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Abstract

In recent years, machine learning has witnessed remarkable progress, finding diverse applica-
tions and achieving notable success in addressing complex problems. However, these achievements
have been accompanied by growing ethical concerns, rooted in the potential of machine learning
systems to produce unreliable decisions, inadvertently disclose sensitive information, and exhibit
biases. The need for trustworthy machine learning systems, characterized by attributes like privacy,
fairness, and robustness, has become increasingly pressing. This dissertation attempts to address-
ing these critical challenges through an investigation into algorithmic adversarial robustness, the
preservation of privacy within cloud-based frameworks, and the development of adversarially ro-
bust fairness-aware models.

In the first part, we investigate the adversarial robustness of hypothesis testing rules. In the
considered model, after a sample is generated, it will be modified by an adversary before being
observed by the decision maker. The decision maker needs to decide the underlying hypothesis
that generates the sample from the adversarially-modified data. We formulate this problem as a
minimax hypothesis testing problem, in which the goal of the adversary is to design attack strategy
to maximize the error probability while the decision maker aims to design decision rules so as
to minimize the error probability. We consider both hypothesis-aware case, in which the attacker
knows the true underlying hypothesis, and hypothesis-unaware case, in which the attacker does
not know the true underlying hypothesis. We solve this minimax problem and characterize the
corresponding optimal strategies for both cases.

In the second part, we propose a general framework to provide a desirable trade-off between
inference accuracy and privacy protection in the inference as service scenario (IAS). Instead of
sending data directly to the server, the user will preprocess the data through a privacy-preserving
mapping, which will increase privacy protection but reduce inference accuracy. To properly address
the trade-off between privacy protection and inference accuracy, we formulate an optimization

problem to find the optimal privacy-preserving mapping. Even though the problem is non-convex



in general, we characterize nice structures of the problem and develop an iterative algorithm to find
the desired privacy-preserving mapping, with convergence analysis provided under certain assump-
tions. From numerical examples, we observe that the proposed method has better performance than
gradient ascent method in the convergence speed, solution quality and algorithm stability.

In the third part, we take a first step towards answering the question of how to design fair
machine learning algorithms that are robust to adversarial attacks. Using a minimax framework,
we aim to design an adversarially robust fair regression model that achieves optimal performance
in the presence of an attacker who is able to add a carefully designed adversarial data point to
the dataset or perform a rank-one attack on the dataset. By solving the proposed nonsmooth
nonconvex-nonconcave minimax problem, the optimal adversary as well as the robust fairness-
aware regression model are obtained. For both synthetic data and real-world datasets, numerical
results illustrate that the proposed adversarially robust fair models have better performance on
poisoned datasets than other fair machine learning models in both prediction accuracy and group-

based fairness measure.
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Chapter 1

Introduction

Machine learning (ML) has found extensive applications across various industrial sectors, spanning
from autonomous vehicles [2—4] and medical diagnostics [5,6] to robotics [7,8]. In these domains,
ML performs a wide range of tasks, including speech recognition [9, 10], object detection [11,12],
and decision making [13-16]. However, the proliferation of ML solutions has ushered in a new
era, accompanied by significant challenges. These challenges are particularly pronounced in the
areas of security [17-22], privacy [23-27], and fairness [28-30], especially within safety-critical
applications.

In this chapter, we provide the introduction of this dissertation. In Chapter 1.1, we introduce
the background. In Chapter 1.2, we introduce basic tools that are used in this dissertation. We then

discuss main contributions of this dissertation in Chapter 1.3.

1.1 Background

In this section, we review recent research on security, privacy and fairness issues associated with

machine learning in the following domains:
(1) Security issues;

(2) Privacy concern;



(3) Fairness issues.

1.1.1 Security issues

Machine learning models are not robust to adversarial attacks and are extremely susceptible to a
phenomenon called adversarial examples [31]. By adding hardly perceptible perturbations on the
input data, the decision of a deep network can be easily manuplicated. For example, an original
image of an ice bear is concludes as “ice bear” with 85.8% confidence by the network [1]. Then by
adding the carefully constructed adversarial perturbation, an image that looks exactly the same to a
human is obtained, which the network thinks with 100% confidence as a “dishwasher”. In practical
applications, it has been observed that these adversarial examples are consistently misclassified
at a notably higher rate than examples perturbed by random noise, even when the magnitude of
the noise greatly surpasses that of the adversarial perturbation [31]. Moreover, the issue extends
beyond individual models, as adversarial examples often possess a transferability property. An
adversarial example engineered to confound one model, say M, frequently has the same effect
on another model, such as M,. This property allows for the generation of adversarial examples
and the execution of misclassification attacks on machine learning systems without access to the
underlying model [32].

There are many works design attack algorithms to find adversarial examples more efficiently
[33-35]. At the same time, there are significant amount of research works that focus on developing
defense strategies with the goal of constructing robust classifiers that can work well in the presence
of adversarial perturbations [32,36,37]. While a proposed defense is often empirically shown to
be successful against the set of attacks known at the time, new stronger attacks are subsequently
discovered that render the defense useless. For example, defensive distillation [32] and adversarial
training against the Fast Gradient Sign Method [33] were two defenses that were later shown to
be ineffective against stronger attacks [38,39]. In order to break this arms race between attackers
and defenders, there are many studies establishing the fundamental limits on the robustness of

classifiers [40,41]. Most of these works rely on tools from concentration of measure [42] and



ice bear
85,8% confidence

Adversarial Perturbation
created by attack

Adversarial Example ¢ ‘ ~\@ dishwasher
100% confidence

Figure 1.1: Adversarial example [1].

provide interesting results when the dimension of data is high and the distribution of data satisfies
certain conditions.

At the meantime, motivated by growing applications of various signal processing and statistical
inference algorithms in safety and security-related applications [18, 19], there is also an increasing
interest in the study of adversary robustness of statistical inference algorithms [31,33-35,43-46].
The purpose of these studies is to understand the robustness of these algorithms in the adversarial
setup, so as to properly design systems that are safe and secure even under adversarial attacks.
The investigation of adversary robustness of statistical algorithms is related to but different from
the large volume of work on classic robust statistics [47-52]. The classic robust statistical infer-
ence mainly focuses on distributional robustness, in which the true distributions of data lie in the
neighborhood of nominal distributions [50, 53,54]. On the other hand, the attack in the adversary
robustness model is more powerful. In particular, in the adversarial robustness models, an adver-
sary is typically assumed to have access to the data sample and can make data-dependent changes.
The decision maker then has to make statistical inference based on the adversarially-modified data

[55].



Hence, it is of our interest to study the performance bound of the powerful adversarial models.
Under this setting, to reveal the structures of the optimal attack and defense strategies, as the
adversary and the defender perform opposite rules, the game between them can be formulated as a

minimax problem and will be studied in Chapter 2.

1.1.2 Privacy concern

The impressive accuracy achieved by modern ML models in business, medicine and communica-
tion motivates many data holders to apply ML to their own datasets. Existing ML frameworks,
however, are not easy to deploy by non-expert users due to a large number of configuration param-
eters and general lack of understanding of why and how modern ML works [56]. Furthermore, MLL
expertise is scarce and often unrelated to data holders’ primary competency. At the same time, the
Internet of Things (IoT) is an emerging communication paradigm that aims at connecting different
kinds of devices to the Internet [57-59]. Within the past decade, the number of IoT devices being
introduced in the market has increased dramatically due to its low cost and convenience [60]. Sen-
sors of IoT devices could generate contexts at a high velocity and the inference with the contexts
becomes an essential component for IoT applications [61]. However, considering the complexity
of state-of-the-art machine learning models, it is difficult to run them on IoT devices. Thus, one
of the emerging solutions to solve the two problems mentioned above is so called inference-as-a-
service (IAS) [62,63]. IAS is known as a cloud service that manages various types of inferences
effectively.

With cloud services, machine learning algorithms can be run on the cloud providers’ infras-
tructure where training and deploying machine learning models are performed on cloud servers.
Once the models are deployed, users can use these models to make predictions without having to
worry about maintaining the models and the service [64]. Several such services are currently of-
fered including Microsoft Azure Machine Learning, Google Prediction API, GraphLab, and Ersatz
Labs. However, such service brings privacy issues, as the devices will send their data to the cloud

without knowing where these data is stored or what future purposes these data might serve.



There are some interesting works that attempt to address this issue using Homomorphic En-
cryption (HE) technique [65-67]. Unfortunately, the complexity of HE based solution is very high,
and its privacy relies on the (unproved) assumption that certain mathematical problems are diffi-
cult to solve. The most notable shortcoming of practical Homomorphic Encryption schemes is that
operations in practical schemes are limited to addition and multiplication. Consequently, we need
to adopt algorithms within these limitations. However, the computation performed over sensitive
data by machine learning models, especially neural networks, is usually very complex and cannot
be simply translated to encrypted versions without modification.

There exist many other privacy-preserving techniques that are based on perturbations of data,
which provide privacy guarantees at the expense of a loss of accuracy [25-27]. For example, k-
anonymity is proposed by Samarati and Sweeney [23], which requires that each record is indistin-
guishable from at least k—1 other records within the dataset. Differential privacy works by adding a
pre-determined amount of randomness into a computation performed on a data set [24]. These con-
cepts and techniques are very useful for the privacy protection of data analysis through a dataset
or database. Moreover, various minimax formulations and algorithms have also been proposed
to defend against inference attack in different scenarios [68—70]. Bertran et al. [68] proposed an
optimization problem where the terms in the objective function were defined in terms of mutual
information, showed the performance bound for the optimization problem and learned the sanitiza-
tion transform in a data-driven fashion using an adversarial approach with Deep Neural Networks
(DNNSs). Under their formulation, they analyzed a trade-off between utility loss and attribute ob-
fuscation under the constraint of the attribute obfuscation /(A; Z) < k. Feutry et al. [69] measured
the utility and privacy by expected risks, formulated the utility-privacy trade-off as a min-diff-max
optimization problem and proposed a learning-based and task-dependent approach to solve this
problem, while only deterministic mechanisms are considered. To address this issue, a privacy-
preserving adversarial network was proposed in [70] by employing adversarially-trained neural
networks to implement randomized mechanisms and to perform a variational approximation of

mutual information privacy.



Hence, it is of our interest to address the fundamental trade-off between inference accuracy
and privacy protection from information theory perspective. Instead of sending data directly to
the server, the user will preprocess the data through a privacy-preserving mapping. This privacy-
preserving mapping has two opposing effects. On one hand, it will prevent the server from observ-
ing the data directly and hence enhance the privacy protection. On the other hand, this might reduce
the inference accuracy. To properly address the trade-off between these two competing goals, an

optimization problem can be formulated and will be studied in Chapter 3.

1.1.3 Fairness issues

ML models have been used in various domains, including several security and safety critical ap-
plications, such as banking, education, healthcare, law enforcement etc. However, it has become
increasingly evident that ML algorithms can inadvertently perpetuate or even exacerbate biases
[28, 29], particularly those related to race or gender, thereby raising concerns about fairness and
equity in their outcomes. For instance, notable instances of bias have been observed in systems
like the Correctional Offender Management Profiling for Alternative Sanctions (COMPAS), a tool
used by judges to assess an offender’s risk of recommitting a crime [71]. Investigations into COM-
PAS revealed that it displayed bias against African-American individuals, assigning them higher
risk scores than their Caucasian counterparts with similar profiles [71]. Similar findings have been
made in other areas, such as an Al system that judges beauty pageant winners but was biased
against darker-skinned contestants [28], or facial recognition software in digital cameras that over-
predicts Asians as blinking [72].

These fairness issues in machine learning outcomes can be attributed to at least two main
sources: biases present in the data and biases introduced by the algorithms themselves. Data, es-
pecially in big data scenarios, often reflect inherent heterogeneities arising from subgroups with
distinct characteristics and behaviors. These variations can introduce bias into the data, which,
when used to train models, may result in unfair and inaccurate predictions. Bias in data can stem

from multiple sources, such as historical bias, representation bias, measurement bias, evaluation



bias, aggregation bias,population bias, etc. [73]. In order to mitigate the effects of bias in data,
some general methods have been proposed that advocate having good practices while using data.
For example, [74] proposes having labels, just like nutrition labels on food, to better categorize
each data for each task.

For the algorithmic fairness, one should first define the notion of fairness to fight against dis-
crimination and achieve fairness. However, the absence of a universally accepted definition of
fairness highlights the complexity of this challenge. Different cultures and perspectives may fa-
vor distinct interpretations of fairness, making it difficult to arrive at a single, universally appli-
cable definition. Consequently, a range of fairness definitions and corresponding methods have
emerged, tailored to specific applications or preferences. These methods can be categorized into
pre-processing, which modifies the data that the algorithm learns from [75]; in-processing, which
modifies the algorithm’s objective function to incorporate a fairness constraint or penalty [76—78];
post-processing, which modifies the predictions produced by the algorithm [79].

In the meantime, a large body of work has shown that ML models are vulnerable to various
types of attacks [20-22]. Thus, a major and natural concern for fair machine learning algorithms
is their robustness in adversarial environments. Recent works show that well-designed adversarial
samples can significantly reduce the test accuracy as well as exacerbating the fairness gap of ML
models [80-83].

In light of the vulnerabilities of existing fair machine learning algorithms, there is a pressing
need to design fairness-aware learning algorithms that are robust to adversarial attacks. As the first
step towards this goal, we focus on regression problems and design a fair regression model that is

robust to adversarial attacks, as discussed in Chapter 4.

1.2 Preliminaries

In this section, we introduce basic tools that will be used in this dissertation.



1.2.1 Minimax problem and saddle points property

Given ¢ : X X Z — R, where X C R",Z C R™, consider

inf
inf sup P(z, z),

and

inf .
sup inf ¢z, z)

The minimax inequality gives that

inf < inf : 1.1
IR < i spele2) (-0

Definition 1. (z*, z*) is called a saddle point of ¢ if

o(z*,z) < o(a*,2") < ¢(x,2"), Ve € X,Vz € Z. (1.2)
Proposition 1. (z*, 2*) is a saddle point of ¢ if and only if the minimax equality holds and

x* € arg ;g)f( 21611; o(z,2), 2" € arg 21611Z) gg)f{ oz, z). (1.3)

Then we have the minimax theorem,

Theorem 1. If

X and Z are convex and compact sets;

* ¢(+, z) is a continuous function;

For each z € Z, the function ¢(-, z) is convex;

 Foreach x € X, the function ¢(x,-) is closed and concave;

8



then the minimax equality holds [84].

The saddle point analysis will be used in our proposed minimax problem in Chapter 2.

1.2.2 Robust Hypothesis Testing

The detection of the presence or absence of an event with a specified accuracy is fundamental to
statistical inference and binary hypothesis testing is the usual starting point. Formally, any real
world example of binary decision making problem can be modeled by a binary hypothesis test,
where under each hypothesis H;, a received data = (z1, x2, - - , z,,) follows a particular proba-

bility distribution f;, j € {0, 1}, i.e.

® 7‘[0: X ~ fo.

® Hll X ~ fl-
Consider the general decision function §(xy, z, - - , x,), where 0(x1, 2, - -+ , z,,) = 0 means that
H, is accepted and 0(zq,x2,- -+ ,2,) = 1 means that H; is accepted. Since the function takes on
only two values, the test can also be specified by the set A over which §(z1, x2, - -+ ,x,) = 0 while
the complement of this set is the set where §(z1, xo, - - - , x,) = 1. Define two probabilities of error

a = Pr[d(zy,z0, -+ ,x,) = 1|Hp is true], (1.4)

B = Pr[é(xy,z9, -+ ,x,) = 0|H is true]. (1.5)

In general, we wish to minimize both probabilities, but there is a trade-off between them. We can
either minimize one of the probabilities of error subject to a constraint on the other probability of
error or construct an error probability function consisting of both probabilities of error. Assuming
that the prior probability of two hypotheses are Pr(#,) and Pr(?;), then the error probability Pg
can be written as

Pg(6(-)) = aPr(Ho) + BPr(H1). (1.6)



Suppose Fy and P, under H, and H; are known and using Bayes’ rule, we can obtain the

posterior probabilities of Hy and H:

Ix(z1, 29, 2| Ho)Pr(Ho)

P<HO’$1’I2"” 7$n) - fX(I'l;(LQ?”. 7x7l) 7 (17)
P13, ) = L T2 Dl PR() (1.8)
fX(fEl,IQ,"‘ 7‘7;71)

If one further assumes that the prior probability of each hypothesis is the same, then the optimal
way to decide between H, and H; is to compare P(Ho|z1, o, -+ ,x,) and P(Hq|zq, 2, -, Ty),
and accept the hypothesis with the higher posterior probability. This is the idea behind the maxi-
mum a posterior (MAP) test. Recall the definition of error probability in (1.6), and we can see that
the error probability is minimized by the MAP test since we are choosing the hypothesis with the
highest posterior probability.

However, in practice, for random observation Y € R, when the true distribution gj(y) deviates
from the assumed nominal distribution f;(y), the performance of the likelihood ratio detector is
no longer optimal and it may perform poorly. Various robust hypothesis testing frameworks have
been developed to address the issue with distribution misspecification and outliers [85, 86].

The robust detectors are constructed by introducing various uncertainty sets for the distributions
under the null and the alternative hypotheses. In non-parametric setting, Huber’s work [49] con-
siders the so-called e-contamination sets, which contain distributions that are close to the nominal
distributions in terms of total variation metric. [54] considers uncertainty set induced by Kullback-
Leibler divergence around a nominal distribution. Under this setup, the actual density g;(y) of Y’

under H; is not known exactly and belongs to the neighborhood

Fi=A1g;: Dxr(g5lf;) < i},

10



where

(e 9]

g [ %22 ay.

—00

Use D to denote the class of pointwise randomized decision rules d(y) such that if Y = y, H;
is selected with probability §(y) and H, is selected with probability 1 — d(y). Then denote the

probability of false alarm and the probability of miss detection as

Pt = [ " 5)g0(y)dy,

Pus.on = | (1= 5 () dy.

—00

Then Pr(6, go) is separately linear in ¢ and go. Py/(9, g1) is separately linear in § and g;. Assume

that the two hypotheses are equally likely, then the probability of error is given by

1
PE((Sa gngl) = 5 [PF((Sa gO) + PM(57 gl)] .

Then the robust hypothesis testing problem is solved via the minimax problem

mln ma P 67 ) . 1.9
6eD (90791)6]?'2x]_‘1 E( 9o 91) (19)

Note that Pg(d, go, g1) is convex in ¢ and concave in gy and g;. The set Fy x F; is convex and
compact. D is convex and compact with respect to the infinity norm. By Theorem 1, there exists a
saddle point (Jz, (g{, g&')) for the minimax problem. Here, dp, is the robust/minimax test, whereas

gt and gl are the least favorable densities in Fy x F;. Then the saddle point has the property

Pr(8, 98, 917) > Pr(0r, 95+ 97) > Pe(0r, 9o, 91)- (1.10)

Then the first inequality indicates that the robust test d is the optimal Bayesian test for the least-
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favorable pair (i, gF). In particular, for the likelihood ratio function defined as L, (y) = ZIL_E.:}';’ the
0

decision test is )

17 LL(:U) > 1

0r(y) = 9 arbitrary, Li(y)=1

0, LL<y) < 1.

\

Thus, robust detectors usually depend on the least-favorable distributions, which are designed by

solving the second inequality of (1.10). Given dg, to solve the maximization problem

max P8k, go, 91),
(90,91)EFo X F1 £(0R, 90, 91)

_ hy)

[54] made two strong assumptions: 1) the nominal likelihood ratio L, (y) = Fol) is a monotone

increasing function of y; 2) fo and f; admit the symmetry f1(y) = fo(—y).

Moreover, [50, 53] also explore the robust hypothesis testing problem with different assump-
tions and different measures in defining the neighborhoods ;. Although there has been much
success in theoretical results, computation remains a major challenge in finding robust detectors

and finding he least-favorable distributions in general.

1.2.3 ADMM

The alternating direction method of multipliers (ADMM) is an algorithm that solves complex
optimization problems by breaking them into smaller problems, each of which is then easier to
handle. It takes the form of a decomposition-coordination procedure, in which the solutions to
small local sub-problems are coordinated to find a solution to a large global problem [87]. ADMM
can be viewed as an attempt to blend the benefits of dual decomposition and augmented Lagrangian

methods for constrained optimization [87].
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With f(-), g(-) being convex functions, ADMM solves problems in the form

min  f(z) + g(y),

subject to Ax + By =c, (1.11)

with variables x € R",y € R™and A € RP*", B € RP*™, c e A € RP.

As in the method of multipliers, the augmented Lagrangian function is
Ly(x,y;\) = f(x)+9(y)— < X\, Az + By — ¢ > —i-g“Ax + By — c|*. (1.12)

With p > 0, ADMM consists of the iterations

k+1

o "1 = argmin, £,(z,y"; \F),

o yF*tt = argmin, £, (21, y; \F),
o N+l — \F p(AiEk+1 + Byk—l-l _ C).

The procedure consists of an x-minimization step, a y-minimization step and a dual variable up-
date. The convergence properties of ADMM have been studied extensively in the literature [§8—90].
Because of its wide applicability in multiple fields, ADMM is a popular means of solving optimiza-
tion problems. However, the original method only considers the two-block separable structure.
For the case of n > 3, numerous research efforts have been devoted to analyzing the con-
vergence of multi-block ADMM and its variants for the linearly constrained separable convex
optimization model. Recent work [91] has shown that the n-block ADMM does not necessarily
converge, even for a nonsingular square system of linear equations. Various methods have been
proposed to overcome the divergence issue of multi-block ADMM. One typical solution is to com-
bine correction steps with the output of n-block ADMM [89, 92]. If at least n — 2 functions in the
objective are strongly convex, it has been shown that the ADMM process is globally convergent,
provided that the penalty parameter \ is restricted to a specific range [93,94]. Without strong con-

vexity, it has been shown in [95] that the n-block ADMM with a small dual step size is linearly
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convergent provided that the objective function satisfies certain error bound conditions. Some re-
cent studies [96] have demonstrated the convergence of multi-block ADMM under some other
conditions, and some convergent proximal variants of the multi-block ADMM have been proposed
for solving convex linear or quadratic conic programming problems [94]. Moreover, [97] pro-
posed a randomly modified variant of the multi-block ADMM, called randomly permuted ADMM
(RPADMM). At each step, RPADMM forms a random permutation of {1,2,--- ,n} (known as
block sampling without replacement), and updates the primal variables z;,i = {1,2,--- ,n} in the
order of the chosen permutation followed by the regular multiplier update. Surprisingly, RPADMM
is convergent in expectation for any non-singular square system of linear equations.

In contrast to the separable case, studies on the convergence properties of n-block ADMM with
non-separable objective, even for n = 2, are limited. In [98], the authors demonstrated that when
the problem is convex but not necessarily separable, and certain error bound conditions are satis-
fied, the ADMM iteration converges to some primal-dual optimal solution, provided that the step
size in the update of the multiplier is sufficiently small. However, the step size usually depends on
some unknown parameters associated with the error bound, and may thus be difficult to compute,
which often makes the algorithm less efficient. [99] investigated the convergence of a majorized
ADMM for the convex optimization problem with a coupled smooth objective function, which in-
cludes the 2-block ADMM as a special case. Convergence was established for the case when some
restrictions are satisfied and the sub-problems of the ADMM admit unique solutions. [100] studied
the convergence and ergodic complexity of a 2-block proximal ADMM and its variants for the

non-separable convex optimization by assuming some additional conditions on the problem data.

1.2.4 Privacy metrics

A technical privacy metric takes properties of a system as an input (e.g., the amount of sensitive
information leaked or the number of users who are indistinguishable with respect to some charac-
teristic) and yields a numerical value, which allows us to quantify the privacy level in a system.

Privacy metrics can be used in different contexts, and they can differ with regard to the kind of
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adversary they consider, the data sources they assume to be available to the adversary, and the
aspects of privacy they measure. However, the diversity and complexity of privacy metrics in the
literature makes an informed choice of metrics challenging. As a result, instead of using existing
metrics, new metrics are proposed frequently, and privacy studies are often incomparable. In the

following, we will explain and discuss a selection of privacy metrics.

* Uncertainty

Uncertainty metrics assume that an adversary who is uncertain of his estimate cannot breach pri-
vacy as effectively as one who is certain. Many uncertainty metrics build on entropy, an information
theoretic notion to measure uncertainty [101].

Shannon entropy is the basis for many other metrics. In general, entropy measures the uncer-
tainty associated with predicting the value of a random variable. As a privacy metric, it can be
interpreted as the number of bits of additional information the adversary needs to identify a user
[102].

Rényi entropy is a generalization of Shannon entropy that also quantifies the uncertainty in a
random variable. It uses an additional parameter o, and Shannon entropy is the special case with

a — 1. In particular, we have the privacy with respect to Rényi entropy as

1
11—«

log, Zp(x)a-

zeX

privacygg = Ho(X) =

Hartley entropy H, or max-entropy is the special case with o = 0. It depends only on the number
of users and is a best-case scenario because it represents the ideal privacy situation for a user. Min-
entropy H, is the special case with & = co which is a worst-case scenario because it only depends

on the user for whom the adversary has the highest probability [103].
* Data Similarity

Data similarity metrics measure properties of observable or published data. They are usually inde-

pendent of the adversary and derive the privacy level solely from the features of observable data.
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k-Anonymity was originally proposed to prepare statistical databases for publication. For ex-
ample, a medical database would contain both identifying information (e.g., the names of individu-
als) and sensitive information (e.g., their medical conditions). k-Anonymity assumes that identify-
ing columns are removed from a database before publication, and then demands that the database
table can be grouped into equivalence classes with at least £ rows that are indistinguishable with
respect to their quasi-identifiers ¢ [104]. Each equivalence class £ contains all rows that have the
same values for each quasi-identifier ¢. To increase the size of equivalence classes to a minimum of
k rows, several algorithms exist to transform a given database to make it k-anonymous, such as sup-
pression, generalization and random sampling [105]. However, studies have shown k-anonymity
to be insufficient, especially for high-dimensional data and against correlation with other data sets
[106], because it fails to protect against attribute disclosure [107].

The [-diversity principle modifies £-anonymity to bound the diversity of published sensitive
information. It states that every equivalence class £ must contain at least [ well-represented sen-
sitive values. This general principle can be instantiated in different ways. In the simplest form,
the [-diversity principle requires / distinct values in each equivalence class. However, this simple
instantiation does not prevent probabilistic inference attacks [108]. Although [-diversity is an im-
provement to k-anonymity, it has been shown to offer insufficient protection against some attacks.
In particular, it does not protect privacy when the distribution of sensitive values is skewed, or

when sensitive attributes are semantically similar [108].
* Indistinguishability

Indistinguishability metrics indicate whether the adversary can distinguish between two items of
interest. Many of these metrics are associated with privacy mechanisms that provide formal privacy
guarantees.

First, we discuss differential privacy. In statistical databases, differential privacy guarantees
that any disclosure is equally likely (within a small multiplicative factor €) regardless of whether
or not an item is in the database [109]. This guarantee is usually achieved by adding a small amount

of random noise to the results of database queries. Formally, differential privacy is defined using
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two data sets Dy and D, that differ in at most a single row, i.e., the Hamming distance between the
two data sets is at most 1. A privacy mechanism, realized as a randomized function K, operating
on these data sets is e-differentially private if for all sets of query responses, the output random
variables for the two data sets differ by at most exp(e). However, the choice of the parameter e
is difficult. It has also been shows that differential privacy’s guarantees degrade in the case of
correlated data, for example when nodes are added to a social network graph [110].

Distributional privacy extends differential privacy to a setting in which the data sets themselves
do not need to be protected, but instead the parameters governing the generation of data need to be
protected. Distributional privacy assumes a distributed setting in which smart meters apply noise
to their local data, limiting the energy provider to querying this distributed database. Formally,
distributional privacy uses two parameter sets 6; and 6, which govern the creation of two data
sets and differ in at most one element. Furthermore, The privacy mechanism K is distributionally
e-differentially private if the probability of generating query response X; is roughly the same,

regardless of whether the underlying parameter set is 6, or 5 [111].
* Error

Error-based metrics quantify the error an adversary makes in creating his estimate. The adversary’s
expected estimation error measures the adversary’s correctness by computing the expected distance
between the true location z* and the estimated location x using a distance metric d(), for example
the Euclidean distance or an indicator function (in this case, the metric reduces to the adversary’s
probability of error). The expectation is computed over the posterior probability of the adversary’s

estimated locations = based on the observations y [112].

privacy e = » _ plzly)d(z, z").

rzeX

In statistical parameter estimations, a common goal is to minimize the mean squared error. As a

privacy metric, the mean squared error describes the error between observations y by the adversary
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and the true outcome z*.

. 1 .
prlvaCYMSE:W Z 2" —yl|*.

r*eX*
1.2.5 Fairness metrics

In recent years, the research community has put forth many formal and mathematical definitions
of fairness to assist practitioners in developing equitable risk assessment tools. Broadly speaking,
there are two main categories of definitions for algorithmic fairness: group fairness and individual

fairness.
* Group fairness

Group fairness partition individuals into “protected groups” (often based on race, gender, or some
other binary protected attribute) and ask that some statistic of a machine learning model (error
rate, false positive rate, positive classification rate, etc.) be approximately equalized across those
groups. To this end, numerous group fairness measures have been proposed, such as demographic
parity [113], equality of opportunity [79], equalized odds [79], envy-free group fairness [114], etc.
Suppose that A is the protected attribute, Y is the outcome and Y is the predictor. In the following,

we present several commonly used definitions of group fairness.

Definition 2. (Demographic Parity) Y satisfies demographic parity if Y is independent of A, i.e.

This definition indicates that positive outcome is given to the two groups at the same rate.
However, demographic parity may cripple the utility, especially in the common scenario when
P(A=0,Y =1) #P(A=1,Y = 1) [79]. In light of this, an alternative definition is equal odds

or equal opportunity.
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Definition 3. (Equal odds) Y satisfies equal odds if Y and A are independent conditional on'Y,
Le.

P(Y =1|A=0,Y =¢) =P =1|4=1,Y =y),y € {0,1}.

This metric essentially requires equal true positive and false positive rates between different
groups. A relaxed version of equal odds is equal opportunity, which demands only the equality of

true positive rates.

Definition 4. (Equal opportunity) Y satisfies equal opportunity if

P(Y =1A=0Y =1)=P(Y =1|[A=1,Y =1).

However, in certain decision making scenarios, the existing parity-based fairness notions may
be too stringent and precluding more accurate decisions. To relax these parity-based notions, a
preference-based notions of fairness is proposed—given the choice between various sets of decision
treatments or outcomes, any group of users would collectively prefer its treatment or outcomes,
regardless of the (dis)parity as compared to the other groups [114]. Other definitions of group
fairness include calibration [115, 116], disparate mistreatment [117], counterfactual fairness [118],
etc.

One problem for group fairness measures is that they are only suited to a limited number
of coarse-grained, prescribed protected groups [119]. For groups at the intersection of multiple
discriminations, or groups that have not yet been defined but may need protection [120], group

fairness measures may ignore the underlying bias.
* Individual fairness

Individual definitions of fairness have no notion of protected groups, and instead ask for constraints
on pairs of individuals. These constraints can have the semantics that “similar individuals should
be treated similarly” [121], or that “less qualified individuals should not be preferentially favored

over more qualified individuals” [122]. In particular, [121] first proposed a technical definition
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of individual fairness by presupposing a task-specific quality metric on individuals and proposing
that fair algorithms should satisfy a Lipschitz condition on this metric. [122] has similar definition
of fairness and requires equal false positive rate across all pairs of individuals who have negative

labels.

1.3 Main contributions

In this dissertation, we contribute to the advancement of machine learning models by addressing

three primary concerns: security, privacy protection, and fairness.

1.3.1 Adversarial Robustness of Hypothesis Testing

For the analysis of adversarial robustness, our goal is to understand adversarial robustness of hy-
pothesis testing rules. In the considered model, after data samples are generated by the underlying
hypothesis, an adversary can observe the samples and then modify them to other values. The deci-
sion maker only observes the modified data but still needs to determine which underlying hypothe-
sis is true. We formulate this as a minimax hypothesis testing problem, in which the adversary aims
at designing attack strategies to modify the data so as to maximize the error probability while the
goal of the decision maker is to design decision rules to minimize the error probability. Our work is
related to several recent interesting papers [123—125], which characterize the asymptotic equilib-
rium of the games between the attacker and detector, as the number of samples increases. Different
from these papers, we focus on the non-asymptotic case and use the exact error probability as the
performance metric to characterize the corresponding optimal attack and defense strategies.

We first focus on the hypothesis-aware scenario, in which the adversary knows which hypoth-
esis is used to generate the data sample. The study of this powerful adversarial model can provide
performance bounds for other attack models. Under this setting, we show that the formulated min-
imax problem has a saddle-point solution, which reveals the structures of the optimal attack and

defense strategies. In this dissertation, we solve this problem for a special case where the optimal
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Bayesian decision regions corresponding to the PMFs before attack consist of two consecutive re-
gions. Under this assumption, we first derive an upper-bound on the prediction error, which only
depends on the PMFs before attack. Afterwards, we design a specific attack scheme and show that
the designed attack scheme achieves the upper-bound. This implies that the specific attack scheme
is optimal. We also note that the attack strategy that achieves the maximum error probability is not
unique.

We then study a more practical and challenging hypothesis-unaware scenario, where the at-
tacker does not know the prior information about the underlying hypothesis. Despite the additional
challenge, we show that the method developed for the hypothesis-aware case can be properly modi-
fied and extended to this scenario. In particular, following a similar saddle-point analysis, we reveal
the structure of the optimal attack and defense strategy and convert the problem into a complicated
non-convex optimization problem over the attack strategy. We then derive an upper-bound on the
error probability and design a specific attack strategy to achieve the upper-bound.

The derived algorithms could potentially be useful for the quickest detection setup [126—140].
In particular, consider a system where an attacker appears at an unknown time, and we are inter-
ested in detecting the presence of attacks with minimum delay (under certain delay metric). The
presence of the attacker is reflected on the change of the distribution of the data, and hence the
quickest detection framework can be employed. Most of the existing works on quickest detection
assume that post-change distribution is known. In the setup with an attacker, this assumption may
not be practical. The algorithms developed in our work could be used to identify which distribution
is most beneficial to the attacker and hence could be the most likely post-change distribution used

by the attacker. This work has been published in [21, 141].

1.3.2 Privacy-Accuracy Trade-off

To analyze the privacy-protection, we address the fundamental trade-off between inference accu-
racy and privacy protection from information theory perspective.

There exist many privacy-preserving techniques that are based on perturbations of data, which
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provide privacy guarantees at the expense of a loss of accuracy [25-27]. For example, k-anonymity
is proposed by Samarati and Sweeney [23], which requires that each record is indistinguishable
from at least k-1 other records within the dataset. Differential privacy works by adding a pre-
determined amount of randomness into a computation performed on a data set [24]. These con-
cepts and techniques are very useful for the privacy protection of data analysis through a dataset
or database, which is different from the setup considered in this dissertation. Moreover, various
minimax formulations and algorithms have also been proposed to defend against inference attack
in different scenarios [68—70]. Bertran et al. [68] proposed an optimization problem where the
terms in the objective function were defined in terms of mutual information, showed the perfor-
mance bound for the optimization problem and learned the sanitization transform in a data-driven
fashion using an adversarial approach with Deep Neural Networks (DNNs). Under their formula-
tion, they analyzed a trade-off between utility loss and attribute obfuscation under the constraint
of the attribute obfuscation /(A; Z) < k. Feutry et al. [69] measured the utility and privacy by
expected risks, formulated the utility-privacy trade-off as a min-diff-max optimization problem
and proposed a learning-based and task-dependent approach to solve this problem, while only
deterministic mechanisms are considered. To address this issue, a privacy-preserving adversarial
network was proposed in [70] by employing adversarially-trained neural networks to implement
randomized mechanisms and to perform a variational approximation of mutual information pri-
vacy.

Different from them, we propose a more general privacy metric and avoid the reliance on
DNN:ss to derive the privacy-mapping. In our problem formulation, instead of using a specific pri-
vacy leakage measure, we propose a general framework to measure privacy leakage. The proposed
privacy leakage metric is defined by a continuous function f with certain properties. Different
choices of f lead to different privacy measures. For example, if f is chosen to be log function,
the proposed privacy leakage metric is the same as mutual information, a widely used information
leakage measure. Moreover, we introduce a parameter (5 to represent the relative weight between

these two measures. Thus, the trade-off problem between privacy and accuracy can be solved
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through a maximization problem where the objective function is composed of a weighted sum of
accuracy and privacy terms. To solve the maximization problem, if we optimize over the space
of the privacy-preserving mapping directly, the formulated problem is a complicated non-concave
problem with multiple constraints. Through various transformations and variable augmentations,
we transform the optimization problem into a form that has three dominating arguments with cer-
tain nice concavity properties. In particular, if any two arguments are fixed, the problem is concave
in the remaining argument. We then exploit this structure and design an algorithm with two nested
loops to solve the optimization problem for general f by iterating between those three dominating
arguments until reaching convergence. For the outer loop, we solve the optimization on the first
dominating argument, for which we have a closed-form update formula. For the inner loop, using
certain concavity properties of the objective function on the other two dominating arguments, we
apply the Alternating Direction Method of Multipliers (ADMM) to solve the non-convex problem
efficiently. Compared with solving the optimization problem using gradient ascent in the space
of the privacy-preserving mapping directly, the proposed method does not need parameter tuning,
converges much faster and finds solutions that have much better qualities. Moreover, we provide
the convergence analysis of the proposed method. Since there are two nested loops in the pro-
posed method, we first prove the convergence of the inner loop, which is the convergence proof of
the ADMM process. Although there exists convergence proof for typical ADMM, it handles two-
block separable problems only. In our case, the considered optimization problem is non-convex
and multi-block with a non-separable structure. Hence, we come up with two proofs with different
assumptions on f. Based on the convergence proof of the ADMM procedure, we further prove that
the function value is non-decreasing between two iterations in the outer-loop. Then with a guar-
antee that the objective function is upper-bounded, the proposed algorithm is shown to converge.
To further illustrate the proposed framework and algorithm, we also provide several examples by
specializing f to particular function choices and provide numerical results.

This work has been published in [142, 143].
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1.3.3 Robust and Fairness-aware regression

Fairness and robustness are critical elements of trustworthy artificial intelligence that need to be
addressed together [144]. Firstly, in the field of adversarial training, several research works are
proposed to interpret the accuracy/robustness disparity phenomenon and to mitigate the fairness
issue [144—146]. For example, [145] presents an adversarially-trained neural network that is closer
to achieve some fairness measures than the standard model on the Correctional Offender Man-
agement Profiling for Alternative Sanctions (COMPAS) dataset. Secondly, a class-wise loss re-
weighting method is shown to obtain more fair standard and robust classifiers [147]. Moreover,
[148] and [149] argue that traditional notions of fairness are not sufficient when the model is
vulnerable to adversarial attacks, investigate the class-wise robustness and propose methods to
improve the robustness of the most vulnerable class, so as to obtain a fairer robust model.

In this dissertation, we focus on regression problems and design a fair regression model that is
robust to adversarial attacks. In particular, we consider two increasingly complex attack models.
We first consider a scenario where the adversary is able to add one carefully designed adversarial
data point to the dataset. We then consider a more powerful adversary who can directly modify the
existing data points in the feature matrix. Particularly, we consider a rank-one modification attack,
where the attacker carefully designs a rank-one matrix and adds it to the existing data matrix.

To design the robust fairness-aware model, we formulate a game between a defender aiming
to minimize the accuracy loss and bias, and an attacker aiming to maximize these objectives. To
characterize both the prediction and fairness performance of a model, the objective function is
selected to be a combination of prediction accuracy loss and group fairness gap. Since the goals of
the adversary and the fairness-aware defender are opposite, a minimax framework is introduced to
characterize the considered problem. By solving the minimax problem, the optimal adversary as
well as the robust fair regression model can be derived.

To solve the problem, one major challenge is that the proposed minimax problem is nonsmooth
nonconvex-nonconcave, which may not have a local saddle point in general [150]. Although there

exist many iterative methods for finding stationary points or local optima of nonconvex-concave or
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nonconvex-nonconcave minimax problems [151-154], there are usually specific assumptions that
are not satisfied in our proposed realistic problems. To solve the complicated minimax problems
in hand, we carefully examine the underlying structure of the inner maximization problem and the
outer minimization problem, and then exploit the identified structure to design efficient algorithms.

For the scenario where the adversary adds a poisoned data point into the dataset, when solving
the inner maximization problem, we deal with the non-smooth nature of the objective function and
obtain a structure that characterizes the best adversary, which is a function of the regression coeffi-
cient 3 of the defense model. We then analyze the minimization problem by transforming it to four
sub-problems where each sub-problem is a non-convex quadratic minimization problem with mul-
tiple quadratic constraints, which is usually NP hard [155, 156], and finding a global minimizer is
very challenging. By exploring the underlying properties of a specific sub-problem, we investigate
8 different cases, and obtain a global minimizer to such sub-problem. Then the minimum point of
the proposed four sub-problems, 3;,, corresponds to the optimal robust fairness-aware model, and
the best adversarial data sample is obtained by fitting 3" , to the derived optimal attack strategy.
On both synthetic data and real-world datasets, numerical results illustrate that the proposed robust
fairness-aware regression model has better performance than the unrobust fair model as well as the
ordinary linear regression model in both prediction accuracy and group-based fairness.

For the rank-one attack scheme, we transform the maximization problem into a form with five
arguments, four of which can be solved exactly. With this transformation, the original nonconvex-
nonconcave minimax problem for two vectors can be converted into several weakly-convex-
weakly-concave minimax problems for one vector and one scalar, which can be approximately
solved using existing algorithms such as [157]. With the proposed algorithm, the optimal attack
scheme of the adversary and the adversarially robust fairness-aware model can be obtained si-
multaneously. On two real-world datasets, numerical results illustrate that the performance of the
adversarially robust model relies on the trade-off parameter between prediction accuracy and fair-
ness guarantee. By properly choosing such parameter, the robust model can achieve desirable per-

formance in both prediction accuracy and group-based fairness. On the other hand, for other fair
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regression models, at least one performance metric will be severely affected by the rank-one attack.

This work has been published in [158, 159].
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Chapter 2

Adversarial Robustness of Hypothesis

Testing

In this chapter, we investigate the adversarial robustness of hypothesis testing rules. In the consid-
ered model, after a sample is generated, it will be modified by an adversary before being observed
by the decision maker. The decision maker needs to decide the underlying hypothesis that gen-
erates the sample from the adversarially-modified data. We formulate this problem as a minimax
hypothesis testing problem, in which the goal of the adversary is to design attack strategy to maxi-
mize the error probability while the decision maker aims to design decision rules so as to minimize
the error probability. We consider both hypothesis-aware case, in which the attacker knows the true
underlying hypothesis, and hypothesis-unaware case, in which the attacker does not know the true
underlying hypothesis.

Particularly, in Chapter 2.1, we present our problem formulation. In Chapter 2.2, we depict
the optimal solution for the hypothesis-aware setting. In Chapter 2.3, we focus on the hypothesis-
unaware case. In Chapter 2.4, we provide numerical examples to illustrate the analytical results. In

Chapter 2.5, we offer concluding remarks.
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2.1 Problem Formulation

Suppose there is a discrete random variable X defined on a finite set X = {x1, x1, ..., ,, }. Consider

the binary hypothesis testing problem:

%O:XNP()?

HI:XNph

in which py is a 1 x n PMF vector with py ; = Pr(X = z;|H,). p is defined in a similar manner.
Here, py and p; are assumed to be known to both the adversary and the decision maker.

In this chapter, we focus on adversary hypothesis testing problem. In the considered model,
after a sample is generated, an adversary can modify it to another value. The decision maker then

observes the corrupted data. We consider two different adversary models with different capabilities.

2.1.1 Hypothesis-aware adversary

We first consider a powerful hypothesis-aware adversary, who knows the true underlying hypoth-
esis with which the sample is generated. The study of this worst-case scenario will provide per-
formance limits of other adversary models. In the considered model, the attacker can conduct
randomized attacks. In particular, after observing sample X = z;, the adversary can change it to
an attacked sample X' = x; with a certain probability, where X" is also a random variable defined
on X. Since the adversary knows the true underlying hypothesis, different attack rules can be ap-
plied depending on whether the true hypothesis is H, or H;. We denote the attack strategy of the
attacker as (A, B), in which the components of A are A; ; = Pr(X’' = z;|X = x;,H,) and the
components of B are B; ; = Pr(X’ = x;|X = x;, H1).

Motivated by adversarial example phenomena studied in deep neural networks, we assume
that the change introduced by the adversary has limited amplitude. In particular, an adversarial

example is data that has been modified by the attacker to fool the classifier. However, to avoid
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human eye detection, the amplitude of these modifications should be limited so that they are not
perceptible to human eyes [31-37,40,41,44,160,161]. Formally, we assume A; ; = B; ; = 0 when
|i — j| > 0, in which § denotes the largest change allowed. We will use .4, B to denote the whole
sets of all amplitude-constrained attackers under H,, H; correspondingly. For any given attack rule
(A, B) € A x B, the PMF of X' can be written as gy = poA under H, and q; = p; B under H;,
with ¢ ; = Pr(X’ = z;|Hy), with k = 0, 1.

Let 7 = [0, 1]™ be the set of all decision rules. Denote t = [ty,--- ,t,] € T as a randomized
decision rule such that if X = z;, the detector selects H; with probability ¢;, where 0 < ¢; < 1.

For decision rule ¢, the probability of false alarm and miss detection are
Prp(po, A, t) = poAt", Py (p1, B,t) = p1B(1—t)". (2.1)

Assuming that the prior probability of two hypotheses are equal, i.e., Pr(Hy) = Pr(H;), the

error probability Pg can be written as
1
PE(p07p17A7B7t) = §[PF(p07A7t) + PM(phBat)] (22)

In the following, to simplify the notation, we will drop pg, p; from the expression of Pr and will
simply write it as Pg(A, B, t).

The goal of the attacker is to choose the attack rule (A, B) to maximize the error probabil-
ity (2.2), while the goal of the defender is to choose the decision rule ¢ to minimize the error
probability (2.2). In this chapter, we seek to characterize the optimal (A*, B*) and t* by solving
the minimax problem

min  max Pg(A, B,t). 2.3)

teT (A,B)eAxB

2.1.2 Hypothesis-unaware adversary

We also consider a more practical scenario, in which the attacker does not know the true underlying

hypothesis when it sees a sample. In this hypothesis-unaware adversary case, there is only one
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attack matrix A, with 4;; = Pr(X’ = z;|X = x;) being the probability that the attacker will
change z; to z;.

Correspondingly, for a decision rule ¢, the probability of false alarm and miss detection are
PF(po, A, t) = poAtT, PM(pl; A, t) == plA(]- - t)T (24)
And the error probability Pr can be written as

1
Pg(po,p1, A, t) = é[PF(pOa A, t)+ Py(p1, A, t)). (2.5)

Similarly, we will drop py, p; from the expression of Pr and will simply write it as Pg(A,t).
Moreover, we seek to characterize the optimal A* and t* by solving the minimax problem

min max Pr(At). (2.6)

In the problem formulations (4.2) and (2.6) discussed above, the distributions under H, and
‘H1, 1.e. pg and py, are known to the attacker and decision maker. These problem formulations can
be generalized to the scenario where there are uncertainties about the distributions. Suppose the
actual distribution p;,¢t = 0,1 under H, belongs to the neighborhood of a nominal distribution.
The neighborhood, denoted by P; can be defined by KL-divergence [54], a-divergence [50], etc.
The optimal (A*, B*) and t* for the hypothesis-aware case can be found by solving the complex

optimization problem

min max min Pr(A,B,t,py,p1).
teT (A,B)EAXB (po,p1)EPox Py (4,B,¢,po. p1)

Similarly, the optimal A* and t* for the hypothesis-unaware case can be found by solving the
optimization problem

min max min Pr(A,t, py,p1).
teT AcA (po,p1)EPoxP1 ( ’ ’p 7p )
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These problem formulations are much more complex than (4.2) and (2.6), and are left as future

work.

2.2 Optimal hypothesis-aware adversary

In this section, we focus on the hypothesis-aware case and characterize the optimal solution to the
complicated minimax optimization problem (4.2). To achieve this, we will first conduct a saddle-
point analysis to reveal the structure of the optimal solution. Based on this, we will derive an

upper-bound on the error probability. We will then develop an attack strategy to achieve this bound.

2.2.1 Saddle-point Analysis

In this subsection, we characterize the structure of the optimal decision rules by analyzing the
saddle-point of the minimax problem (4.2).

Note that, given ¢, Pr(A, B,t) is continuous and linear, and therefore is both convex and
concave in (A, B). Similarly, given (A, B), Pg(A, B, t) is continuous and linear, and therefore
is both convex and concave in t. Furthermore, sets A x B and T are both compact and convex.
Therefore, using Von Neumann minimax theorem [162] (which allows the swapping of the min

and max operators under certain conditions), we have

i Pg(A,B,t) = in Pp(A, B,t). 2.7

WP B TR A B = i Pe(A B Y @7

This implies that the solution (A*, B*, t*) to this minimax problem satisfies the saddle-point prop-
erty

Pp(A*,B*t) > Pg(A*, B*t*) > Pg(A, B, t"). (2.8)

From these two inequalities, we can characterize the structure of the optimal attack and decision
strategies.

The first inequality in (2.8) indicates that the best decision rule must be the Bayesian test with
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respect to the best adversary (A*, B*). It is well known that, for a given arbitrary adversary attack

rule (A, B), the optimal detection rule, denoted as t*( A, B), is simply a threshold rule

0 qoi > 1,
t;(A,B) = arbitrary qo; = q14, (2.9)
1 qoi < Q1

\

where qo = poA, q1 = p1B. For the optimal adversary (A*, B*), the optimal decision rule is
t* = t*(A*, B*).
With the optimal form of ¢* in terms of (A, B) characterized in (2.9), we can then use the

second inequality in (2.8) to characterize the optimal (A*, B*) by solving

1
max Z(poA( (A, B) + pB(1 - (£(A, B))")) (2.10)
S.t. Ai,j > O, Biﬂ' > O,i,j = 1, N, (211)
d A;=1) By=1li=1.n, (2.12)
i=1 j=1
Li—ji>sdij = Lji—j>sBi; = 0,1,7 = 1,..,n, (2.13)

in which 1y, is the indicator function. Here, constraints (2.11) and (2.12) guarantee that each row
of A and B is a conditional PMF, while constraint (2.13) makes sure that the changes introduced
by the attacker has a limited amplitude.

Once we solve (2.10) and obtain (A*, B*), the optimal ¢*(A*, B*) can be obtained by us-
ing (2.9). Due to the decision rule in (2.9), the objective function in (2.10) is a complicated func-
tion of (A, B). In the following, we will characterize the optimal solution to this challenging
optimization problem under the following assumptions on py and p;. Let Ry = {i|po; > p1.}
and Ry = {i|po; < p1.}, i.e., Ry is the set of index where py; is larger while R; is the set of
index where p ; is larger. We will assume that R, (and hence R;) is a consecutive region in [1, n].

Without loss of generality, we write Ry = {i|1 <i <m}and R; = {ilm + 1 <i < n}.
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We now compare this assumption with the assumptions used in the study of classic robust
hypothesis testing [54], in which the nominal PMF is assumed to satisfy certain monotonicity
and symmetry properties. Specifically, in [54], monotonicity means that %ﬁ is a monotonically
increasing function of ¢ and symmetry means p; ,—;+1 = Po,i, 1 < ¢ < n.Itis easy to check that the
monotonicity assumption implies the assumption made in this chapter. Moreover, our assumption
does not require the symmetry condition. Hence, our assumption is significantly weaker than the

assumptions in [54].

2.2.2 Upper-bound for Pg

In this section, we develop an upper-bound on the objective function (2.10) that holds for any attack
strategy.
We first present a lemma that simplifies Pg( A, B, t*) into two equivalent forms, both of which

will be used in the sequel.

Lemma 1. Pg(A, B,t*) can be written as

. I 1
Pg(A, B, t*) = E—Z;MW—QLH (2.14)
I~ .
= 5 >_min{g; g} (2.15)
i=1
Proof. Please see Appendix A.l. [

From (2.14), we can see that the most powerful attacker is the one that minimizes the ¢; distance
between gy and q;, which inspires us to optimize the error probability by components.

To proceed further, we denote the mass moved into [1, i] as I, ; for t = 0 (i.e., under hypothesis
Ho) and ¢ = 1 (i.e., under hypothesis # ;) respectively. Similarly, define the mass moved out from

[1,4] as K; ;. For example, for region [1, m], we have

m-+4d m
Ly = Z D1,j (Z Bj,z’) ;

j=m+1 i=j—6
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Ko,m

RO 1

(.

I1,m

Figure 2.1: Mass moved between two regions

m j+é
Kom = Z Po,j < Z Aj,i) ;

j=m+1-6 i=m+1
as shown in Fig. 2.1.

Define
Fy = Fy(A,B) = ZQO,ia
i=1
J n
Fi(A,B) = Zmin{%,z‘, quit + Z o,i-
i=1 i=j+1
Then we can see that
P}+1<A7 B) = FJ(A7 B) + min{quJrl —4o0,5+1, 0}7

and thus

2P;(A,B) = F,(A,B) < ... < F,(A,B) < ... < F,

We are now ready to derive an upper-bound on the error probability P that holds for any attack

strategy (A, B).
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Theorem 2. ForV(A,B) € A x B,

Fn(A, B)<min {1, 1+{5r§1]n§m{Gj(po,p1)}} : (2.16)
2Pp = F,,(A, B)<min {1, 1+I(5n§1]n§n {Gj(po,pl)}} , (2.17)
in which
j—6 min{n,j+d}
G;(po,p1) =1— Zpo,i + Z D1, (2.18)
i=1 i=1

Furthermore, for j* = argmings<;j<, {G;j(po,P1)}, if Gj«(Po,P1) < 1, the equality in (2.17)
holds when there exists (A, B) € A x B such that:

(i) q1; < Qo1 <1< g%

(ii)
B
Kojo—Iog» = Y pos (2.19)
i=j*—8+1
min{n,j*+3}
Ly —Kijo= Y pu (2.20)
i=j*+1

(iii) Fy(A, B) = Fi.(A,B),j* < k <n.

If Gj«(po, P1) > 1, the equality is achieved when

F(AB)=1,1<i<n. 2.21)

Proof. Please see Appendix A.2. [

We note that the bound in Theorem 2 depends only on (pg, p1), the original PMFs before

attack.
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2.2.3 Optimal Adversary Design

In this section, we design the attack matrix (A, B) to achieve the upper-bound in (2.17). As the
designed attack matrix achieves the upper-bound, it is an optimal solution to (2.10).

The construction process is motivated by the form in (2.14), which shows that the component-
wise absolute difference (¢; distance) between gy and g; needs to be minimized. To minimize
the ¢; distance, we find the optimal (A, B) column by column. In particular, at the first step,
we determine A. ;, B.; (based on some criteria to be detailed in the sequel). Once A.;, B.; are
determined, ¢;; and F} are also determined. We denote these values as ¢;; and Fl respectively.
We also have the constrained attack set A; x B = {(A, B)|go1 and ¢, ; are obtained}. After step
j — 1, the first j — 1 columns have been determined, and the constrained set is .A;_; x B,_;. Then
at step j, among all valid attack matrices in A;_; x B;_;, we determine A. ;, B.; (based on a
process to be detailed in the sequel) and obtain ¢; ;, Fj The constrained set is further refined to be
A; x B; = {(A, B)|go,; and ¢; ; are obtained} C A;_; x B;_;. The process ends at step n.

In the following, we describe our design of (A, B) to achieve the upper-bound. We will first
focuson1 < 57 <m,i.e., j € Ry, to obtain the equality in (2.16). Then focusonm + 1 < 5 < n,
1.e., J € Ry, to achieve the equality in (2.17).

Column design for j € Ry:

In Ry, we design the columns of (A, B) to satisfy
D qi1= Z}:fpl,i;
2) 1j=p1j+6,2 <5 <m
3) Goj=q;,1 <5<
4) Go; = max{po,;—sAj_sj,q1;},0+1<j<m,

which will then be shown to achieve the optimal value of F,,(A, B) in (2.16). These conditions

are also listed in Table 2.1.
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j=1 [2<5<3 J+1<j<m
- )
Ho : Qo ZZ+1 D1, P1,j+6 max{po,j—dAj—é,japl,j—&-(S}
- I+
Hi:quy ZZ+1 D1, D1,j+6 D1,j+6

Table 2.1: PMF design in R

First, we specify how to design each element of (A, B) so that do,;s and ¢, ;s are set to be these

values.
For the first step, by 1), 3), we have §o1 = §11 = le“f D1, and thus F, = F, = 1. Moreover,

we can achieve this by setting the first column of (A, B ) as

Al,l = mln{l @},
Do

max {0, do1 — 22;11 pO,k}
,2<1<n

Ai,l = min 1, ST s N,
Po,i

Biy=11<i<146B1=02+6<i<n

We continue to next columns. For columns 2 < j < 4, from 2) and 3), we have ¢ ; = ¢1; =
D1,j+6, then F; = Fj,l. We can achieve this by setting the j-th columns of (A, B) as
A Jf A
V1<i< ¢%f:mm{ =) Aig, (2.22)
k=1
max {Cfo,j - ( Ak,t) 70}
(2.23)

&%J:L&J:QW#j+d

For columns § + 1 < j < m, Azﬁj and B;,j are also designed by (2.22) and (2.23).

In Appendix A.3, we show that, with this design of A:J and B:,j, the requirements in

1),2),3),4) are satisfied.
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Remark 1. The column design for A in (2.22) indicates that

‘v’lgign,fl —mm{A() maX{A() A }}

0,5 1,5

in which
j—1
Al(l-) = 1—2A,~k = max A,
J P ’ AGA] 1 ’

RPN
@ QO,; Zk 1p0k< izl Ak,t)

2] )
Po.i

For a given component j, looking at © which starts from 1 and goes to n, we notice that the value

of 4A; j will goes from AWM 1o AZ(-? and then AE?

l]’

Second, we show that F},, achieves the equality in (2.16) by checking the values of pj one by
one from j = § + 1 to j = m. We have three cases that will occur in order as j increases.
Case 1: éO,j = qu,j9 then Fj = ﬁ}_l.

Case 2: j is the first component such that ¢ ; > ¢ ;, or equivalently, j is the smallest component

satisfying
J J J+6
Z(jo,z' > Z(ju = Zpu-
i=1 i=1 i=1
This means that we have F = Fj_g = ... = 1. As for §oj, if Go; # ¢1j, then ¢o; =

poJ,gflj,(;,j > 0 and thus

J j+é

> o “)Zpo»un Zp“ (2.24)

To derive (a), as discussed above, we have Aj_(;’j > 0, which indicates Aj_57j_1 + Aﬁ) 5j—1° Then
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Ky = Zg:j—é-i-l po,; and (a) is true. Therefore,

J
F;, = 1+ (jl,j — (jo,j =1+ Z(él,j - QOJ)

i=1
j+6 j—6
= 1+ Zpl,i - Zpo,i = G;(po, P1).
i=1 i=1
Case 3: Suppose £ is the largest component with
k+6 k—6
Fy = Gi(po,p1) =1+ Zpl,z‘ - Zpo,i«
i=1 i=1

Similar to Case 2, we have
j+6
i=k+1 i=k—0+1 i=k+1 i=k+d6+1

Therefore,

>

.

= B k+1<i<j—1,

i
Fy = F+ Z (1 — do,i)

i=k+1
o) +8 6
= I+ Z P1i — Z Po,i

i=k+5+1 i=k—5+1

© J+o Jj—6
= 1+Zpl,i_zp0,i = G;(po, P1),

i=1 i=1

where (b) is from (2.27) and (c) is true due to (2.26).

Taking all three cases into consideration, we have

A A

and thus £}, = min {1, min;<;<,, G;(po, p1)} , which achieves the equality in (2.16).
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Column design for j € R;:

In Ry, we design the columns of (A, B) to satisfy

1) Gy = maX{ArErﬁjnlqo,],

mm{B ax ql,J, mjx qoyj}} (2.30)
2) Gy = maX{Brenéjnquj,

mln{ Goj: ] max ql,j}}, (2.31)

where

min qdo,; = Po,j— 6A] —0,79

AcA;_
j+6
max qo; = Ko j—1 — loj—1+ E Po,is
E.A] 1
i=j
j+6
max 1 1'—11 ‘_1+K1 i—1
B q g = E ‘:p i J J—1s
i=j
min ¢ 1i—sBi_s4.
BeB, 1,5 = P1,j J—6.,4

First, we describe the construction of (A, B). Note that, the first m columns of (A, B) have
already been selected in Ry. For columns from m + 1 to n, A is constructed by (2.22) and B is

constructed by

P1,i

Jj—1 A i—1 A
. R L B, .
Bi; = min {1 -3 By, B iz P B } . (2.32)
k=1
In Appendix A.3, we show that such (A, B) design satisfies the conditions on gy, ¢; in 1), 2).
Second, we verify that F,, achieves the equality in (2.17) if the conditions on ¢y, ¢; in 1), 2)

are satisfied. The main idea is to derive the value of FJ based on the value of F’j,l by calculating
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do; — ¢1,;- According to the previously designed columns, the relationship between ¢y ; and ¢ ;
has three different cases.

Case 1: gy ; < q1;, then F] = Fj_l. Moreover, we have Gy ; # po j—sA;_s; in this case.

Case 2: Assume that j is the smallest component in Ry with ¢o; > §¢1 ;. Specifically, by 1), 2), for

this component, we have

doj = min qo;
J aca,, 109
j—1
= poj-sAj-s;=Koj1—Tojo1— Y Pois
i=j—0+1
min{j+d,n}
71, = Mmax q; = Z 1o — lij1+ Kijoa.
q »J BEBj_l q NI - p 50 ] N
1=
Then

qAO,' - QL‘ = Do, '_514‘_57- — maxX (i ;

J J J=044=03 T gagX L

j—1
= (Kojo1—Tojo1— Y poa)
i=j—641
min{j+d,n}
- E pri— -1+ Kij
i=j
j—1 j—1 min{j+d,n}
(@) £
= Fja—1+ E :(pO,i —Pri) — E Poi — E D1
i=1 i=j—6+1 i=j

= ijl - Gj(p07p1)7
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in which (a) comes from the following fact,

J
Fi(A,B) =1+ Zmin{<QI,i — qo,i), 0}

=1

) J J J
% 1+ Z(Ch,z‘ —qoq) = 1+ th,i - Z qo,j
i—1 i—1 i=1
J

= 1- Z(Po,i —p1i) + Koj — K+ Ly — Loy,

i=1

where the equality in (b) is attained when ¢;; < go;,1 < ¢ < j. Recall that for i € R, we have
do,i = ¢1,- Then based on the assumption, we have ¢; ; < ¢o;, 1 < ¢ < j and hence (a) is true.
Recall that j* = argmini<;<, {G;(po,p1)} and we prove that j* € R; by contradiction.

Suppose j* € Ro. Then note that F},, = G+ (po,P1) < G(Po,p1),Vj € Ry and thus

Qo,j - qu,j = qu - Gj<p07p1)

A

Fm - Gj<p07p1) S 07

IA

which contradicts with the assumption that ¢o; > ¢;;. Hence, j* € R; and we have Fj =
Gj(po, p1).-
Case 3: For k£ > j such that Gy ; = po ;—sAj—s; > ¢, by the similar idea of proving (2.28) in R,
we will also have F’J = G;(po, p1)-

Taking all three cases into consideration, in Ry, (2.29) also holds, which indicates that the

equality in Theorem 2 is obtained for the designed adversary.

2.3 Optimal hypothesis-unaware adversary

In Section 2.2, we have considered a powerful hypothesis-aware adversary who knows the true
underlying hypothesis before attack. In this section, we consider a more practical scenario with a

hypothesis-unaware adversary who does not know the true underlying hypothesis that generates
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the observed data. In this section, we will investigate the optimal solution to the minimax problem
characterized in (2.6).
Under the hypothesis-unaware setting, as the adversary has less information, the attack is more
difficult to carry out. However, the approach in Section 2.2 can be modified and applied here.
First, the saddle point analysis in Section 2.2.1 can be easily extended to the hypothesis-
unaware case to simplify (2.6). In particular, following a similar saddle-point analysis, for any

given attack matrix A, we have that the optimal form of the decision rule is

(

0 do; > q1,i
t;(A) = q arbitrary qo; = g1, (2.33)
1 qo; < q1,i;

\

where gy = poA, q1 = p1A. The optimal attack matrix A* is the solution to
]' * *
max §[p0A<t (AT +pA(1 -t (A)).
This can be further rewritten as

1
max 5[1 + (po — p1) At* (A)T], (2.34)

subjectto A, ; > 0,4, =1,..,n,

i Az,j = ]-7
j=1

1|i—j\>6Ai,j = O,i,j = 1, .., n.

In the following, we will generalize the approach in Section 2.2 to characterize the optimal

solution to (2.34).
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2.3.1 Upper-bound for Py

Let Fros(A) = 30 qui + Y0, s Qo and
m—ao 7 n
[, A) = Z Qi+ Z min{qo, q1} + Z qo,i-
i=1 i=m—d+1 i=j+1

Define

(

Fn-s(A) 1<j<m-—qo,

Fj(A) = q 7(j, A) m—90+1<j<m+3d,

fim+6,A) m+di+1<j<n.

\

Then from the definition, we have

Fi11(A, B) = Fj(A, B) + min{q1 11 — qoj+1,0},

and thus

where (a) is due to the fact that

m—a4 m-+d0 n
E Qi + E min{qo;, q1,:} + E qo,i
i=1 i=m—&+1 i=m+6-+1

n
= Z min{qo,;, ¢1,;}-
i=1

Similar to Theorem 2, we have the following bound.
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Theorem 3. For VA € A,

Fn(A) < min {E;(po,p1)}, (2.35)

m—3§<j<

2Pp(A) = Fris(A) < min ~ {E;(po, p1)}

m—0<j<m-+4

in which
m—24
Erns(po,p1) =1— Z (Poi — P1,i);
i=1
j—o min{n,j+§}
E;(po, p1) Z Poi — P1,i) Z (1 — Posi);
i=1 i=m-+1
Jjr=arg  min {E;(po.p1)}- (2.37)

If Ej«(po,p1) < En—s(po, p1), the equality in (2.36) holds when there exists A € A such that:
(i) Kopm—s — Kim—s = Z;Z,f_%ﬂ(po,i — D1);

(ii) ¢1; < qoism—0+1<1< g%

(iii) Koy — Ky = S0 (0o, — pro),

+5
Il7j* - ]Ozj* = ZZHHI;{;:(‘%erl}] +1}(p1 7 pO,Z‘>;

(iv) Fi(A) = F-(A),5* <k <m+0.

If E;«(po,p1) > En—s(Po, P1), the equality is achieved when

-FZ(A) = Em—5(p07p1)7m -0 < { < m+5

Proof. Please see Appendix A.4.
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Figure 2.2: Moved mass between different regions at component j

2.3.2 Attack strategy design

In this section, we design an attack matrix A to achieve the upper-bound in (2.36). As the de-
signed matrix achieves the upper-bound, it is an optimal solution to (2.34). Similar to the design of
hypothesis-aware attack matrix, we construct the optimal A column by column.

Before proceeding further, we need to define quantities related to mass moving between differ-

ent regions. In particular, for ¢ = 0, 1, define

ar;: (1,7 — 1] = 4,
e b (1,5 —1] = [j+1,n],
¢t — g+ 1,0,
e dij:[j+1,n — 4,

ey i+ 10 = [1,5-1],

ft,j: j — [1,] — 1]

These quantities are illustrated in Fig. 2.2.

Moreover, we will use a, l;, c, d, é, f to denote the value of a, b, ¢, d, e, f determined by A while
using Fj to denote the value of F; achieved by A.

Column design for j € R:

In Ry, fort = 0, 1, we design columns of attack matrix A to achieve
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(1) Goj =prj, 1 < j <m—26;
(2) Gj=0,m—20+1<j<m-—24;
(3) g = Prj—s + CZtW m — 0+ 1< j < m, where th,j is selected to satisfy

A

dij — do; = min{poj_s — p1,j—s, Fin—s — Fj—1

min{n,j+d} j—6—1
+ Z (p1i — posi) + Z (P1i — Poi)}-
i=m+1 i=m—20+1

To summarize, these conditions listed in Table 2.2.

Hti@t,j
1<j<m-—20 Dtj
m_2+1<j<m-—2o 0
m—-0+1<j<m Dtj—s + di

Table 2.2: PMF design in 7y for the hypothesis-unaware adversary

Here, again, we will first describe how to design A so that 1), 2) and 3) are satisfied. We will
then show that, once these conditions are satisfied, the equality in (2.35) is achieved. Hence, the
designed Ais optimal.

In particular, we set columns 1 to m of A to be
) 1<j<m—20,A;;=1,4,;=0,i#j;

b)m—0+1<j<mA ;=1
N 55 il B
Ai,j _ min{l,max{dld do,i = jmmi1(P1E po’k),O}},m—{— 1<i<n.

P1,i—P0,i

Following the same proof in Appendix A.3, we can show that using design specified in a), b), the
equalities in 1), 2), 3) are satisfied for 1 < j < m. Details of the proofs are omitted for brevity.

We now verify that we can achieve the equality in the upper-bound (2.35) once conditions 1),
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2) and 3) are satisfied.

ForVm —§ < j <m,

and thus

m—ao

= Z(pu —poi) t Lim—s — lom—s — Kim-s

=1
+K0,m—(5 +1
m—29

= 1= Z (Poi — p1i) = Em—s(Po, P1)-

=1

~

F;_1 +min{0,¢1; — o}
min{Fj_1, Fj_1 + Guj — Goi}

min{Fj—h Fj—l + P1,j—s — Doj—s + Czl,j — Cio,i}

min {Fj_l,
j—6 min{n,j+4d}

1 - Z(Po,i —pui) + Z (p1,i — posi)
i=1 i=m+1

min {ﬁ};h Ej(pmpl)} )

~

Fm - min {E]<p07p1)}7

m—§<j<m

which reaches the equality in (2.35).

Column design for j € R;:

(2.38)

In R, the first m columns of A have been determined in Ry and for j € Ry, we further design

A. 41 to achieve

qQij— o = maX{Areﬂjl_l 1(Q1,j - QO,j)a
J

min{0, Jnax (1 — q0,4)}}-

j—1
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We will design A. ,,,11., in two cases. For the first case, we always have j* € Ry and A. 41,
can be designed in a simple way. For the second case, similar procedure in Section 2.2.3 Case 2
can be applied. In the following part, we will provide the assumptions of two cases and analyze the
first scenario in detail while skip the details for the second scenario.

Case 1:
m m-+0

m_égligm_l{ Z (Poi — pP1,i) — Z (p1i — posi)} <0.
=I= i=j—0+1 i=j+o+1

By applying (2.38), this condition is equivalent to
m+9
Fn <1+ Z(pl,z’ — Po,1),

i=1

and thus Vj € [m + 1, m + 9],

j—0 j+o
Ej(po,p1) =1— (Po; — 1) + Z (p1,i — Po.i)
=1 1=m-+1
m m+6
>1- Z(po,z‘ — p1i) + Z (p1i — po1) > Fi.
i=1 i=m+1

Therefore, we will be able to find an A€ A,,, such that Fm+5 = Fm

The desired A. ,,,11.,, is designed by
(D Vm—0+1<j<mAj,g=1

B)Vm+6+1<j<nd;; =1
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Then we have

m—+9o+1
G1m+1 — Qomt1 = Z (P1.k — Pok) Ak ms1
k=m—6+1
m-+d6+1 m
= Kim— Kom + Z (Pre — pos)(1 = D Aky)
k=m+1 =1
m+o+1
Kim— Kom + Z (P1k —pok) — Lim + Kom
k=m+1

m+90
= 1+Z(pl,i_p0,1)_Fm20>
=1

—
S
=

where (a) is because Vim — 0+ 1 < j<m+ 9, VA € A,

J

Fi(A) = Fu5(A)+ Z min{(q1,; — go.i),0}

i=m—041
() J
< Fas(A)+ Z (91 — o)
i=m—041
7 n
= ZQLH— Z qo,;
i=1 i=j+1

J

= 1+ Z(C]Li — qo,i)
i=1
J

= 1= Z(Po,i — P1)

i=1

+Ko; — K1+ Ly — oy,

and the equality in (b) holds when ¢; ; —qo; < 0,m —d +1 < ¢ < j. For here, j = m and we have
qQ1,; — qo; < 01in Ry and (a) is true.

Furthermore, we have ¢; ; = ¢o,; = 0, m + 2 < j < m + 4. Therefore, for the designed A we
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have

~ A~

Fm-&—&(A) = Fm-i—l(A)

~

= Fm(A) + min{(jl,m-&-l - (.?O,m-i-lv O} = Fm(A)7

and thus the equality in Theorem 3 is achieved.

Case 2:

m—+0

_62121 _1{ Z (Poi — p1i) — Z (p1,i — posi)} > 0.
B A i=j+5+1

Under this condition, by the same idea in 2.2.3 Case 2, we will have 15]- =

min{ﬁj_l, E;(po, p1)}- Therefore, the equality in Theorem 3 is attained.

2.4 Numerical Results

In this section, we provide numerical examples to illustrate results obtained in this chapter.

In the first example, we give two specific PMFs with a few components and perform hypothesis-
aware and hypothesis-unaware attacks to show how the adversary works. In this example, the PMF
before attack is provided in (2.39) and Fig. 2.3. It is easy to calculate that for this PMF, if there is no
adversary, the error probability corresponding to the optimal Bayesian detection rule is P = %
Assume that the attack amplitude is 6 = 1. Following the design process in Section 2.2.3 and

2.3.2, the optimal hypothesis-aware attack strategy Aa, B, and the optimal hypothesis-unaware

attack strategy A, are

100000
022000
Aa:()o%goo’
000100
000010
000010
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Thus, the PMFs after attack can be calculated and are provided in (2.40) and Fig. 2.4 for
the hypothesis-aware model and the PMFs of hypothesis-unaware model are provided in (2.41)
and Fig. 2.5. It is easy to check that, for the constructed adversary, the error probabilities are
Py(A,, B,,t*(A,, B,)) = + and Pp(A, t*(A)) = L correspondingly. Since the error proba-

bility is 1/2 (the largest possible value) for the hypothesis-aware attack, the designed attack matrix
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Figure 2.4: PMFs poAa and p; B, for the hypothesis-aware case
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Figure 2.5: PMFs poAu and p; A, for the hypothesis-unaware case
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is clearly optimal. For the hypothesis-unaware attack, the error probability under A, is less than %
This already achieves the maximal value of Pg(A,,t*(A,)) by Theorem 3, 2Pg(A,,t"(A,)) <
Ey(po,p1) = g. Therefore, for this particular example, the hypothesis-unaware attacker is not as

powerful as the hypothesis-aware attacker.

po 8/32 7/32 6/32 3/32 4/32 4/32

(2.39)
p 4/32 4/32 3/32 6/32 7/32 8/32

A, 8/32 3/32 6/32 7/32 8/32 0
PoA / / / / / (2.40)
piB, 8/32 3/32 6/32 7/32 8/32 0

A, 8/32 0 10/32 10/32 0 4/32
Do / / / / (2.41)

pA, 4/32 0 10/32 10/32 0 8/32

In the second example, we explore how ¢ affects the prediction error for a randomly selected
po and p; under two attack models. In our simulation, we generate 2n random numbers in [0, 1]
by uniform distribution, divide them into two sequences and normalize each sequence to make it
a PMF while maintaining two consecutive regions to meet the assumption made in Section 2.2.1.
After py and p; are generated, they are fixed throughout the experiment. We then apply the pro-
posed attack schemes to find one of the optimal attackers and calculate its prediction error under
the Bayesian test. The results are shown in Fig. 2.6, where both the upper-bounds for the error
probability and the error probability under constructed optimal attackers are presented. There are
only two lines in Fig. 2.6 since the upper-bounds are achieved by the designed adversary and they
overlap each other, which verifies the correctness of the construction process. From Fig. 2.6, we
can see that, for each adversary, the attacker becomes more powerful as ¢ increases. In particular,
for the hypothesis-aware case, when ¢ is large enough, the prediction error will reach %, the largest
possible value.

In the third example, we investigate the impact of the alphabet size n on the prediction er-

ror. The PMFs before the attack are generated in the same manner as the second example. From
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Figure 2.6: Prediction error v.s. §,n = 200, m = 97

Fig. 2.7, we have that, for a fixed attack amplitude 6 = 50, the prediction error decreases as the
alphabet size n increases. The reason is that, as n increases, the relative attack strength §/n de-
creases, and hence the impact of the attack on the error probability also decreases. However, if
the ratio between 0 and n is fixed (for example, §/n = 0.03,0.06,0.1 as shown in Fig. 2.8 and
d/m = 0.1,0.15,0.2 as shown in Fig. 2.9), there is no significant change in the prediction error
as the alphabet size increases. In particular, from the hypothesis-aware result given in Fig. 2.8, we
see that the prediction error reaches 0.5 when ¢ = 0.1n for n varies from 400 to 1000, indicating
that even a relatively small perturbation could have a big impact on the prediction accuracy. On
the other hand, for the hypothesis-unaware model, from Fig. 2.9, we see that it is harder for the
prediction error to reach %, indicating that the strength of attack has been highly restricted if the
hypothesis information is hidden from the adversary.

In the fourth example, we illustrate the characteristic of PMFs before and after attack. First,
we generate the PMFs by truncating a Poisson distribution with parameter \;, ¢ = 0, 1, since the
normal Poisson distribution is defined on an infinite set. To normalize the distribution, we then
move the mass on the tails to the finite alphabet equally and name the distribution as truncated
Poisson distribution. Thus, the PMFs can be written as p;; = pgﬂ- +d,t =0,1,1 <1 < n,

At )

i,— 5 0
where pgi = M and d = 171”% By setting n = 110 and \g = 35, \; = 75 for Hy, H;4

2!

respectively, the PMFs before attack are shown in Fig. 2.10. Under this setup, the PMFs after attack
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Figure 2.7: Prediction error v.s. alphabet size n for 6 = 50
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Figure 2.10: The PMF before and after attack (hypothesis-aware)

are shown in Fig. 2.10 and Fig. 2.11 for the hypothesis-aware and hypothesis-unaware attackers
respectively. In these figures, we set & = 24. The results show that, for both hypothesis-aware and
hypothesis-unaware adversary, the PMFs after attack can be made the same under two hypotheses.
As the result, for both adversary models, Py = % after the attack.

Fig. 2.12 illustrates the PMFs before and after attack for the hypothesis-unaware case when
0 = 20. From this figure, we can see that, qo and q;, the PMFs after attack for different hypothe-
ses, are not the same under the optimal hypothesis-unaware adversary. On the other hand, for the
hypothesis-aware attacker, the error probability is equal to 1/2.

Fig. 2.13 illustrates how P increases as the attack amplitude 0 increases. From this figure, we
can see that, for both attack models, Py increases with ¢. Furthermore, the prediction error in the
hypothesis-aware case is always larger than hypothesis-unaware case and reaches 1/2 earlier than
the hypothesis-unaware case. This is consistent with the simulation result in the previous random

distribution scenario.

2.5 Conclusion

In this chapter, we have investigated the adversarial robustness of hypothesis testing rules. We have
formulated this as a minimax hypothesis testing problem. We have characterized the optimal attack

and the corresponding optimal decision rules for both hypothesis-aware and hypothesis-unaware
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Figure 2.12: The PMF before and after attack (hypothesis-unaware) when 6 = 20
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Figure 2.13: Prediction error v.s. § for truncated Poisson distribution
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adversary models. We have also provided numerical examples to illustrate the analytical results
obtained in this chapter.

Building on the problem formulation and analysis in this chapter, there are several interesting
future research directions. Firstly, it is important to extend the analysis to the scenario where the
true underlying distributions are unknown to both the attacker and decision-maker. Secondly, the
application to steganography and steganalysis [163], in which steganography aims to hide secret
messages in the cover media while steganalysis tries to detect hidden secret information embedded
in the cover media, is another interesting research direction. Thirdly, our work can be applied to the
decentralized detection setup [164—166], with a fusion center and distributed nodes, some of which
might be compromised. The compromised nodes may send fake messages to the fusion center, and
the goal of the fusion center is to make correct decisions in spite of the presence of misbehaving
nodes. Finally, other than the amplitude constraint considered in this chapter, it is important to

investigate other types of constraints on the adversary.
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Chapter 3

Privacy-accuracy Trade-off of Inference as

Service

In this chapter, we propose a general framework to provide a desirable trade-off between inference
accuracy and privacy protection in the inference as service scenario (IAS). Instead of sending data
directly to the server, the user will preprocess the data through a privacy-preserving mapping. This
privacy-preserving mapping has two opposing effects. On one hand, it will prevent the server from
observing the data directly and hence enhance the privacy protection. On the other hand, this might
reduce the inference accuracy. To properly address the trade-off between these two competing
goals, we formulate an optimization problem to find the optimal privacy-preserving mapping.
Particularly, in Chapter 3.1, we introduce the problem formulation. In Chapter 3.2, we present
the proposed algorithm and provide the convergence analysis to find the local optimal privacy-
mapping. In Chapter 3.3, we present numerical results. In Chapter 3.4, we offer concluding re-

marks.

3.1 Problem formulation

Consider an inference problem, in which one would like to infer the parameter S € S of data

Y € ), in which Y has a finite alphabet. In the inference as service scenario, one would send
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Y to the server who will determine the parameter S using its sophisticated models and powerful
computing capabilities. However, directly sending data Y to the server brings the privacy issue, as
now the server knows Y perfectly. To reduce the privacy leakage, instead of sending Y directly, one
can employ a privacy-preserving mapping to transform data Y to U € U and send U to the server.
Here, U also has a finite alphabet and is allowed to be different from ). Without loss of generality,
we will employ a randomized privacy-preserving mapping and use p(u|y) to denote the probability
that data Y = y will be mapped to U = u and the whole mapping is denoted as Iy . Furthermore,
we use Ps to denote the prior distribution of S and Py s to denote the conditional distribution Y’
given S, while the lower-case letter p is used to denote the component-wise probability (e.g.,
p(s),p(y), p(y|s) will be used in the sequel).

To measure the inference accuracy, note that the distributional difference between Pgs and Pg)iy
characterizes the information about S contained in U. Since the inference at the server side is solely
based on U, such information determines the inference accuracy. As (.S; U) is the averaged Kull-
back-Leibler (KL) divergence between Pg and Pg)i7, we use it to measure the inference accuracy.
We would like to make /(S; U) as large as possible, which means that we would like to retain as
much information about the parameter of interest S in U as possible so that the server can make a
more accurate inference.

To measure the privacy leakage, instead of choosing one particular privacy metric, we in-

tend to investigate a general form Ey ;/[d(y, )| that is applicable for different privacy metrics.

Here, d(y,u) = (p ) and f is a continuous function defined on (0,4+00). We note that
Eyvold(y,w)] = Evulf(5,

Py is the prior distribution of Y and Py is the posterior distribution of Y after observing U.

)] measures the distributional distance between Py and Py |7, where

Hence, the smaller the distance, the less information U can provide about Y and the better the

privacy protection. Note that Z(’(Z")) = 2 Hence we will also use ((| y as the argument to f in

p(uly)

the sequel. Since p(u|y) shows in the denominator, we assume that ¢ < p(uly) < 1,Vy, u, where

e > 0.

To balance the inference accuracy and privacy protection, we propose to find the privacy-
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preserving mapping Py by solving the following optimization problem

max  FlPoy] £ 1(5;U) ~ fEyy {f (]f(’ﬁ))] , (3.1)
s.t. p(U|y) Z €7vy7ua
> pluly) =1,vy. (3.2)

Here, 8 € (0,00) is a trade-off parameter that indicates the relative importance of maximizing
I(S;U) (i.e., maximizing inference accuracy) and minimizing the distance Ey ;/[d(y, u)] between
Py and Py y (i.e., maximizing the privacy).

Another possible problem formulation is to maximize the inference accuracy under the con-

straint that the privacy leakage is less than certain threshold 4:

max  [(S;U) (3.3)

Pyy

o)

puly) > €,Vy, u,

> pluly) = 1,y.

However, directly solving such constrained optimization problems is very challenging. A typical
way to solve this kind of problems is to form the Lagrangian of the maximization problem, whose
objective is written as the weighted sum of the original objective and the constraints. Hence, our
problem formulation can be viewed as the Lagrangian of the problem formulation (3.3). The trade-
off parameter  can be treated as the Lagrangian multiplier. Different value of 3 corresponds to
different privacy constraint ¢ in (3.3), whose value depends on different applications. In particular,
using the proposed algorithms, solutions can be computed for a broad range of 5. We can then
obtain the Pareto optimal curve for accuracy and privacy leakage, where each point corresponds to
one sub-problem solved to maximize the inference performance subject to a certain upper bound

of privacy leakage. Then the user can select an operating point from the Pareto optimal curve
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depending on the user’s preference and the constraint imposed by the applications.

For the privacy measure function f, we assume that
(a) f(-) is strictly convex;
(b) f(-) is twice-differentiable;
(c) f(t)isl - Lipschitz continuous of ¢.

Here we provide some comments about these assumptions. (a) guarantees certain convexity of
the problem. In particular, under (a), the sub-problems are shown to be convex, which ensures
the feasibility and simplification of the proposed method. (b) and (c) are needed to ensure the
convergence of the proposed method. These assumptions are fairly weak. As will be discussed in
Section 3.3, most of the widely used distance measures satisfy these assumptions.

The proposed framework in (3.1) is very general. Different choices of f will lead to different

privacy measures. For example, if we choose f to be — log(-), then we have

Eyyld Zp p(uly) 10g( plu) )

p(uly)
= nly DKL[PU|y | P] = I[U; Y],

Y

in which D (- || -) is the KL divergence. As the result, choosing f to be the — log function
means we will use mutual information between U and Y to measure the information leakage, a

very common choice in information theory study. More examples will be provided in Section 3.3.

3.2 Algorithms and Convergence Proof

In this section, we discuss how to solve the optimization problem defined in (3.1) for general f. One
natural approach to solving (3.1) is to apply the gradient ascent (GA) algorithm. However, GA faces
several challenges such as proper step size, computation complexity, convergence speed and the

quality of the optimal point found etc. To overcome these challenges, we propose a new algorithm
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that transforms the maximization problem over single argument to an alternative maximization
problem over multiple arguments and then employ ideas from ADMM to solve the transformed

problem.

3.2.1 Algorithm

We first have the following lemma that are useful for transforming the objective function.

Lemma 2.
I(S;U)=1(S;Y) Zp P(uly)Drr[Pspy || Psjul-

Proof. Please refer to Appendix B.1. [

By Lemma 2, the objective function defined in (3.1) can be written as

-F[PU\Y7PU7PS|U] = [(S,Y)—ﬁEKU[d(y,u)]

- Zp p(uly) Dicr[Psyy || Psju]-

Note that 7(S;Y), p(y) and p(s|y) are fixed, hence the cost function can be viewed as a function
of three arguments Py, Py and Pgsy. For consistency, we require the following equations to be

satisfied simultaneously

p(u) = puly)p(y), Yu, (34)
22, p(uly)p(s,y) s
p(slu) = () ,Vu, Vs. (3.5)

By (3.5), we further require that p(u) > 0,Vu. As the result, we can reformulate (3.1) as the

following alternative optimization problem
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max F|Pyy, Py, Psiy|. 3.6
P [Puyy, Pu, Psyu) (3.6)

st pluly) > €, Vy,Yu, > pluly) = 1,Vy,
p(u) > 0,Vu, Zp(:) =1,
pw) = 3 pluly)p(y), Va
y
p(slu) > 0,Vu, Vs, Zp(s\u) =1,Vu,

s

>, P(uly)p(s, y)

p(u)

p(slu) = , Vu, Vs.

The following lemma illustrates the nice property of the alternative formulation (3.6): the al-

ternative optimization problem is convex in each argument given the other two arguments.

Lemma 3. Suppose that f(-) is a strictly convex function. Then for given Py, Pgyu,
F[Pyyy, Py, Psy| is concave in each Py, Yy; € Y. Similarly, for given Pyy,Psy

FlPuy, Pu, Psy is concave in Py. For given Pyy, Py, F|Pyyy, Py, Psjy] is concave in Pgy.
Proof. Please refer to Appendix B.2. U

Using this lemma, a natural approach to maximizing the objective function in (3.6) is to alter-
nately iterate between Py, Py and Pg)y until reaching convergence. In particular, we propose
an iterative algorithm with two blocks to obtain a solution to (3.6): update of Pg|;; and update of
Pyy, Py. Firstly, for a given Py and Py, we update Pg); by solving the maximization on Pg)y
and derive an analytical result as a function of Py and Pyy. Secondly, for the derived Pg)7, we
update Py and Py by using the ADMM scheme to solve the maximization on Py and Pyjy. In
the following, we show that the proposed algorithm will converge. We would like to note that, how-
ever, as the problem in (3.6) is non-convex in the product space of {PU‘y, Py, PS|U}, the derived
limit point is not expected to be the global optimal solution of (3.6). In the following, we provide

details for each iteration. The convergence proof of the proposed algorithm will be presented in
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Section 3.2.2.

Updating Ps‘ U

For the Pg);; subproblem, the maximization problem is

max f[PS|U|PU|y,PU],

Psiy
s.t. p(sju) > 0,Vu, Vs,
> p(slu) =1, v,
>, p(uly)p(s,y)

p(u)

p(slu) =

Lemma 4. The solution to the Ps;; subproblem is

>, pluly)p(s,y)

p(u)

p(slu) = :

Proof. Please refer to Appendix B.3.

Updating Py and Py

Now, for a given Pg);;, we discuss how to update Py and Py by solving

max JT"[PUD/, PU‘PS|U]7

Py |y €Py|y,.PuePu

s.t.0(u) = p(u) = > _ pluly)p(y) = 0,Vu,

where

Puyy ={Puy : puly) > ¢, ZP(UW) =1},

Py ={Py:p(u) >0,> p(u) =1},
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and (3.12) corresponds to the consistency requirement (3.4).
Moreover, note that each row in the matrix Py is independent and we further show that the
objective function in (3.11) can be written as the sum of |)| terms, each of which depends only on

one row of Py

Mg
FlPuy, Pu|Psiy] = —BZ[ (Y ZP uly;)d ( u’y)))]
R
—Z p(yi) ZP ulyi) D[ Psyy, || Psul| +1(S;Y)
|y|
= F! [Py, PulPsw] + 1(S;Y), (3.15)

=1

where

(uly:)

F! [Poy, PulPsiu] = p(ys) [ ﬁzp uly:) f ( p(u) )

Ps.] (3.16)

- ZP(U|%)DKL [Ps)y,

Thus, the optimization on Py can be divided into |V|-problems, each of which corresponds to
one row in Pyy.

As the result, although (3.11) is a non-convex problem in (Pyy, Py) jointly, it is a convex
problem of one argument given the others, as shown in Lemma 3. This motivates us to apply the
ADMM approach to solve the problem.

The augmented Lagrangian for the above problem is

L[ Py, Py, Psju; Al

— F[Pyyy, Pu| Py +2u:>\(u)5(u) - g;(s?(u), (3.17)

where A is a vector of size |U/| and each component is denoted as A(u). Since Pg; is given, we

will omit it from the expression of L.
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In the ADMM approach, there are updates of Py, Py and A respectively. Exploiting the

structure in (3.15), we can solve (3.11) using the following iterative procedure

1 :
Py, = arg PU\?Ga,/})(U\y- L[Pujy,, P;\;(z‘—)» Pliyan, Pis A,
i=12--,|Y, (3.18)
t+1 _ t+1 p At
P = arg PI?S%(U ﬁ[PU‘Y, Py; A, (3.19)
A = AP — p(PI - (P[?B})TPY), (3.20)

or  AFL(w) = A(u) — plp™(u) — Y p (uly)p(y)]

— A (u) — p0** (),

where Py, = {Pujy, : p(uly) > €3, p(uly;) = 1}, Pyya- denotes all rows before the i-
th row in the matrix Pyjy and Py +) denotes all rows after the i-th row. Note that here we use
Gauss—Seidel ADMM where the local variables are updated sequentially in the Gauss—Seidel order
and current conditional distributions (P;;T;i, and P5|Yi+) are used to obtain P(t]Tyli. Another update
approach is to use Plt]'w, to update Py, in the (¢ + 1)-th iteration. It has been shown that for
multi-block problems, Gauss—Seidel ADMM often performs numerically better in practice than
the directly extended ADMM [?,?,?,93,94], as the updated information PIZT;Z., is immediately
utilized.
For Py, the optimization problem is
max  L[Puy., Pivas Poyans Poi Al (3.21)

(i=)»
Pyjy, Uy

st pluly) > €, Yu, > pluly;) = 1.

We have the following lemma regarding the objective function in (3.21). The proof follows similar

steps to the proof of Lemma 3.

Lemma 5. The objective function in (3.21) is a strictly concave function.
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Proof. Please refer to Appendix B.4. O

Hence, each sub-problem is a convex optimization problem with || inequality constraints
and one equality constraint. In practice, under a specified f(-), the sub-problem can be solved
numerically.

The sub-problem with respect to Fy is

max LIPS, Pos A, (3.22)

s.t. p(u) >0, Vu, Zp(u) =1

Following similar steps of Lemma 3, we can prove the following lemma.
Lemma 6. The objective function in (3.22) is a strictly concave function.
Proof. Please refer to Appendix B.4. [

Although there is a constraint, Py € Py, in this sub-problem, we can ignore it first and in the
convergence proof, we will show that for the limit point, the constraint is naturally satisfied. We
represent the solution to the unconstrained problem as P/;™' = arg maxp, ﬁ[PfJT}}, Py; AY].

After solving two sub-problems on Py and P respectively, we update the value of A.

In summary, we employ two nested loops to find the privacy-preserving mapping. In the outer
loop, there are two update steps: update of Pg); and update of (FPyy, Py), where the update of
(PU|y, Py) is performed by ADMM (which will be referred to as the inner loop). In the inner
loop, we update Py and Py by going through the process of (3.18), (3.19), (3.20). We will
use (j) to denote the j-th outer iteration and use (7),t to denote the arguments at the ¢-th inner

iteration of the j-th outer iteration. The algorithm is summarized in Algorithm 3.1. To quantify

the matrix differences, we use the Frobenius norm [?], where for an m x n matrix A, ||A||r =

\/ Yo Z?Zl la; ;]2. To quantify the vector differences, we use the ¢, norm, where for vector

b= (b1,ba, - ,by), ||b]l3 = D7, b?. For the thresholds, 7 is chosen to be a small value such that
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the function value is converged and 7, is chosen to be a small value such that L]

LIPHY, Py A > L[Phy, Ph, A s true.

t+1
PU|Y’

PEL A >

Algorithm 3.1 Design the privacy-preserving mapping

Input:
Prior distribution Pg and conditional distribution Py g.
Trade-off parameter (.
Converge parameter 7, 1), 1.
Output:
A mapping Pyy fromY € YtoU e U.
Initialization:

Randomly initiate Py and calculate Py, Psy by (3.4) and (3.5).

1. 5 =1

2 while | PS), — PY;"| > ndo

3 PP =PIV,

N T

5: t=1. ‘ ' )

6:  whilet =1 or HP}}“ - P((]W*H > 7, do
7 Update Py, by solving (3.21)."

8: Update P by solving (3.22).

9: Update A by (3.20).

10: t=1t+1.

11:  Update Py, by (3.10).
12: j=J+1

13: return Py

3.2.2 Convergence Analysis

In this section, we provide the convergence proof for Algorithm 3.1. To prove the convergence

of the proposed iterative algorithm, we need to verify that the value of the functional F does not

decrease while iterating, and that this functional is bounded from above.

The following lemma shows that F is upper-bounded.

Lemma 7. For a continuous function f(-), F|Pyy, Py, Psjy] is bounded from above.

Proof. Please refer to Appendix B.5.
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Then we prove that the value of F is non-decreasing between two iterations of the outer loop.
There are two steps in the outer loop, updating Py by (3.10), and updating (Pyy, Py) by ap-
plying ADMM. For the update of Pgy;, since the optimization with respect to Pg;y is a convex
optimization problem and has a closed-form solution as the update function, the objective func-
tion F is non-decreasing in this step. To show that the value of F is non-decreasing for the limit
point found by ADMM, it is necessary to prove that the proposed ADMM procedure converges
subsequently. Otherwise, the consistency requirement between Py and Py may not be satisfied.
In particular, in the following we prove that any sequence generated by the proposed ADMM pro-
cedure is bounded and has a limit point that is also the stationary point of (3.11), and the value of
F is upper-bounded and non-decreasing between iterations of ADMM.

We note that the convergence proof of the proposed ADMM procedure for our problem setup
is non-trivial, as the considered objective function has more than 2 local variables and is non-
separable with respect to these local variables. Directly using multi-block ADMM may be non-
convergent, even if the functions are separable with respect to these blocks of variables [91], and
numerous research efforts have been devoted to analyzing the convergence of multi-block ADMM
under certain assumptions [?,93,94]. In contrast to the separable case, studies on the convergence
properties of n-block ADMM with non-separable objective, even for n = 2, are limited [?, 167],
and the convergence is not guaranteed and has to be handled differently.

To make the presentation clear, in the following, we consider the case |))| = 2 and the proof

can be easily generalized to the case when ) has a finite alphabet. For |))| = 2, the optimization
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problem in (3.1) can be further represented as

max — [p(y1)2p(u|y1)DKL[PSy1 | Psju]

Py Zp (uly2) Dicr[Psyy, || Py
o famr(22)

p(ul
ottty ( o )}
) =

s.t pluly;) > €, Vu, Zp uly;

u) > 0, Vu, Zp(u) =

—p(uly1)p(y1) - p(uly2)p(y2) + p(u) = 0, Vu,

in which the last constraint can also be written in the vector form, —p(y1) Py, —p(y2) Pujy, +Pv =
0.

For presentation convenience, we denote

hi(Puly,) = —p(y:) ZP(M%)DKL[PSIyi Psjul,
’ 1=1,2,
g(PUlyuPU\waU = _62 [ u’yl (pijii))
$p(ul)plae) (pgfhj))] .

Thus, the objective function is

hl(PU\yl) + h’2<PU|y2) +g(PU\y17PU|y27PU)7
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and the augmented Lagrangian is

L[Pyyy, P, Psju; Al
= Fl|Puy, Pu|Psiy] + Z Au)d(u) — gz 0(u)?

u

= hl(PU\y1) + h2<PU|y2) "’g(PU\yl’PUlyz?PU)

+ 57 Aw)d(u) — g 3 6(u)?.

For the update of the dual variable A, we have the following lemma which characterizes the

relationship between the dual variable A and the primal variables.

Lemma 8. Suppose that f(-) is twice-differentiable and f'(t) is |- Lipschitz continuous of t. We

have
Y N (e e e .
Bl + 1757 = PE)
with [, = 165421?.
Proof. Please refer to Appendix B.6. [l

For the ascent of £ between two iterations, we have the following lemma.

Lemma 9. Suppose that f(-) is twice-differentiable and f'(t) is l;- Lipschitz continuous of t. We

have

£ Py P A = £ [Py, P A

p 2 lyl lA t+1 t 2
> [Qp(yﬂ Ty z} HPU|y1 = Py, ll2

P 2 ly Iz 1 2
o34

p—Ll, 1
()i

2
. (3.24)

where l,, =1, = By 1, = B—if
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Proof. Please refer to Appendix B.7. O

With these supporting results, we now analyze the convergence of the proposed ADMM pro-
cedure. We first show that £ is monotonic and upper-bounded, and the sequence { Py, Py, A}

generated by ADMM is bounded.

Proposition 2. Suppose that f(-) is twice-differentiable and f'(t) is l;-Lipschitz continuous of t.

We have that

(1) if min{p(y1)? — % — &, 2p(yp)? — 2 — b 25l — L} > 0 £]PIL PEFAT] >
LIy Fo A

(2) Vt € N, E[P[t]‘y, PL; A is upper-bounded;
(3) {Pujy, Py, A} is bounded.
Proof. Please refer to Appendix B.8. U
We then show the asymptotic regularity of the sequence { Py, Py, A}'.

Proposition 3. Suppose that f(-) is twice-differentiable and f'(t) is l;- Lipschitz continuous of .

When p is sufficiently large such that min{5p(y;)* — %1 - %, Ep(y2)? — byl el I} >

as t — oo, we have

2

t+1

(1) HPU\yl N Pltf\yl 9 — 0,
t+1 Ik

(2) HPU\yz ~ Poyy, , 0,

2
(3) ||PiH = PL||, — 0.
(4) A =AYy = 0,
(5) PG = p () Py, —p (v2) Py, = 0.

Proof. Please refer to Appendix B.9. [

74



Proposition 4. The sequence { Pyy, Py, A} has a limit point (]3U|y, Py, A), which is also a sta-

tionary point of (3.11).
Proof. Please refer to Appendix B.10. [
We now summarize the convergence results in the following theorem.

Theorem 4. Suppose that f(-) is twice-differentiable and f (t) is l;-Lipschitz continuous of t.
Choose p such that min{5p(y)* — l% — %, Ep(y2)*— %2 — %, %l“ — %} > 0. The proposed ADMM
procedure could converge subsequently, that is, staring from any (P8|Y, PY,A%), it generates a

sequence that is bounded, has a limit point (FA’U‘y, PU, A), and the limit point is a stationary point

of (3.11).
Proof. Please refer to Appendix B.11. [

Therefore, for the limit point (PU|y, Py, f\), the value of F is non-decreasing after the ADMM
procedure. Then F is also non-decreasing between two iterations of the outer loop, which indicates
that the proposed algorithm will converge.

For the case |Y'| = k, there will be (k + 1) terms on the right hand side of (3.23) and (3.24).
Then Propositions 2, 3, 4 and Theorem 4 still hold in a similar manner and the convergence analysis

also applies.

3.2.3 Stronger Convergence for / with More Assumptions

In Section 3.2.2, for the convergence analysis of ADMM, the value of p should be chosen large
enough such that min{4p(y;)* — %1 — %, Ep(y2)? — %2 — %, e %} > 0. Thus, the feasible
set of p will depend on the choice of e. In this subsection, we propose another ADMM procedure
with Bregman distance and make stronger assumptions on f to provide a convergence analysis
with weaker constraints on p.

First we introduce the definition of Bregman distance. Let ¢ : R — R be a continuously

differentiable and strictly convex function. Denote V¢(y) as the gradient of ¢ on y. Then the
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Bregman distance induced by ¢ is defined as

Ay(r,y) = ¢(x) — o(y) — (Vo(y), v — v), (3.25)

where ¢ is called the kernel function or distance-generating function. From the property of Breg-
man distance, we have that A, (z, y) is convex in x for fixed y [168]. The Bregman distance plays
an important role in iterative algorithms. In particular, Bregman divergences are used to replace the
quadratic penalty term in the standard ADMM (see 6%(u) in (3.17)). Then we can choose a suitable
Bregman divergence so that the sub-problems can be solved more efficiently [168].

To solve the optimization problem in (3.11), for notation simplicity, we denote z; : Fyyy,,
T2 : Py, and v Py.

Recall the definition of A4 (-), ha(-), g(+) in Section 3.2.2. We propose an algorithm starting
with (22, 29, 0v%) and A°. Suppose that ¢1, @9, ¢ are differentiable and strictly convex functions.
Then with the given iteration point w* = (m’f,xlg,vk,Ak) , the new iteration point w**! =
(2§t 2+ ok AR s given as:

" = arg max {hl (z1) + (21 — m’f)T Vg (27, 25, 0%)

k
: A - Asol (xbxlf)} )

2
p
-5 Hp(yl)xl +p(y2)ay — vt = —
T
o5t = arg max {hg (22) + (22 — 25) " Vg (27,25, 0")

2 Pl

2

P k+1 g AR k
=5 [[Py) 27 + p(ya)ze — " — —|| — A, (xg,xQ) ,
2 ol
v = arg max {g (" bl ’5“,@)
2
P AF
Y p(y ) ik +p(y ) 5T — UV—=—| — A(b (Uavk) )
2 o |y
AR = AP — p (p(y)2f+! + plya)ah ™ — ™) (3.26)

where A, (:vl, ’f) AV (mg,%) , and Ay (v v ) are the Bregman distances associated with

©1, Y9, and ¢ respectively. Here, 1, o, and ¢ should be properly chosen with respect to different
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f(+) adopted in the privacy measure.

To guarantee that the algorithm converges, we assume that
(i) Vg is [,-Lipschitz continuous;
(ii) Vi, Vo, Vo are Lipshitz continuous with the modulus [, [, , l4, respectively;
(iii) 1, @2, ¢ are strongly convex with the modulus 6, , 6, , 04, and 0., , dg, > L.

Then we have

Lemma 10.
Ak — Af
< 32 (|[o4+" = [l + a5+ — ab]]3) (3.27)
315+ 13) [0 = M, 383 ot — o5
Proof. Please refer to Appendix B.12. 0

By considering the updates of 3 primal variables, we have

Lemma 11.
(2w =22 o )
- (2t =22 - o)
> (gt Bt -
b (Rt T e
e (G- B -
Proof. Please refer to Appendix B.13. 0

Proposition 5. Under assumptions (i), (ii), (iii), we have
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. 612 612 6l5+1207 . . k1 31311 ka1 5112
(1) ifp> max{%ljlg, 5¢2z197 5, } (feasible under assumption (iii)), (E (w ) - Hv —v H2>

312 _1012
- (£ @h) =5 o= o) = 0
(2) Vk € N, L[w*] is upper-bounded;
(3) {w}* is bounded.

Then following similar analysis in Section 3.2.2, when p is chosen properly such that

612 612 61241212 2
g g g ) ” k+1 kH k+1
PR et R }, we have Ty 1|y — 0,

|} —xéHz — 0, and

> max{s;
|ohHt — v’“Hz — 0. By Lemma 10, we have ||AF*! — Akﬂz — 0. Moreover, the limit point of
{w}* can also be shown to be the stationary point of (3.11). Thus, when replacing the ADMM
procedure in Section 3.2.1 with this ADMM procedure with Bregman distance, Algorithm 3.1

converges in a similar manner.

3.3 Examples and Numerical results

In this section, we first give examples of different choices of f and then provide numerical results

with specific f to show the performance of the proposed method.

3.3.1 Examples of f

We now provide examples of f, each of which leads to a well-known and widely used divergence
measure.
In the first example, we consider f(t) = — log(t). As shown in Section 3.1, if f(¢) = — log(t),

the privacy measure is then the mutual information. For the algorithm proposed in this chapter, we

Lipschitz continuous since it is everywhere differentiable on [e, ﬂ and the absolute value of the

derivative is bounded above by .
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In the second example, we consider the following strictly convex function f(t) =

tlog 25 + log ;35. This choice leads to the Jensen-Shannon divergence [169]: Ey,y[d(y, u)] =
. . Pyiy+P Pyiy+P

>, p(y)JS[Puy, Pl in which JS[Pyy, Pu] =Dicr, | Puyy || U‘y—”]+DKL Py || ) To

check the assumption (b), we have f’(t) = log 2% a2 () = t(t+1) < ( r7» and thus it is Lipschitz
continuous.

In the third example, consider the strictly convex function f(t) = (1—%)?/(2t+2), which leads
to the Le Cam divergence [170] as the privacy measure, Ey[d(y, v)] = >, p(y)LC[Py, || Pl

in which

LC[Py, || Pv] = % 3 [Z((“u)w_) TZLZ))] . (3.28)

For this choice of f, again, assumptions (b) and (c) are satisfied.
In the fourth example, we consider the following function f(t) = (1—+/t)?, which corresponds

to the squared Hellinger distance [171]. It is easy to check that the assumptions are satisfied.

3.3.2 Numerical results

In this subsection, we provide numerical examples to show that our methods converge much faster
than GA, and the solution found by our methods has much better quality than the one found by GA.
Moreover, we explore how the weight parameter J and the alphabet size of U/ affects the privacy
protection as well as the inference accuracy.

In the first example, we set the prior distribution Ps = {3, 3, +} and let | V| = 10, |U| = 12. The
conditional distributions Py under each s are shown in Fig. 3.1. Under this setup, we will perform
both Algorithm 3.1 and GA to find the transition mapping Py that maximizes the functional
defined in (3.1). Suppose that the trade-off parameter 5 = 2 and Jensen-Shannon divergence is
used as the privacy metric. The initial mapping Py is obtained by selecting random numbers

conforming to uniform distribution and normalizing them.

For the convergence speed, we investigate the relationship between F and the outer iteration,
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probability

Figure 3.1: Conditional distribution p(y|s)
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Figure 3.2: Function value v.s. iteration (Algorithm 3.1)

which is illustrated in Fig 3.2. We notice that the function value is increasing and converges as the
iterative process progresses. For comparison purposes, we also plot the corresponding figures for
GA in Fig. 3.3 (with step size 0.0001) and Fig. 3.4 (with step size 0.00005). From these figures,
we can see that Algorithm 1 converges within 20 iterations. On the other hand, for gradient ascent
algorithm, even for a pretty small step size 0.0001, the function value fails to keep increasing,
which indicates that the step size is too large. Then for a smaller step size 0.00005, the function
value converges as shown in Fig. 3.4. However, the value of the objective function found by GA is
smaller than the value found by Algorithm 3.1.

For the relationship between 3 and the privacy protection, after random initialization, we run
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Function value

-0.34

-0.36

-0.38

0 1000 2000 3000 4000 5000
Iteration

Figure 3.3: Function value v.s. iteration (GA)

80



-0.26

-0.28

-0.30

ion value

H
c -0.32

Functi

-0.34

—0.36

-0.38

0 1000 2000 3000 4000 5000
Iteration

Figure 3.4: Function value v.s. iteration (GA)
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Figure 3.5: 3 v.s. privacy protection (Algorithm 3.1 and GA)

Algorithm 3.1 and GA until they terminate. The stopping criterion is either ||PE,J|F; — P[t]|Y|| F<
107 (convergence case) or a maximum number of iterations is reached (divergence case). We re-
peat this procedure 100 times for each (. Recall that the smaller the term E[d(y, u)], the better
the privacy protection. In particular, we set E[d(y, u)] to be 1 for divergence cases since the maxi-
mum E[d(y, u)] under the converge scenario is smaller than 1. As shown in Fig. 3.5, we notice that
E[d(y, )| decreases as [ increases for our proposed method while it is non-decreasing for GA. By
setting the maximum number of iterations to be 3000, GA diverges under many choices of 3. Even
for the scenarios where GA converges, compared with Algorithm 3.1, the privacy protection ob-
tained by GA is weaker. Therefore, the privacy-preserving mapping designed by GA could hardly
guarantee the protection of privacy. In addition, we also explore the relationship between 5 and
the information accuracy. As shown in Fig. 3.6, the inference accuracy measure /(S; U) decreases
as [ increases, which indicates that the predictive ability becomes weaker. The reason is that as
U leaks less information about Y when (3 increases, it also provides less information about the

parameter of interest, which will reduce the predictive performance. However, Fig. 3.6 shows that

the reduction of 7(.S;U) is not very large, which implies that the model still has good predictive
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Figure 3.6: 3 v.s. inference accuracy (Algorithm 3.1)

ability when there are stronger protections for privacy.

To explore other privacy measures, we now set f as f(t) = (1—t)?/(2t+2), which corresponds
to the Le Cam divergence as discussed in Section 3.3.1. We again compare Algorithm 3.1 and GA.
The results are shown in Table 3.1. From the table, we can see that the maximum function value

found by our method is greater than those found by GA.

Methods Convergent value
Algorithm 3.1 -6.697e-14
Gradient ascent(av = 0.05) -0.251
Gradient ascent(aw = 0.07) -0.245
Gradient ascent(a = 0.1) -0.317
Gradient ascent(a = 0.15) -0.235
Gradient ascent(a = 0.2) Diverge

Table 3.1: Convergent value of Algorithm 3.1 and GA

To compare different privacy measures, we set the trade-off parameter 5 = 8, which indicates
that the privacy term is dominant in the objective function. As shown in Fig. 3.7, although the
function values under JS-divergence and LC-divergence are different, the convergence speed and
convergence curve are almost the same, which shows that the proposed algorithm can converge
in a similar manner under different metrics. However, the optimal privacy-preserving mapping
Py found by those two privacy measures are different. Therefore, in practical applications, an
appropriate task-oriented privacy measure needs to be chosen.

Finally, we explore the relationship between |U/| and the privacy protection. Note that in the
proposed method, the alphabet sizes of ) and U are not necessarily equal. Thus, for || = 10,

we explore how || affects the convergent function value. Here, we set = 8 and use the LC-
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Figure 3.7: Convergence process for JS and LC divergences (Algorithm 3.1)
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Figure 3.8: Function value v.s. Alphabet size of ¢/ (Algorithm 3.1)

divergence to measure the privacy leakage. From Fig. 3.8, it is shown that although the function

value is increasing as || increases, the alphabet size |{/| has limited effects on the function value

when |U{| > 7, which indicates that a large alphabet size of U is not necessary to derive a satisfac-
121

tory privacy-preserving mapping. By setting | )| to different values, we notice that when v > 0.8,

the convergent function value is relatively large.

3.4 Conclusion

We have proposed a general framework to design privacy-preserving mapping to achieve privacy-
accuracy trade-off in the IAS scenarios. We have formulated optimization problems to find the
desirable mapping. We have discussed the structure of the formulated problems and designed an
iterative method to solve these complicated optimization problems. We have also proved the con-
vergence of the proposed method under certain assumptions. Moreover, we have provided numer-
ical results showing that this method has better performance than GA in the convergence speed,

solution quality and algorithm stability.
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In terms of future work, we will address the limitations of the currently work along the follow-
ing lines. Firstly, we have several technical assumptions on the function f. In the future, we will
try to weaken those assumptions. Secondly, for the proposed algorithm, we are only able to show
the convergence, but we have not characterized the convergence rate, of the proposed algorithms.
Moreover, the proposed method is only guaranteed to converge but not to the global optima. Thus,
it is of interest to further modify the proposed method to find the global optimal solution and
determine the corresponding convergence rate. Thirdly, we are also interested in comparing our
proposed privacy protection scheme with other existing private mechanisms. Finally, in this work,
we only consider the case when Y is discrete and generate the privacy-preserving mapping Pyyy.

In the future, we will consider the continuous case and find the optimal conditional pdf fyy.
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Chapter 4

Fairness-aware Regression Robust to

Adversarial Attacks

In this chapter, we take a first step towards answering the question of how to design fair machine
learning algorithms that are robust to adversarial attacks. Using a minimax framework, we aim to
design an adversarially robust fair regression model that achieves optimal performance in the pres-
ence of an attacker who is able to add a carefully designed adversarial data point to the dataset
or perform a rank-one attack on the dataset. By solving the proposed nonsmooth nonconvex-
nonconcave minimax problem, the optimal adversary as well as the robust fairness-aware regres-
sion model are obtained. For both synthetic data and real-world datasets, numerical results illustrate
that the proposed adversarially robust fair models have better performance on poisoned datasets
than other fair machine learning models in both prediction accuracy and group-based fairness mea-
sure.

In Chapter 4.1, we summarize the related work. In Chapter 4.2, we investigate the case when
the adversary is allowed to add a poisoned data point into the dataset. In Chapter 4.3, we consider
a more powerful adversary who is able to perform a rank-one attack on the dataset. In Chapter 4.4,
we present numerical results. Finally, we offer concluding remarks in Chapter 4.5.

The main notations used in the chapter are listed in Table 4.1.
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Notation Description

{X,y,G} Clean dataset

{X,9,G} Poisoned dataset

(xo, Yo, Go) Adversarial data point
A rank-one feature modification matrix
I3 Regression coefficient
n Energy constraint parameter
A Trade-off parameter
n Number of training samples
m Number of training samples from group 1

Table 4.1: Main notations

4.1 Related work

Adversarial attacks on FML. There are many research works exploring the design of adversarial
examples to reduce the testing accuracy and fairness of FML models. For example, [80] develops
a gradient-based poisoning attack, [81] presents anchoring attack and influence attack, [82] pro-
vides three online attacks based on different group-based fairness measures, and [83] shows that
adversarial attacks can worsen the model’s fairness gap on test data while satisfying the fairness
constraint on training data.

Adversarial robustness. A large variety of methods have been proposed to improve the model
robustness against adversarial attacks [172—175]. Although promising to improve the model’s ro-
bustness, those adversarial training algorithms have been observed to result in a large disparity of
accuracy and robustness among different classes while natural training does not [176].
Intersection of fairness and robustness. Fairness and robustness are critical elements of trustwor-
thy Al that need to be addressed together [144]. Firstly, in the field of adversarial training, several
research works are proposed to interpret the accuracy/robustness disparity phenomenon and to
mitigate the fairness issue [144—146]. For example, [145] presents an adversarially-trained neural
network that is closer to achieve some fairness measures than the standard model on the Correc-
tional Offender Management Profiling for Alternative Sanctions (COMPAS) dataset. Secondly, a
class-wise loss re-weighting method is shown to obtain more fair standard and robust classifiers

[147]. Moreover, [148] and [149] argue that traditional notions of fairness are not sufficient when
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the model is vulnerable to adversarial attacks, investigate the class-wise robustness and propose
methods to improve the robustness of the most vulnerable class, so as to obtain a fairer robust

model.

4.2 Attack with one adversarial data point

In this section, we consider the scenario where the attacker can add one carefully designed adver-

sarial data point to the existing dataset.

4.2.1 Problem formulation

Using a set of training samples {x;, y;, G;}I, = {X,y, G}, where x; € RP? is the feature vector,
y; 1s the response variable and G; indicates the group membership or sensitive status (for example,
race, gender), we aim to develop a model that can predict the value of a target variable Y from
the input variables X. In this chapter, we consider the case when there are only two groups, i.e.,
G; € {1,2} and assume that the first m training samples are from group 1 and the remaining
samples are from group 2. For simplification, we denote X = [X1; Xo|,y = [y1; y2|.

To build a robust model, we assume that there is an adversary who can observe the whole train-
ing dataset and then carefully design an adversarial data point, {x, y9, Go}, and add it into the
existing dataset. After inserting this poisoned data point, we have the poisoned dataset { X, Y, G’},
where X = [@o, 21, 2,7, 9 = [Wo,v1, ,ya|T. G = [Go, Gy, -+, Gy)T. From this poi-
soned dataset, we aim to design a robust fairness-aware regression model.

In order to characterize both prediction and fairness performance, we consider the following

objective function

~ A~

L=f(B3X,9,G)+\F(3 X,9,G), (4.1)

where (3 is the regression coefficient, f(3, X Y, G’) corresponds to the prediction accuracy loss,
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F(B, X, Y, é) corresponds to the group fairness gap and A is the trade-off parameter. The goal of
the adversary is to maximize (4.1) to make the model less fair and less accurate, while the robust
fairness-aware regression model aims at minimizing (4.1). To make the problem meaningful, we
introduce an energy constraint on the adversarial data point and use /5 norm to measure the energy.
The energy constraint serves two main purposes. Firstly, it helps to prevent certain kinds of easily
detectable adversarial data points, which have a large energy and can be identified as outliers.
Secondly, the energy constraint is essential for the MSE-based accuracy and fairness metrics since
the absence of energy constraints can significantly affect the MSE value, thereby reducing the

significance of the analysis. Thus, we have the minimax problem

min max L:f(ﬁ,X,g,G’)—i—/\F(ﬁ,X,ﬁ,é)
B (20,y0,Go),
st || [zdyo]ll2<n

(4.2)

Given that Mean Squared Error (MSE) is the standard error metric for regression tasks,
we leverage it to quantify the predictive accuracy of our model, and have f(3, X, 9, C;’) =
E[(Y — Y)?], where Y is the prediction result. For the group fairness gap, various metrics have
been proposed, including demographic parity [113], equality of opportunity [79], equalized odds
[79], and accuracy parity [177]. While many of these metrics are well-suited for classification
problems, they may not be directly applicable to regression problems. However, accuracy par-
ity stands out as a fairness criterion that remains relevant across both classification and regres-
sion contexts. In particular, accuracy parity focuses on achieving equal accuracy losses among
different groups [177], E[(Y — Y)%|G = 1] = E[(Y — Y)?|G = 2. Then the absolute differ-
ence between two groups can be used to measure the severity of violations [178] and we have

F(8.X,9.G) = [E[(Y - Y)’|G =1] -E[(Y - Y)’|G =2]|.
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4.2.2 Proposed method

To solve the minimax problem in (4.2), we will first solve the inner maximization problem with
respect to the adversary to design the optimal adversarial data point {x, yo, Go} under the energy
constraint. Then we will solve the outer minimization problem to find a robust fairness-aware
model that can optimize both prediction accuracy and the group fairness guarantee.
Maximization Problem

We first note that there are two choices of G, and the form of the objective function L under

different choices of (5 is different. For Gy, = 1, the objective function L can be written as

1

Ly =~ (llyo = zl B2+ yr — X183

+lly2 — Xo83) + A —||?Jo z; B3

1 1
ol = Xl — = llye — XaBl);

For Gy = 2, the objective function L can be written as

1

Ly = ol (HZ/O wgﬁ”% + llyr — X1ﬁ||g

1
+lyz — Xo8012) + A —lys - X083

1 T 32 1 2
— - — - X
n—m+1||y0 z, B2 n—m+1”y2 283

It is worth noting that for either L; or Lo, the objective function of the minimax problem (4.2)
is non-smooth noncovex-nonconcave. However, we observe that by exploring four different cases
depending on the value of GGy and the signs of the terms inside | - |, the maximization problem can

be solved exactly as shown in the following theorem.

Theorem 5. For any given 3, we have

max LY max{g1(3), h1(8), g2(8), h2(B8)},

(0,Y0,Go),
st ||z yolll2<n

89



where

7(B) = Con*(1+Bl2) + Collyr — X183

+Dgl ||y2 -

X2/6||§7

h(B) = max{0,Cp,}i*(1 + B]2) + Ch,llyr — X18l13

+Dh1Hy2

- XQIBH%?

92(B8) = max{0, Dy, }n* (1 + [|BI3) + Cys lyn — X183

+D92 Hy2 -

X2/8H%7

ha(B) = Duyn*(1+[|BI3) + Crollyr — X1l

2
+Dh[ly2 — XoB]3,

- A B A 1 A
with Cgl - m+l + n+1’D o — n—i—l’Chl o m+1 + n—i—l’Dhl T n—m + n+1’ Cg2 T m +
1 S S — 1 T, 1T p —
n+1’ D92 T n—m+l n—l—l’C(h2 - + n+1’Dh2 T on— m+1 + n+1 Denote &, = [wo ’ yO] ’b -

(BT, —1]T. Then we have

* when either of the following occurs: 1) g1(8) > max{hi(8),g2(3), h2(B)}, 2) hi(B) >

max{¢g1(8), 92(B), ho(B) } and Cy,, > 0, the maximum value of L (equality (a)) is achieved

if £5(8) = Ny, and Go = 1;

* when hi(B) > max{g(8), g2(8), ho

band Gy = 1;

(B)} and Cy, < 0, (a) is attained as long as x5(B) L

* when either of the following occurs: 1) g2(8) > max{g:1(3), h1(8), h2(8)} and D,, > 0,

2) ho(B) > max{g:1(8), h1(8), 92(B)}, (a) is attained if 5(B) = nﬁ and Gy = 2;

* when 92(5) > max{gl(ﬁ)vhl(ﬁ)ﬂlh

G0:2.

Proof. Please refer to Appendix C.1.

(8)} and D,, < 0, (a) is attained if 3(3) L b and

90



Remark 2. ¢;(3), hi(B), 92(8) and ho(B) involve B3 only through |3

|y2 — Xo8||3. Furthermore, from Theorem 5, for Gy = 1, we have

y1 — X183 and

2
2

max Li=max{g,(8), h(B)},

(®0,y0,1),5.t.[|[&F ,yolll2<n

where g1(3) corresponds to the case in which the terms inside | - | of Ly is non-negative and h(3)
corresponds to the case in which the terms inside | - | is negative. Subsequently, for the conditions
of equality, we discuss two cases L1 = g1(8) > hi1(8) and Ly = hi(B) > g:1(3), where there
are two sub-cases for Ly = hq(B) based on the value of Cy,,. There are similar observations for

Gy =2

Minimization Problem

Using Theorem 5, the original minmax problem is converted to the following problem

min max L= minmax{g:(8), ki (8). 2(8). ha(8)}- 43)

As we seek to minimize the largest of four functions, (4.3) can be separated into four sub-problems.

One of them is

min 01(8).

st g1(8) 2 92(8),91(8) = hi(B), 9:1(8) = h2(B), (4.4)

and other sub-problems can be written in a similar manner. Once these sub-problems are solved,

the solution to (4.3) can be obtained.

For notation simplicity, we denote %325’;(2" ) — O, (2T + XTX)) + Dy XTX, = My,

2 2
12088 = max {0, Cy, } n*T+Ci, XT X1+ D XT Xy = M, 1228 = max {0, Dy, } T +

Co, X{ X1 + Dy, X3 X = Mg,, %8255(2@ = Cn, X{ X1 + Dy, (P’ I + X5 X5) = M.

In the following, we focus on solving (4.4). The analysis of other sub-problems can be done
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similarly. Specifically, (4.4) can be further written as

min - g1(8) = Co®(1+11B813) + Cy lyr — X181
+D, [ly2 — X203, (4.5)
st.  Ci(B) =qi(B) — (B) =0,
Co(B) = 91(B) — 92(B) = 0,
Cs(8) = g1(8) — ha(B) > 0.

For the objective function in (4.5), since D, can be negative, My, is not necessarily positive-
semidefinite. Hence, (4.5) is a non-convex quadratic minimization problem with several quadratic
constraints (QCQP), which is NP hard in general [155]. Despite this challenge, we are able to solve
this problem by exploiting the structure inherent to our problem. The following proposition gives

us sufficient conditions for global minimizers of QCQP, following from Proposition 3.2 in [179].

Proposition 6. If Jo; > 0,1 = 1,2, 3 such that for 3 = 3%,

3 2
Mg1 - Zaz%ﬁﬁ) i 07
i=1

3

99:(B) o — Z o aCi(B)

B

86 ﬁ* — 0,

3
> aCi(B) =0, (4.6)
=1

Ci(B*) >0,i=1,2,3,

then 3" is a global minimizer of QCQP (4.5).

Remark 3. From (4.6), we have that for each constraint C;(3), there are two possible cases:
I)a; = 0,C5(8%) > 0, 2) oy > 0,C:(B*) = 0. In total, there will be 23 cases of different
combinations of os. By examining these 8 different cases, we can obtain the optimal regression

coefficient 3* of the sub-problem (4.5).
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In the following, we will analyze four types of cases sequentially: 1) oy = oo = a3 = 0; 2) the
case with only one non-zero «;, i.e. 3la; > 0 and oy, = 0, Vk # i; 3) the case with two non-zero
a;s,i.e. 3, 5,7 # j,o > 0,0 > 0and oy, = 0,Vk ¢ {i,5}4) a; > 0,i=1,2,3.

Casel: 1 =ay=a3=0

By Proposition 6, if there exists 3, such that

M, >~ 0, 4.7)
d91(B) o

9B 5=0, (4.8)
Ci(B) > 0,i=1,2,3, 4.9)

then ,é is a global minimizer of (4.5). From (4.7), we require that Mg, is positive-semidefinite,
which can be true when A is small, e.g. when D, > 0. From (4.8), when M, is invertible, we

have
B =M, [C,, XY+ Dy X]Y3]. (4.10)

If (4.9) is satisfied at (4.10), then B is a global minimizer of (4.5). Otherwise, there does not exist
a global minimizer in Case I and we will consider Case 2.

Case 2: Ala; > 0 and o, = 0,Vk #£ 1
We will consider the particular case a; > 0,0 = a3 = 0 and other cases can be analyzed
similarly.

By Proposition 6, if there exists B and «; > 0, such that

My, — a;(My, — My,) = 0, 4.11)
dq1(8 9CL(B

—g(;(ﬁ s —an alg Jjs=0, (4.12)
C1(B) = 0,05(8) > 0,C5(8) >0, (4.13)

then B3 is a global minimizer of (4.5).
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Proposition 7. Denote the largest eigenvalue of X1 X, as vx, , and the largest eigenvalue of

: +1 +1
X7 X5 as vx, . Assuming that n* > 12, = max { (2(7}131)’?, (nﬁn +)1§E(i’_”m) }, we have Ay p, =

{a: My, — a(My, — My, ) > 0} # 0. By randomly selecting an oif € Ay, p,, for

B = [(1 - CYT - 7*)Mgl + (O‘T + 7*)Mh1}71

(1 —=af =) E, — (o] +797)En,],

where ~* is a certain Lagrangian multiplier, and E, = Cy X[y, + Dy XIys, E), =
Cry XTyy + Dy, XL s, if we have Co(B) > 0,Cs(B) > 0, then B satisfies (4.11), (4.12), (4.13)

and is a global minimizer of (4.5).
Proof. Please refer to Appendix C.2. [

Case 3: 3i,7,1# j, 0, > 0,5 > 0and oy, = 0,Vk ¢ {i, 7}
We will consider the particular case a; > 0, a5 > 0, a3 = 0 and other cases can be analyzed in a

similar manner. By Proposition 6, if there exists B and oy > 0, ap > 0, such that

Mgl - al(Mg1 - Mhl) - a2<M91 - Mgz) - O, (414)
9g9:(8) oCy(B) 0Cs(PB)

55 5~ o 816 |g—a25—6|/§=0, 4.15)
Ci(B) = 0,C5(B) =0, (4.16)
Cs(B) > 0, 4.17)

then B is a global minimizer of (4.5).

Proposition 8. For

B=[1-af = —7)M, + (a] +7]) My, +5M,,)™"

(1= af =77 = 3) By, + (0 +77) Eny + 15 By

where V3,74 are certain Lagrangian multipliers, and E,, = Cy, X1 y1+ Dy, X2 ya, if Cg(B) >0,
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then ,5' satisfies (4.14), (4.15), (4.16), (4.17) and is a global minimizer of (4.5).

Proof. Please refer to Appendix C.3. 0

Case4: a; >0,1=1,2,3

By Proposition 6, if there exists [3 and ; > 0,7 = 1, 2, 3, such that

Mgl — Qa1 (Mgl - Mhl) - a2(M91 - Mgz)

—(1/3(Mgl — Mh2) >0, (4.18)
dgl(m 5 — 10%[3,@) 5 — 2 802 B) s — 30%@ 5=0, (4.19)
Ci(B) = 0,05(8) = 0,C5(8) = 0, (4.20)

then ﬁ is a global minimizer of (4.5). From Remark 2, we note that with (4.20), there are three

equations on ||3||3, ||y — X18||3 and || y2 — X23||3, which indicates that there will be deterministic
solutions for them or the feasible set is empty.

When the feasible set of (4.20) is nonempty (for example, when A > max{ 2L, 2=l 1) the
value of g1(3), C1(8), C2(B), C5(3) is determined as there have been deterministic solutions for
1812, lyr — X182 and ||y — X282 Then the process of finding 3 is
1. Solve (4.20) and derive the solution for ||3]3, [[y1 — X183 and ||y2 — Xo8]|3.

2. Calculate the value of g,(3), C1(8), C2(8), C5(3).
3. Select «y,a9,3 such that (4.18) is satisfied. Then (4.19) is satisfied naturally as
91(8), C1(B8), C2(B), C5(B) are constants.

Algorithm 4.1 summarizes the process of finding the robust fairness-aware model and the op-
timal adversary data point, which does not involve any transformation gap.

In comparison to [155], our proposed QCQP (4.5) is different from the setting considered in
[155]. Notably, the objective function in (4.5) is nonconvex, and the constraints are not concave,
which distinguishes our problem from the one in [155]. Moreover, while [155] provides approxi-

mation bounds for a norm minimization problem with multiple concave quadratic constraints, our

objective is to find a global minimizer of (4.5) based on the sufficient conditions of global mini-
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Algorithm 4.1 Attack with one adversarial point
Input: {X,y, G}, \, 7.
Output: Optimal adversarial point (x{, y;, G§). Robust fairness-aware regression coefficient 3 .
Procedure:

1: Separate (4.2) into 4 sub-problems.

2: for each sub-problem do

3: step through Case I to Case 4 until a 3 that satisfies the sufficient conditions in Proposition 6 is
found.

4: Select B that minimizes max{g1(8), h1(8), 92(8), h2(3)} from the solution set as 3 , .

5: Plug 37, into the optimal attack strategy to obtain (), y5, Gj)-

mizers to QCQP, as stated in Proposition 6. Consequently, the methods proposed in [155] are not

applicable to our problem.

4.3 Rank-one attack

In Section 4.2, we have discussed how to design one adversarial point to attack the fair regression
model. In this section, we consider a more powerful adversary who can observe the whole training
dataset and then perform a rank-one attack on the feature matrix. This type of attack covers many
practical scenarios, for example, modifying one entry of the feature matrix, deleting one feature,
changing one feature, replacing one feature, etc [175]. In particular, the attacker will carefully
design a rank-one feature modification matrix A and add it to the original feature matrix X, so as
to obtain the modified feature matrix X = X + A. Since A is of rank 1, we can write A = cd?,
where ¢ € R" and d € RP. Moreover, recall that there are samples from two groups, we denote
the modification matrix of the first group as Ay, i.e., the first m rows of A, and assume that
A, = c;d", where ¢; consists of the first m components of c. Similarly, for the second group, the
modification matrix is A, = cod”. Then the modified feature matrices are X 1= X1+ Ay and
X, = Xy + A,

Similar to Section 4.2, we introduce an energy constraint on the rank-one attack. We use the

Frobenius norm to measure the energy of A. Recall that y, G remain unchanged in this attack
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scheme, we have the minimax problem

mﬁin fnax f(B,X)+ \F(B,X). 4.21)

To solve (4.21), we will first investigate the inner maximization problem. We will perform
various variable augmentations, and convert the maximization problem into a form with five ar-
guments, four of which can be solved exactly. Then we will transform the original nonconvex-
nonconcave minimax problem into several weakly-convex-weakly-concave minimax problems.
Maximization problem

For the objective function in (4.21), we have

F(8.X) + \F(8, X) = |y~ X

ly> — X013

1 A~
A=l — KB -
m

= max{g(8, X), h(3, X)},

n—m

in which (8, X) = Cyllys — X813 + Dyl — X2B13. h(8. X) = Cullyn — X1 813+ Dallye —
XoB|3, with Gy =L+ 2, D, =1 — 2 ¢, =1 -2

n—m m’

D=1+

n—m’

Lemma 12. For g(8, X) and h(B3, X ), we have that
(1) if D, > 0, g(B, X ) is convex in ¢, for any given ¢y, d, and also convex in ¢y for any given

¢, d; otherwise, (3, X)) is convex in ¢, for any given ¢y, d, and concave in ¢, for any given

Cy, d;

(2) if Cr, > 0, h(B, X ) is convex in ¢, for any given ¢z, d, and also convex in cy for any given
¢y, d; otherwise, h(3, X ) is concave in ¢, for any given cs,d, and convex in cy for any

given cy, d.
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Based on Lemma 12, we now solve the maximization problem in (4.21). First, note that

max max{g(0, X) hB,X)}

led™ || r<n

= max{ max (,3 X) max h(ﬁ,X)},

9\,
lled™ [l r<n lled™ | r<n

which indicates that the maximization problem can be separated into two sub-problems. For sim-
plicity of presentation, we will only explore the sub-problem of ¢(3, X) in detail and the sub-
problem of (3, X) can be analyzed similarly.

1) Sub-problem of ¢(3, X)
According to Lemma 12, the value of D, will affect the property of g(/3, X ). In the following, we
will first explore the case D, > 0 and obtain Lemma 13 as well as Proposition 9, and then explore

the case D, < 0 and obtain Lemma 14 as well as Proposition 10.

Lemma 13. For D, > 0, we have

A~

max , X
HCdTllFSng(IB )
= max max Iax ma max ¢(8, X)

0<ne=n 0<ne; <e [[d]2<1 ey o /—nc 2 lella=ne,

= max max max Gm,(Ne,3,d
0<770<77 0<77c1 <nc ||d||2<1 1< v )

where g, (e, 8, d) = Cy(llyr — X1Bll2 + 10, d"B)* + Dy (lly2 — X2Bll2 + /02 — 12, d" B)°

Proof. Please refer to Appendix C.4. [

Note that g,,, (1.,,/3,d) is a quadratic function with respect to d” 3, we have the following

proposition.

Proposition 9.

max ,X:max a\Tlers P )
Hch”ang(B ) = max g, B)

where go(1le,, 8) = Cy(llyr — X1Bll2 + 11, |B112)* + Dy([ly2 — X282 + /1” — n2,[18]]2)*
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Proof. Please refer to Appendix C.5.

Lemma 14. For D, < 0, we have

max ¢(3,X)= max max max gm, (N, d)
lled”||F<n 7 0<ne<n 0<ne, <ne [[dlla<1 ™ 20 T

where
Cy(llyr — X182 + ne,d" B)?,
if |ly2 — XaBll2 < nl|Bl|2,

Gy (Ners B, d) = Cy(llyn — XuB|2 + 7761dT18)2

+Dy(lly2 — X2Bll2 — /02 — n2,d"B)?,

otherwise,

\

Proof. Please refer to Appendix C.6.
From the above lemma, we have the following proposition.

Proposition 10.

A~

max ¢(B3, X) = maxngb(ncl,ﬂ)7

ledT || F<n 0<ne; <
where

gbl(ncn/@)v lf||y2 - XQ/BHQ < 77”5”27
gb(ncmﬁ) =

Gby (Ney, B), otherwise.
90s (1e1: ) = Collyr = X182 + e, [1B]12)°,

o2 (Mer> B) = [Collyr — X1Bll2 + 11, [18]2)*

+D,(lys = XaBlla — /w7 — 12, 18112)?]

Proof. Please refer to Appendix C.7.
2) Sub-problem of h(8, X)
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Following similar process in analyzing the sub-problem of g((3, X ), we have that

e if (4, > 0, we have

max h(B,X): max ha(n01716)7

lledT || F<n 0<n¢, <7
where 14 (1, 8) = Cr(l|yr — X182 + e, |1812)* + Di(l|y2 — X282+ /n* — 2 118ll2)%

« if (), < 0, we have

max h(B,X): max  hy(ne,, B),

lled™ || F<n 0=<7¢y <7
where

hb1 (nculg)a if ”yl - X1/3”2 S 77“/6”27
h’b(nClH@) =

hoy (1, 3), otherwise,
hbl(ncnﬁ) :Dh(’|y2_X2B||2+ 772_7721”/6”2)27
oy (s B) = C(llyr — X182 — e, 18]2)°

+Dp([lyz — XoBll2 + /1?02 [18]12)*.

Transformation of the minimax problem
After solving sub-problems above, the minimax problem (4.21) can be transformed to a minimax
problem for one vector and one scalar with a piece-wise max-type objective function. For example,

if Dy > 0 and C), < 0, (4.21) can be represented as

min max max{gu.(1e,3), h(ne,, B) }- (4.22)

B 0<ne; <n

Then we have the following two lemmas characterizing the nice properties of the sub-functions

in the objective function.
Lemma 15. If the norm of B is bounded, i.e. ||3||2 < Bpg, then we have

(1) ga is weakly-concave in 1., for any given (3 and weakly-convex in 3 for any given 1., ;
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(2) hy is a piece-wise function and each piece (hy, or hy,) is weakly-concave in 1., for any given

B and weakly-convex in 3 for any given 1., .
Proof. Please refer to Appendix C.8. [

Lemma 16. For any given 3, ga, gv,, ha and hy, are all unimodal functions with respect to 1., that

increase first and then decrease.
Proof. Please refer to Appendix C.9. [

Moreover, to deal with the piece-wise structure in the objective function, we further transform
the minimax problem to several sub-problems. For example, (4.22) can be transformed to three

sub-problems:

(1) mﬁln ognli}én oy (Ners B),

s.t. Ga(Ner s B) < hoy My, B), [|lyr — X B2 < 1l B]|2;

2) mﬁm oggi};n i, (Ney» B),

s.t. ga(nqa/@) < hb2(nclaﬁ)> Hyl - X1/6||2 > nHIBHQ

(3) mﬁin maxnga(ncl,ﬁ), S.t. Ga(Mey, B) = ho(ne,, B).

0<ne, <

For the sub-problem 1), the maximization on 7., can be solved exactly and the saddle-point
can be easily derived.

For sub-problems 2) and 3), we will ignore the constraints first and derive the saddle-point
of the minimax problem, and then check the constraints. For example, for sub-problem 2),
we assume that ||3]| < Bg, which is reasonable in reality, and have that: the feasible set
{B :||1Bll2 < Bs} x[0,n] is convex and compact; the objective function is weakly-convex-weakly-
concave by Lemma 15; the saddle-point exists by Lemma 16. Based on those properties, we are
able to apply a first-order algorithms proposed by [157] to solve the non-convex non-concave min-

imax problem as in sub-problem 2) and derive the nearly e-stationary solution. In particular, define

Z ={B :|IBll> < B} x [0,7] and the mapping H(2) = (Iph,(1c, B): e, [~ oy (ey, B)])
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where z = (3, 1, ). The minty variational inequality (MVI) problem corresponding to the saddle-
point problem in sub-problem 2) is to find z* € Z such that (¢, z — 2*) > 0,Vz € Z,V€ € H(=z).
Then the saddle-point problem can be solved through the lens of MVL. In [157], the proposed in-
exact proximal point method consists of approximately solving a sequence of strongly monotone
MVIs constructed by adding a strongly monotone mapping to H(z) with a sequentially updated
proximal center. Thus, the complex non-convex non-concave minmax problem can be decomposed
into a sequence of easier strongly-convex strongly-concave problems.

In comparison to [157], our focus is on investigating fairness issues in predictive models while
ensuring robustness, rather than a general analysis of weakly-convex-weakly-concave minimax
problems. Consequently, the proposed transformation and corresponding analysis are crucial in our
work. Furthermore, the problem setup here differs from that in [157]. In our transformed minimax
problem (4.22), the objective function is a max-type function, which is not an exact weakly-convex-

weakly-concave minimax problem.

4.4 Numerical Results

In this section, we provide numerical examples to illustrate the results in this chapter. We conduct
experiments on a synthetic dataset and two real-world datasets:

1. Synthetic Dataset (SD): it contains 200 rows for two groups with 5 features. We suppose that
the numbers of samples in two groups are the same, i.e. m = n — m = 100. For two different

groups, the samples are generated by

Y1 = X1Bo1+c1+ € yo= X082 + €, (4.23)

where elements in X; and X, are uniformly distributed on (0,10), By; = [1,1,1,1,1]7, ¢; =

[1,---, 17, Boo = [1.1,1.1,1.1,1.1,1.1]" and noise € ~ N(0,1). Under this setup, we verify

o .. 1 1
the assumption in Propositions 7 and have that > > 72, = max { (ntDoxyp (4 Doxy.p } =

m(m+1) ’ (n—m+1)(n—m)

15.982 while the mean energy of a sample is np = 29.08, which indicates that the assumption on
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7) is reasonable.
2. Law School Dataset (LSD) [180]: it contains 1,823 records for law students who took the bar
passage study for law school admission, with gender as the sensitive attribute and undergraduate
GPA as the target variable. The dimension of features is 8. There are 999 samples and 824 samples
for two genders respectively. For the assumption on 7, we have 1 > 7,,,;, = 2.44 and np = 2.86.
3. Medical Insurance Cost Dataset (MICD) [181]: it contains 1,338 medical expense examples
for patients in the United States. In our experiment, we use gender as the sensitive attribute, charged
medical expenses as the target variable, and consider 5 features. There are 662 samples and 676
samples for two genders respectively. Then we verify the assumption on 7 and have that n >
Nmin = 1.58 with np = 2.34.

For comparison purpose, we will introduce an unrobust fair regression model that does not
consider the existence of the adversary and minimizes the objective function with respect to the

original dataset { X, y, G'}. In particular, the unrobust fair model is

Biair = argmgnf(ﬁ,X,y, G)+ ) \F(B.X,y,G).

Moreover, for the rank-one attack scheme, we also compare our proposed adversarially robust
model with other fair regression models, including the fair linear regression (FLR) model and fair
kernel learning (FKL) model [182]. The optimal regression coefficient for each model is derived by
fitting the model on the original dataset { X, y, G}. To obtain the performance of each model on
the poisoned dataset, we apply the derived optimal regression coefficient on the poisoned dataset,

{X .9, G}, and calculate the MSE as well as the group fairness gap.

4.4.1 Attack with one adversarial data point

Firstly, for SD, by choosing 1 = np, we explore the performance differences among the proposed
robust fairness-aware model, unrobust fair model and traditional linear model (ordinary linear re-

gression model). In Fig. 4.1(a) and Fig. 4.1(b), following (4.23), we construct 500 datasets relying
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on the randomness in €. For A = 0.2 < min{%, ”;LT;FI} (which implies Cy, > 0, Dy, > 0), ac-
cording to Theorem 5, the best adversarial point is ¢y, = nm. As shown in Fig. 4.1(a), the group
fairness gap for the proposed robust fairness-aware model is smaller than that of the unrobust fair

model, while the measure of goodness of fit R? remains similar. In the meantime, since Bqir has

taken the fairness issue into consideration, its performance is better than the traditional linear re-

gression model. Likewise, for A\ = 0.8 > max{%, n—metl} (which implies Cp, < 0, Dy, < 0),
according to Theorem 5, the best adversarial point will be in the form ¢y L b or &y, = nﬁ based
on the value of g;(35,,) and h;(3,,),i = 1,2. As shown in Fig. 4.1(b), the performance results are

similar to the case A = 0.2.

Group faimess gap
Group fairmess gap

(@) \=0.2 (b) A =0.8

Figure 4.1: SD: comparison of robust fair model, unrobust fair model and traditional linear model
(attack with one adversarial data point).

Secondly, we explore the effects of the energy constraint parameter 7 as well as the trade-off
parameter A on two real-world datasets, LSD and MICD. We have three energy levels, 7 = i,
n = np and n = 1.5np. As shown in Fig. 4.2, when 7 is small, under different choices of A,

MSE and the group fairness gap for the robust fairness-aware model are both smaller than those

oooooooooooooooo
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—o—o—0—0—©" o2
oooooooooooooo -

Group fairness gap
MS|
e
Group fairness gap
—%

0 025
04 08 08 1 12 14 o

(a) LSD: MSE v.is. A (b) LSD: Group fairness (c) MICD: MSE v.s. A (d) MICD: Group fairness
gap v.s. A gap v.s. A

Figure 4.2: Effects of A and n on MSE and the group fairness gap (attack with one adversarial data
point, samples with energy greater than 57p are removed).
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Group faimess gap
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(@) LSD: MSE v.s. A (b) LSD: Group fairness (c) MICD: MSE v.s. A (d) MICD: Group fairness
gap v.s. A gap v.s. A

Figure 4.3: Effects of A and n on MSE and fairness gap (rank-one attack, samples with energy
greater than 100 are removed).

for the unrobust fair model, which indicates that the proposed model has better robustness and
achieves better performance in both accuracy and fairness. However, for MICD, when n = 1.57p,
the MSE for the robust fair model becomes larger than that of the unrobust model as the power of

the adversarial data point is large, which in turn affects the prediction performance considerably.

4.4.2 Rank-one attack

In the first experiment, we explore the effects of the energy constraint parameter 7 as well as the
trade-off parameter A. We carry out the attack with three different energy levels, n = 0.20, n =
0.50 and y = 0.80, where o is the smallest singular value of the feature matrix of the training data.
As shown in Fig. 4.3, we first observe that MSE and the group fairness gap for the adversarially
robust model are almost always smaller than those for the unrobust fair model, which illustrates
that the proposed robust model achieves better performance in both accuracy and fairness. We also
notice that the performance of the adversarially robust model differs under different choices of .
In particular, as A increases, the value of MSE also increases because we care more about fairness
and give more weight to the fairness-related term in the objective function. Especially, as shown in
Fig. 4.3(c), when the energy constraint is comparable to the smallest singular value of the feature
matrix (7 = 0.80) and the trade-off parameter ) is large (A = 5.2), the MSE of the robust model
becomes larger than that of the unrobust model as the limitation on the adversary is small, which
in turn affects the prediction performance considerably.

In the second experiment, we compare our proposed adversarially robust fair model with other
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fair regression models and ordinary least square (OLS). In Fig. 4.4, we provide the performance of
different regression models on the original dataset as well as the poisoned dataset with n = 0.50.
For the unrobust fair model and adversarially robust fair model, since the choice of the trade-off
parameter A\ will affect the model performance, we explore models with various choices of A from
the range [0.5, 1.2]. As shown in Fig. 4.4(a), on the original dataset, the overall performance of FKL
is better than other models, since it is a nonlinear model based on kernels. FLR has similar perfor-
mance with the proposed unrobust fair regression model (with certain choice of \). Moreover, for
the unrobust fair model, it is observed that as A increases, the group fairness gap decreases while
the MSE increases. However, on the poisoned dataset, as shown in Fig. 4.4(b), the performance
of FKL and FLR has been severely impacted. In particular, for FKL (which is the optimal model
on the original dataset), the value of the group fairness gap has been increased from 4.3 x 1073
to 2.8 x 1072, and the value of MSE also increases. Similar observations can be found for FLR.
Besides, for the unrobust fair model, we observe a concave curve in the group fairness gap v.s.
MSE plot, which is convex in the original dataset. Thus, we conclude that fair regression models
are vulnerable to adversarial attacks and may not preserve their performance in adversarial envi-
ronment. On the contrary, for the adversarially robust model, the curve between the group fairness
gap and MSE locates in the lower left corner and is convex. Thus, by appropriately choosing A, a

model that performs well in terms of both fairness and prediction accuracy can be obtained.

Group faimess gap
o ©

247 o248 0249 025 0265 02655 0266 0.2665 0.267 02675 0265 0.2685 0.269
MSE MSE

(a) Original dataset (b) Poisoned dataset

Figure 4.4: MICD: Group fairness gap v.s. MSE (rank-one attack).
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4.5 Conclusion

In this chapter, we have proposed a minimax framework to characterize the best attacker that
generates the optimal poisoned point or rank-one attack for the original dataset, as well as the
adversarially robust fair defender that can achieve the best performance in terms of both predic-
tion accuracy and fairness guarantee, in the presence of the best attacker. We have discussed two
types of attack schemes and provided the corresponding methods to solve the proposed nonsmooth
nonconvex-nonconcave minimax problems. Moreover, we have performed numerical experiments
on synthetic data and two real-world datasets, and shown that the proposed adversarially robust
fair models can achieve better performance in both prediction accuracy and fairness guarantee

than other fair regression models with a proper choice of \.

107



Chapter 5

Conclusion and Future Directions

In this chapter, we summarize contributions presented in this dissertation. In addition, we discuss

potential directions for further exploration.

5.1 Summary and conclusions

This dissertation has provided an exploration into the multifaceted challenges and opportunities
in ML algorithms. Three overarching concerns, namely security, privacy protection, and fairness,
have been addressed to advance ML models in different scenarios.

In Chapter 2, we have investigated the adversarial robustness of hypothesis testing rules. We
have formulated it as a minimax hypothesis testing problem, in which the adversary aims at de-
signing attack strategies to maximize the error probability, while the goal of the decision maker is
to design decision rules to minimize the error probability. We have shown that the formulated min-
imax problem has a saddle-point solution, which reveals the structures of the optimal attack and
defense strategies. Under certain assumptions, we have derived an upper-bound on the prediction
error, which only depends on the PMFs before the attack. Afterwards, we have designed a specific
attack scheme and have shown that the designed attack scheme achieves the upper-bound. In this
way, we have characterized the optimal attack and the corresponding optimal decision rules for

both hypothesis-aware and hypothesis-unaware adversary models.
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In chapter 3, we have proposed a general framework to design privacy-preserving mapping to
achieve privacy-accuracy trade-off in the IAS scenarios. We have formulated optimization prob-
lems to find the desirable mapping. However, the formulated problem is a complicated non-concave
problem with multiple constraints. To deal with that, we have transformed the optimization prob-
lem into a form that has three dominating arguments with certain nice concavity properties, through
various transformations and variable augmentations. Then we have designed an iterative method
to solve the complicated optimization problem, and have proved the convergence of the proposed
method under certain assumptions.

In chapter 4, we have proposed a minimax framework to characterize the best adversarial at-
tack as well as the adversarially robust fair model that can achieve the best performance in terms of
both prediction accuracy and fairness guarantee. We have discussed two types of attack schemes
and provided the corresponding minimax problems. However, the proposed minimax problems
are nonsmooth nonconvex-nonconcave, which may not have a local saddle point in general. We
have carefully examined the underlying structure of the inner maximization problem and the outer
minimization problem, and then exploited the identified structure to design efficient algorithms. In
particular, for the attack with poisoned data point, when solving the inner maximization problem,
we have dealt with the non-smooth nature of the objective function and obtained a structure that
characterizes the best adversary. We have then analyzed the minimization problem by transforming
it to four sub-problems where each sub-problem is a non-convex quadratic minimization problem
with quadratic constraints. For the rank-one attack scheme, we have transformed the maximization
problem into a form with five arguments, four of which can be solved exactly. With this trans-
formation, the original problem has been converted into several weakly-convex-weakly-concave
minimax problems, which are approximately solvable using existing algorithms. Through numeri-
cal examples, we have shown that by properly choosing the trade-off parameter, the robust model

can achieve desirable performance in both prediction accuracy and group-based fairness.
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5.2 Extensions
The research in this dissertation can be extended in the following directions.

* Adversarial robustness: While our investigation into the adversarial robustness of hypoth-
esis testing rules in Chapter 2 has provided valuable insights, the assumption of known un-
derlying distributions may not hold in practical scenarios. Future work should extend this
analysis to situations where the true underlying distributions are approximated or entirely
unknown to both the attacker and decision-maker. In practical applications, there are cases
where we have some knowledge of underlying distributions, but it’s only an approximation
due to data collection or modeling limitations. In such instances, the developed methods
should account for distributional uncertainties and their effects on adversarial attacks. One
promising approach to address these challenges is to utilize robust optimization methods.
These techniques enable us to address a wider range of scenarios, even when distribution in-
formation is uncertain or hidden. By embracing robust optimization, we may design optimal

attack and defense strategies even in the presence of distributional ambiguities.

* Fairness in Adversarial Environments: Chapter 4 of this dissertation has illuminated the
intricate relationship between adversarial robustness, standard accuracy, and accuracy-based
fairness measures. However, it is unclear whether such a trade-off is inherent, even in the
linear setting. Consequently, there is a pressing need to understand the fundamental limits of
adversarial attacks to fair machine learning models and to design new fairness-aware models
that can withstand adversarial attacks and maintain robustness in adversarial environments.
While this dissertation has primarily focused on the regression problem, classifiers are more
commonly employed in decision-making tasks. However, the fairness measure in such tasks
is often non-differentiable with respect to the model parameters, posing challenges in analyz-
ing the impact of adversarial attacks. Furthermore, aside from devising specific adversarially
robust fair models, it is vital to comprehend the impact of adversarial attacks on the model’s

performance and to analyze how enforcing robustness influences the fairness measure in con-
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trast to standard training. To explore the impact of adversarial robustness to fair classifiers,
we may initiate our investigation with a Gaussian mixture model and linear classifiers. In the
absence of an adversary, unfairness in classification problems often arises from imbalances
between different classes. However, when an adversarial attack is introduced, the impact
of enforcing adversarial robustness can be divided into two parts: the first part stems from
the inherent constraints of adversarial robustness itself, leading to the degradation of stan-
dard accuracy due to changes in the decision boundary; the second part may be attributed
to the class imbalance ratio between the two classes under consideration. Additionally, it
is also important to quantify the robustness of fair models. Specifically, we may design a
framework that measures the model’s robustness against adversarial attacks performed on
the training data. By assessing the maximum change in any fairness measure, we can gain
insights into the model’s robustness against adversarial attacks. If the presence of poisoned
training samples does not significantly alter the disparity in unfairness, it indicates a higher
level of robustness. Through an in-depth analysis of the impact of adversarial attacks on fair-
ness, we may enhance our understanding of the vulnerabilities and sensitivities inherent in
fair machine learning models. These insights will be instrumental in the development of fair

machine learning models that are robust to adversarial attacks.

111



Appendix A

Appendix of Chapter 2

A.1 Proof of Lemma 1

We first prove (2.14):

PE(AvB7t*> - _[PF(pOaAat*)+P]M(p1aB7t*)]

1
3 Z |90, — q1.4] (A.1)

1:90,:<q1,i

B 1 1
= E—ZZ|QO,1—Q1¢|-
i=1
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Here, (a) is true to due to the form of t* specified in (2.9). We now show (b) is true:

0= Z(QO,i — Q1)
i=1
— Z (90: — q1.4) + Z (q0.: — q1.4)

1:90,5>q1,i 1:q0,i<q1,i
= E |QO,z‘ - Q17i| - E |C]0,z‘ - C]1,z'| )
1:40,i>q1,i 1:90,i<q1,i

which implies

Z |90, — quil = Z |90, — qu.]

1:90,i>q1,i 1:90,i<q1,i

1 n
) Z |90, — qu.il -
i=1

We now prove (2.15). Using step (a) of (A.1), we have

I 1
Pp(A,B,t*) = 5 — 5 Z (91 — qo.i)

2 2.
2:90,i<q1,;
1
) E q1i + E q1i — § (91 — Qo)
_iZQO,iZqLi 1:90,:<q1,i 1:90,:<q1,i
1
=5 E q1,i + E 1+ E qQo,i
_iIQO,i>Q1,i 1:90,i=q1,i 1:90,:<q1,i

I .
D) Z min{qo,i, q1,i}-
i=1
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A.2 Proof of Theorem 2

ForV(A, B) € A x B, we have

J
Fi(A,B) =1+ me{@l,i — qo.i), 0}

=1

a

J
< 1+ Z(QM — qo,i)
z;1 ;
=1 +qu,i - ZQO,J'
i=1 i=1
J
- (Z Ppoi — Koj + ]O,j>

=1

—~
Na

J
= 1- Z(po,i —pri) + Koy — Kij+ Ly — loyj,

i=1
(b) J J
< 1- Z(po,z‘ —p1i) + Z Po,i

=1 i=max{1,j—d+1}

min{j+d,n}

=+ Z D1y
i=j+1

j—o j+é
= 1- Zpo,i + Zpl,i = G;(po, p1), (A.2)

i=1 i=1

Here, the equality in (a) holds when ¢;; — qo; < 0,1 < 7 < 7, inequality (b) comes from the
natural restrictions on /, K, in which the equality holds when Ky ; — Iy ; = Zgzmax (1,j—5+1} Poi»
and Il,j — Kl,j = Z?;i?ijl—i_dn} pl,i'

Note that 2Pg(A,B) = F,(A,B) < ... < F,(A,B) < ... < Fy = 1. As (A.2) holds for
VA,B € Q, wehave I},(A, B) < Gj(po,p1), V1 < j < n. Therefore,

Fm(Aa B) S min {17Gj(p07p1)}7

1<j<m

Fn(Aa B) <  min {17Gj(p07p1)}'

1<j<n
Let j* = argmini<;<, {G;(po,p1)}. If Gj«(po, p1) < 1, we have F,,(A, B) < Gj-(po, p1)
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and the equality is achieved when

* «(A, B) = G-(po, p1), which is equivalent to

Qi —qo; <0,1 <3< 3%,
j*

KO?]* - IO?]* = Z p07i7

i=max{1,j*—6+1}
min{j*+d,n}

Ly —Kig= Y, pu

i=j*+1
. Fi(A,B) = F;-(A,B),j* <k <n.
If Gj«(po,p1) > 1, we have F,,(A, B) < 1 and the equality is achieved if

« F(AB)=1,1<i<n.

A.3 Proof of the designed attack matrices achieving q,, q;

We will calculate the PMF qq, ¢; achieved by the attack matrices (A, B) designed according
to (2.22) and (2.23) for columns 2, - - - ,m, and according to (2.22) and (2.32) for columns m +
1,--- ,n. We will show that these satisfy the desired conditions specified in Section 2.2.3.

Forj =1,

1+46

doq1 = E pO,iAi,l
i=1

= min{po,h @0,1}

1+46 i—1
+ Z min{po,;, max{0, go1 — Zpo,k}} (A.3)
i=2 k=1
@ .
= 4qo,1,
146 145

qo1

Zpl,iéi,l = Zpl,i-
i=1 i=1
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Here, (a) is true because 1) if po;1 > do1, then min{po1,do1} = §Go1 and max{0,go1 —

;;11 pox} = 0, which indicates go1 = Go.1; 2) if po1 < Go 1, then

146 i—1
min{po 1, o1} + Z min {po,z‘, max {0> o1 — Zpo,k}}

=2 k=1
145 i—1

= Po1+ Z min {pom max {07 o1 — Zpo,k} }
=2 k=1

= min{po2, max{0,qgo1}}

1+6 i—1
+ Z min {po,i, max {0, do,1 — Zpo,k}}

i=3 k=1
= miﬂ{pom (?0,1}

146 i—1
+ Z min {pO,i7 max {07 doq — Zpo,k} } : (A.4)
k=1

i=3
Note that (A.3) and (A.4) are in the same form. Then by continuing this process, we will have
qo,1 = qo,1-

For 2 < j < m, under (A, B), we have

j+o
Q= E pLiBij = p1js,
=1

46 A j+6 L
G0 =Y poidi; = min {po,z‘(l =3 Ay,
i=1 i=1

k=1

i—1 7j—1
max {qh,j =) pox (1 =) Ay 0}} (A.5)
k=1
(b)

= 4o,y

<

in which (b) can be derived using the similar steps discussed in j = 1. Specifically, for : = 1, the
index term in (AS) 1S min {pO,l(l — Z?c;ll Al,k)) max {qAOJ, O}} pr071<1 —Zi;ll Al,k) 2 qAOJ, we
have ¢ ; = o ; directly. On the other hand, if p; (1 — Z?ﬁ;ll fllk) < qo,;» the index term for 7 = 1
ispo1(1— Zi;ll /Allvk), which will cancel out with a term in ¢ ; — 22;11 Dok (1 — Zi;ll Akt) and

we will have ¢ ; = o ; after a series of cancellations.
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For 7 € Ry, since the formula of fl” stays the same, qp ; = ¢o ; still holds. Under B” suppose

[ is the smallest component with Bel,j > (), then we have

j+4
Q= E p1iBi
=1

j+6é j—1 il
= Z min {pu(l — Bik),q1; — Zpl,kBk,j}
i=1

k=1 k=1
j+6 j—1 i—1
= Z min {pl,i(l — Big), 41 — ZPl,kBkJ}
i=l k=1 k=1
j—1 -1
= min {pl,l(l — > Bix), Gy — Zpl,k:Bk,j}
k=1 k=1
j+6 j—1 i-1
+ Z min {plz(l— Bik), G, _ZkaBkJ}
i=l+1 k=1 k=l
j—1
= min {Pl,l(l - Z Bi), Ql,j} (A.6)
k=1
j+6 j—1 i—1
+ Z min {p1 (1= Bik), 41, Zpl,kBkJ}
i=l+1 k=1 k=l
© .
= i,

in which (c) can be proved by considering two different cases. First, if p; ;(1 — Zi;ll l%l,k) > 1 s
in (A.6), we have min {pys(1 = X023 Bua)sdng} = dus = puBiy and gy — by = 0,
which implies élJrl,j = 0 and thus éi,j = 0,n > ¢ > [ + 1. Therefore, (c¢) holds. Second,
if pr(l = S22 Bis) < dugs in (A6), we have min {pyi(1 = 32073 Bug),ds f = pia(l -
Zi;ll Blk) = leBl,j, which will cancel out with a term in ¢; ; — Z;;ll pl,kBk,j and thus after

a series of cancellation, we have gy ; = qo ;.
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A.4 Proof of Theorem 3

For j = m — 9, we have

F._s(A)
m—4§ n
= qi,i + Z qoi
=1 i=m—0+1
m—§

= 1= Z(po,z' —p1i) + Kom-s — Kim—s
i=1
+]1,m—6 - IO,m—é

m—34 m—0
(a)
< 1= Z(po,z' —p1i) + Z (Poi — p1s) +0
i=1 i=m—26+1
m—29
= 1= Z (Posi — p1,i)
i=1
= Em—a(Po,pl)-
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ForVm —64+1<j<m+J,VA € A, we have

J

Fj(A) = Fns(A)+ Z min{ (g1, — qo;),0}
i=m—0+1
®) /
< Fns(A)+ Z (91 — o0.:)
i=m—0+1
J n
= ZQI,i+ Z Qo,i
i=1 i=j+1
J
= 1+ Z(Ch,i — qo.i)
i=1
J
= 1- Z(po,z‘ — 1) + Koy — K j
i=1
(©) j min{j,m}
< 1- Z(po,i —pra) + Z (Poi — 1)
i=1 i=j—6+1
min{n,j+d}
+ Z (1 — Po,i)
i=max{m+1,j+1}
j—6 min{n,j+4d}
= 1= Z(po,i —pri) + Z (p1,i — Po,i)
i=1 i=m+1
= Ej(p()?pl)’

in which the inequalities in (a), (c) follow from the obs
holds when ¢ ; < qp;,m—0+1<i<j.

Since the above inequality holds for VA € A
Fris-1(A) < ... < F,_s5(A), then

IA

m—6<j<m

min
m—0<j<m+4

ervation about I, K and the equality in (b)

and we have shown that F,,,5(A) <

min {Ej (p07p1>}’

{Ej(Po,PO}-

Furthermore, if j* > m — §, Fi,45(A) < E;«(po, p1) and the equality is achieved when
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1)
m—4

Ko,m—5 - Kl,m—d = Z (po,z‘ - pl,i);

i=m—20+1
() ¢ < qoism—0+1<17 < 5%
(i11)

min{j* m}

KO,j* - Kl,j* = E (pO,i - pl,i),
i=j*—8+1
min{n,j*+46}

Lo = Tog- = > (Pri — Po.i);

i=max{m+1,j*+1}
(V) Fu(A) = F(A),j* <k <m+4.

If E;«(po,p1) > Em—s(po, p1), the equality is achieved when

Fi(A) = Eus(po,pr),m— 8 <i < m+3.
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Appendix B

Appendix of Chapter 3

B.1 Proof of Lemma 2

I(S;U) +Zp p(uly)Drr[Psyy || Psjul

= Z p(s, u, y) log (S|U)

p(s)

S,u,y

+Zp p(uly)p( gp(5|y)

& p(s|u)

9 5 up) g 210 4 o 20510
= 2 y[lg p(s) 1% )

S (s, log 2510 _ 15y,

” p(s)

ERTRT

where (a) uses the fact that S — Y — U is a Markov chain since given Y, S and U are indepen-

dent.
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B.2 Proof of Lemma 3

First, prove that F[Fyy] is concave with respect to Pgy. By applying Lemma 2, (3.1) can be

written in the following form,

FlPuy] = 1(S;Y) — BEyyld(y,u)]
- Zp(y)p(u|y)DKL[P5|y | Psu)- (B.1)

Note that 7(.S;Y") is a constant under our setup. Given Py and Py, Eyy[d(y, u)] is inde-
pendent of Pgy. Moreover, Pg, and Pg, are two independent vectors. For given u and y, we

have

y)
|u)

Di1[Psyy || Po] =Y p(sly) log iéi (B.2)
Since a log () is concave in z, (B.2) is convex in Pg, and ]—"[PU|Y] is concave with respect to Pgr.
Second, we prove that F[Pyy] is concave w.r.t Py when f is strictly convex. Note that P
only shows up in Ey ;/[d(y, )] and since f is strictly convex, taking the sum doesn’t change the
concavity and [Py y] is also concave in Py .
Third, we consider Pyy. There are |)| conditional distributions in the mapping Py, where
Py, and Py, are independent when y # /. Then we consider a particular row Py, and prove the

concavity. The Hessian matrix of 7 with respect to Py, is

9> Flp(uly)] ... OFPyy]
Ap(u1ly)? Ap(u1ly)Op(uje ly)
Hr =
Ap(upyly)Op(u1ly) op(upyly)?

Then we calculate each element in H . Assume that ¢ # j. Taking derivative based on the
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form in (B.1), we have

an[PUIY] _ Eyuld(y, )]
Op(uily)? Op(u;y)? ’
OPFPyy]  _, PEyuld(y,u)]
Op(uily)Op(u;|y) Op(uily)Op(u;ly)’
in which
PEyyld(y,u —p(u; —p(u;
aYU[‘( . )] _ ( ) |:f/(t) ( )2 B /(t) ( )2
p(uily) p(uily) p(uily)
_p<ui) " 2
—tf"(t }Zpyf t >0,
O ptuly] = PO )
PEyuldly. )] @,
Ip(uly)op(usly)
where t = p?fﬁi) and (a) is due to the fact that ¢ is independent of p(u;|y) when i # j and Py
is given. Then we have — ([P|U‘)§] < 0 and % = (. Thus, the Hessian matrix H r is a

diagonal matrix with negative entries, which indicates that the objective function F is concave in

Py, and the lemma is proved.

B.3 Proof of Lemma 4

We first ignore (3.7), (3.9) and solve the optimization problem subject to (3.8) only. We will then
check that the obtained solution satisfy constraints (3.7), (3.9).

For a u € U, the Lagrangian is

Lsj, = F[Psju| Py, Pu] + o (ZP(S‘U) - 1) ;

where « is the Lagrangian multiplier with respect to constraint (3.8) . Since Iy and Py are given,
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L), is a convex function with respect to Pgy,,. By taking the derivative, we have

OLsy _ 22, PY)p(uly)p(sly) e
Ip(su) p(slu)

which indicates

p(sfu) = =PIV (B.3)

Since ) p(sju) = 1, we have

Zp ) = Zzyp(y)p_(yy)p(SIy) .
— a = —ZZP p(uly)p(sly)
= —Zp y)p(uly) Zp sly)

= —Zp pluly) = —p(u).

Plugging the value of « into (B.3), we have

which guarantees the non-negativity condition in (3.7). It is also easy to check that this satisfies the
constraint in (3.9) exactly, preserves the consistency of different arguments and thus is the solution

to the Pg|; subproblem.
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B.4 Proof of Lemma 5 and 6

Note that for ¢ # 7,

P Mui)o(ug) — § 3007 6(uq)?

2
= —pp~(y) <0,
Ip(uily)?
0 2211 Aui)o(ui) — § 2211 5(“@’)2 —0
Ip(uily)Op(u;ly)
In Lemma 3, we have shown that % < 0 and % = 0. Hence, we have
7 K J

PLIPyy] _ PF[Poy]
Op(usly)*  Op(uily)?
O2L[Pyyy]

Op(uily)Op(u;ly)

pp’(y) <0,

=0,

and that the Hessian matrix H is negative-definite. Moreover, the constraint >, p(u;|y) =

1,Vy € ) defines a convex set and thus the sub-problem on Py, is a convex problem. Similarly,

8%L[Py] < 0 and 8%L[Py]

we also have - 9p(ui)9p(u;)

= (), which indicates that the Hessian matrix of £ with
respect to P is negative-definite. Combined with the fact that the constraint set is convex, the

sub-problem on Py is a convex optimization problem.

B.5 Proof of Lemma 7

First, note that /(S;U) < H(S), which is bounded. Thus, F[FPyy] is upper bounded if

Ey [d(y, w)] is bounded from above. Let t(y, u) = p’giT;). We have that

Byuldy,w)] = Y py)pluly) f(t(y, u))

: Flt(y, )
;p(y)p(w R
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where p(y)p(u) < 1. Since € < p(uly) < 1, we have that ¢(y,u) € [e,1],Vy,u. Since f is

[t y,w))

continuous, it’s natural to have =~ < +o00. Then Ey ;[d(y, u)] is bounded from above.

t(y,u)

B.6 Proof of Lemma 8

By the optimality of F;, we have

§
0=Veryg (P(tJJlryll’ PltJTylz’ PBH)

which implies

0=Vryg (P(ST;N PltJJlrylz’ PItJH) +AT

Then we have

Jas

_ t+1  pt+l  pt+l
o HVPU9<PU|1/1’PU\?J27PU )

—Vp,9 (Pttf\yla Pltflyz’ Pltf) ||§
o
ueld Op ()
_ag<P(t]|y17 Pztj\y2> P5)>2
apt(u) '
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(A=A —p (—p(yl)PéTyll —p(y2) P, + Pé“) :

(B.4)
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Given that f'(t)is [ #-Lipschitz continuous of ¢, we further have that for any given w,

Ip*(u) Op*(u)

= (v | () = ().

+0p(y2) [f’ (ptp(ﬁ;é)) B f’(%)}f

2
(ag(P(t]Tyll Pltfj\Lyé PtH) o 6g(PU|y1,P5y2,P5)>

272 pt(u) _ le(u)
< B [p(yl) p(ulyr) P (uly)
p'(u) P (w)

) | Sl T P )

T

t t+1 2
p'(u) P (u)
< 28%; |p(n)? ( -
f[ p'(uly) P (ulyr)
t t+1 2
p'(u) P (u)
+p(y2)° ( — : (B.6)
piuly2) P (uly2)
p'(w) P (w)  _ pt(wp' T (ulyr) —p" T (w)pt (ulyr)
where pr(ulyr) P i(ulyr) pt(ulyr)pt 1 (uly1) - Using the assumption that ;-0 (UIy) <+ e < 00
we have

pw)  pt(u)
pHulyr) P (ulyr)

< (1) 16 ()p (ulg) — P () )

€

To further bound |p*(u)p'™* (u|ys) — p™* (w)p(u|y1)|, we have

P (W) (ulyn) — P () (ulyn)
pt(u) — pt*+i(u)

_ t+1uIp”l(UIyl)—pt(UIyl)l

) e )
[P (ulyr) — p'(uly)|

= YT )]
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and

p'(w)p™ (ulyr) — p™ (w)p' (ulyr)

IN

1+

Ip* T (uly1) —p® (uly1)]

P (ulyr) — pt(uly)

= p'(u) + p'(uly)

!pt(U) —p"(u)|
[P (ulyr) — pt(uly)]
P (u) — p'(u)]

|p* () —p" ! ()|

[P+ (ulys) — p(ulyn) |

Moreover, min {

It (w)—p* T ()| 7 [P (ulyr)—p* (uly1)]

p'(w)p™ (ulyr) — p™ (u)p' (ulyr)

min{

P (u)p™ (ulyr) — pt (u)p! (ulyr)

Y

p(u) — p*i(u)

P (ulyr) — p*(ulyr)

}<2

— Y

and thus
p' (w)p" (ulyr) — ™ (w)p! (ulyy)]
< 2lp'(u) — p"H(w)] 4 20p" (ulyr) — p(uly)],
and thus
plw)  pHi(u)
pHulyr)  p(ulyr)
2
<3 [[p'(u) — p" ()| + [P (ulyr) — p*(uly)]] -
. . t u t+1 u
Similarly, for (pﬁélyl) — ptp o (é\y)z))’ we have
Plw)  p*(u)
pHuly2)  p(uly2)
2
<3 [[p'(u) = p"H ()| + [P (ulya) — p*(ulye)]] -
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Plugging (B.7) and (B.8) into (B.6) and (B.5), we have

HAt—l—l

- >

ueU
2
_0 (Pltflyl Pltflyg’Pt)
Ip'(u)

2@%( )Z{py1 16 () — 71 u0)

uel
" (ulyr) = p*(uly) 1)

+p(y2)?[[p"(w) — p" (u)]

+p ™ (uly2) — p' (uly2) 1)}

Al

(ag(Pt-i—l Pt+1 Pt+1>

Uly1? =~ Uly2?

apt+1 ( )

IN

< 2ﬁ2lf< ) > {2p(m1)” - (u))?
ueU

+(" (ulyr) — p'(ulyn))?]

+2p(y2)*[(p*(w) — p™* ()

0 ) — #(uly))?)}

2 2 ? t+1 2
— 4pn (—) S ()20 (wlyr) — p'(uly)
+p(y2) 2 (0" (uly2) — p'(ulys))?
+(p(1)? + p(y2)*) ' (u) — ' (u))?]

272 2 ? t+1 2
15703 (—) S 6 (k) — p (k)
+(" (uly2) — p'(uly2))?
+(p'(u) — pt”(U))z}

_ ZA(

+[7" —PUH2>7

IN

2

t+1 t
Pty = Pos |,

t+1 t
PU|y1 PU|yl
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272
where [y = 4% (%)2 — 10

€ €

B.7 Proof of Lemma 9

Since f'(t) is I;-Lipschitz continuous and ¢ = 2%_¢ (0, 1), we have that g is differentiable
and V Py, 9 Vv Py, 9 V p, g are Lipschitz continuous with constants [, , l,,,, [, for Py, , Puyy,, Pu
respectively. In particular, we have [, = [,, = % and [, = ﬁ—if Then we have

EI:P(ST@}l’ Plt]|y27 P[tj7 At] - E[P(t”yl? P[Z‘yg? P[t]’ At]

= FIPG s Pl POl = FIPo, Pl PO
+<Atap(y1)(Pz§|y1 - P(t]Tyll)>
+ 1P = p(y2) Pl = p(92) Pl 3
=112 = pln) Ly, — ply) Pl I

a)

= FIPi,.. Py

—~

\y2>P(t]] — ‘/——'[pgf]'yvpé\ygvpgf]

1
+(A p(y) (P, — Py, )
Ho(Py = p(y1) Poly, — p(y2) Py, )
p
p(y1) (PG, — Pipy)) + 5“27(341)(135@1 — P

p
+5 () (P, = Po, Iz + (P, — Fo

Ulya Uly ly1°

—p(y) A" + p(y1)p(Pyr — p(y1) Pty — p(y2) Py, ))
- 'F[PIZTZJIN Pltf\ywpm - ‘F[PItJIyNPE\yw Pltf]
p
+5 () (P, = Poj, Iz = (Pily, = P,

Ulyr Uly

VPUIMJ:[P;]—I’;’ Pé\yw Pltf])

[
SPn)” = %} 1Py, = P I (B.9)
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where (a) follows from the cosine rule and (b) follows from the fact that 7 = h; +ho+g, h; (PU‘%)
is linear in Py, and Vp, g 1is I, -Lipschitz continuous of Fyyy, .

Similarly, for the update of F,,, we have

E[PETyll ’ Pé—li_ylz’ PItJ; At] - ‘C[Pé—li_yll’ PItJ|y2> Plt]; At]
p !
= {579(5‘/2)2 - %} 1P, = P 2 (B.10)

For the update of Py and A, we have

£[Plthyll’ ngTylz’ Plt]H; AtH] - E[P(tJJlryll’ PltJTylzv Pltﬁ At]
= g(PiR PG = g(PH, PO) + (A PR — )
1
FEILBL — PEI - HIA - A

— 1, 1
IR — Pl — AT - A (B.11)

v

Combining (B.9), (B.10) and (B.11), we have

LIPly, Pyt A = L[Pyy, P A

p l
> [ otn = 2] 1R - Pl

p sy t+1 t 2
+ {Ep(yz) - 721 HPU|y2 - PU|y2 )
2

p—1, 1
T | e [

I\

1% l lA
Cotn = 2 = 2| 1Rt - P8

P 2 lyz In 41 t 2
+HW”—7—;M%W—%M2

2
2

p—1Ll, 1
G L

where (c) follows from Lemma 8.
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B.8 Proof of Proposition 2

1) If min{2p(y;)? — & — b, Ep(y2)? — bp _la ol %} > 0, according to Lemma 9, we have

2 2 P

LIPgy, Py A = L[Pyyy, Py, AT > 0.

2) Vt € N, L[P}y, Py, Pgy; A'] is upper-bounded.

Assume that there exists P/, such that P}, — (P[S‘Y)TPY = 0. Then we have

L[Py, Pl A']

= hi(Pl,,) + ha(Ph,) + 9Py, Py, P
+ 37 N (u)dt (u) — g 3 8t (u)?

= hi(Ph,,) + ha(Py,) + 9(Phy, Poyy, P5)
+(AYT[PL — (Prtﬂy)TPY]

~L1RY, — (Pl BT IRY — (Pl

IN

h’l(Pé )+h2(P5|y2)_._g(P(tJ\yl?PTtﬂygaP[E')

ly1

AP = (Phy) Py

hl(Pé\yl) + h’2<Pltf|y2) +g(PItJ\y17PE|y27P(t])

—
S
Nl

- hl(P[t]\yl) + hQ(Pltﬂyg) +g(Plt]\y17Pg]|y27P[§')

_<VPUg (P[t]|y17P(t]|y27Plt]) aPlt] - P(,]>

INE

hl(Plt]\yl) + hQ(P[t]|y2) +g(Plt]\y17P[t]|y27P[,])

Ly
+ 2P = P

A\

00,
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where (a) follows from (B.4) and (b) is true as V p, g is [,,-Lipschitz continuous.
3) {P}y, P, A} is bounded.

Since V¢ € N, P, Pgl ,, are PMFs, {Py)y}' is bounded. Similarly, { P;;}* is also bounded. For

ly1°

A', Lemma 8 can be generalized to the case where the iteration difference is k& and we have

Ulyr 9

Iy AN e

t+k t
+ HPU\W o PU

ly2

2 2
R e Ph|ly) ¥k € N*.

Thus, since { Py} and { Py }* are bounded, {A} is also bounded.

B.9 Proof of Proposition 3

When p is sufficiently large, e.g. p = min{pé'i l)fQ ST We will have min{4p(y,)* — %1 —
%, Ep(y2)? — %2 — %, e %} > 0. In this case, since L[Pyy, Py; A] is non-decreasing between

iterations and upper-bounded, there exists ¢, such that

oo > Z|£ [P(t]|y1’P5|y2’P5;At}

t=to

_r [pt+1 pi+ P[tj+1;At+1”

Ulyr’ = Uly2?
® [p l Ih] &
O e A DI T

t=to

P 2 by s - 41 ¢
+ [gp(yz) T2 T ?] ; HPU\yz = Py |,
=to

-1, 1 >
(B2 R - Rl
P
t=to
where (b) is from Lemma 9. Then as ¢t — oo, we have ‘ PéTyll — Pyl =0, PfJTylz L
2 2

0,and || P;"" — Pf||, — 0. By Lemma 8, we have ||A"™" — A’|[, — 0, which implies

P —p () Bty —p(y2) Py, — 0
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B.10 Proof of Proposition 4

Since {Fy, i, A'} is bounded, there exists a subsequence {Pf,jy, Pz, A%} that converges to
the limit point (Pyy, Py, A), i.e. im0 (Pfiy, B, A) = (Pyyy, Py, A). For the limit point
(PU|y, Py, f\), we will show that it is the stationary point of (3.11).

By the optimality of Py, , Pyy, and Py, we have

0 € 8pUly1]:[P st P[tj'yQ] p(yr) A

Ulyr?

+op(y) [P — p(y) Py — p(y1) Pl ),
0 € I, FIPi] — ply2)A"

+op(ye) [Py — (Pt )T Py,
0 € aPUg< Pyt P, Pb+1) + AP

_p <P s+1 p(yl)PUs‘le p<y2)PUs‘Zzl) .

Taking the limit along the subsequence and using Proposition 3, we have

~

0 € apU‘yl-F[pU\w] _p<y1)A
0 € apU‘yQF[pU\yQ] _p<y2)[\

0 € apr[pU] -+ A,
which indicates that the stationary condition is satisfied at the limit point (]5U|y, Py, A)
Now we check all constraints in (3.11) are also satisfied at the limit point.
e Since P vy € Puyy, Vs, and Pyyy is a closed set, we have PU|y € Puys
* By taking limit along the subsequence on both sides of the equation in Proposition 3 5), we
have
Py = p(y) Pupy, + p(y2) Pujys; (B.12)
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* Based on (B.12), we have p(u) > 0, Vu, and

> opw) = Y iluly)p(y)
= Y o) > ptuly) = > ) =1,

Y

which indicate that PU € Py.

B.11 Proof of Theorem 4

Since E[P(tm,, P}, A] is non-decreasing between iterations and bounded from above, we have

that ,C[Pé“ly,Pff,AtS] is also monotonic non-decreasing and upper-bounded. Then we have

limg_, oo E[ngy, PE,S, A] = C[Pmy, pU, A] as L is continuous for Py € Pyy, Py € Py, and

Theorem 4 is proved following from Proposition 4.

B.12 Proof of Lemma 10

The optimality condition of v-subproblem yields

0 :vvg (xllﬂ+1’ x12€+1’ ,UkJrl) . Ak + p (p(y1>l,11€+1

+p(ys )b — ka) - Vo (ka) + Vo (Uk) )
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As AP = AF — p (p(yl)xlfH +p(y2)x§+1 — ka), we have AF! = V g (w'f“, xé“, vk“) —

Vo (v*1) 4+ V¢ (v*) . Thus,

A — K
= [|Vog (2, 250" — Vg (2f, 25, o)
—V6 (v511) + V6 (o) + Vo (o) — Vo ()|
<3 ([[Vog (47, a0 Y) = Vg (af, 260" |
+[1Ve (o571 = Vo (H) 3 + Vo (+*) = Vo (o) |3)
<382 ([l — oAl + |47 - 253)

3 (24 2) [Joh T — b5+ 312 [k — oF 5.
B.13 Proof of Lemma 11

From the update of x;, we have

hy (250) + (25 — 2k, Vg (ub)
+ (A, p(y) 2t 4 plys)al — oF)
oot + plam)at o2~ A (2

> Iy (o) + (A ) = £ el

where u* = (2}, 2%, y*)" and ry = p(y1) 2} + p(y2)ah — v*.
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From the update of x5, we have

ho ($§+1) + <a:12‘“+1 — xé, Va9 (uk)>
+ (N, ply)ay ™ + ply)as ™ — oF)

—§Hp( Yk plya)abtt = oF||) = Ay, (a5t 2h)
> ha (5) + (A", p(y1) =i+ + plya)al — o*)

— = Hp )t plys)ak — oF|[2.

From the update of v, we have

g () + (N i) = S liren 3 — A (04,0
> g (p* aht o) - g [p(y) 2+ + plyo) 2kt — ¥

<Ak,p(y1) k+1 +p(y2):c§+1 . Uk> ’

where uF 1 = (xllc—H x12c+17 yk+1>T and Thy1 = (yl) k+1 4 p(y ) 12s+1 — k1
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Adding up the above three inequalities, we have

£ (@, 57 0 AR) = Ry (2£71) + oy (af7)
g () 4+ (A ) = Elma 3
> hy (27) + ha (28) + g (2T, 2571 0%) + (AF,ry)
— [t — 2, Va9 (W) + (a5 — 25, V9 (uF))]
+ Ay, (2 2Y) + Ay, (a5t 25) + Ay (VT 07)
—3 2l
= (a}) + o (25) + g (u) + (A% re) = 5 Il
— g (u") +g (21 257", o)
= (21 = at, 25" — 23,0), Vg (u))
+ Ay, (21 2Y) + Ay, (257, 25) + Ay (V1 07)
= L (wk) + g (25, 25 oF) — g (ub)
= (1™ = af, 25" — 23,0), Vg (uF))
B (70t + A, (57, 05) + A (4 0F)

l

(@)
> £ (wb) = 3 |[of* = k3 + |5+ = 251

0y 0
gt et =ty + 2 et - abl

2

o

‘|

— v

where (a) follows from the assumption 3) and the fact from [183] that if » : R® — R is a
continuous differentiable function where gradient V/ is Lipschitz continuous with the modulus
I, > 0, then for any z,y € R", we have |h(y) — h(z) — (Vh(z),y — z)| < 2||y — z||2, and apply

this result on g here.
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By using the fact that
1
(AP — AR ) = == [|ASFT = AR,
p
we have

£ (wk—l—l) _ ,C (wk)
= L (wkH) —L (x’f“, gkt gkt Ak)
i, (xlic-&-l,xl;-&-l?vk-i-l’ Ak:) _r (wk)

1 2

= A= AR

+L (xllﬁ+1,x12€+1,vk+1, Ak) _r (wk)

dp, — 1 312
(P = 2 ) ot =l

v

# (Pt 5 Jage g
# (G- B
e

which implies

k+1 ?’l?b k41 k|2
£ (w )‘7““ -t
l2
- () = 22 o - o)
0o, — 1 312
(P =22 ot =l
Opy — 1y 302
(P T -

O¢ 3l§+6l§ k+1 k|2
v (G -2 ) ot - o

v
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Appendix C

Appendix of Chapter 4

C.1 Proof of Theorem 5

We will prove the maximum value of L under two cases: Gy = 1 and G, = 2 separately. For

Go = 1, we will show ( max) Ly U max{g1(3), h1(8)}. Similarly, for Gy = 2, we will
€0,Y0,1),
st [I[=g yolll2<n

have that max Lo © max{g2(8), h2(B)}. Then (a) follows directly from (b) and (c).

(20,90,2),
st [lzd yolll2<n

Since the case Gy = 2 is similar to the case Gy = 1, we will only verify the equality (b).

Firstly, for the adversarial point, under the constraint that |27 | = ||[x, yo]||2 < 7, we have

0 < [l&5bl3 < n?||bll3 = n*(1+ [18]13)- (C.1)
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Then we notice that

(d)
Ly < max { (77 + 757) (L + [18I3)

+ (A + ) v — XaB8115
+ (=25 + 9) v — XoB805,

max{0, —m—+1 + n—+1}77 (1+18l3)

+ (_m+1 + n+1) Hyl Xlﬁ”%

+ (2 + -5 ly2 — XoB13} = max{g:(8), h(B)},

where (d) is from (C.1). Then we verify the achievability of the equality in (d). Define a

set Bi = {8 : q1(B) > m(B) = {8 : mlvn — XiBl5 — Zlly: — XoBl3

max {— 2(ml 5~ 3 /\(i B o } 2(14||8]3)- In the sequel, we will verify the achievability of

the equality in (d) with two cases: 3 € B; and 8 € BY.

Case 1: 3 € B;: By taking &, = nﬁ, we have

(o — @I + 13 — X081
g2 ~ X8

= [PA+IBIR) + s — XS]
—n_mHyz—X2ﬁH§

1 1 2 2
max { st - oL+ 81,

S

(C.2)

—~
~

where (e) is from the definition of set B;. Then we have L; = ¢;(3), where (f) follows from
(C.2). Therefore, for 3 € By, we have hi(8) < ¢1(8) and L; < g1(8), in which the equality can

be achieved for £y = nﬁ.
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Case 2: 8 € Bf{: On the one hand, if — < 0, by taking &, = UATS ” , we have

1
m—+1 )\(n—l—l)

1
—1(||y0 —z{ B3+ llyr — X18]3)
1
- ly2 — X203
-m
(9) 1 1
. 0 2 1 2
@, (C.3)

where (g) is from the definition of set B; and (h) is because —— < 0. Then we have

+1 B )\(n+1)

()
Ly = o5 A+ 1IBIE) + llys — X1 8113

+Hlyz = XoBIl3] — A [+ 1813) + Iy — X813

k
— Ly — X012 & hi(8),

where (j) is from (C.3) and (k) is true because - — )\(nl—i-l) < 0. Therefore, for 3 € B and
m+r1 /\(n+1) < 0, we have hi(3) > ¢1(8) and L, < hy(8), in which the equality can be achieved

for Lo — T]m

On the other hand, if ml > (, by taking x, to be a vector such that x, L b, we have

ey

1
—— (llvo = @ BII5 + lyr — X18]53)

1
————|ly2 — X85
n—m

1 1
= —— |y — XaB|5 - — X,BI3
m+1Hy1 18112 _mHy2 282
0 1 1 1., )
< — — — 1

< 0, (C4)
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where (1) is from the definition of set B;. Then we have

1

—
=

L Z 7 (lyn = X015 + llyz — Xa815)
1 1
—A m—HHyl_ 1ﬂ||2——||y2—X25H2
)
- hl(ﬁ)a

where (s) is from (C.4) and (t) is because > 0. Therefore, for 3 € Bf and —~

m+1 )\(n—i-l)

/\(n+1) > (0, we have hq(8) > ¢1(3) and L; < hy(3), in which the equality can be achieved when

Ty L b.

C.2 Proof of Proposition 7

First, we summarize the process of finding 3 as follows.

1. Check whether A = {o : My, — a1 (Mg, — My,) = 0} # 0. If A = (), there does not exist a
global minimizer in this case.

2. By randomly selecting an of € Ay, = {a : My, — (Mg, — Mpy,) > 0}, we solve the

optimization problem

min - k(B) =:1(8) — ajlgi(B) — hi(B)],
st.  Ci(B) = g1(B) — h(B) =0, (C.5)

where k() is positive-definite and the choice of o does not affect the solution to the problem.
3. For the solution to (C.5), check whether a; > 0, (4.11), (4.12) and (4.13) are satisfied.

Now we explore the details of steps 1, 2 and 3.

(n—i—l)vxl,p (n—&-l)vXQ’p
m(m+1) ’ (n—m+1)(n—m

In step 1, the assumption 7 > n?. = max{ )} will guarantee that
A is nonempty. To be exact, we denote A, ,, = {a 1 My, — (Mg, — Myg,) > 0}, Ayp, =

{a : Mgl - a<Mgl - Mhz) - O}vAhlgz - {O./ : Mhl - a<Mh1 - Mg2) - O}vAfuhz =
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{a : My, — a(Mp, — Mp,) = 0}, Ag,n, = {a: My, — a(My, — Mp,) > 0}. Then under

(n+1)vX1’p (n+1)vX2,p
m(m+1) ’ (n—m+1)(n—m)

Agpny #0,A000 0, Aginy # 0, Apigo # 0, Apyny # 0, Agon, # 0. The detailed proof is omitted

the assumption that n*> > 7%, = max{ }, we are able to derive that

here. Particularly, in this case study, we have A, ;,, C Aand A # .
In step 2, (C.5) is a strictly convex quadratic optimization problem with one quadratic equality

constraint, which has been discussed in [184]. Define the Lagrangian function of (C.5) as

L(B,v) = k(B)—~Ci(B)
= g1(B) — (o] +7)(9:(B) — hi(B))

= (1=al =7)an(B) + (af + ) (B),

where 7 is the Lagrangian multiplier. According to [184], the global minimizer 3 and the corre-

sponding multiplier v* of (C.5) satisfy first-order, second-order and the constraint conditions

* [¢) * oh
%15 = (1= af =N BP5 + (o +) %5525 = 0,

(C.6)
2L = 2[(1 - af —7)My, + (o] +7°)M,] = 0,
C1(B) = 0. (C.7)
From (C.6), we have
B = [(1 - ai - 7*)M91 + (O‘T + 7*)Mh1}71
(L =af =) Eg — (a1 +77)En]. (C.8)

Substituting (C.8) into (C.7), we derive an equation for v, K(v) = C1(8) = 0, whose root is 7*.
By plugging v = 7* back into (C.8), the exact solution for 3 is obtained.
For step 3, if C’Q(B) >0, 6’3(5) > (), then we have that:
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() ifaj+9*>0,8 = B is a global minimizer satisfying (4.11), (4.12), (4.13) with oy =

ar + 7%
2) ifa] +7v"=0,8= B is a global minimizer in Case 1 that satisfies (4.7), (4.8), (4.9);

(3) if ot +~* < 0, B = @ satisfies global optimality conditions for the minimization of /,(3)

with multipliers o) = 1 — af — 7", 0}, = a5 = 0.

C.3 Proof of Proposition 8

First, we summarize the process of finding 8 as follows.

1. Check AA = {(aq, ) : My, — a;(Mygy, — Mp,) — as(M,y, — Mg,) = 0} # (. Under

(n+1)UX1,p (n+1)vx27p
m(m+1) ’ (n—m+1)(n—m)

the assumption made in Proposition 7 that n* > n2. = max { }, we have

A91h1 = {a : Mgl_a(Mgl_Mhl) - O} 7é () and A91g2 = {a : Mgl_a(Mgl_Mgz) - O} 7é ®’
which implies AA # ().

2. Solve the optimization problem

3. For the solution to (C.9), check whether oy > 0, as > 0, and (4.17) are satisfied.
We now provide more details of steps 2 and 3. In step 2, define the Lagrangian function of

(C.9) as

L(B,7:) = k(B) — 1C1(B) — 72C1(B)

=(1-a] —mn—7)aB) + (o] + 7)h(B) + 12l (B).

Then the derived optimal solution 3 and the corresponding Lagrangian multipliers 1,75 satisfy
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first-order, second-order and the constraint conditions

s = (-ai-at-p2al,
ot + o0 Dt s 2020, <10
ZQ—B[; = 2[1—-a]—n — )M,
+(ai + )My, + 3 M, = 0, (C.11)
C1(B) = 0,C%(8) = 0. (C.12)

From (C.10), we have

0 = [(I—-0af =71 — )My, + (a] +77) My,
+sMy,] B — (1 —of — 4 — 73) By,

_(O‘T + VT)Ehl - 75E927

where E,;, = Cy, X{y1 + Dy, X3 yo. Then we have

* * * * * * -1
8= [(1 — 0 =7 — ’72)Mg1 + (Oﬁ + 71)Mh1 + 72Mgg]
(1 —=a] = — 1) Ey + (o] + ) En + 1Eyg,] .-

(C.13)

Plugging (C.13) into (C.12), we have

Ki(m,7%) = Ci(B) = 0, Kz(11,72) = Co(B) =0,

with solution (77,3 ). By substituting v, = ~;, 72 = 73 into (C.13), we obtain the solution for B.
For step 3, the verification process is given as follows.

(1) If o7 + 97 > 0 and 75 > 0, (4.14), (4.15), (4.16) are satisfied for o; = o] + V], 2 = 75
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and 3 = 3 based on (C.10), (C.11), (C.12). If we further have C(3) > 0, then 3 is a global

minimizer of (4.5).
(2) If af + 7 < 0, we could consider the minimization of /;(3).

(3) If 5 < 0, we consider the minimization of g»(3).

C.4 Proof of Lemma 13

Note that ¢; and ¢, are independent without considering the optimization on 7., . In particular, the
first term in ¢(3, X) only involves ¢; and the second term in ¢(3, X ) only involves c,. Thus, we

firstly focus on the first term in g((3, X ) and solve the maximization with respect to ¢;.

x max max |y — X108 — cid’ B3

a
Ney  ||dll2<1 [le1||l2=nc,

= max max max (d'B3)?| e
Ney  ||dll2<1 [le1||2=nc,

= max max (d'3)? max e,
Meq HdH2§1< 16) ||Cl||2:77c1 || 1||27

in which e; = f; — ¢y with f; = ﬁ(yl — X13). For the maximization problem on ¢, we have

max leill3, st |leills = ne,

= Héiln_Heng’ st || fi —ell3 =2 (C.14)

Although (C.14) is not a convex optimization problem, we can first investigate its KKT necessary
conditions. The Lagrangian function of (C.14) is L(e1,7e,) = —|le1l|3 + ve, (|1 — exll3 — nZ),

where ., is the Lagrangian multiplier. According to the KKT conditions, we have

OL(€1,7%e,) = —2€] — 27, (fi —e1)" =0,

1£1 — ealls = nc,.
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from which we can derive that the solution to (C.14) is e] = f; + IInﬁ f1, and the maximum value

is

2
n
max ||61||3=||61‘||§=<1+ o ) 12
ller l2=7e, | fill2

Then we focus on the second term in g(23, X ), solve the maximization on 7,,, and derive the

formulation for g,,, (1,, 3, d).

C.5 Proof of Proposition 9

We observe that g,,, (1.,, 3, d) is a quadratic function with respect to d” 3, i.e.
G (Ner, B, d) = A(d"B)* + B(d"3) + C, (C.15)
in which A, B, C' are three coefficients. In particular, we have

A = (Cy—Dg)nZ + Dgn, (C.16)

B = 2[Cyne,||yr — X182 + Dyne, ||y2 — X28]|2] > 0,

C = Cyllyr = X185+ Dylly2 — XI5 (C.17)
Since A > 0, —£ < 0and d*8 € [—||B|, |8]2], we can conclude that the maxima of

Gm, (d|ne,, B) is attained when d” 3 = ||3|| and the maximum value is

m C1» 7d
[nax g (N, B, d)

= Cyllyr — X182 + e, 18]l2)°

+Dy([ly2 — XoBll2 + /02 — 12 118l12)%,

which provides the form of g,,.
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C.6 Proof of Lemma 14

In this case, the analysis for the first term in g(3, X ) remains the same. However, for the second

term, we have

min min min |y, — X208 — cod” B|3
ey o< ez <ney

= min min (d’B)*> min |ey3,

Tea ||d||2S% | f2—e2ll2<ne,

where 1., = /12 — 02, fo = ﬁ(w — X,,3) and e; = f, — c,. Thus, the minimization on e, is
a convex problem. By exploring the KKT conditions of the minimization problem, we are able to
find the optimal solution. Particularly, the Lagrangian function of the minimization problem on e,

18
_ 2 2 2
L(e2,%e,) = llealls + e, ([ f2 — ealls — nz,),

in which 7., 1s the Lagrangian multiplier. By exploring the KKT conditions, we have

VL(ey,Ve,) = 262 — 270, (f2 — e2)’ =0, (C.18)
1 f2 — el <2,
Yeo (|| 2 — €213 — n2) =0, (C.19)

Ye, = 0.

By inspecting the complementary slackness condition (C.19), we consider two cases based on the
value of 7e,.

Case 1: 7., = 0. In this case, we have e; = 0 according to (C.18), which can be true when
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| f2ll2 < ne,. Moreover, note that

[ foll2 < ney = [ly2 — Xo8]2 < |d7B1e,

a)
< 5= 1Bll2me; = llBll2,

—

where the equality in () is achieved if d = .~z 8. Thus, if [|yo— X58([2 < 1]|3]|2, the minimum
)
value of ||e;]|3 is 0.

Case 2: 7., > 0. If there is no feasible solution in Case 1, we can conclude that || fa||2 > 7.,

Moreover, by (C.18) and (C.19), we have e; = %, Ne, = || f2 — €52 = ,Y*—l+1||f2||2, which
e e5
implies 7}, = —Hf:i‘Q —1, e = f, — —”;;2|2f2. Then we have  min  |es? = |le3]|2 =

| f2—e2l2<nc,

2
<1 — _H;;th) || f2||3- By combining these two cases, Lemma 14 is proved.

C.7 Proof of Proposition 10

Now we solve the maximization problem on d. Firstly, consider the case when ||ys — X23][s <
n|/B]|2. In this case, we notice that as long as 7., # 0, gm, (7, , 3, d) is a quadratic function for
d'3 with A = C’gng1 > 0, B = 2Cyn,, ||lyn — X1B]]2 > 0 and —% < 0. Thus, the maxima is

A~

attained when d” 3 = ||3]|» and the maximum value of g(3, X) is

95, (Mer, B) = Cy(llyr — X18]l2 + 1., 1812)*.

For 7., = 0, the attacker only changes the feature matrix of the second group and the maximum
value of g(3, X) can also be derived as g, (7., , B).

Secondly, consider the case when ||y, — X23||2 > 7| 8||2. In this case, gy, (1., , 3, d) can also
be written in the form of (C.15) with coefficients A, B, C. In particular, A and C' are defined the
same as (C.16) and (C.17), and B is defined as B = 2Cyn., |y1 — X182 —2D g0, ||y2 — X232 >
0. Since the coefficient of the quadratic term A can be positive, negative or zero, the maxima of g,

varies. By investigating into these three different cases, we have that when ||y2 — X23|2 > 7|82,
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the maximum value of (3, X) is go, (7., 3).

If A > 0, we have —2; < 0 and the maxima is attained when d” 8 = || 3|, with the maximum
value to be maxgj,<i Gm, (1, B, d) = Cylllyr — XaBll2 + e, 1812)* + Dy(lly2 — X282 —

Ne, || B||2)?, which implies that

MAXeqr | <y (8, X)
= MaxXg<y,<p MAXo<y,, <n. MAX|dfl,<1 G (Ter B, d)
= maxo<y, < [Colllyr — X182 + e, 18]]2)?
+Dy(|ly2 — XaBll2 — maxo<y.<y e, [|Bll2)?]

= maX()gncl <n Gby (7701 ) /6)7

where (a) follows from the fact that D, < 0 and ||y, — X282 > 0[|Bl2 > e, || Bll2-
_1 A 1 A
If A = 0, from the expression of A, we have 12, = gji” n?, which is feasible as ”:i" €

m n—m

Y
(0,1). Then since B > 0, g,,, is a linearly non-decreasing function in d” 3 and the maxima is

attained when d’ 3 = ||3||» with the maximum value to be the same as g, (7., , 3).

Otherwise, if A < 0, ¢, is a concave quadratic function in d’3 with —% >

A — D)oy llya— @) . . .
(i Jea 2= XaP < "CQWQHBHQ > ||B|2, in which (g) is from the fact that ||yo — X202 >

—(:2n 1)+ (2L )2 My

1||B]|2. Thus, the maxima is attained when d” 3 = ||3|| and the maximum value is also g, (7., , 3).

C.8 Proof of Lemma 15

Since the forms of g, gs,, Gb, s Pa, P, , Ty, are similar, we only show the weakly-convex-weakly-

%ga(ney, 2
concave property of g,. For n.,, we have %llm =2 (A + #) 1813 — 2D9%]|5\|2|’y2 —

m
X8|z Since D, > 0, as long as ||3]|2 is bounded, there always exist a constant p; < oo such

2
that % < p1, indicating that g, is weakly-concave in 7, .
c1
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For 3, we have

Tr(XTX
Z 209 |:nc1 (7701 - 2M> I + XfX1:|
| X1llr

Tr(XTX
+2D, {7702 (n@ _ 2M) I+ X7 Xz] .
| X2l »

9?ga(Ney, B)
03?

Since X; and X, are feature matrices with finite norm, there always exist po < oo such that

2
% = —poI, which indicates that g, is weakly-convex in 3.

C.9 Proof of Lemma 16

For g,, we have

Oga(ne, B) _
9:(11:8) _ o0 1|Bllallyr — X1Bllz + 2(Cy — Dy) e, |I1B)2

Oneq
Bll2lly2 — X282 = 0,

—2D, e

g Tey

which implies

Cg
(77c1||ﬁ||2 + m”’yl - X1ﬁ||2)

D
(el = 2 e~ X
g g
CyD
- _( A g+gx>2 1y = X1Bllzlly> — XoB]2- (C.20)

From (C.20), we note that 7., and 7., are inversely proportional. Since we also have 7721 + 7732 =n?,
Ne, = 0 and 7., > 0, there is a unique solution for (C.20) (which can be seen geometrically),

denoted as 7]:1. Moreover, we have
* 7, <1, left hand side of (C.20) is positive;

* 7, > 1), left hand side of (C.20) is negative.
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Thus, g, is a unimodal function that increases first and then decreases. The results can be easily

generalized to other sub-functions.
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