
∂g(P t

U |y1 , P
t
U |y2 , P

t
U)

∂pt(u)

)2

. (B.5)
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Given that f ′
(t) is lf -Lipschitz continuous of t, we further have that for any given u,

(
∂g(P t+1

U |y1 , P
t+1
U |y2 , P

t+1
U )

∂pt+1(u)
−

∂g(P t
U |y1 , P

t
U |y2 , P

t
U)

∂pt(u)

)2

=

(
βp(y1)

[
f ′
(

pt(u)

pt(u|y1)

)
− f ′

(
pt+1(u)

pt+1(u|y1)

)]
+βp(y2)

[
f ′
(

pt(u)

pt(u|y2)

)
− f ′(

pt+1(u)

pt+1(u|y2)
)

])2

≤ β2l2f

[
p(y1)

∣∣∣∣ pt(u)

pt(u|y1)
− pt+1(u)

pt+1(u|y1)

∣∣∣∣
+p(y2)

∣∣∣∣ pt(u)

pt(u|y2)
− pt+1(u)

pt+1(u|y2)

∣∣∣∣]2
≤ 2β2l2f

[
p(y1)

2

(
pt(u)

pt(u|y1)
− pt+1(u)

pt+1(u|y1)

)2

+p(y2)
2

(
pt(u)

pt(u|y2)
− pt+1(u)

pt+1(u|y2)

)2
]
, (B.6)

where pt(u)
pt(u|y1)−

pt+1(u)
pt+1(u|y1) =

pt(u)pt+1(u|y1)−pt+1(u)pt(u|y1)
pt(u|y1)pt+1(u|y1) . Using the assumption that 1

p(u|y) ≤
1
ϵ
< ∞,

we have

∣∣∣∣ pt(u)

pt(u|y1)
− pt+1(u)

pt+1(u|y1)

∣∣∣∣
≤

(
1

ϵ

)2 ∣∣pt(u)pt+1(u|y1)− pt+1(u)pt(u|y1)
∣∣ .

To further bound |pt(u)pt+1(u|y1)− pt+1(u)pt(u|y1)|, we have

∣∣∣∣pt(u)pt+1(u|y1)− pt+1(u)pt(u|y1)
pt(u)− pt+1(u)

∣∣∣∣
= pt+1(u|y1) + pt+1(u)

|pt+1(u|y1)− pt(u|y1)|
|pt(u)− pt+1(u)|

≤ 1 +
|pt+1(u|y1)− pt(u|y1)|

|pt(u)− pt+1(u)|
,
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and

∣∣∣∣pt(u)pt+1(u|y1)− pt+1(u)pt(u|y1)
pt+1(u|y1)− pt(u|y1)

∣∣∣∣
= pt(u) + pt(u|y1)

|pt(u)− pt+1(u)|
|pt+1(u|y1)− pt(u|y1)|

≤ 1 +
|pt(u)− pt+1(u)|

|pt+1(u|y1)− pt(u|y1)|
.

Moreover, min
{

|pt+1(u|y1)−pt(u|y1)|
|pt(u)−pt+1(u)| , |pt(u)−pt+1(u)|

|pt+1(u|y1)−pt(u|y1)|

}
≤ 1. Then we have

min{
∣∣∣∣pt(u)pt+1(u|y1)− pt+1(u)pt(u|y1)

pt(u)− pt+1(u)

∣∣∣∣ ,∣∣∣∣pt(u)pt+1(u|y1)− pt+1(u)pt(u|y1)
pt+1(u|y1)− pt(u|y1)

∣∣∣∣} ≤ 2,

and thus

|pt(u)pt+1(u|y1)− pt+1(u)pt(u|y1)|

≤ 2|pt(u)− pt+1(u)|+ 2|pt+1(u|y1)− pt(u|y1)|,

and thus

∣∣∣∣ pt(u)

pt(u|y1)
− pt+1(u)

pt+1(u|y1)

∣∣∣∣
≤ 2

ϵ2
[
|pt(u)− pt+1(u)|+ |pt+1(u|y1)− pt(u|y1)|

]
. (B.7)

Similarly, for
(

pt(u)
pt(u|y2) −

pt+1(u)
pt+1(u|y2)

)
, we have

∣∣∣∣ pt(u)

pt(u|y2)
− pt+1(u)

pt+1(u|y2)

∣∣∣∣
≤ 2

ϵ2
[
|pt(u)− pt+1(u)|+ |pt+1(u|y2)− pt(u|y2)|

]
. (B.8)
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Plugging (B.7) and (B.8) into (B.6) and (B.5), we have

∥∥Λt+1 − Λt
∥∥2
2

=
∑
u∈U

(
∂g(P t+1

U |y1 , P
t+1
U |y2 , P

t+1
U )

∂pt+1(u)

−
∂g(P t

U |y1 , P
t
U |y2 , P

t
U)

∂pt(u)

)2

≤ 2β2l2f

(
2

ϵ2

)2∑
u∈U

{
p(y1)

2[|pt(u)− pt+1(u)|

+|pt+1(u|y1)− pt(u|y1)|]2

+p(y2)
2[|pt(u)− pt+1(u)|

+|pt+1(u|y2)− pt(u|y2)|]2
}

≤ 2β2l2f

(
2

ϵ2

)2∑
u∈U

{
2p(y1)

2[(pt(u)− pt+1(u))2

+(pt+1(u|y1)− pt(u|y1))2]

+2p(y2)
2[(pt(u)− pt+1(u))2

+(pt+1(u|y2)− pt(u|y2))2]
}

= 4β2l2f

(
2

ϵ2

)2∑
u∈U

[
p(y1)

2(pt+1(u|y1)− pt(u|y1))2

+p(y2)
2(pt+1(u|y2)− pt(u|y2))2

+(p(y1)
2 + p(y2)

2)(pt(u)− pt+1(u))2
]

≤ 4β2l2f

(
2

ϵ2

)2∑
u∈U

[
(pt+1(u|y1)− pt(u|y1))2

+(pt+1(u|y2)− pt(u|y2))2

+(pt(u)− pt+1(u))2
]

= lΛ

(∥∥∥P t+1
U |y1 − P t

U |y1

∥∥∥2
2
+
∥∥∥P t+1

U |y2 − P t
U |y2

∥∥∥2
2

+
∥∥P t+1

U − P t
U

∥∥2
2

)
,
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where lΛ = 4β2l2f
(

2
ϵ2

)2
=

16β2l2f
ϵ4

.

B.7 Proof of Lemma 9

Since f ′(t) is lf -Lipschitz continuous and t = p(u)
p(u|yi)∈ (0, 1

ϵ
), we have that g is differentiable

and ∇PU|y1
g,∇PU|y2

g,∇PU
g are Lipschitz continuous with constants ly1 , ly2 , lu for PU |y1 , PU |y2 , PU

respectively. In particular, we have ly1 = ly2 =
βlf
ϵ3

and lu =
βlf
ϵ

. Then we have

L[P t+1
U |y1 , P

t
U |y2 , P

t
U ; Λ

t]− L[P t
U |y1 , P

t
U |y2 , P

t
U ; Λ

t]

= F [P t+1
U |y1 , P

t
U |y2 , P

t
U ]−F [P t

U |y1 , P
t
U |y2 , P

t
U ]

+⟨Λt, p(y1)(P
t
U |y1 − P t+1

U |y1)⟩

+
ρ

2
∥P t

U − p(y1)P
t
U |y1 − p(y2)P

t
U |y2∥

2
2

−ρ

2
∥P t

U − p(y1)P
t+1
U |y1 − p(y2)P

t
U |y2∥

2
2

(a)
= F [P t+1

U |y1 , P
t
U |y2 , P

t
U ]−F [P t

U |y1 , P
t
U |y2 , P

t
U ]

+⟨Λt, p(y1)(P
t
U |y1 − P t+1

U |y1)⟩

+⟨ρ(P t
U − p(y1)P

t+1
U |y1 − p(y2)P

t
U |y2),

p(y1)(P
t+1
U |y1 − P t

U |y1)⟩+
ρ

2
∥p(y1)(P t

U |y1 − P t+1
U |y1)∥

2
2

= F [P t+1
U |y1 , P

t
U |y2 , P

t
U ]−F [P t

U |y1 , P
t
U |y2 , P

t
U ]

+
ρ

2
∥p(y1)(P t

U |y1 − P t+1
U |y1)∥

2
2 + ⟨P t+1

U |y1 − P t
U |y1 ,

−p(y1)Λ
t + p(y1)ρ(P

t
U − p(y1)P

t+1
U |y1 − p(y2)P

t
U |y2)⟩

= F [P t+1
U |y1 , P

t
U |y2 , P

t
U ]−F [P t

U |y1 , P
t
U |y2 , P

t
U ]

+
ρ

2
∥p(y1)(P t

U |y1 − P t+1
U |y1)∥

2
2 − ⟨P t+1

U |y1 − P t
U |y1 ,

∇PU|y1
F [P t+1

U |y1 , P
t
U |y2 , P

t
U ]⟩

(b)

≥
[
ρ

2
p(y1)

2 − ly1
2

]
∥P t+1

U |y1 − P t
U |y1∥

2
2, (B.9)
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where (a) follows from the cosine rule and (b) follows from the fact that F = h1+h2+g, hi(PU |yi)

is linear in PU |yi , and ∇PU|y1
g is ly1-Lipschitz continuous of PU |y1 .

Similarly, for the update of PU |y2 , we have

L[P t+1
U |y1 , P

t+1
U |y2 , P

t
U ; Λ

t]− L[P t+1
U |y1 , P

t
U |y2 , P

t
U ; Λ

t]

≥
[
ρ

2
p(y2)

2 − ly1
2

]
∥P t+1

U |y1 − P t
U |y1∥

2
2. (B.10)

For the update of PU and Λ, we have

L[P t+1
U |y1 , P

t+1
U |y2 , P

t+1
U ; Λt+1]− L[P t+1

U |y1 , P
t+1
U |y2 , P

t
U ; Λ

t]

= g(P t+1
U |Y , P

t+1
U )− g(P t+1

U |Y , P
t
U) + ⟨Λt+1, P t+1

U − P t
U⟩

+
ρ

2
∥P t+1

U − P t
U∥22 −

1

ρ
∥Λt+1 − Λt∥22

≥ ρ− lu
2

∥P t+1
U − P t

U∥22 −
1

ρ
∥Λt+1 − Λt∥22. (B.11)

Combining (B.9), (B.10) and (B.11), we have

L[P t+1
U |Y , P

t+1
U ; Λt+1]− L[P t

U |Y , P
t
U ; Λ

t]

≥
[
ρ

2
p(y1)

2 − ly1
2

]
∥P t+1

U |y1 − P t
U |y1∥

2
2

+

[
ρ

2
p(y2)

2 − ly2
2

] ∥∥∥P t+1
U |y2 − P t

U |y2

∥∥∥2
2

+
ρ− lu
2

∥∥P t+1
U − P t

U

∥∥2
2
− 1

ρ

∥∥Λt+1 − Λt
∥∥2
2

(c)

≥
[
ρ

2
p(y1)

2 − ly1
2

− lΛ
ρ

]
∥P t+1

U |y1 − P t
U |y1∥

2
2

+

[
ρ

2
p(y2)

2 − ly2
2

− lΛ
ρ

] ∥∥∥P t+1
U |y2 − P t

U |y2

∥∥∥2
2

+

(
ρ− lu
2

− lΛ
ρ

)∥∥P t+1
U − P t

U

∥∥2
2
,

where (c) follows from Lemma 8.
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B.8 Proof of Proposition 2

1) If min{ρ
2
p(y1)

2 − ly1
2
− lΛ

ρ
, ρ
2
p(y2)

2 − ly2
2
− lΛ

ρ
, ρ−lu

2
− lΛ

ρ
} ≥ 0, according to Lemma 9, we have

L[P t+1
U |Y , P

t+1
U ; Λt+1]− L[P t

U |Y , P
t
U ,Λ

t] ≥ 0.

2) ∀t ∈ N, L[P t
U |Y , P

t
U , P

t
S|U ; Λ

t] is upper-bounded.

Assume that there exists P ′
U , such that P ′

U − (P t
U |Y )

TPY = 0. Then we have

L[P t
U |Y , P

t
U ; Λ

t]

= h1(P
t
U |y1) + h2(P

t
U |y2) + g(P t

U |y1 , P
t
U |y2 , P

t
U)

+
∑
u

λt(u)δt(u)− ρ

2

∑
u

δt(u)2

= h1(P
t
U |y1) + h2(P

t
U |y2) + g(P t

U |y1 , P
t
U |y2 , P

t
U)

+(Λt)T [P t
U − (P t

U |Y )
TPY ]

−ρ

2
[P t

U − (P t
U |Y )

TPY ]
T [P t

U − (P t
U |Y )

TPY ]

≤ h1(P
t
U |y1) + h2(P

t
U |y2) + g(P t

U |y1 , P
t
U |y2 , P

t
U)

+(Λt)T [P t
U − (P t

U |Y )
TPY ]

= h1(P
t
U |y1) + h2(P

t
U |y2) + g(P t

U |y1 , P
t
U |y2 , P

t
U)

+⟨Λt, P t
U − P ′

U⟩
(a)
= h1(P

t
U |y1) + h2(P

t
U |y2) + g(P t

U |y1 , P
t
U |y2 , P

t
U)

−⟨∇PU
g
(
P t
U |y1 , P

t
U |y2 , P

t
U

)
, P t

U − P ′
U⟩

(b)

≤ h1(P
t
U |y1) + h2(P

t
U |y2) + g(P t

U |y1 , P
t
U |y2 , P

′
U)

+
lu
2
∥P t

U − P ′
U∥22

< ∞,
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where (a) follows from (B.4) and (b) is true as ∇PU
g is lu-Lipschitz continuous.

3) {P t
U |Y , P

t
U ,Λ

t} is bounded.

Since ∀t ∈ N, P t
U |y1 , P

t
U |y2 are PMFs, {PU |Y }t is bounded. Similarly, {PU}t is also bounded. For

Λt, Lemma 8 can be generalized to the case where the iteration difference is k and we have

∥∥Λt+k − Λt
∥∥2
2

≤ lΛ

(∥∥∥P t+k
U |y1 − P t

U |y1

∥∥∥2
2

+
∥∥∥P t+k

U |y2 − P t
U |y2

∥∥∥2
2
+
∥∥P t+k

U − P t
U

∥∥2
2

)
,∀k ∈ N+.

Thus, since {PU |Y }t and {PU}t are bounded, {Λ}t is also bounded.

B.9 Proof of Proposition 3

When ρ is sufficiently large, e.g. ρ =
7βlf

ϵ3 min{p(y1)2,p(y2)2} , we will have min{ρ
2
p(y1)

2 − ly1
2

−
lΛ
ρ
, ρ
2
p(y2)

2− ly2
2
− lΛ

ρ
, ρ−lu

2
− lΛ

ρ
} ≥ 0. In this case, since L[PU |Y , PU ; Λ] is non-decreasing between

iterations and upper-bounded, there exists t0, such that

∞ >
∞∑

t=t0

∣∣L [P t
U |y1 , P

t
U |y2 , P

t
U ; Λ

t
]

−L
[
P t+1
U |y1 , P

t+1
U |y2 , P

t+1
U ; Λt+1

]∣∣∣
(b)

≥
[
ρ

2
p(y1)

2 − ly1
2

− lΛ
ρ

] ∞∑
t=t0

∥P t+1
U |y1 − P t

U |y1∥
2
2

+

[
ρ

2
p(y2)

2 − ly2
2

− lΛ
ρ

] ∞∑
t=t0

∥∥∥P t+1
U |y2 − P t

U |y2

∥∥∥2
2

+

(
ρ− lu
2

− lΛ
ρ

) ∞∑
t=t0

∥∥P t+1
U − P t

U

∥∥2
2
,

where (b) is from Lemma 9. Then as t → ∞, we have
∥∥∥P t+1

U |y1 − P t
U |y1

∥∥∥
2
→ 0,

∥∥∥P t+1
U |y2 − P t

U |y2

∥∥∥
2
→

0 , and
∥∥P t+1

U − P t
U

∥∥
2
→ 0. By Lemma 8, we have ∥Λt+1 − Λt∥2 → 0, which implies

P t+1
U − p (y1)P

t+1
U |y1 − p (y2)P

t+1
U |y2 → 0.
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B.10 Proof of Proposition 4

Since {P t
U |Y , P

t
U ,Λ

t} is bounded, there exists a subsequence {P ts
U |Y , P

ts
U ,Λts} that converges to

the limit point (P̂U |Y , P̂U , Λ̂), i.e. lims→∞(P ts
U |Y , P

ts
U ,Λts) = (P̂U |Y , P̂U , Λ̂). For the limit point

(P̂U |Y , P̂U , Λ̂), we will show that it is the stationary point of (3.11).

By the optimality of PU |y1 , PU |y2 and PU , we have

0 ∈ ∂PU|y1
F [P

ts+1

U |y1 , P
ts
U |y2 ]− p(y1)Λ

ts

+ρp(y1)[P
ts
U − p(y1)P

ts+1

U |y1 − p(y1)P
t
U |y2 ],

0 ∈ ∂PU|y2
F [P

ts+1

U |Y ]− p(y2)Λ
ts

+ρp(y2)[P
ts
U − (P

ts+1

U |Y )TPY ],

0 ∈ ∂PU
g
(
P

ts+1

U |y1 , P
ts+1

U |y2 , P
ts+1

U

)
+ Λts

−ρ
(
P

ts+1

U − p(y1)P
ts+1

U |y1 − p(y2)P
ts+1

U |y2

)
.

Taking the limit along the subsequence and using Proposition 3, we have

0 ∈ ∂PU|y1
F [P̂U |y1 ]− p(y1)Λ̂

0 ∈ ∂PU|y2
F [P̂U |y2 ]− p(y2)Λ̂

0 ∈ ∂PU
F [P̂U ] + Λ̂,

which indicates that the stationary condition is satisfied at the limit point (P̂U |Y , P̂U , Λ̂).

Now we check all constraints in (3.11) are also satisfied at the limit point.

• Since P ts
U |Y ∈ PU |Y ,∀s, and PU |Y is a closed set, we have P̂U |Y ∈ PU |Y ;

• By taking limit along the subsequence on both sides of the equation in Proposition 3 5), we

have

P̂U = p(y1)P̂U |y1 + p(y2)P̂U |y1 ; (B.12)
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• Based on (B.12), we have p̂(u) > 0,∀u, and

∑
u

p̂(u) =
∑
u

∑
y

p̂(u|y)p(y)

=
∑
y

p(y)
∑
u

p̂(u|y) =
∑
y

p(y) = 1,

which indicate that P̂U ∈ PU .

B.11 Proof of Theorem 4

Since L[P t
U |Y , P

t
U ,Λ

t] is non-decreasing between iterations and bounded from above, we have

that L[P ts
U |Y , P

ts
U ,Λts ] is also monotonic non-decreasing and upper-bounded. Then we have

lims→∞ L[P ts
U |Y , P

ts
U ,Λts ] = L[P̂U |Y , P̂U , Λ̂] as L is continuous for PU |Y ∈ PU |Y , PU ∈ PU , and

Theorem 4 is proved following from Proposition 4.

B.12 Proof of Lemma 10

The optimality condition of v-subproblem yields

0 =∇vg
(
xk+1
1 , xk+1

2 , vk+1
)
− Λk + ρ

(
p(y1)x

k+1
1

+p(y2)x
k+1
2 − vk+1

)
−∇ϕ

(
vk+1

)
+∇ϕ

(
vk
)
.
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As Λk+1 = Λk − ρ
(
p(y1)x

k+1
1 + p(y2)x

k+1
2 − vk+1

)
, we have Λk+1 = ∇vg

(
xk+1
1 , xk+1

2 , vk+1
)
−

∇ϕ
(
vk+1

)
+∇ϕ

(
vk
)
. Thus,

∥∥Λk+1 − Λk
∥∥2
2

=
∥∥∇vg

(
xk+1
1 , xk+1

2 , vk+1
)
−∇vg

(
xk
1, x

k
2, v

k
)

−∇ϕ
(
vk+1

)
+∇ϕ

(
vk
)
+∇ϕ

(
vk
)
−∇ϕ

(
vk−1

)∥∥2
2

≤ 3
(∥∥∇vg

(
xk+1
1 , xk+1

2 , vk+1
)
−∇vg

(
xk
1, x

k
2, v

k
)∥∥2

2

+
∥∥∇ϕ

(
vk−1

)
−∇ϕ

(
vk
)∥∥2

2
+
∥∥∇ϕ

(
vk
)
−∇ϕ

(
vk+1

)∥∥2
2

)
≤ 3l2g

(∥∥xk+1
1 − xk

1

∥∥2
2
+
∥∥xk+1

2 − xk
2

∥∥2
2

)
+ 3

(
l2g + l2ϕ

) ∥∥vk+1 − vk
∥∥2
2
+ 3l2ϕ

∥∥vk − vk−1
∥∥2
2
.

B.13 Proof of Lemma 11

From the update of x1, we have

h1

(
xk+1
1

)
+
〈
xk+1
1 − xk

1,∇x1g
(
uk
)〉

+
〈
Λk, p(y1)x

k+1
1 + p(y2)x

k
2 − vk

〉
− ρ

2

∥∥p(y1)xk+1
1 + p(y2)x

k
2 − vk

∥∥2
2
−∆φ1

(
xk+1
1 , xk

1

)
≥ h1

(
xk
1

)
+
〈
Λk, rk

〉
− ρ

2
∥rk∥22 ,

where uk = (xk
1, x

k
2, y

k)T and rk = p(y1)x
k
1 + p(y2)x

k
2 − vk.
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From the update of x2, we have

h2

(
xk+1
2

)
+
〈
xk+1
2 − xk

2,∇x2g
(
uk
)〉

+
〈
Λk, p(y1)x

k+1
1 + p(y2)x

k+1
2 − vk

〉
− ρ

2

∥∥p(y1)xk+1
1 + p(y2)x

k+1
2 − vk

∥∥2
2
−∆φ2

(
xk+1
2 , xk

2

)
≥ h2

(
xk
2

)
+
〈
Λk, p(y1)x

k+1
1 + p(y2)x

k
2 − vk

〉
− ρ

2

∥∥p(y1)xk+1
1 + p(y2)x

k
2 − vk

∥∥2
2
.

From the update of v, we have

g
(
uk+1

)
+
〈
Λk, rk+1

〉
− ρ

2
∥rk+1∥22 −∆ϕ

(
vk+1, vk

)
≥ g

(
xk+1
1 , xk+1

2 , vk
)
− ρ

2

∥∥p(y1)xk+1
1 + p(y2)x

k+1
2 − vk

∥∥2
2

+
〈
Λk, p(y1)x

k+1
1 + p(y2)x

k+1
2 − vk

〉
,

where uk+1 = (xk+1
1 , xk+1

2 , yk+1)T and rk+1 = p(y1)x
k+1
1 + p(y2)x

k+1
2 − vk+1.
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Adding up the above three inequalities, we have

L
(
xk+1
1 , xk+1

2 , vk+1,Λk
)
= h1

(
xk+1
1

)
+ h2

(
xk+1
2

)
+ g

(
uk+1

)
+
〈
Λk, rk+1

〉
− ρ

2
∥rk+1∥22

≥ h1

(
xk
1

)
+ h2

(
xk
2

)
+ g

(
xk+1
1 , xk+1

2 , vk
)
+
〈
Λk, rk

〉
−
[〈
xk+1
1 − xk

1,∇x1g
(
uk
)〉

+
〈
xk+1
2 − xk

2,∇x2g
(
uk
)〉]

+∆φ1

(
xk+1
1 , xk

1

)
+∆φ2

(
xk+1
2 , xk

2

)
+∆ϕ

(
vk+1, vk

)
− ρ

2
∥rk∥22

= h1

(
xk
1

)
+ h2

(
xk
2

)
+ g

(
uk
)
+
〈
Λk, rk

〉
− ρ

2
∥rk∥22

− g
(
uk
)
+ g

(
xk+1
1 , xk+1

2 , vk
)

−
〈(
xk+1
1 − xk

1, x
k+1
2 − xk

2, 0
)
,∇g

(
uk
)〉

+∆φ1

(
xk+1
1 , xk

1

)
+∆φ2

(
xk+1
2 , xk

2

)
+∆ϕ

(
vk+1, vk

)
= L

(
wk
)
+ g

(
xk+1
1 , xk+1

2 , vk
)
− g

(
uk
)

−
〈(
xk+1
1 − xk

1, x
k+1
2 − xk

2, 0
)
,∇g

(
uk
)〉

+∆φ1

(
xk+1
1 , xk

1

)
+∆φ2

(
xk+1
2 , xk

2

)
+∆ϕ

(
vk+1, vk

)
(a)

≥ L
(
wk
)
− lg

2

[∥∥xk+1
1 − xk

1

∥∥2
2
+
∥∥xk+1

2 − xk
2

∥∥2
2

]
+

δφ1

2

∥∥xk+1
1 − xk

1

∥∥2
2
+

δφ2

2

∥∥xk+1
2 − xk

2

∥∥2
2

+
δϕ
2

∥∥vk+1 − vk
∥∥2
2
,

where (a) follows from the assumption 3) and the fact from [183] that if h : Rn −→ R is a

continuous differentiable function where gradient ∇h is Lipschitz continuous with the modulus

lh > 0, then for any x, y ∈ Rn, we have |h(y)− h(x)− ⟨∇h(x), y − x⟩| ≤ lh
2
∥y − x∥22, and apply

this result on g here.
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By using the fact that

⟨Λk+1 − Λk, rk+1⟩ = −1

ρ
∥Λk+1 − Λk∥22,

we have

L
(
wk+1

)
− L

(
wk
)

= L
(
wk+1

)
− L

(
xk+1
1 , xk+1

2 , vk+1,Λk
)

+L
(
xk+1
1 , xk+1

2 , vk+1,Λk
)
− L

(
wk
)

= −1

ρ

∥∥Λk+1 − Λk
∥∥2
2

+L
(
xk+1
1 , xk+1

2 , vk+1,Λk
)
− L

(
wk
)

≥
(
δφ1 − lg

2
−

3l2g
ρ

)∥∥xk+1
1 − xk

1

∥∥2
2

+

(
δφ2 − lg

2
−

3l2g
ρ

)∥∥xk+1
2 − xk

2

∥∥2
2

+

(
δϕ
2

−
3l2g + 3l2ϕ

ρ

)∥∥vk+1 − vk
∥∥2
2

−
3l2ϕ
ρ

∥∥vk − vk−1
∥∥2
2
,

which implies

(
L
(
wk+1

)
−

3l2ϕ
ρ

∥∥vk+1 − vk
∥∥2
2

)
−
(
L
(
wk
)
−

3l2ϕ
ρ

∥∥vk − vk−1
∥∥2
2

)
≥

(
δφ1 − lg

2
−

3l2g
ρ

)∥∥xk+1
1 − xk

1

∥∥2
2

+

(
δφ2 − lg

2
−

3l2g
ρ

)∥∥xk+1
2 − xk

2

∥∥2
2

+

(
δϕ
2

−
3l2g + 6l2ϕ

ρ

)∥∥vk+1 − vk
∥∥2
2
.
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Appendix C

Appendix of Chapter 4

C.1 Proof of Theorem 5

We will prove the maximum value of L under two cases: G0 = 1 and G0 = 2 separately. For

G0 = 1, we will show max
(x0,y0,1),

s.t. ∥[xT
0 ,y0]∥2≤η

L1
(b)
= max{g1(β), h1(β)}. Similarly, for G0 = 2, we will

have that max
(x0,y0,2),

s.t. ∥[xT
0 ,y0]∥2≤η

L2
(c)
= max{g2(β), h2(β)}. Then (a) follows directly from (b) and (c).

Since the case G0 = 2 is similar to the case G0 = 1, we will only verify the equality (b).

Firstly, for the adversarial point, under the constraint that ∥x̃T
0 ∥2 = ∥[xT

0 , y0]∥2 ≤ η, we have

0 ≤ ∥x̃T
0 b∥22 ≤ η2∥b∥22 = η2(1 + ∥β∥22). (C.1)
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Then we notice that

L1

(d)

≤ max
{(

λ
m+1

+ 1
n+1

)
η2(1 + ∥β∥22)

+
(

λ
m+1

+ 1
n+1

)
∥y1 −X1β∥22

+
(
− λ

n−m
+ 1

n+1

)
∥y2 −X2β∥22,

max{0,− λ
m+1

+ 1
n+1

}η2(1 + ∥β∥22)

+
(
− λ

m+1
+ 1

n+1

)
∥y1 −X1β∥22

+
(

λ
n−m

+ 1
n+1

)
∥y2 −X2β∥22

}
= max{g1(β), h1(β)},

where (d) is from (C.1). Then we verify the achievability of the equality in (d). Define a

set B1 := {β : g1(β) ≥ h1(β) = {β : 1
m+1

∥y1 − X1β∥22 − 1
n−m

∥y2 − X2β∥22 ≥

max
{
− 1

2(m+1)
− 1

2λ(n+1)
,− 1

m+1

}
· η2(1+ ∥β∥22). In the sequel, we will verify the achievability of

the equality in (d) with two cases: β ∈ B1 and β ∈ Bc
1.

Case 1: β ∈ B1: By taking x̃0 = η b
∥b∥2 , we have

1

m+ 1
(∥y0 − xT

0 β∥22 + ∥y1 −X1β∥22)

− 1

n−m
∥y2 −X2β∥22

=
1

m+ 1

[
η2(1 + ∥β∥22) + ∥y1 −X1β∥22

]
− 1

n−m
∥y2 −X2β∥22

(e)

≥ max

{
1

2(m+ 1)
− 1

2λ(n+ 1)
, 0

}
η2(1 + ∥β∥22)},

(C.2)

where (e) is from the definition of set B1. Then we have L1
(f)
= g1(β), where (f) follows from

(C.2). Therefore, for β ∈ B1, we have h1(β) ≤ g1(β) and L1 ≤ g1(β), in which the equality can

be achieved for x̃0 = η b
∥b∥2 .
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Case 2: β ∈ Bc
1: On the one hand, if 1

m+1
− 1

λ(n+1)
≤ 0, by taking x̃0 = η b

∥b∥2 , we have

1

m+ 1
(∥y0 − xT

0 β∥22 + ∥y1 −X1β∥22)

− 1

n−m
∥y2 −X2β∥22

(g)
< max

{
1

2(m+ 1)
− 1

2λ(n+ 1)
, 0

}
η2(1 + ∥β∥22)

(h)
= 0, (C.3)

where (g) is from the definition of set B1 and (h) is because 1
m+1

− 1
λ(n+1)

≤ 0. Then we have

L1
(j)
= 1

n+1
[η2(1 + ∥β∥22) + ∥y1 −X1β∥22

+∥y2 −X2β∥22]− λ
[

1
m+1

η2(1 + ∥β∥22) + 1
m+1

∥y1 −X1β∥22

− 1
n−m

∥y2 −X2β∥22
] (k)
= h1(β),

where (j) is from (C.3) and (k) is true because 1
m+1

− 1
λ(n+1)

≤ 0. Therefore, for β ∈ Bc
1 and

1
m+1

− 1
λ(n+1)

≤ 0, we have h1(β) ≥ g1(β) and L1 ≤ h1(β), in which the equality can be achieved

for x̃0 = η b
∥b∥2 .

On the other hand, if 1
m+1

− 1
λ(n+1)

> 0, by taking x̃0 to be a vector such that x̃0 ⊥ b, we have

1

m+ 1
(∥y0 − xT

0 β∥22 + ∥y1 −X1β∥22)

− 1

n−m
∥y2 −X2β∥22

=
1

m+ 1
∥y1 −X1β∥22 −

1

n−m
∥y2 −X2β∥22

(l)
< max{− 1

2(m+ 1)
− 1

2λ(n+ 1)
,− 1

m+ 1
}η2(1 + ∥β∥22)

< 0, (C.4)
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where (l) is from the definition of set B1. Then we have

L1
(s)
=

1

n+ 1

(
∥y1 −X1β∥22 + ∥y2 −X2β∥22

)
−λ

[
1

m+ 1
∥y1 −X1β∥22 −

1

n−m
∥y2 −X2β∥22

]
(t)
= h1(β),

where (s) is from (C.4) and (t) is because 1
m+1

− 1
λ(n+1)

> 0. Therefore, for β ∈ Bc
1 and 1

m+1
−

1
λ(n+1)

> 0, we have h1(β) ≥ g1(β) and L1 ≤ h1(β), in which the equality can be achieved when

x̃0 ⊥ b.

C.2 Proof of Proposition 7

First, we summarize the process of finding β̄ as follows.

1. Check whether A = {α1 : Mg1 − α1(Mg1 −Mh1) ⪰ 0} ≠ ∅. If A = ∅, there does not exist a

global minimizer in this case.

2. By randomly selecting an α∗
1 ∈ Ag1h1

:= {α : Mg1 − α(Mg1 − Mh1) ≻ 0}, we solve the

optimization problem

min
β

k(β) = g1(β)− α∗
1[g1(β)− h1(β)],

s.t. C1(β) = g1(β)− h1(β) = 0, (C.5)

where k(β) is positive-definite and the choice of α∗
1 does not affect the solution to the problem.

3. For the solution to (C.5), check whether α1 > 0, (4.11), (4.12) and (4.13) are satisfied.

Now we explore the details of steps 1, 2 and 3.

In step 1, the assumption η2 ≥ η2min = max
{

(n+1)vX1,p

m(m+1)
,

(n+1)vX2,p

(n−m+1)(n−m)

}
will guarantee that

A is nonempty. To be exact, we denote Ag1g2 = {α : Mg1 − α(Mg1 − Mg2) ≻ 0}, Ag1h2 =

{α : Mg1 − α(Mg1 − Mh2) ≻ 0}, Ah1g2 = {α : Mh1 − α(Mh1 − Mg2) ≻ 0}, Ah1h2 =
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{α : Mh1 − α(Mh1 − Mh2) ≻ 0}, Ag2h2 = {α : Mg2 − α(Mg2 − Mh2) ≻ 0}. Then under

the assumption that η2 ≥ η2min = max
{

(n+1)vX1,p

m(m+1)
,

(n+1)vX2,p

(n−m+1)(n−m)

}
, we are able to derive that

Ag1h1 ̸= ∅, Ag1g2 ̸= ∅, Ag1h2 ̸= ∅, Ah1g2 ̸= ∅, Ah1h2 ̸= ∅, Ag2h2 ̸= ∅. The detailed proof is omitted

here. Particularly, in this case study, we have Ag1h1 ⊂ A and A ̸= ∅.

In step 2, (C.5) is a strictly convex quadratic optimization problem with one quadratic equality

constraint, which has been discussed in [184]. Define the Lagrangian function of (C.5) as

L(β, γ) = k(β)− γC1(β)

= g1(β)− (α∗
1 + γ)(g1(β)− h1(β))

= (1− α∗
1 − γ)g1(β) + (α∗

1 + γ)h1(β),

where γ is the Lagrangian multiplier. According to [184], the global minimizer β̌ and the corre-

sponding multiplier γ∗ of (C.5) satisfy first-order, second-order and the constraint conditions

∂L
∂β
|β̌ = (1− α∗

1 − γ)∂g1(β)
∂β

|β̌ + (α∗
1 + γ)∂h1(β)

∂β
|β̌ = 0,

(C.6)

∂2L
∂β2 = 2 [(1− α∗

1 − γ)Mg1 + (α∗
1 + γ∗)Mh1 ] ⪰ 0,

C1(β̌) = 0. (C.7)

From (C.6), we have

β̌ = [(1− α∗
1 − γ∗)Mg1 + (α∗

1 + γ∗)Mh1 ]
−1

· [(1− α∗
1 − γ∗)Eg1 − (α∗

1 + γ∗)Eh1 ] . (C.8)

Substituting (C.8) into (C.7), we derive an equation for γ, K(γ) = C1(β̌) = 0, whose root is γ∗.

By plugging γ = γ∗ back into (C.8), the exact solution for β̌ is obtained.

For step 3, if C2(β̌) ≥ 0, C3(β̌) ≥ 0, then we have that:
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(1) if α∗
1 + γ∗ > 0, β = β̌ is a global minimizer satisfying (4.11), (4.12), (4.13) with α1 =

α∗
1 + γ∗;

(2) if α∗
1 + γ∗ = 0, β = β̌ is a global minimizer in Case 1 that satisfies (4.7), (4.8), (4.9);

(3) if α∗
1 + γ∗ < 0, β = β̌ satisfies global optimality conditions for the minimization of h1(β)

with multipliers α′
1 = 1− α∗

1 − γ∗, α′
2 = α′

3 = 0.

C.3 Proof of Proposition 8

First, we summarize the process of finding β̂ as follows.

1. Check AA = {(α1, α2) : Mg1 − α1(Mg1 − Mh1) − α2(Mg1 − Mg2) ⪰ 0} ≠ ∅. Under

the assumption made in Proposition 7 that η2 ≥ η2min = max
{

(n+1)vX1,p

m(m+1)
,

(n+1)vX2,p

(n−m+1)(n−m)

}
, we have

Ag1h1 = {α : Mg1−α(Mg1−Mh1) ≻ 0} ≠ ∅ and Ag1g2 = {α : Mg1−α(Mg1−Mg2) ≻ 0} ≠ ∅,

which implies AA ̸= ∅.

2. Solve the optimization problem

min
β

k(β) = g1(β)− α∗
1[g1(β)− h1(β)],

s.t. C1(β) = C2(β) = 0. (C.9)

3. For the solution to (C.9), check whether α1 > 0, α2 > 0, and (4.17) are satisfied.

We now provide more details of steps 2 and 3. In step 2, define the Lagrangian function of

(C.9) as

L(β, γi) = k(β)− γ1C1(β)− γ2C1(β)

= (1− α∗
1 − γ1 − γ2)g1(β) + (α∗

1 + γ1)h1(β) + γ2h1(β).

Then the derived optimal solution β̌ and the corresponding Lagrangian multipliers γ∗
1 , γ

∗
2 satisfy
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first-order, second-order and the constraint conditions

∂L
∂β

|β̌ = (1− α∗
1 − γ∗

1 − γ∗
2)
∂g1(β)

∂β
|β̌

+(α∗
1 + γ∗

1)
∂h1(β)

∂β
|β̌ + γ∗

2

∂g2(β)

∂β
|β̌ = 0, (C.10)

∂2L
∂β2

= 2[(1− α∗
1 − γ∗

1 − γ∗
2)Mg1

+(α∗
1 + γ∗

1)Mh1 + γ∗
2Mg2 ] ⪰ 0, (C.11)

C1(β̌) = 0, C2(β̌) = 0. (C.12)

From (C.10), we have

0 = [(1− α∗
1 − γ∗

1 − γ∗
2)Mg1 + (α∗

1 + γ∗
1)Mh1

+γ∗
2Mg2 ] β̌ − (1− α∗

1 − γ∗
1 − γ∗

2)Eg1

−(α∗
1 + γ∗

1)Eh1 − γ∗
2Eg2 ,

where Eg2 = Cg2X
T
1 y1 +Dg2X

T
2 y2. Then we have

β̌ = [(1− α∗
1 − γ∗

1 − γ∗
2)Mg1 + (α∗

1 + γ∗
1)Mh1 + γ∗

2Mg2 ]
−1

· [(1− α∗
1 − γ∗

1 − γ∗
2)Eg1 + (α∗

1 + γ∗
1)Eh1 + γ∗

2Eg2 ] .

(C.13)

Plugging (C.13) into (C.12), we have

K1(γ1, γ2) = C1(β̌) = 0, K2(γ1, γ2) = C2(β̌) = 0,

with solution (γ∗
1 , γ

∗
2). By substituting γ1 = γ∗

1 , γ2 = γ∗
2 into (C.13), we obtain the solution for β̌.

For step 3, the verification process is given as follows.

(1) If α∗
1 + γ∗

1 > 0 and γ∗
2 > 0, (4.14), (4.15), (4.16) are satisfied for α1 = α∗

1 + γ∗
1 , α2 = γ∗

2
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and β = β̌ based on (C.10), (C.11), (C.12). If we further have C3(β̌) ≥ 0, then β̌ is a global

minimizer of (4.5).

(2) If α∗
1 + γ∗

1 < 0, we could consider the minimization of h1(β).

(3) If γ∗
2 < 0, we consider the minimization of g2(β).

C.4 Proof of Lemma 13

Note that c1 and c2 are independent without considering the optimization on ηc1 . In particular, the

first term in g(β, X̂) only involves c1 and the second term in g(β, X̂) only involves c2. Thus, we

firstly focus on the first term in g(β, X̂) and solve the maximization with respect to c1.

max
ηc1

max
∥d∥2≤1

max
∥c1∥2=ηc1

∥y1 −X1β − c1d
Tβ∥22

= max
ηc1

max
∥d∥2≤1

max
∥c1∥2=ηc1

(dTβ)2∥e1∥22

= max
ηc1

max
∥d∥2≤1

(dTβ)2 max
∥c1∥2=ηc1

∥e1∥22,

in which e1 = f1 − c1 with f1 =
1

dTβ
(y1 −X1β). For the maximization problem on c1, we have

max
c1

∥e1∥22, s.t. ∥c1∥2 = ηc1 ,

⇐⇒ min
e1

−∥e1∥22, s.t. ∥f1 − e1∥22 = η2c1 . (C.14)

Although (C.14) is not a convex optimization problem, we can first investigate its KKT necessary

conditions. The Lagrangian function of (C.14) is L(e1, γe1) = −∥e1∥22 + γe1(∥f1 − e1∥22 − η2c1),

where γe1 is the Lagrangian multiplier. According to the KKT conditions, we have

∂L(e1, γe1) = −2eT
1 − 2γe1(f1 − e1)

T = 0,

∥f1 − e1∥22 = η2c1 ,
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from which we can derive that the solution to (C.14) is e∗
1 = f1+

ηc1
∥f1∥2f1, and the maximum value

is

max
∥c1∥2=ηc1

∥e1∥22 = ∥e∗
1∥22 =

(
1 +

ηc1
∥f1∥2

)2

∥f1∥22.

Then we focus on the second term in g(β, X̂), solve the maximization on ηc2 , and derive the

formulation for gm1(ηc1 ,β,d).

C.5 Proof of Proposition 9

We observe that gm1(ηc1 ,β,d) is a quadratic function with respect to dTβ, i.e.

gm1(ηc1 ,β,d) = A(dTβ)2 +B(dTβ) + C, (C.15)

in which A,B,C are three coefficients. In particular, we have

A = (Cg −Dg) η
2
c1
+Dgη

2
c , (C.16)

B = 2 [Cgηc1∥y1 −X1β∥2 +Dgηc2∥y2 −X2β∥2] ≥ 0,

C = Cg∥y1 −X1β∥22 +Dg∥y2 −X2β∥22. (C.17)

Since A > 0, − B
2A

≤ 0 and dTβ ∈ [−∥β∥2, ∥β∥2], we can conclude that the maxima of

gm1(d|ηc1 ,β) is attained when dTβ = ∥β∥2 and the maximum value is

max
∥d∥2≤1

gm1(ηc1 ,β,d)

= Cg(∥y1 −X1β∥2 + ηc1∥β∥2)2

+Dg(∥y2 −X2β∥2 +
√

η2c − η2c1∥β∥2)
2,

which provides the form of ga.
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C.6 Proof of Lemma 14

In this case, the analysis for the first term in g(β, X̂) remains the same. However, for the second

term, we have

min
ηc2

min
∥d∥2≤ η

ηc2

min
∥c2∥2≤ηc2

∥y2 −X2β − c2d
Tβ∥22

= min
ηc2

min
∥d∥2≤ η

ηc2

(dTβ)2 min
∥f2−e2∥2≤ηc2

∥e2∥22,

where ηc2 =
√

η2c − η2c1 , f2 =
1

dTβ
(y2 −X2β) and e2 = f2 − c2. Thus, the minimization on e2 is

a convex problem. By exploring the KKT conditions of the minimization problem, we are able to

find the optimal solution. Particularly, the Lagrangian function of the minimization problem on e2

is

L(e2, γe2) = ∥e2∥22 + γe2(∥f2 − e2∥22 − η2c2),

in which γe2 is the Lagrangian multiplier. By exploring the KKT conditions, we have

∇L(e2, γe2) = 2eT
2 − 2γe2(f2 − e2)

T = 0, (C.18)

∥f2 − e2∥22 ≤ η2c2 ,

γe2(∥f2 − e2∥22 − η2c ) = 0, (C.19)

γe2 ≥ 0.

By inspecting the complementary slackness condition (C.19), we consider two cases based on the

value of γe2 .

Case 1: γe2 = 0. In this case, we have e2 = 0 according to (C.18), which can be true when
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∥f2∥2 ≤ ηc2 . Moreover, note that

∥f2∥2 ≤ ηc2 ⇐⇒ ∥y2 −X2β∥2 ≤ |dTβ|ηc2
(a)

≤ η
ηc2

∥β∥2ηc2 = η∥β∥2,

where the equality in (a) is achieved if d = η
ηc2∥β∥2

β. Thus, if ∥y2−X2β∥2 ≤ η∥β∥2, the minimum

value of ∥e2∥22 is 0.

Case 2: γe2 > 0. If there is no feasible solution in Case 1, we can conclude that ∥f2∥2 > ηc2 .

Moreover, by (C.18) and (C.19), we have e∗
2 =

γ∗
e2

f2

γ∗
e2

+1
, ηc2 = ∥f2 − e∗

2∥2 = 1
γe∗2

+1
∥f2∥2, which

implies γ∗
e2

= ∥f2∥2
ηc2

− 1, e∗
2 = f2 − ηc2

∥f2∥2f2. Then we have min
∥f2−e2∥2≤ηc2

∥e2∥22 = ∥e∗
2∥22 =(

1− ηc2
∥f2∥2

)2
∥f2∥22. By combining these two cases, Lemma 14 is proved.

C.7 Proof of Proposition 10

Now we solve the maximization problem on d. Firstly, consider the case when ∥y2 − X2β∥2 ≤

η∥β∥2. In this case, we notice that as long as ηc1 ̸= 0, gm2(ηc1 ,β,d) is a quadratic function for

dTβ with A = Cgη
2
c1

> 0, B = 2Cgηc1∥y1 − X1β∥2 ≥ 0 and − B
2A

≤ 0. Thus, the maxima is

attained when dTβ = ∥β∥2 and the maximum value of g(β, X̂) is

gb1(ηc1 ,β) = Cg(∥y1 −X1β∥2 + ηc1∥β∥2)2.

For ηc1 = 0, the attacker only changes the feature matrix of the second group and the maximum

value of g(β, X̂) can also be derived as gb1(ηc1 ,β).

Secondly, consider the case when ∥y2 −X2β∥2 > η∥β∥2. In this case, gm2(ηc1 ,β,d) can also

be written in the form of (C.15) with coefficients A,B,C. In particular, A and C are defined the

same as (C.16) and (C.17), and B is defined as B = 2Cgηc1∥y1−X1β∥2−2Dgηc2∥y2−X2β∥2 ≥

0. Since the coefficient of the quadratic term A can be positive, negative or zero, the maxima of gm2

varies. By investigating into these three different cases, we have that when ∥y2−X2β∥2 > η∥β∥2,
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the maximum value of g(β, X̂) is gb2(ηc1 ,β).

If A > 0, we have − B
2A

≤ 0 and the maxima is attained when dTβ = ∥β∥2 with the maximum

value to be max∥d∥2≤1 gm2(ηc1 ,β,d) = Cg(∥y1 − X1β∥2 + ηc1∥β∥2)2 + Dg(∥y2 − X2β∥2 −

ηc2∥β∥2)2, which implies that

max∥cdT ∥F≤η g(β, X̂)

= max0<ηc≤η max0≤ηc1≤ηc max∥d∥2≤1 gm2(ηc1 ,β,d)

(a)
= max0≤ηc1≤η [Cg(∥y1 −X1β∥2 + ηc1∥β∥2)2

+Dg(∥y2 −X2β∥2 −max0<ηc≤η ηc2∥β∥2)2]

= max0≤ηc1≤η gb2(ηc1 ,β),

where (a) follows from the fact that Dg < 0 and ∥y2 −X2β∥2 > η∥β∥2 ≥ ηc2∥β∥2.

If A = 0, from the expression of A, we have η2c1 =
− 1

n
+ λ

n−m
λ
m
+ λ

n−m

η2c , which is feasible as
− 1

n
+ λ

n−m
λ
m
+ λ

n−m

∈

(0, 1). Then since B ≥ 0, gm2 is a linearly non-decreasing function in dTβ and the maxima is

attained when dTβ = ∥β∥2 with the maximum value to be the same as gb2(ηc1 ,β).

Otherwise, if A < 0, gm2 is a concave quadratic function in dTβ with − B
2A

>

( λ
n−m

− 1
n)ηc2∥y2−X2β∥2

−( λ
n−m

− 1
n)η2c1+(

λ
n−m

− 1
n)η2c

(g)
>

ηc2η∥β∥2
η2c2

≥ ∥β∥2, in which (g) is from the fact that ∥y2 −X2β∥2 >

η∥β∥2. Thus, the maxima is attained when dTβ = ∥β∥2 and the maximum value is also gb2(ηc1 ,β).

C.8 Proof of Lemma 15

Since the forms of ga, gb1 , gb2 , ha, hb1 , hb2 are similar, we only show the weakly-convex-weakly-

concave property of ga. For ηc1 , we have ∂2ga(ηc1 ,β)

∂η2c1
= 2

(
λ
m
+ λ

n−m

)
∥β∥22 − 2Dg

η2

η3c2
∥β∥2∥y2 −

X2β∥2. Since Dg ≥ 0, as long as ∥β∥2 is bounded, there always exist a constant ρ1 < ∞ such

that ∂2ga(ηc1 ,β)

∂η2c1
≤ ρ1, indicating that ga is weakly-concave in ηc1 .
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For β, we have

∂2ga(ηc1 ,β)

∂β2
≥ 2Cg

[
ηc1

(
ηc1 − 2

Tr(XT
1 X1)

∥X1∥F

)
I +XT

1 X1

]
+2Dg

[
ηc2

(
ηc2 − 2

Tr(XT
2 X2)

∥X2∥F

)
I +XT

2 X2

]
.

Since X1 and X2 are feature matrices with finite norm, there always exist ρ2 < ∞ such that
∂2ga(ηc1 ,β)

∂β2 ⪰ −ρ2I , which indicates that ga is weakly-convex in β.

C.9 Proof of Lemma 16

For ga, we have

∂ga(ηc1 ,β)

∂ηc1
= 2Cg∥β∥2∥y1 −X1β∥2 + 2 (Cg −Dg) ηc1∥β∥22

−2Dg
ηc1
ηc2

∥β∥2∥y2 −X2β∥2 = 0,

which implies

(
ηc1∥β∥2 +

Cg

Cg −Dg

∥y1 −X1β∥2
)

·
(
ηc2∥β∥2 −

Dg

Cg −Dg

∥y2 −X2β∥2
)

= − CgDg(
λ

n−m
+ λ

m

)2∥y1 −X1β∥2∥y2 −X2β∥2. (C.20)

From (C.20), we note that ηc1 and ηc2 are inversely proportional. Since we also have η2c1+η2c2 = η2,

ηc1 ≥ 0 and ηc2 ≥ 0, there is a unique solution for (C.20) (which can be seen geometrically),

denoted as η∗c1 . Moreover, we have

• ηc1 < η∗c1 , left hand side of (C.20) is positive;

• ηc1 > η∗c1 , left hand side of (C.20) is negative.

152



Thus, ga is a unimodal function that increases first and then decreases. The results can be easily

generalized to other sub-functions.
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