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Abstract

Sequential change-point analysis is a fundamental problem that arises in a variety of fields
including network monitoring, power system, climate modeling, finance, image analysis, etc.
Based on the sequential observations and additional information about observations, one of
the main goals of change-point analysis is to detect the change point as quickly as possible.
Beyond detecting the change, discovering what is the post-change status of the system is
also important. In this dissertation, we study two sequential change point analysis problems.
One is the two-stage sequential change point diagnosis (SCD) problem. The other is the
data-driven quickest change point detection (QCD) problem.

In the first part, we study the two-stage SCD problem in the Bayesian setting. In the
SCD problem, the data distribution will change at an unknown time, from distribution fy
to one of the I candidate distributions. We need to detect the change point as quickly as
possible and identify the distribution after the change as accurately as possible. In existing
work on SCD problems, one must detect the change and identify the distribution after the
change at the same time. In practice, however, after we detect the change, we may still have
the opportunity to observe extra data samples with low unit cost, which may help us to
make a more accurate identification decision. Motivated by this, we formulate a two-stage
SCD problem. In this problem, we have two stopping times. The first stopping time is the
time to raise an alarm once a change has been detected. After that, we can keep collecting
more observations that have a low unit cost. The second stopping time is the time when
we are ready to make the identification decision. Therefore, in our problem formulation,
change detection and distribution identification become two different stages of the whole

SCD procedure. The goal of a two-stage SCD rule is to minimize the total cost including



delay, false alarm, and misdiagnosis probabilities. To solve the two-stage SCD problem, we
first convert the problem into a two-ordered optimal stopping time problem. Using tools
from optimal multiple stopping time theory, we obtain the optimal SCD rule. Moreover,
to address the high computational complexity issue of the optimal SCD rule, we further
propose a computationally efficient threshold-based two-stage SCD rule. By analyzing the
asymptotic behaviors of the delay, false alarm, and misdiagnosis costs, we show that the
proposed threshold SCD rule is asymptotically optimal as the per-unit delay costs go to
zero. Furthermore, we extend the two-stage SCD problem to a sensor array setting where
there is a sensor array with L sensors monitoring the environment. Once a change happens
in the environment, the change will propagate across the sensor array gradually. After
detecting the change, we are allowed to continue observing more samples so that we can
identify the distribution after the change more accurately. Similar to the single sensor case,
we characterize the structure of the optimal diagnosis rule. But this rule has considerably
high complexity. Therefore, we further propose a threshold rule SCD rule for the multi-
sensor setting. In addition, we also prove that this threshold rule is asymptotically optimal
as the per-unit delay costs go to zero.

In the second part, we study the Bayesian QCD problem and provide data-driven solu-
tions for this problem. The optimal solutions to the QCD problem under different settings
have been extensively studied. Most of these solutions require a priori information about
the QCD model and i.i.d. data samples. However, in many real-world applications, these
requirements may not be satisfied. In these situations, the optimal QCD rules are not avail-
able. This dissertation proposes two data-driven approaches for the online Bayesian QCD
problem, including the deep Q-network (DQN) method and the Neural Monte Carlo (NMC)
based data-driven change-point detection rule. The NMC-based method is guaranteed to
converge. More importantly, these two methods work not only for i.i.d. data samples but
also for non-i.i.d. data. Numerical results illustrate that the two proposed methods can

detect the change point accurately and timely.
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Chapter 1

Introduction

In this chapter, we introduce the two-stage change-point diagnosis (SCD) problem and the
data-driven quickest change point detection (QCD) problem studied in this dissertation.
First, we introduce the general background of the QCD problem and the SCD problem. Then,

we discuss the proposed change-point analysis problems and summarize our contributions.

1.1 Backgrounds of Change-Point Analysis Problem

This dissertation focuses on two change-point analysis problems; i.e., the SCD problem and
the QCD problem. The SCD problem is an extension of the QCD problem. Therefore, in
this section, we first introduce the QCD problem and then describe the SCD problem.
Detecting and analyzing abrupt changes in the statistical behavior of an observed time
series is a classical problem. Its provenance dates at least to the work in the 1930s on the
problem of monitoring the quality of manufacturing processes [1]. Nowadays, this problem
has been applied in a wide variety of fields, including environment and public health [2-
5], image analysis [6, 7], finance [8-10], power system [11,12], medical diagnosis [13-16],
navigation [17, 18], network security [19-24], remote sensing [25-27], video editing [28], etc.
In many of these applications, such as medical diagnosis and image analysis, the change-point

analysis involved follows the off-line style, i.e., analyze the change-point problem given the



whole sequence. The most common off-line change-point analysis tasks include identifying
the presence of a change, estimating the occurrence time of the change, or further analyzing
the stochastic properties of the pre-change and post-change observations, etc.

On the other hand, change analysis applications in remote sensing, power system, and
finance mainly focus on the online setting, i.e. detecting the change point in real time as the
data samples arrive sequentially. As shown in Fig. 1.1, in a process {x;};>1, the distribution
of data samples changes from f to f; at an unknown time A. Concretely, the distribution of
data samples is fo when t < \. Otherwise, the distribution of data samples is f; when ¢t > \.
The time we detect the change is 7. In the online change analysis setting, performance
metrics such as the probability of the false alarm and the delay between the true change
time and the detection time are important. This type of problem is called the quickest
change-point detection (QCD) problem. These quantities will be defined rigorously in the
sequel. For example in health monitoring or environmental monitoring, the most important
task is to detect or analyze the event as soon as possible so that necessary actions can be
taken quickly to avoid or reduce losses. However, a detector raising alarms all the time is
obviously not desirable, although it can always raise alarms soon after the change. Therefore,
the occurrence of false alarms should also be controlled in the online change-point analysis.
In most cases, there is a tradeoff between these two metrics. Hence one of the key topics
in online change-point detection and analysis problems is how to balance the costs of false
alarm and delay.

Under an online setting, the change-point detection and analysis problems can be further
classified into two categories based on whether we model the change-point as a random
variable or not. If the change-point A is modeled as a random variable with distribution
P, then the problem is a Bayesian change-point detection and analysis problem. If the
change-point A is assumed to be fixed but unknown value, the problem is a non-Bayesian

change-point detection and analysis problem.
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Figure 1.1: Time ordering of a QCD process. The change point is A and the detection time
is T.

1.1.1 Quickest Change-Point Detection Problem

The Bayesian change-point detection problem is first proposed by Kolmogorov and Shiryaev
[29]. In this problem, the distribution of the observations experiences an abrupt change at
an unknown time A. Under the Bayesian setting, A is assumed to be a random variable with
distribution Py. A very common choice of Pj is the Geometric distribution. The Geometric
distributed A is not only mathematically convenient but also reasonable to many real-world
applications. In the online change-point detection problem, we care about two costs, false
alarm and delay. The goal is to detect the change point quickly and reduce the occurrence
of false alarms. Under the Bayesian setting, the metric for false alarm cost is the false alarm
probability and the metric for delay cost is the mean detection delay. Therefore, a detection
rule which can optimize the trade-off between the false alarm probability and the mean
detection delay is desired. Let ¢ denote the unit delay cost, then the cost function for the
Bayesian QCD problem can be defined as C(7) = P(7 < A) 4+ cE[(T — A)4]. The goal of the
Bayesian QCD problem is to design a stopping rule that minimizes this cost.

In [30], Lorden proposed a non-Bayesian formulation of the change-point detection prob-
lem. In this problem, no prior information about the change-point A is known. In the
non-Bayesian setting, the mean delay is replaced by a worst-case conditional delay, where
the conditioning is with respect to the change point, and the worst case is taken over all
possible values of the change point and all realizations of the measurements leading up to
the change point. The constraint on the occurrence of false alarms is a lower bound on the

allowable mean time between false alarms. Therefore, the non-Bayesian online change-point



detection problem is to find a detection rule which minimizes the worst-case conditional
delay while satisfying the constraint on the mean time between false alarms. Concretely, we

require the mean detection delay cost
Cllelay = SUp €55 SUp EX [(7’ —A) |o1, @0, 7-77)\—1}
A>0
should be as small as possible under the following constraint
Eo [T] 2 T

which means the mean time between false alarms must be lower bounded. Here E™ is the
expectation given the change point is A and Eq denotes the expectation given no change will
happen.

A widely used scheme for the non-Bayesian change-point detection problem is the CUSUM
test. For observation {x,},>0, let L, = fi(z,)/fo(x,), where fy and f; are the pre-change
and post-change distribution of the observations. Then define S,, = L,max{1,S,_1}, Sy = 0.
The CUSUM detection rule is raising alarm once Sy is larger than a specific threshold.

Recently, there are many extensions of the two basic setups described above [31-40]. [31]
proposed an asymptotically optimal solution for the non-Bayesian QCD problem in a multi-
stream setting. [32] and [33] applied nearest neighbor methods to solve the non-Bayesian
QCD problem and achieved good performance on high dimensional and non-Euclidean data.
The Bayesian QCD problem with unknown post-change distribution is studied in [34]. In
both Bayesian and non-Bayesian setups, [35] studied the QCD problem where the under-
lying linear model of the data changes at an unknown time. The non-stationary change
point, in which the statistical behavior after the change is non-stationary, is analyzed in
[36,37]. With an additional constraint on the average number of observations taken before
the change, the data efficient QCD problem is investigated in [38-40]. Of particular relevance

to this dissertation is many recent works on QQCD problems in multi-sensor setting [41-46].



[41] considers a temporal diffusion network model to capture the temporal dynamic structure
of multiple changepoints. In [42], the problem of sequentially detecting a moving anomaly
is studied, in which the anomaly affects different parts of a sensor network over time. [43]
studies the Bayesian change analysis problem in a linear sensor array where the change can
first happen in any sensor and then propagate to the neighboring sensors. The goal is not
only to detect the change quickly but also to identify the sensor that the change pattern
first reaches. [44] provides the optimal solution of a Bayesian distributed QCD problem un-
der a quasi-classical information structure. [45] studies the QCD problem in a sensor array
where the communication bandwidth is limited. The authors consider the problem under
both Bayesian and non-Bayesian settings and developed asymptotically optimal solutions
for two specific scenarios. In [46], the authors assume the change propagates across the
sensors, and the propagation can be modeled as a Markov process. With perfect information
about the observations and a priori knowledge of the statistics of the change process, the au-
thors proposed a dynamic-programming based optimal solution of the Bayesian QCD. Faced
with the high computation complexity of the optimal solution, the authors also proposed a
low-complexity threshold QCD rule which is asymptotically optimal when the false alarm
probability regime goes to zero. In Chapter 3 of this dissertation, we will consider the more

challenging SCD problem with more general change-point propagation models.

1.1.2 Sequential Change Diagnosis Problem

Sequential change diagnosis (SCD) problem is the joint problem of online detection of a
sudden change in the distribution of a random sequence and identification of the post-
change distribution. In particular, the SCD problem can be viewed as a combination of the
quickest change-point detection (QQCD) problem and sequential multiple hypothesis testing
(SMHT) problem. In QCD problems, the goal is to detect the presence of change in the
distribution quickly [35,37,47-57]. In SMHT problems, the distribution does not change.

The focus is to identify the data distribution from I candidate distributions [58-63]. In



the SCD problem, as shown in Fig. 1.2, the data distribution will change at an unknown
time A, from distribution fy to one of the I candidate distributions, fy. The post-change
state @ € {1,2,...,1}. We need to detect the change point A timely and identify the post-
change distribution fy accurately. If the change detection and identification must happen
at the same time, the SCD problem is called the one-stage SCD problem. A one-stage SCD
rule includes a stopping time 7 and a decision d. In [64] the SCD problem is proposed for
the first time. A criterion of optimality for the non-Bayesian SCD problem is formulated
in [49] to minimize the mean detection/isolation delay while guaranteeing the mean time
before a false alarm or false isolation is at some acceptable level. With this criteria, [64]
gives an asymptotic lower bound of the mean detection/isolation delay. [65] generalizes
earlier work on SCD and provides more tractable and appropriate performance criteria for
both Bayesian and non-Bayesian cases. Afterward, the optimal solution and asymptotically
optimal solution of the Bayesian SCD problem are derived in [66] and [67], respectively.
The criteria of optimality of the Bayesian SCD problem is to minimize the Bayesian cost:
C(r) =P(r < \) +P(d # 0) + cE[(T — \).], where 7 is the time when the change detection
rule declare a change has happened and c is the unit delay cost. The expectation here is with
respect to the distribution of A. In [29] and [30], the a priori information about the SCD
process including the prior distribution of the change point, the post-change distribution,
the prior probability of all post-change states, and all possible post-change distributions are
known. Therefore, the posterior probabilities can be updated at every time step. After
proving the relationship between the Bayesian cost and the posterior probabilities, [28] gives
the optimal solution of the SCD problem: when the posterior probability vector enters some
particular region of the probability vector space, we should raise an alarm and choose the
post-change state corresponding to the highest posterior probability. However, to obtain
the decision region, dynamic programming should be repeated until convergence. This leads
to the high complexity of the optimal solution. To overcome this issue, [30] proposed a

threshold-based SCD rule which can be implemented easily. The threshold-based SCD rule
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Figure 1.2: Time ordering of a one-stage SCD process. The change point is A and the
detection time is 7. d is the identification decision.

is also proved to be asymptotically optimal as ¢ — 0.

1.2 Two-stage SCD Problem

1.2.1 Two-stage SCD Problem in Single Sensor Case

All SCD problems in the literature are one-stage SCD problems, i.e., the change and identi-
fication of the change must happen at the same time. In practice, however, after we detect
the change, we may still have the opportunity to observe extra data samples with low unit
cost, which may help us to make a more accurate identification decision. For example, in
the structural health monitoring (SHM) system [68] of a building, sensors are used to mon-
itor the material or geometric properties of the building. When sudden damage happens
to the building, the SHM system should detect the damage quickly and identify the type
of damage accurately. Typically, identifying the type of damage requires more data than
detecting the damage. In other words, we need more time to collect enough data for damage
identification than damage detection. However, the detection task is very urgent because
people in a damaged building can be in great danger. Therefore, in a good SHM system, the
identification of the damage should be allowed to be completed after the damage detection.
In this way, the people can be evacuated from the building immediately once the damage is
detected. After that, the SHM system can keep collecting more data and make an accurate
damage identification. In the detection stage, the unit delay cost is high because even one

time unit of delay can cost lives. On the other hand, the unit delay cost in the identification
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Figure 1.3: Time ordering of a two-stage SCD process. The change point is A\. The detection
time is 73 and the identification time is 7, + 7. d is the identification decision.
stage is much lower than in the detection stage since people have already been evacuated. As
another example, a factory conducts quality tests on a manufacturing process that includes
multiple processing components. When a sudden fault occurs in one of the processing com-
ponents, quality testers need to detect the fault quickly and identify the faulted processing
component accurately. In many cases, the identification task needs more product samples
than the detection task. However, the detection task is more urgent than the identification
task, since the potential loss (compensation for damages, product recall, or damage to the
brand, etc.) could be very high if the faulted products go to market, especially for the
products related to people’s life and property security. Therefore, a smart quality testing
system should allow fault detection to happen earlier than fault identification. In this case,
the product samples produced after the detection will only be used for fault identification
and will not be sold. The quality testers can use more samples to make an accurate fault
identification. Although the factory still needs to pay the production cost of the samples
produced after the detection, these samples can be used to identify the fault and will not
cause any further potential costs. Therefore, the unit cost of the identification stage is lower
than the detection stage. In addition to these two examples, this two-stage situation exists
in many real-world applications, such as diagnosis of intrusions in computer networks [69],
navigation system integrity monitoring [70] etc.

Motivated by this, we formulate a two-stage Bayesian SCD problem. In this problem,
we have two stopping times, 71 and 7 + 75, as shown in Fig. 1.3. The first stopping time

71 is the time to raise an alarm once a change has been detected. After that, we can keep



collecting more observations that have a low unit cost. The second stopping time 71 + 75 is
the time when we are ready to make the identification decision. Therefore, in our problem
formulation, change detection and distribution identification become two different stages of
the whole SCD procedure. By taking advantage of low-cost samples after the change is
detected, it is possible to improve the identification accuracy and hence achieve a lower total
cost. It’s worth noting that the detection and identification stages are not independent, as
the end state of the detection stage is the start state of the identification stage. Hence the
proposed problem is not a simple combination of a QCD problem and an SMHT problem.
In this dissertation, we study the two-stage Bayesian SCD problem and extend it to a multi-
sensor array setting.

The goal of a two-stage SCD rule is to minimize the total cost including delay, false alarm,
and misdiagnosis probabilities. To solve the two-stage SCD problem, we first analyze the
posterior probability at each time step. Based on the prior distribution of the change point,
the post-change distribution, the prior probability of all post-change states, and all possible
post-change distributions, we derive the update rule of the posterior probability of the change
point and the post-change state. Then we express the mean delay, the false alarm, and the
misdiagnosis probability with the posterior probability. [71] showed that the ordered multiple
stopping time problem can be reduced to a sequence of optimal single stopping time problems
defined by backward induction. Therefore, we use the same method and reduce the two-stage
stopping problem to two optimal single stopping time problems. Then two Bellman equations
can be acquired for the detection and identification stages, respectively. By applying dynamic
programming to solve the two Bellman equations, we can obtain the optimal identification
region and the optimal detection region on the posterior probability vector space. The
optimal SCD rule is: (1) Raise an alarm when the posterior probability vector enters the
optimal detection region in the probability vector space; (2) Make an identification decision
when the posterior probability vector enters any of the optimal identification regions, and

the identification decision is the post-change state corresponding to that identification region



is entered.

Since the optimal rule should be obtained using dynamic programming, the complexity
of the optimal solution of the two-stage SCD problem is high. To address the high com-
putational complexity issue of the optimal SCD rule, we further propose a computationally
efficient threshold-based two-stage SCD rule. The threshold-based SCD rule is:(1) Raise an
alarm when the posterior probability of change has happened and reaches a selected thresh-
old; (2) Make identification decision when the posterior probability of any post-change state
reaches a selected threshold and that post-change state is the identification decision. By an-
alyzing the asymptotic behaviors of the delay, false alarm, and misdiagnosis costs as the unit
delay costs go to zero, we show that these three costs can be approximated using the thresh-
olds in the threshold SCD rule. By expressing the total Bayesian cost with these thresholds
and minimizing the cost, we can find the formulas of the optimal thresholds. Finally, we
also proved that the proposed threshold SCD rule is asymptotically optimal as the per-unit

delay costs go to zero. The results obtained in this study have been published in [72,73].

1.3 Two-stage SCD Problem in Multi-sensor Array

To further improve the performance of the SCD rule, there are growing interests in dis-
tributed decision-making systems. In the multi-sensor setting, the information collected by
multiple sensors is sent to the fusion center, where the detection decision is made. Therefore,
the multi-sensor case can improve the performance when compared with the single-sensor
case. There are many applications of distributed decision-making systems in the real world,
e.g. (1) Structural health monitoring system of buildings, bridges or highway networks [74];
(2) intrusion detection in computer networks and security systems [19,23]; (3) monitoring
catastrophic faults to critical infrastructures such as water and gas pipelines, power systems,
supply chains, etc.; (4) wireless resource access and allocation problems [75]; (5) Seismic mon-

itoring and detection [76]. There are existing works that studied the change-point detection
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problem in multi-sensor setting [34,43,46,49,77-79]. In this dissertation, we also consider a
two-stage SCD problem in the multi-sensor scenario. For this problem, we characterize the
structure of the optimal diagnosis rule. The optimal stopping rule is obtained by converting
the two-stage SCD problem into a two-ordered optimal stopping time problem, which can be
solved using dynamic programming (DP). However, the dimension of the state space grows
exponentially with the number of sensors and candidate post-change distributions. Thus
the complexity to implement the DP solution is extremely high. To address this issue, we
propose a low complexity threshold SCD rule. Furthermore, we analyze the performance of
the proposed multi-sensor threshold SCD rule in two different linear array cases (Fig. 1.4)
depending on whether the sensor first affected by the change is known or not. Concretely,
for the general case in which the sensor first being affected by the change is randomly chosen
and unknown, we prove the threshold rule is asymptotically optimal under some technical
conditions. On the other hand, for the special case in which the sensor first affected by
the change is fixed and known, we prove that the threshold rule is asymptotically optimal
without additional technical conditions. Moreover, we extend the low-cost SCD rule to a
more general 2D sensor array. In this 2D sensor array case, the change can happen to any
sensor and then gradually propagate to the surrounding sensors. For this 2D sensor array
case, we also prove the asymptotic optimality of the multi-sensor SCD rule. In addition, we
investigate how increasing the number of sensors can improve the asymptotic performance of
the multi-sensor threshold SCD rule. The results obtained in this study have been published

in [80,81].

1.4 Data driven QCD problem

As introduced in Section 1.1, the change-point analysis problem was extensively studied and
many powerful methods have been proposed for different problem settings. However, two

limitations make these methods hard to be used in many real-world applications. First, full
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Figure 1.4: Change propagation model

knowledge of the sample distributions and their latent statistical structure is required to run
these methods. Although there are some works that assume the distributions are unknown,
they still assume the statistical structure of the observations is known. For example, in [82],
the distributions of the data samples are unknown but they are assumed to belong to the
multivariate exponential family. However, in many real-world applications, this knowledge
about the latent stochastic QCD process is also unknown. A common situation is that the
only given information is the historical ground truth data. Secondly, many of the exist-
ing methods assume the observed data samples are independent and identically distributed
(i.i.d.), which is not always true in many real-world applications.

As a promising approach to address these issues, the data-driven QCD method becomes
more and more of interest in recent years. At the same time, machine learning provides many
efficient algorithms to solve data-driven problems. Therefore, machine learning algorithms
have already been applied to QCD problems. For example, [32,83-86] propose different
data-driven algorithms for non-Bayesian QCD problems. On the other hand, as the Bayesian
QCD process can be viewed as a partially observable Markov decision process (POMDP),
reinforcement learning-based methods can also be applied to solve the data-driven Bayesian
QCD problems. In [87], the tabular Q-learning is applied to solve the change-point detection
in the power system. This paper regards the Bayesian cost as a negative reward of a POMDP

and uses reinforcement learning methods to maximize the total reward. However, [87] still
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requires knowledge of the pre-change distribution, and the performance of the tabular Q-
learning method will be degraded when the state space is large.

In this dissertation, we propose two data-driven approaches for the Bayesian QCD prob-
lem. In both two approaches, instead of using quantization to convert the problem to a
learning problem with a finite number of states, we use the function approximation approach
to directly address the issue related to continuous states.

In the first approach, we apply the deep Q-network (DQN) to solve the online Bayesian
QCD problem. In the QCD problem, one needs to take one of two possible actions, keep
observing more data or raise an alarm, at each time step. The distribution of the data
samples is determined by the hidden change state. Therefore, in this paper, we formulate the
online Bayesian QQCD process as a partially observable Markov decision process (POMDP).
There are data-driven methods in reinforcement learning which can efficiently solve the
POMDP problem and some of them have already been used in the QCD problem. In this
dissertation, instead of using quantization to convert the problem to a learning problem with
a finite number of states, we use the function approximation approach to directly address
the issue related to continuous states. In particular, we apply the deep Q-network (DQN) to
solve the online Bayesian QCD problem. The DQN approximates the Q-value of continuous
input using a neural network. After training with the historical data, the Q-network can
approximate the Q-values for the two actions. Based on the Q-value approximations, one
can determine if it is time to declare a change without knowing the a priori information of
the QCD process. Numerical results show that, after training with a reasonable amount of
historical data, the proposed DQN-based detection rule can achieve good performance for
online Bayesian QCD problems under different settings.

In the QCD problem, one needs to make a decision at each time step based on the data
samples observed so far. The distribution of the data samples is determined by the hidden
change state. Therefore, in this paper, we formulate the online Bayesian QCD process as a

partially observable Markov decision process (POMDP). There are data-driven methods in
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reinforcement learning which can efficiently solve the POMDP problem and some of them
have already been used in the QCD problem. In [87], the authors applied the tabular Q-
learning to change-point detection in the power system. At any given time, [87] used data
samples within a certain window as the state. As the data samples are continuous values,
to apply the tabular Q-learning, the data samples in [87] are quantized to finite discrete
levels. However, in a common online Bayesian QCD problem, quantizing the data may
compromise the accuracy of the QCD rule, especially when the window size is large so
that one has to limit the number of quantization levels. In this paper, instead of using
quantization to convert the problem to a learning problem with a finite number of states, we
use the function approximation approach to directly address the issue related to continuous
states. In particular, we apply the deep Q-network (DQN) to solve the online Bayesian QCD
problem. The DQN approximates the Q-value of continuous input using a neural network.
After training with the historical data, the Q-network can approximate the Q-values for
the two actions. Based on the Q-value approximations, one can determine if it is time to
declare a change without knowing the a priori information of the QCD process. Numerical
results show that, after training with a reasonable amount of historical data, the proposed
DQN-based detection rule can achieve good performance for online Bayesian QCD problems
under different settings.

As for the second approach, we propose a Neural Monte Carlo (NMC) based method
to solve the data-driven Bayesian QCD problem. In the optimal solution of the Bayesian
QCD problem for i.i.d. data samples, an alarm will be raised once the posterior false alarm
probability is lower than a threshold. On the other hand, the posterior false alarm probability
can be regarded as a value function and learned from the historical data set. Concretely,
at any time t we get a reward if we raise an alarm. If the change happens after ¢, the
reward is 1; otherwise, the reward is 0. In this case, the false alarm probability at time ¢
is equivalent to the value function of raising an alarm at time ¢. Inspired by these facts,

we propose a reinforcement learning based method to solve the data-driven Bayesian QCD
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problem. First, we apply a randomized neural network to approximate the posterior false
alarm probability. This neural network takes the historical data observations as input and
outputs the approximation of the posterior false alarm probability. Since the posterior false
alarm probability is mainly determined by the recently collected data samples rather than
earlier data samples, the input of the neural network is the data samples within the most
recent sliding window. With this neural network, the posterior false alarm probability can be
monitored as new data samples come up. In particular, all the weights in this neural network
except the linear output layer are untrainable. Therefore, training with the Gradient Monte
Carlo algorithm [88], the neural network is guaranteed to converge. Afterward, following
the idea of the optimal solution of the Bayesian QCD problem for i.i.d. data samples, the
proposed NMC-based QCD rule raises an alarm once the approximation of the posterior
false alarm probability meets a given threshold. The optimal threshold is chosen based on
the performance on the validation data set. Besides, as a solution to the data-driven QCD
problem, this method does not require prior knowledge about pre-change and post-change
distributions. The only assumption is that the change point is a geometric random variable,
which is satisfied in many real-world phenomena, such as failure times. More importantly,
the proposed NMC-base QCD rule also works for non-i.i.d. data samples. The observation
model of the different non-i.i.d. QCD problems could be different. Data sequences generated
by a hidden Markov model (HMM) is a special case of non-i.i.d. data. In this dissertation,
we take the HMM QCD problem as an example of non-i.i.d. QCD problems to explain
how to apply the NMC-base QCD rule to non-i.i.d. observation data. Finally, numerical
experiments are carried out and the results show that this NMC-based QCD rule has good
performance in different Bayesian QQCD problem settings.

The results obtained in this part have been published in [89,90].
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Chapter 2

Two-Stage Bayesian Sequential

Change Diagnosis

In this chapter, we focus on the single sensor two-stage Bayesian SCD problem. Firstly,
we provide our problem formulation and study the evolution of the posterior probability,
and convert the two-stage SCD problem into two optimal single stopping time problems.
Then we derive the optimal rules for the two optimal single stopping time problems. After
that, we introduce the threshold two-stage SCD rule and prove the asymptotic optimality of
the threshold two-stage SCD rule. Finally, simulation results are provided to illustrate the

performance of the two proposed SCD rules.

2.1 Problem Formulation

Consider a probability space (£2, F,P) that hosts a stochastic process {X,},>1. The range
of X, is X. Let A : Q — {0,1,...} be the time when the distribution of X,, changes and
0:Q0 -T2 {1,..., I} be the state after change. The state after § change corresponds to
one post-change distribution fs. We also denote Zy = ZU{0}. In particular, the distribution

of X, is fo when n < A, and is fy when n > A. X and 6 are independent random variables
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defined with the distributions

20, if t=0

(L=po)(L=p)~tp, if t#0

P{\ =t} =

and v; = P{# = i} > 0, ¢« € Z. Here, po,p € (0,1), v; € [0,1] and Y, ;v; = 1. They
are given constants. Given A and 6, random variables {X, },>; are independent. In ad-
dition, F = (F,)n>0 is the filtration generated by the stochastic process {X,},>1; namely,
Fo=40,2} and F, =o0(X1,Xs...X,) ={0,{X1, Xs... X,,} x{X}*>}. To simplify the

notation, we express the conditional probabilities as:

Pi{-} =P{-6 =i},
POLY =P{|0 =i A=t},t>0.

Correspondingly, E; and Egt) are the expectations under P; and ]P’Et).

Our goal is to quickly raise an alarm when the change occurs and further accurately
identify the state 6. Towards this goal, we employ a two-stage SCD rule 6 = (11, 7o, d) that
includes two stopping times 7; and 71 + 75 and a decision rule d. Here, 7 is the time when
we raise an alarm that a change has occurred. In our model, after 71, we can keep collecting
more low-cost observations to make a more accurate identification. Correspondingly, 7 + 7
is the time when we make the identification decision d.

Let A := {(71,7,d)|11,71 + 72 € F, 5 > 0,d € Zy} be the set of all possible two-stage
SCD rules. Here, 7 € F means that 7 is a stopping time associated with F. The time ordering
of a two-stage SCD process is shown in Fig. 1.3. We should note that if a wrong decision is
made at 7, i.e., 71 < A, then d = 0 is the correct identification as long as this identification
is made before A, i.e., 71 + 1 < A

The possible costs of an SCD rule include costs of delay, false alarm and misdiagnosis.

The delay consists of two parts, (17 — A); and 75, which correspond to the change detection
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stage and the distribution identification stage respectively. The expected costs of them are
Ele1(m1 — M) 4] and E[cams], where ¢; and ¢y are per-unit delay costs associated with each
stage. We assume that the ratio between ¢; and ¢y is a constant r = ¢;/ce. A false alarm
occurs when a change alarm is raised before A. The expected false alarm cost is E[al{, <],
where a is the penalty factor of false alarm and 1y is the indicator function.

Misdiagnosis happens when a wrong distribution identification is made, i.e., d # 6. The

expected misdiagnosis cost is

E [ Z bij 1{oo>7'1+7'2>)\,9:i,d:j} + bOj 1{T1+T2<>\,d:j}

i€T

for d = j, where b;; is the penalty factor for wrong decision d = j when 6 = i and by ; is the
penalty factor of the false alarm of the distribution identification stage. We set b;; = 0 when

1 = j. Thus the Bayesian cost function for a two-stage SCD rule § € A is

C(0) = aiE[(11 — A)4] + coE[m] + aE[1(7, <nj]+

I I
Z E [ Z bij1{oosri+ma>no=id=j} T bojlir trera=j} |- (2.1)

§=0 i=1

In a closely related one-stage SCD problem discussed in [66] and [67], the change detection
and distribution identification must occur at the same time, and hence there is only one
stopping time. We generalize the problem setup in [66] by allowing identification to occur
later than change detection, with the hope of improving the decision accuracy using the extra
samples with lower cost. If ¢; < co, there is no low cost samples and the two-stage SCD
rule will become the one-stage rule in [66]. Therefore, in this proposal, we assume ¢; > cs.
Under this condition, we can improve the identification accuracy with a low delay cost in

the distribution identification stage.
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2.2 Posterior Analysis

Let II,, = (H%O), e ,Hg))nzo € Z be the posterior probability process defined as

N :=P{A<n,0=i|F,}icT,
Y = P{\ > n|F,},

where Z 2 {IT € [0, 1) Y sy e =1},

It is easy to check that {II,},>0 is a Markov process satisfying

H(Z) _ Di(Hn—th)

. (2.2)
ZjEIO Dj(Hn—la Xn)

where
(1= PO fo(x) i=0
(MO + T pv;) fi(z) i €T

D;(Il, x) :==

The initial state, 11, is set as Héo) =1— py and Héi) = pov; for ¢ € Z. In addition, We have

the following assumption on these distributions.

Assumption 2.1. For every i € Z, and j € Zy\{i}, we have
(i) 0 < fi(x)/fi(x) < o0 as.;
() Jiaus sy oy fil2)(d2) > 0.

Assumption 2.1 implies 0 < Y < 1 for every finite n > 1 and ¢ € Zy. The log-likelihood-
ratio (LLR) processes are defined as

o

A, (i, 7) == log H—(T;) (2.3)

n

Proposition 2.1. With II,,, we can express (2.1) as

T1—1 I 1
C((S) =E Z C1 (1 — HgLO)> + CcoTo + ]-{7—1<oo}aH7(-?) + 1{71+T2<OO} Z 1{d:j} Z b’LJHS'?—i-TQ .
n=0 j=0 =0
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Proof. Since {m > n} € F, for every n > 0, then

Ei(n ~ 4] =E [ tincocnt] = 5 B (e < )] < B[S -]

n=0

Next, since {r; =n} € F,,

E [1{7'1</\}} - EOE [1{n<>\}1{’rl:n}] - ZOE [H%O)I{len}]

N
— lim E [2 H§?>1{ﬁ:n}] = lim E [H£?>1{71<N}} _E [H(T?)l{ﬁ@o}}
—00 =

N—oo n=0

because of the monotone convergence theorem and that lim 1i,<ny = Uyl 1ir<py =
< <
17, <o0y. Here, we do not consider the case 7, = oo as Hgg) =0.

Similar to the derivation of E [l{ﬁd}}, for any j € Z,

0
E [1{T1+72<>\7d=j}} =E [H£1)Jr721{71+72<007d=j} .

Similarly, for any i € Z and j € Z U {0},

E [1{9=i7d=j,>\ST1+72<00}} =E [1{71+72<00,d=j}H$1)+72] .

Plugging these four expressions in equation (2.1) completes the proof. O

Define B;(I) = >,z [1¥b,;, which is the misdiagnosis cost associated with the decision

d = j. We have
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=
]
5
g

c1 (1 — Hgbo)) + como + 1{Tl<oo}aH£(1)) + 1{71+T2<Oo} Z 1{d:j}Bj(Hn+72)

L n=0 J€To
[71—1
>E 1 (1 - H;O)) + 1{TI<OO}CLH7(-?) + CoTo + 1{T1+Tz<oo}B (HT1+T2) (24)
L n=0 — _ pz:rtr2
part 1

= C1(7—1; T2, d*)7

where B(II) = grenzlgl B;(II), the smallest misdiagnosis cost. From (2.4), we can see that the
optimal decision d* is the choice that achieves B(II). Then we only need to find the optimal
stopping times 7; and 75, which means that the SCD problem becomes an optimal ordered
two-stopping problem. [71] showed that the ordered multiple stopping time problem can
be reduced to a sequence of optimal single stopping time problems defined by backward
induction. Here we use the same method and reduce the two-stage stopping problem to two
optimal single stopping time problems. According to (2.4), the total cost can be divided
into two parts. The first part is the expected cost of the change detection stage, and the
second part corresponds to the distribution identification stage. The first part depends on 7

while the second part depends both on 7 and 7. We write the cost functions of the change

detection stage and distribution identification stage as

T1—1
Ci(n) =Y e (1=TD) + 1, coyall)
n=0

and

C2(H7—1 ) TZ) = CoTy + 1{7‘1+7’2<OO}B (HTlJrTg) .

(s is a function of 11, and 7, because II,, and the observations from 7y to 7, 4+ 75 are sufficient
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to calculate II, 4,,. Then we have the minimal expected cost for the SCD process,

C(rf,73,d') = min_ E[Ci(n) + Callly, )] = min_ E|Cy(71) +E[Ca(r) T ]

71,71 +12€F T1,T1+T2€F

=minE [C(r1) + min E[CQ(TQ)'HTl]:|.

T1€EF T1+712€F

(2.5)

By (2.5), the two-stage stopping time problem becomes two optimal single stopping time
problems. The first one is for the identification stage, its goal is finding the optimal 7
which minimizes E[Cy(7)|II,,]| for any given 71 and II,. The second single stopping time
problem is to find the best stopping rule for the detection stage, i.e., selecting the optimal
71 to minimize the expected cost of the whole SCD process, C(7q, 72, d*). From the last line
of (2.5), it is easy to see that we can find an optimal 7; to minimize the expected cost for
the whole SCD process if the optimal rule for 7 is known. Therefore, we will solve the SCD
problem in a reversed order, i.e., find the optimal rule for the identification stage first, then

select the optimal stopping time for the detection stage.

2.3 Optimal Solution

In this section, we characterize the optimal solution to the two-stage SCD problem. We will
first focus on the finite-horizon case, and then extend the solution to the infinite-horizon
case.

To solve the two-stage SCD problem, we first restrict attention to the finite-horizon
case. In particular, in the finite-horizon case, we can spend at most 7} amount of time
in the detection stage, i.e., 7 < 77, and we can spend at most 75 amount of time in the
identification stage, i.e., o < Ty. Here, T7 and T, are fixed positive integers.

We first consider the distribution identification stage. In this stage, 7, and IL,, are already
known. After we get the optimal 75 and minimum expected cost, Cy(Il,,, 75) for any 7 and

IL,,, we will further introduce the optimal stopping rule for the change detection stage.
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Now we consider the optimal single stopping time problem under a DP framework. Let
57(12) denote the state of the system at time n € [r, Ty + 71]. 57(12) can take # € Z, 0 and F
(End). Here, 5% = 9 means that the change has happened before n and the distribution
after the change is fj. S = 0 means that no change has happened before n, which implies
a false alarm was made at time 77. Once the result of distribution identification is declared,

the state of system becomes E. The state evolves as 87(12) = go(S 2)

n—

15 A Lir 4ry<ny). Here the

transition function g is

0, ifA>n,s#FE,mn+m>n,

92(8, A, Yriim<ny) = (0, if A<n,s#E,7+1m>n,

E, ifs=Form+mn<n.

The initial state Sg) = 0if A > 7y, otherwise Sg) = ¢. In addition, the observations in this
DP framework are the data samples {X,, },>1.

Under this DP framework, we can see that 1)) = P(S,(lz) = i|F,). Then the expected
cost of the distribution identification stage can be expressed as Co(Il,,,n) = ca(n — 1) +
1fp—r <0} B(IL,,). Therefore, II,, is the sufficient statistics for the DP process. Furthermore,

we can express the minimum cost-to-go function at time n for this DP problem as

VE(IL,) = B(IL,), if n =Ty +n, (2:6)
VnT2+Tl (Hn) = min <B(Hn)7 Co + Gz;z"rﬁ (Hn>>a if n < T2 + T1, (27)

where

Vi (M (o, 2)) Y fio) I | dz - (2.8)

i€Zy

GII(T1,) = VI (T | F) = /

The first item of the minimization in equations (2.7) is the misdiagnosis cost for stopping
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at time n, while the second item corresponds to the cost of proceeding to time n + 1. In
this way, we know that the minimum expected cost for the finite-horizon DP problem is
V247 (11,, ). Therefore, in the identification stage of finite-horizon two-stage SCD problem,
the optimal stopping rule is stopping immediately when B(II,) < ¢y + GR2T(I1,,) or n =
T, + 7. This optimal rule tells us we should stop only when the expected cost for making
identification is less or equal to the expected cost of observing more data.

After knowing the optimal stopping rule of the distribution identification stage and the
minimum expected cost foﬁ”(l_[ﬁ) for any given 7 and I, selecting an optimal 7; to
minimize the total Bayesian cost becomes a single stopping time problem. The method to
solve this problem is similar to the distribution identification stage.

Let S5 denote the state of the system of the change detection stage at time n € [0, 71].
S8 can take value 1 (post-change), 0 (pre-change) and E (End). Once a change alarm is
raised, the state of system becomes E. The state evolves as S\ = gl(S,gl_)l, A, 1ir <py) with

S((]l) = 0, where the transition function ¢ is

0, ifA>n,s# FE, 7 >n,

g1(57>\7 1{7'1S”}) = 1, if A S n,s 7é E7 T > n,

E, ifs=Formn <n.

In addition, the observations of this DP framework are the data samples {X, },>1. Under
this DP framework, we can see that I = P(S5"” = 0|F,) and 1 — I = P(S" = 1|F,).

Then the expected cost of the whole SCD process can be expressed in terms of {Il;}r<, as

n—1
Cln, o, d) = V(11 + 3 er (1= 1) + Lconpalll?,
k=0

Therefore, {II;}r<, is the sufficient statistics for the DP process. Furthermore, we can
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express the minimum cost-to-go function at time n for this DP problem as

Wh(IL,) = all® + V4 (11,), if n = T4, (2.9)

n

wh(L,) = mm(angm + VEMIL), ¢ (1 — TI9) 4+ UnTl(Hn)), if n < Ty, (2.10)
where

Ugl(Hn)—]E[W,ﬁl(HnHﬂfn]—/[Wﬂrl na1(Iy, @) Zfl )T (2.11)

€1y

The first item of the minimization in equation (2.10) is the cost for stopping at time n, while
the second item corresponds to the cost of proceeding to time n + 1. In this way, we know
that the minimum expected cost for the finite-horizon DP problem is W (Ily). Therefore,
in the detection stage of finite-horizon two-stage SCD problem, the optimal stopping rule is
stopping immediately when all\) + VE(IL,) < ¢ (1 — HS))) + UN(IL,) or n = Tj.

After establishing the DP frameworks for the two stages of the finite-horizon SCD prob-
lem, we can extend the frameworks to the infinite-horizon case, i.e., letting T} and T5 go to

infinity.

Theorem 2.1. For any II € Z, the infinite-horizon cost-to-go function for the DP process

of the identification stage is

V() = lim V(1D = min(B(H),cQ + GV(H)>, (2.12)

TQ—)OO

where

(2.13)
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Here, II denotes the posterior probability of the next time slot.

Proof. Please see Appendix A.1. O
From optimality equation (2.12), we know that the optimal rule for this single optimal

stopping time problem is

7y = inf {B(Il,) < co + Gy(I1,,)} — 7. (2.14)

n>Ty

The optimal stopping rule (2.14) tells us that when B(II,) < ¢3 + Gy (I1,,), the optimal
option is making identification immediately. Otherwise, observing more data samples is a
better choice.

Based on (2.10), we can study the infinite-horizon DP process of change detection stage

by letting T} — oo.
Theorem 2.2. For any II € Z, the infinite-horizon cost-to-go function for the detection

stage is

W(I) = lim WT(IT) = mm<an V() er (1 — IO + UW(H)>, (2.15)

T1—o0

where

(I, z)) > fi(x)I? | d

€Ly

U (I1) = E[W (1) | F] = / (2.16)

Proof. The proof of this theorem is very similar to the proof of Theorem 2.1 and thus

omitted. O

From optimality equation (2.15), we can see that the optimal rule for this problem is

= igg{angm + V(L) < ¢ (1 =IO + Uy (11,) ). (2.17)
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The optimal stopping rule (2.17) tells us that when aII +V (IL,) < ¢ (1—TI%) +Uyy (IL, ),
the optimal option is to raise change alarm immediately. Otherwise, it is better to wait and

observe more samples.

2.4 Low Complexity Two-stage SCD Rule

Similar to other DP-based solutions, the computational complexity of the optimal solution
obtained in Section 3.3 is high, especially when [ is large. In this section, we design a low
complexity threshold-based two-stage SCD rule. Furthermore, we analyze the performance

of this low complexity rule and show that this rule is asymptotically optimal.

2.4.1 Threshold Two-stage SCD Rule

Here, we describe our low complexity two-stage SCD rule. Our low complexity rule is
a threshold rule. In particular, the proposed rule is charcterized by a set of thresholds
{A,é = (By, B1, Bs, ..., Byy) }, in which A and every elements in B are strictly positive
constants. With these thresholds, the proposed threshold rule d7 = (74,75, dg) is defined

as

T4 = inf{n > 1,1_[%0) <1/(1+ A)},
)
T =minTy/,
ey, B

(i) e ) (i) (2.18)
Té = 1nf{n > ].,Hn > ]_/(]_ -+ Bz)} — Ta,
dg = argminT(f).
\ icr, B

In this threshold rule, the first stopping time 74 is the first time Hq(lo) falls below the threshold
1/(1 + A). After 74, the rule turns to check the posterior probabilities 1Y for all i € T
It will stop immediately if any threshold 1/(1 + B;) is exceeded. The identification decision
depends on which threshold is passed. In order to guarantee that this rule is in the two-

stage SCD rule space A, it must satisfy 75 > 0. This condition can be satisfied by choosing
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appropriate A and B. So we assume that A and B applied in this SCD rule satisfy 75 > 0.
We will discuss how to select such values in Section 2.4.3.
For i € Zy and n > 1, define the logarithm of the odds-ratio process as
. )
Pl = log1 G —log Z exp(—An(7,7)) | - (2.19)

o JE€To\ {3}

Using <I>7(f), 07 can be expressed as:

( (©
1 — T
Ta=inf{n>1,~—">A
1y

=inf{n >1,0" < —log A},

T = min T(f),
ito " (2.20)
1-1I,
7y =inf<n>1,——— <Bi} —Ta
I

o/
=

= inf{n > 1,0 > —log B;} — 74,

_ ()
dg = argmin7 g’

\ 1€7p

The complexity of the threshold rule (2.18) is very low. After obtaining a new sample,
we only need to update the posterior probabilities using the recursive formula (2.2), and
then compare them with the thresholds. In the following, we will show that this rule is

asymptotically optimal as ¢; and ¢y go to zero.

2.4.2 Asymptotic Analysis

We now analyze the performance of the proposed threshold rule as ¢; and ¢y go to zero, for
which A should go to infinity and elements of B should go to zero.
We first analyze the delays. From (2.18), we can easily see that the delays increase as

A — oo and B; — 0 for all 7 € Z, as shown in the following proposition.
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Proposition 2.2. For ¢« € Z, we have P; — a.s. P + 74 — o0 as B; — 0, and P; — a.s.

B

T4 — 00 as A — oo.

Proof. For any n > 1,

A n . 1 n , 1
P, (1 <n) =P, g <N"p, (O :
Z(TB + TA > n) 3 (kgl { k > 1 T Bl >~ ; 7 k > 1 T BZ

So lim sup IP; (Tg) + 74 < n) <> P (H,(j) > 1> = 0. Finally, we have

B;—0 k=1
P,—a.s.
7 + T4 —
B B;—0

Similarly, for any n > 1,

PZ(TA < n) P; (kul {Hk < 1 }) l; 1 P (Hk < : >

So limsupP; (74 < n) < 30 P; <H,(€0) < 0) = 0. Finally, we have 74 ——%% o0, O
B;—0 k=1 A—00

To further analyze how fast these delays increase, we study the behavior of the LLR
process defined in (2.3).

We first give some definitions. For every i € Z and j € Zo\{i}, let

q(i,0) + [log(L = p)|  j € To\(T U{i}),

Q(Zvj) j € Fi7

l(la]) =

where ¢(7, j) is the Kullback-Leibler divergence from f; to f;, and

I = {5 € T\{i}]q(i, 5) < q(4,0) + [log(1 — p)|}.

The next proposition illustrates the behavior of the LLR process when stopping times go

to infinity.
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Proposition 2.3. For ¢ € Z, we have

(i, ) (2.21)

and

A (0,7) _ _An(i,()) Pi—a.s. _1(i,0). (2.22)

n n—oo

Proof. The proof of (2.21) is already given in [67]. By (2.21), we can easily have equation
(2.22). O

According to (2.19), ®') is a function of the LLR process. Therefore, when A — 0o and

B; — 0 for all ¢ € Z, the behavior of & can also be characterized.

Proposition 2.4. Let [(i) = l(i,j(7)), j(i) = argmin (7, j). Then, for every i € Z, we have

JELo\ {3}
0 b _as
UmNTO) (2.23)

n n—00

In addition, we also have

O b _as
= B 13,0, (2.24)

n n—oo

Proof. Please see Appendix A.2. O

Using Proposition 2.4, we can prove the following lemma which can be used to calculate

the expectation of the delay cost.

Proposition 2.5. For every ¢ € Z we have

(75 +7a =N s, 1 (2.25)
—log B; Bi—0 1(i) |

In addition,
(TA - )\)4_ P;—a.s. 1
—logA  A-eco —I(i,0)

(2.26)
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Proof. Please see Appendix A.3. O]

Here we don’t consider 7'1(§0 ) 4 T4. This is because the decision d = 0 is not an optimal
choice in any case if ¢; and ¢y go to zero. We will prove this in Section 2.4.3.

We now analyze the the false alarm and misdiagnosis probabilities. From the proposed
SCD rule, we can see that the false alarm probability in the first stage is bounded by 1/(1+A).
When A — oo, the false alarm probability in the first stage is very close to 1/(1 + A) since

T4 — o0. As for the misdiagnosis probability, we consider several upper bounds. Firstly,

following Proposition 2.4 of [67], we can prove the following lemma.

Lemma 2.1. For any SCD rule § = (11, 72,d) € A, let

R;i(0)=P{0=j,d=i,A<m+mn<oo0},icZ,jeI\{i},
ROZ'((S):P{d:’i,)\>71+72},i€1.

Then for j € Zy\{i}, we have

R](é) = vl [1{d:i7/\§7'1+Tz<oo}6_AT(i’j)} .

Using Lemma 2.1, we have the following upper bound for the misdiagnosis probability.

Proposition 2.6. For every ¢ € Z, we have

Z Rﬂ(éT) S Usz
JE€Lo\ {3}

Proof. By Lemma 2.1, we have
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Then we have

> Ri(0r) = > v [Lagaincranye ] = 0B | Lggmincrcny » € M0
JETo\{i} JE€To\{i} J€Zo\{i}

< UzBl

The last inequality is due to

Z 67A7(i’j) = 67(1)(:> < B;.
JeEMo\{i}

Using Proposition 2.6, we have the following proposition.

Proposition 2.7. For every i € Z and j € Zy\{i}, we have

Yo D baRu(or) <Y uiBibi,

i€Z jeo\{i} i€l
where b; := max;e s\ {i}bji-

Therefore, we know that the misdiagnosis probabilities for d = ¢ € Z goes to zero as
B; — 0. Now, we need to study the misdiagnosis probability for the case d = 0. The
The following proposition shows that

misdiagnosis probability in this case is 1 — H(Ti) byt

this misdiagnosis probability does not go to zero.

Proposition 2.8. For any A > 0, there always exists 0 < z < 1, such that the posterior

probability Y <z is always true.
Proof. Please see Appendix A.4. n

By Propositions 2.7 and 2.8, we know that the misdiagnosis probability for the case d = 0

is much larger than misdiagnosis probability for the case d € Z if B; — 0.
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2.4.3 Threshold Selection

We now discuss how to select the thresholds A and B. By Proposition 2.2, we know that
T4 — o0 as A — oo. This implies that 74 > A almost surely as A — oco. So we have

E(t4a —A)+ =E(14 — A) as A — oo. If the condition Tg) >0, ie.,

inf {n > 1, 15—%) < Bi} > 7 (2.27)

is satisfied for all + € Z, we can calculate the delay cost as

aE[(ta — A)4] + E(g) = (a — @)E[(ta — A)y] + @E[(7a + 75 — A)4]. (2.28)

We will discuss how to find A and B which can guarantee that (2.27) is satisfied in the
sequel.

Now, by Proposition 2.5 we have ]E,»[(Tg) + 74 — A)4] for all i € Z. However, we need
E;[(tg + 74 — A)4] for all ¢ € T to calculate the expectation of delay. So we consider the

following proposition.

Proposition 2.9. For every ¢ € Z, we have

] Pi—a.s. — IOg Bz
* 1(4)

E; [(T§+TA—/\)

if B, -0 forallieZ.
Proof. Please see Appendix A.5. a
Now, under the following three conditions:
(a) Tg) > 0, i.e., inequality (2.27) is satisfied;
(b) A— o0, B; — 0 for all i € Z as ¢; and ¢ go to 0;

(¢) d =0 is not the optimal decision in any cases as ¢; and ¢y go to 0;
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we can calculate the Bayesian cost and the thresholds. After getting the thresholds, we will
verify that the chosen thresholds do satisfy these conditions.
By Proposition 2.7, we know that there exists a set of constant k; such that k; < b; and

the misdiagnosis probability

1€Z jeIo\{i} i€l

Similarly, the false alarm cost can be approximated by k,/(1 + A) with a constant k&, in
(0,a). By Propositions 2.9, the delay cost can be calculated. Therefore, if ¢ — 0 and the

ratio constant r is fixed, the Bayesian cost can be calculated as

log( v; log A k
(c2) — . B, . ‘.
C2) (o) szvz( Tt ) D v "“LC? D2 TG0 T1ra (2.29)

1€L i€ €L

[\

~
part 1 part2

A simple calculation shows that to minimize (2.29), we should set the thresholds as

& T (2.30)

Plugging in A,,; and éopt, we have the corresponding rule 6% and its Bayesian cost

Uz 62

c2) 5* _CQZZUZ

2.31
. AN | (2.31)

- k—_ '
7 a ( )Z l(zO) (*—1)2 1G.0) L

Now we need to check if the three conditions are satisfied. First, we check condition
(a). By the threshold rule (2.20), we know that 7,,, is the first time ), II nY =1-m

exceeds the threshold 1 — 1/(1+ A,y). Also, Tg) + Ta,,, is the first time for 1Y exceeds
opt
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the threshold 1/(1 + B, opt). So if

1 - 1
1 + Aopt 1 + Bi,opt

1 (2.32)

for all 7 € Z, it is guaranteed that the threshold B can not be reached before threshold A,
namely, 75 > 0. After plugging the explicit expressions of the optimal thresholds (2.30) in
inequality (3.18) and basic calculation, we know that a sufficient condition of 75 > 0 is

0 <r <min - )
€ 1+ s

(2.33)

If the value of r satisfies (2.33), condition (a) is satisfied. However, for the case (2.33) is not

satisfied, we need to change the threshold accordingly as

A = Ay,
. (2.34)

! kz -
Bi = Bi,opt?/l el

where 7 is a constant such that

) 1
r=min n :
ic -
1 i
@ 2 o

We can see that with A" and glopta condition (a) is satisfied. Hence the Bayesian cost of the

rule 6 = (T4, 75/, d') is

/ . ki\ i k?
C)(§) = O (83) — ¢y Z log (_) ZU‘ n Z 0; Bi opt (— — k:l) (2.35)
1€L U (Z) 1€L U

Since k;, l(i) and n are constants, the last two terms in (2.35) decay much faster than
C(2) (%) as ¢y — 0. This implies that the difference between the cost calculated by (2.31)

and (2.35) is negligible as ¢ — 0. So condition (a) is satisfied. Then we can see that the
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Bayesian cost in (2.31) for any 0 < r < 1 goes to 0 as co — 0. However, by Proposition 2.8,
there is always a constant cost x > 0 if the decision d = 0 is made. Hence, choosing d = 0
will always end up with a higher Bayesian cost, as long as ¢ — 0. So condition (c) is true,
hence By is set to be 0 to disable d = 0. In addition, it’s easy to see that condition (b) is
true by (2.30) and (2.34).

In summary, we select thresholds in the following manner: if r satisfies (2.33), we set
the thresholds according to (2.30); otherwise, we choose the thresholds as (2.34). Besides,
By =0.

Finally, we consider the values of k, and {k;};cz. As we can see from equations (2.31) and
(2.35), the cost of false alarm and misdiagnosis costs decay much faster than the delay cost
as co — 0. Therefore, as long as {k;} and k, are constants, taking different values for them
will not change the asymptotic behavior of the Bayesian cost. Typically, we set k, to be the
penalty factor a. For k;, [67] introduced a method to calculate a higher order approximation
of k;:

ki = bjiiEile™%),i € T. (2.36)

Here Z; is a random variable with distribution

2 p© [T A
I P {Zzzo log fj(i)()lfz) > s 0 ds
Pi(Zi <z) = o ;
(0) T; fi(X1)
E; {Zlo log Fiw (X1)

where 0 < z < o0 and

7O .= inf {n >0: 3 log (£595) > 0} . (2.37)
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2.4.4 Asymptotic Optimality

We now show that the threshold two-stage SCD rule is asymptotically optimal as ¢y — 0.

In particular, we will show that, for any § = (71,7, d) € A, we have

(c2)
—5@2) ((5?) > 1, (2.38)
in which o0p = (TAT,TET,dT) with thresholds Ap and By computed using (2.30) or (2.34)
according to the value of r. We already know that the difference between Bayesian costs
calculated by (2.31) and (2.35) is negligible as ¢ — 0. So we only need to consider the cost
function calculated by (2.31), i.e., the case in which r satisfies (2.33) and hence Ay and Br
is set as (2.30).

First, we study the delay cost of an SCD rule § = (71, 72,d) € A. For convenience of
expression, we define Ay := {7|m is any stopping time associated to F} as the collection of
all possible one-time change detection rules for the first stage. We also denote collections
of rules which has bounded false alarm and misdiagnosis probabilities for the two stages re-
spectively as A (Ry) := {1 € A|Ro(11) < Ro}, and A(R) = {(11,72,d) € A|Rji(11, 72, d) <
Rji,i € Z,j € To\{i}}, where Ry and R = {R_ji}iez,jezo\{i}zo are the upper bounds of false
alarm and misdiagnosis probabilities respectively. As we discuss in 2.4.3, d = 0 should not
be considered for a rule that can outperform our threshold rule as ¢ — 0. So a bound for
¢ = 0 is unnecessary here.

From (2.31), we know that the Bayesian cost of the threshold SCD rule goes to zero as
co — 0. If there exists a rule such that it has a lower cost than the threshold rule, the false
alarm and misdiagnosis cost must go to zero. Therefore, we only need to consider the SCD
rule § = (71, 72,d) such that 6 € A(R) and 7, € A;(Ry) where R — 0 and Ry — 0. Here

R — 0 means that every constant in set R goes to zero. If false alarm and misdiagnosis

probabilities go to zero, the delays 7 and 7, must go to infinity. Given A is finite almost
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surely, the delay cost can be expanded as
aE[(11 = A)4] + @E(r2) = (a1 = )E[(11 = A)4] + E[(11 + 72 — A)4].
The following lemma provides the lower bounds of E[(1; — A).] and E[(73 + 72 — A) ] respec-
tively.
Lemma 2.2. Ifi € Z and § = (11, 72,d), we have

E;i[(m1+m2—X) ] > 1

liminf inf " =

R0 6cA(R) o8 (Riqi/vi)

£l (2.39)
liminf  inf M Z
Ro—0 el (Ro) [108(Ro/vi)[/1(:0)
Proof. Please see Appendix A.6. O]

With the lower bound of the delay, we finally establish the asymptotic optimality of the

threshold two-stage SCD rule.

Proposition 2.10. If 67 = (7a,, 75, dr) is a threshold two-stage SCD rule with thresholds

as (2.30), then for any given fixed r we have

iIlfgeAC(Q)((S)
621210_ 0(62)<5T) = > 1.

Proof. Please see Appendix A.7. m

This proposition implies that for given r satisfies (2.33), the threshold SCD rule with
threshold (2.30) is asymptotically optimal. Since the difference between Bayesian costs
calculated by (2.31) and (2.35) is negligible as ¢; — 0, so the asymptotic optimality of the

proposed threshold SCD rule holds generally for any 0 < r < 1.
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Table 2.1: Comparison of the optimal Bayesian two-stage costs with different ¢; and r
) "1 002 | 005 | 02 0.5 | 1 (One-stage)
1

0.005 | 0.0720 | 0.0798 | 0.1009 | 0.1309 0.1580
0.02 | 0.2352 | 0.2511 | 0.3115 | 0.3695 0.4016
0.05 | 0.4763 | 0.5086 | 0.6123 | 0.6853 0.6980
0.2 10.9392 | 0.9892 | 1.0021 | 1.0023 1.0023
0.5 1.0059 | 1.0062 | 1.0058 | 1.0064 1.0067

2.5 Numerical Example

In this section, we provide numerical examples to illustrate the performance of the optimal
and threshold SCD rules. In our simulation, the observed data samples are generated by a
two-dimensional normal distribution, N (g, I5). The mean vector fi changes at the change
point.

In the first example, we consider the case with two possible post-change mean vectors
g1 = (1,0) and gy = (1,0.5) and the pre-change mean vector fip = (0,0). In addition,
we set po = 0, p = 0.01, (v1,v2) = (0.3,0.7). All the penalty factors of the false alarm
and misdiagnosis are set to be 1. The results are estimated by Monte-Carlo simulations.
Table 2.1 presents the expected costs of the optimal two-stage SCD rule with different delay
penalty factor settings, i.e., with different ¢; and 7.

From Table 2.1, we can see that the performance of the optimal two-stage SCD rule
becomes better as ¢; and r get smaller. In particular, with identical ¢y, the optimal two-
stage SCD rules with » < 1 generally outperform the rules with » = 1. Note that, the
two-stage SCD problem will become a one-stage SCD problem when r» = 1. Therefore, this
result validates that the optimal two-stage SCD rule generally outperforms the optimal one-
stage SCD rule when ¢y < ¢;. Furthermore, with smaller ¢;, the performance improvement
brought by reducing r is more significant. The reason is, with a small ¢;, we can use more
data to improve the accuracy of change detection and identification without a significant
increment of the delay cost. On the contrary, when c; is large enough, the performance can

still be very poor even with a very small r. This result implies that when the per-unit delay
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Figure 2.1: The cost ratio between the optimal and threshold two-stage SCD rules
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Bayesian Cost
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Figure 2.2: The Bayesian costs of the threshold two-satge SCD rules with different number
of post-change distributions

cost is too large, the improvement on diagnosis accuracy becomes too expensive and also
negligible.

Figure 4.4(a) illustrates the ratio between the costs of optimal and threshold SCD rules
with different penalty factors, ¢; and r. The constants {k; };ez used to get the thresholds are
approximated using (2.36) and k, is set as 1. From this figure, we can see that the Bayesian
cost of the threshold SCD rule converges to the cost of optimal SCD rule as ¢; — 0. This
result validates the asymptotic optimality of the threshold SCD rule. From the lines for
different r values, we can see that the cost of the threshold SCD rule converges to the cost
of optimal SCD rule faster and faster as r decreases. This implies that, with the same ¢y,
a smaller ¢y makes the cost of the threshold SCD rule more close to the cost of the optimal
rule.

In the second example, we compare the performances of the threshold SCD rule in prob-
lems with different difficulty level. In particular, we investigate the performance of the
threshold rule when the KL distances between fy, fi and f5 are reduced. Keeping all other
parameters in example 1, we run two simulations: 1) In simulation 1, the post-change mean

vectors are fi; = (0.5,0) and fis = (0.5,0.5); 2) In simulation 2, the post-change mean
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vectors are fiy = (1,0) and s = (1,0.25). Results are shown in Figure 4.4(b) and 2.1(c).

From Figures 4.4(a), 4.4(b) and 2.1(c), the ratio between the costs of the optimal SCD
rule and the threshold SCD rule is generally large when ¢; and r are not very small, especially
when fy, f1 and f5 are close. However, when ¢; and r are sufficiently small, the performance
of threshold SCD rule becomes very close to the optimal SCD rule in all the examples, even
if fo, f1 and f5 are close. This indicates the difficulty of the change diagnosis task will not
change the asymptotic optimality.

In the third example, we investigate the performances of the threshold SCD rule when
there are more than two candidate post-change distributions. To this end, we implement
four sets of simulations with 2, 4, 8, and 16 post-change distributions. In each set of simula-
tions, all the distributions are still 2D Gaussian. The prior probabilities of the post-change
situations are uniformly distributed, i.e., (vq,...,v;) = (1/I,...,1/I). The mean vector of
the pre-change Gaussian distribution is iy = (0,0). The mean vectors of the post-change
Gaussian distributions are uniformly distributed on the circle centering py with radius 0.5.
For example, if d = 4, we can set fi; = (0.5,0), fio = (0,0.5), fis = (—0.5,0), iy = (0, —0.5).
The co-variance matrices of all distributions are identity matrices. In addition, py, p and
penalty factors are same as example 1. The results of the simulations are presented in Fig-
ure 4.8. As we expected, with more post-change distributions around the same circle, the

threshold SCD rule will have a larger Bayesian cost.

2.6 Conclusion

In this chapter, we have formulated the Bayesian two-stage sequential change diagnosis
problem. We have converted the problem into two optimal single stopping time problems
and obtained the optimality equations of them. After solving these equations using dynamic
programming, we have obtained the optimal rule for the Bayesian two-stage SCD problem.

However, the complexity of the proposed optimal solution is high due to the DP steps. To
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reduce the computational complexity, we have designed a threshold two-stage SCD rule and
proved that this threshold rule is asymptotically optimal as the per-unit delay costs of the

two stages go to zero.
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Chapter 3

Bayesian Two-stage Sequential
Change Diagnosis via Multi-sensor

Array

In this chapter, we study the two-stage SCD problem in a multi-sensor array case. Firstly,
we introduce the problem formulation with a linear sensor array. Then we introduce the
structure of the optimal solution for the two-stage SCD problem. Afterward, we propose
the low complexity threshold rule to the two-stage sensor array SCD problem and prove the
asymptotic optimality of this method. Furthermore, we extend this method from a linear
sensor array case to a more general 2D lattice sensor array case. Finally, simulation results

are given to illustrate the performance of proposed SCD rule.

3.1 Problem Formulation

To facilitate the presentation and easiness of understanding, we will first present our work
for the linear array case (as shown in Fig. 1.4). The more complicated 2D array scenario
will be presented in Section 3.5.

In the linear array scenario, there is a linear array of L sensors monitoring the envi-
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ronment. The L sensors collect data at each time unit and then immediately send data
to the fusion center for analysis. The observation of the system is a stochastic process
hosted by a probability space (€2, F,P). At time k, the observation of the system is X =
(Tk1, T2y - Tr,r), Where xy; is the data collected by the Ith sensor at time k. Let A :
Q2 {0,1,...} be the time when an abrupt change happens in the sensing environment and
0:Q+— T :={1,...,1} be the environment state after the change. The prior distribution
of the change time is P(A = k) = p(1 — p)*. In addition, we denote Z U {0} as Zy. After
time A, the distribution of the data collected by each sensor may experience a change from
fo to fa. fo can be one of the candidate distributions { f;}icz. In addition, F = (Fg)k>o is

the filtration generated by the stochastic process {)Z' k>

3.1.1 Change Propagation Model

The change propagation model is illustrated in Fig. 1.4, the change will first happen to one
sensor in the array and then propagate to other sensors. In the considered model, the change
times of different sensors may be different. We denote the time change happen to sensor [
as \; for all 1 <[ < L. Let S denote the index of the sensor that the change first reaches.
The prior probability P(S = 1) = #; is known. We denote (1, ko, . .., k1) as K. As shown
in Fig. 1.4, the change first reaches sensor S at time Ag = A, then the change will propagate
to sensors on both sides of sensor S following the directions S — S +1 — --- — L and
S —S5—1— ... — 1. The propagation of the change in the sensor array follows a geometric

distribution, i.e., for ky > 0,

]P)[)\];l = kl + ]{Z2|>\j = kl,S = Z] = p1(1 — pl)kz,’i >j
]P)[)‘j—i-l = k’l + k‘2|)\j = k’l,S = Z] = pg(l — pg)kz,i <j

where p; and py are the probabilities of the change propagate from a sensor to its neighbor

at each time step for the two directions.
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3.1.2 Observation Model

In this section, we assume the observations of different times at every sensor are independent,
conditioned on the change information. Concretely, if &k < A;, z5; ~ fo, otherwise z;; ~ f,
where 6 € Z. The prior probability of the state after change is defined as v; = P{ = i},i € Z.

To simplify the notation, we express the conditional probabilities as:

Pi{-} =P{-6 =i},
PO} =P{|d =i, A=t},t> 0.

Correspondingly, E; and Egt) are the expectations under P; and IP’Z(t). Finally, assumption 2.1

also holds in this chapter.

3.1.3 Two-stage Multi-sensor SCD Problem

Our goal is to quickly raise an alarm after the change occurs and further accurately determine
the state @, based on all the data samples {)21, . ,)Z'k} Towards this goal, we employ a
two-stage SCD rule 6 = (7,7, d) that includes two stopping times 71, 73 + 72, and an
identification decision d. Here, 71 is the time for the change detection and 71 + 75 is the time
for the identification. Let A := {(7,72,d)|m1 > 0,72 > 0,d € Zy} be the set of all possible
two-stage SCD rules. We should note that if a wrong decision is made at 7, i.e., 71 < A,
then d = 0 is the correct identification as long as this identification is made before A, i.e.,
71 + T2 < A. Besides, the parameters p, p1, pa, K and {v; }iez are known.

The possible costs of an SCD rule include costs of delay, false alarm, and misdiag-
nosis. The delay consists of the delays in the change detection stage and the distribu-
tion identification stage, i.e. (7 —A)y and 7. The expected delay costs of them are
Elc1(m1 — M) 4] and E[cams], where ¢ and ¢y are per-unit delay costs associated with each
stage and (z); = max(0, z) for any z. In addition, we define r := cy/c; as the ratio between

per-unit delay costs. A false alarm is the situation that a change alarm is raised before \.
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The expected false alarm cost is E[aly,, <x}], where a is the penalty factor of false alarm and
1¢4 is the indicator function. Misdiagnosis occurs when a wrong identification is made, i.e.,
d # 0. The expected misdiagnosis cost is E| >, 7 bij1{ccsr+mm>70=id—j} + bojl{Tl+TQ<A7d:j}]
for d = j, where b;; is the penalty factor for wrong decision d = j when ¢ =i and by ; is
the penalty factor of the false alarm of the identification stage. We set b;; = 0 when ¢ = j.

Hence the Bayesian cost function for a two-stage SCD rule § € A is

C(0) = aE (11 — A)4] + @E[r] + dE[1{, <]+

I (3.1)
Z E Z bzg]-{oo>'rl+7'2>/\9 =i,d=j} + b031{71+72<)\d ]}]

=1

The goal of the SCD problem is to find an SCD rule (71, 75, d) that minimizes the expected
cost C(9).

3.2 Posterior Probability Analysis

Following the main idea of [73], we can solve a two-stage SCD problem using posterior

probability process, I, = (Hfﬂo), o ,Hff)) k>0 € Z, which is defined as

N9 =P{A <k 6=iF}icT,
00 = P{\ > k| 7},

and

ZE2 e o,y @ =1},

zEIU{O}

Using Bayesian rule, we know that, at any time k£ > 1, each component of Il can be

computed as

. O % %
1—[](;) _ Q. (X1,X2 ..... Xk)_‘ (32)
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in which

( L

o9 = (1= o) T 1T folwnd)

=1

L k r ns—l k
o) = Y kvip 3 [ }] foms)) ( I1 fi(xn,s>>\lf§ 1(k, )3 n5>]

ns=0 n=maz(ns,1)

. -1 k k nj_1—1
W) = (- p = T T foen b [(1—pl>m-l—"l( 1 fo(xn,z—l))-

ny—1=mng

A >1

n=n;_1

( I fi<xn,ll>) U (kg y)

O, (kom) = (1— p2)1 11 11 folowe)tpe - [(1—p2>"l+1”l (H fom,Hl))-

t=Il+1n=1 Ni41="

! 4
( I1 fi(fﬁn,lﬂ)) @z(i)z(k,nm)] <L
n=ni+i

| @ (ko) = 0§ (ki) =

(3.3)
Assumption 2.1 implies 0 < H,(f) < 1 for every finite £ > 1 and i € Z;. We define the

log-likelihood-ratio (LLR) processes as

) DX, X,,..., X
A3, §) = log —- = log % LB J“). (3.4)
(4) (4)
It o (X1, X, ..., Xp)

Directly calculating II; based on (3.2) requires us to remember all past samples, which
require large storage and is not easy for implementation. Hence it is desirable to compute

1y recursively once a new sample X} arrives. To achieve this, we further define the event

Tiksing =15 =8 1>k N, <k Ay >k N, <k, 0=1}

for 1 <s < L, <sandly >s. Specially, T; k115, = {S = 1, \p41 > k, A\, < k,0 =i}
and T = {5 =L, \y—1 >k, N\, <k,0 =i}. From the definition, we know that event
T k5.1, denotes the event that the change with post-change distribution f; firstly reaches
sensor s and already propogates to sensors [; and Iy at time k. In addition, we define the

event that change has not happened yet as Ty, = {A > k}. In this change process setting,
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we can see that the underlying probability space €2 can be partitioned as

o (0 0Yr U

s=111=11ly=s1€l

Then, we denote the posterior probability as p; ks, := P{Ti ks .15 |Fr } and por = P{Ty x| Fr }.

Using Bayesian rule, we can derive the updating rule for these posterior probabilities as

Nik,s,11,lo

Pikslilo = T 5 1L
Z Z ZNiak7S7l11l2+N07k

s=1l1=11y=si€l
l<s<L,1<l;<s,s5<Il,<L,iel, (3.5)
No .k

L s L
>0 > > > Nikys,iylgTNok

s=1llj=1lg=s1i€l

Dok =

\

where N, i 51,1, denotes the probability density

d]P)«le cee an)7 Tzi,k,s,h,b)

Io li—
= ( I1 f,(x,m)) (Hll fo(xkﬂ)) ( ﬁ fo(:pk,n)> . [po,k—lffsﬂ(l — p)ta#n (1 — p2)1{l2¢L}pi—l1pl22—s+

n=I1 n=lo+1

s I
( Z Z pi:k*1;37n17n2<1 - pl)l{ll#l}(l - p2)1{l2#L}p7111_l1pl22_n2>]

ni1=l; n2=s

(3.6)

and Ny, denotes the probability density
5 . L
dP((X1,..., Xk), Tox) = pox—1(1 = p) IT fo(@rn). (3.7)
n=1
For k=0, we have ppg =1 — p. For [; < s <y, we have
Piosiny = KsVip(L — pr) a1 (1 — po)Hiarid pi=h pl2=,

Let P denote the 4-dimensional posterior probabilities tensor in which its elements

are P;ksilo- 10 P, only elements satisfying {; < s and l; > s can be non-zero values.
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From (3.5) (3.6) and (3.7), we see that Pj can be computed from Pj;_; and observation
X r at time k. Hence, we have the recursive update formula for the posterior probabilities

{P,pox}. More importantly, by the relationship between {Py, po} and I,

(43) L s L ]
I =2 > > Pikshini €T
s=11l1=112=s , (38)

11 = pos

we can update Il recursively.

3.3 Optimal Multi-sensor Two-stage SCD rule

Given the updating rule of Iy, (3.5) and (3.8), the optimal rule (77, 75,d*) that mini-
mizes (3.1) can be obtained by following similar steps as those in our recent work [73].
In particular, by converting the two-stage problem into two optimal single stopping time
problems and solving them in reversed order, we can obtain the optimal SCD rule for the
proposed two-stage sensor array SCD problem. Here, for completeness, we introduce the
main steps of obtaining the optimal rule (7], 75, d*).

To start, using Iy, we can express the Bayesian cost (3.1) as

T1—1 I
CO)=E[Y i (1-1) + com + Limcoyall) + 1 imcoey D L=y Bi(I, 40 |
n=0 =0

where Bj(IT) = 3, 7 b;I1% is the misdiagnosis cost associated with the decision d = j.
Therefore, B(II) = miIn B;(II) is the smallest misdiagnosis cost can be achieved at time k.
J€Llo

As a result, the optimal identification decision is d* = argmin;ez, B;(Il). Using this result,

we have C(1y, 2, d*) = E[C} (1) + C2 (1L, 72)], where

T1—1
Ci(n) =) e (1= IY) + 1y coyalll)
n=0
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and Cy(Il;,, 72) = caTo + 17 1ry<o0} B (Il 4+, ) are the cost functions of the change detection
stage and distribution identification stage respectively. Then we have the minimal expected
cost for the SCD process,

C(ry,75,d") = min E[Ci(1)+ Co(11,72)]

71,T1+72E€F

= min_E[Ci(n) +E[Ca(m)|Pr. 0o (3.9)

71,71+ EF

T1EF T1+72EF

= minE {Cl(ﬁ) + min K [02(7'2)|Pmp0,n]] :

By (3.9), the two-stage stopping time problem becomes two ordered optimal single stopping
time problems. The first one is for the identification stage, its goal is finding the optimal
which minimizes E[Cy(73)|P,, po | for any given 7, P, and pg . The second single stop-
ping time problem is to find the best stopping rule for the detection stage. From the last line
of (3.9), we can find an optimal 7 to minimize the expected cost for the whole SCD process
if the optimal rule for 7 is known. Therefore, we will firstly find the optimal rule for the
identification stage, then select the optimal stopping time for the detection stage. DP is a
good way to solve optimal single stopping time problems. With the expression C; and Cs, we
can built the cost-to-go functions of the two optimal single stopping time problems. In par-
ticular, for the identification stage, let {13, Do} be the posterior probabilities at time next to
the time of { P, po}. The infinite-horizon cost-to-go function for the DP process of the identi-
fication stage can be obtained by solving V (P, py) = min(B(P,py), ca + E[V (P, po)| P, po)).
This implies that we should make an identification when the expected cost for keep observing
exceeds the cost of making identification immediately. In addition, the optimal identification
decision is d = arg minjez, B;(P). Similarly, in the change detection stage, for any {P,po},
the infinite-horizon cost-to-go function for the detection stage satisfies the following Bellman
equation W (P,py) = min(apy + V (P, po), c1(1 — po) + E[W (P, po)| P, po]). From this, we
know that we should raise a change alarm when the expected cost of observing more data

exceeds the cost of declaring a change has happened.
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The cost-to-go functions V' (P) and W (P) and the optimal stopping times can be calcu-
lated using DP. However, the size of the state space increases exponentially with L and I.

With such a high complexity, the optimal solution is hard to implement.

3.4 Low-complexity Rule

Same as other DP-based methods, the complexity of the optimal solution is very high, even
with an array with only two sensors and two post-change distributions. To address this
issue, we propose a threshold SCD rule that is easy to implement. Moreover, we will prove
this threshold SCD rule is asymptotically optimal as ¢; and ¢y go to zero. The main idea
of the proof is similar to the proof for the single sensor case considered in [73]. However,
the most important step of the proof, i.e., analyzing the convergence of the LLR process,
becomes much more complicated in the sensor array case. In this section, we will introduce
the main steps of the asymptotic optimality analysis and underline the proof details of the

LLR convergence (Proposition 3.1).

3.4.1 Threshold SCD Rule

Here, we introduce the proposed low complexity two-stage SCD rule. The low complexity
rule is a threshold rule. In particular, it is characterized by a set of thresholds {A, B } where
B= (Bo, By, Ba, ..., Br). A and all elements in B are strictly positive constants. Using these

thresholds, the proposed threshold rule 0y = (74,75, dg) is defined as

Ta = inf{k > 1,1_[,(60) <1/(1+ A)},
TG = miInT(f),
1€
() : ) () (3.10)
T = inf{k > 1,II,” > 1/(1 + B;)} — 7a,
ds = argmin 7.
\ B igGIo B
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In this threshold SCD rule, the first stopping time 74 is the first time H,(CO) falls below the
threshold 1/(1 + A). After 74, the rule turns to check the posterior probabilities Hl(f) for all
i € Zp. It will stop immediately if any threshold 1/(1 + B;) is exceeded. The identification
decision depends on which threshold is passed. In order to guarantee that this rule is in
the two-stage SCD rule space A, it must satisfy 75 > 0. This condition can be satisfied by
choosing appropriate A and g, as will be introduced in Section 3.4.3.

For i € Zy and k > 1, define the logarithm of the odds-ratio process as

. n” .
ﬂ-’(ﬂ) = lOg £ (i) = —lOg Z eXp(_Ak(Zaj)) :
1-1II; JE€To\{i}

Using 7T,(:) , 07 can be expressed as:

1 -1 0
T4 = inf k‘Zl,TO)k>A :inf{k21,7r,(€)<—logA},
k

Tg = minT(i)
B B

e @ (3.11)
(0 _ 1 -1, : (i
7 =infdk>1, —— < B;p —ta=inf{k > 1,7," > —log B;} — 7a,
B Hl(;) k

dz = argmin Tg).
L €Ly

The complexity of the threshold rule (3.10) is very low. After obtaining a new sample,
we only need to update the posterior probabilities using the recursive formula (3.5), and
then compare them with the thresholds. In the following parts, we will show that this rule

is asymptotically optimal as ¢; and ¢y go to zero.

3.4.2 Convergence of LLR Process

By (3.2) and (3.4), we can see that

—

Ay(i,g) = loga,(j)()zl,)_f% oo, XE) — 1oga,§”()21,)2‘2, ooy Xg)-
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For ¢ € Z and time k£ > 0, we define

(1 - p)f()(xn,s)

( l
k) =T [(1 - o) ]]
k:l tzl
oy (k. uy) = 11 [(1 ) [1
n=1 t=l

In addition, ¢\, (k,nz)
(i)

((1 —p1)(1— pQ)fi(xn,s)

nll

)) 00, (k)80 (h, )

folns) ffz),
) | Z [T 72t tkon 21
fﬂ(fmt)- T 1fo (Tn,1)

fi(xn,t)_ ngn; 1 }_[1 () l+1 n), 1 <L

express log

L as

log o

(@) _
k

= (1 — py)™~ 1. Therefore, we can

= log[vip(1 — p)] + log (li[

log a(o (k+ 1) log(1 — p) + log (

T Eh” :k

(xml)) + log H,gi),for iel
1

li[ fo(l’m,l)) :

Let ¢(j,7) be the KL divergence from f; to f;. We define the following condition for i, j € Z.

Condition 1. log(1 — p) + q(j, 1)

- Q(j> 0) 2 0 or q(],Z) - q(]a O) S

0.

The next proposition describes the limit of log H ,ﬁ“ /k as k — oo.

Proposition 3.1. For any ¢,j € Z, if Condition 1 is satisfied,

where h(i,j) =

k

Proof. Please see Appendix B.1.

(log(1 = p) + L(q(j,

i) —

o4

1 i i—a.s. L
“log HY 27 n(i, 5)
k—o0

9(5,0))) -

(3.12)



3.4.3 Asymptotic Optimality

Once we show the convergence of log H ,gi) /k, we can proceed to show the asymptotic opti-
mality of the threshold rule. The main steps on this proof are: (1) Obtain approximations of
the delay, false alarm probability and misdiagnosis probability, which leads to the expression
of the Bayesian cost of the threshold rule, C'(dr), w.r.t. A and B; (2) Select the optimal A
and B that can minimize C'(dr); (3) Prove that C(d7, Aopt, Bopt) achieves the lower bound
of the Bayesian cost for arbitrary two-stage SCD rule when ¢; and ¢; go to 0.

For any ¢ € Z, define

Lq(i,§) — h(j,i),7 €T
w(i ) = q(i,j) — h(j,1),j € | (3.13)

If the first affected sensor is unknown, and Condition 1 is satisfied for 7, j € Z, h(i,j) can be
calculated as in Proposition 3.1. As introduced in [73], the approximation of delay can be

expressed as

) . B P;—a.s. —log B; .
Ez [(TB +Ta )\>+} m w(i) for i el

, (3.14)

E; [(TA = )\)J Fizas, 10561)’ forieZ

A—o0 w(i,

where w(i) = w(i, j(i)), j(i) = argminw(i, j). In addition, the false alarm and misdiagnosis
J€To\{i}

probability can be approximated as -

1+A

and Y v;B;k;, respectively. Here k, = a and
i€T
ki = max;ez,\(i3bji- Therefore, the Bayesian cost of the threshold rule can be approximated

as

— log(B; 1 v;log A ke
C(5r) =2 vy (#) +) viBiki + ¢ (; — 1) > w(@,:‘;O) T a (319)

i€l 1€T 1€T
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By minimizing (3.15) w.r.t A and B, we get the optimal A and B as

ot N ST Sy
€L

(3.16)

Biow = 25,1 € L.

The Bayesian cost for the optimal threshold SCD rule is

Cle () =cy > log< e ) + > k@ 4o, (L oy log e — 2 |+
T) ZGZ% w(3) kiw(i) Zez% w(3) (r ) % w(i,0) ca(£-1) 127.

< w(,0)

ka 1

——Fe 1"
=00 5 oo

(3.17)
Now we need to check if the condition 75 > 0 is satisfied. By the threshold rule (3.10), we

know that 74, is the first time ), _, I =1 -1 exceeds the threshold 1 —1/(1 + Aopt).

t

Also, Tg) + Ta,,, is the first time for 11 exceeds the threshold 1 /(14 Bjopt). So if
opt

1 - 1
1 + Aopt 1 + Bi,opt

1 (3.18)

for all ¢+ € Z, it is guaranteed that the threshold B can not be reached before threshold A,
namely, 75 > 0. After plugging the explicit expressions of the optimal thresholds (3.16) in

inequality (3.18), we know that a sufficient condition of 75 > 0 is

1
0 <r <min
i€ 1+

— (3.19)
kiw(i) Z%:Im

If the value of r satisfies (3.19), condition 75 > 0 is satisfied. However, for the case (3.19) is

not satisfied, we need to change the threshold accordingly as

A = Ay,
. (3.20)

/ kz -
Bi = Bi,optgal el
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where 7) is a constant such that

, 1

T = mlzn 1 % .
ic — ko
ey, o

i€l

We can see that with A" and E’Opt, condition 75 > 0 still is satisfied even if (3.19) is not

satisfied. In this case, the Bayesian cost of the rule 07 = (7a/, 75, d’) is

C(5y) = C(67) — 2 D log (E>
N

= w(@)

k2
+ Z Uz'Bi,opt (?Z — kz) .

1€T

(3.21)

Since k;, w(i) and 7 are constants, the last two terms in (3.21) decay much faster than
C2) (%) as c; — 0. This implies that the difference between the cost calculated by (3.17)
and (3.21) is negligible as ¢y — 0.

Finally, in the following proposition, we prove that (3.17) (also true for (3.21) if (3.19)
is not satisfied) is the lowest Bayesian cost any two-stage SCD rule can achieve when ¢; and

co go to 0. In other words, the proposed threshold rule is asymptotically optimal.

Proposition 3.2. If 67 = (74,,75,,dr) is a threshold two-stage SCD rule with thresholds

as (3.16), then for any given fixed r := ¢o/c; we have

i infge(i)c(:j)(a) > 1.

The main steps to prove Proposition 3.2 are as follows: (1). Derive a lower bound of

the Baysian cost for any possible SCD rule; (2) Prove the proposed threshold SCD rule can

achieve the lower bound as ¢; and ¢y go to zero. For more details of the proof, please refer

to [73]. Note that, since Proposition 3.2 is proved based on Proposition 3.1, Condition 1 is
also necessary for Proposition 3.2.

From the results of asymptotic analysis in Proposition 3.1 and equation (3.14) and (3.16),
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we can see that the prior probabilities of first affected sensor {rs}i<s<r do not affect the
asymptotic behaviors of the threshold rule. Therefore, in the case when {ks}i<s<r are
unknown, we can just set ks = 1/L for all 1 < s < L. Even if the true prior probabilities
are not 1/L, it will not affect the asymptotic optimality of the threshold SCD rule. In
addition, the Condition 1 is not a strong condition because it just rules out the case 0 <
q(4,7) — q(4,0) < —log(1l — p) in which the change is very hard to detect and identify.
Considering the change is typically rare, i.e. p is small and the range [0, —log(1 — p)] is

narrow, Condition 1 can be satisfied in most cases.

3.4.4 Special Case: When the First Affected Sensor is Known

As discussed above, when the first affected sensor S is an unknown random variable, Con-
dition 1 is necessary for the asymptotic optimality of the multi-sensor threshold SCD rule.
In this section, we will show that, when the first affected sensor is fixed and known, the
multi-sensor threshold SCD rule is asymptotically optimal with no additional condition.

When the first affected sensor is fixed and known, one element of K is 1 and all other
elements are 0. Without loss of generality, we assume that the first affected sensor is the
sth sensor, i.e., Ky = 1. With this additional assumption, the computations in the previous
section can be further simplified and we can prove stronger asymptotic optimality results.
In particular, for any time k& > 1, Iy can be directly calculated as

ag)(i1,-’22,~~~,)2k)
ez, a,i’)()z'h??mu-,)zk)

) = (3.22)

(1) k = k (@) (0)
) =uvip Y [(1 —p)" ( fo(wn,s)) ( B H( , fi(xn,s)> U7 (kyng) @y (kyng) |
i (3.23)
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For ¢« € Z, we define

. k ns—1 . .
1 1— Tn,s 1 1
=3 KIIQk%@ﬂM&@))Wﬁﬂthﬁﬂh%)- (3.24)

n=1

Define

1— .o . -
log | s—r ey | + 003, 1) — (. 0), L= s
.. 10g<1_p1)+Q(j72)_Q(j70)7l:1ands%l
m(i, j) = - (3.25)
log(l - pQ) + Q(]7Z) - Q(]7 0)7l = L and s 7é L

L q(7,7) — q(7,0), otherwise.

For any ¢,j € Z, according to the value of 7,(, j), we divide the sensor labels 1 <[ < L
into several consecutive groups (the labels in each group are consecutive). The grouping rule
is described in Algorithm 1. After implementing Algorithm 1 for the case i,j € Z, we will

have M(i,j) + N(i,7) + 1 consecutive groups

{aT(iaj)aaan(iaj)+1:'"7a72n(2'7j)}1SmSM(i,j)7
M(ijG) /- - M(i,5) /- - N(i,j) /. -
{a2 ( J)(Z7]> + 1,@2 ( ])(27]) +27"-762( j)(zaj) - 1}7

{bg<l7j)7 s 76711(%]) - 17 b?(iaj)}N(i,j)anl-

The next proposition describes the limit of log H ,gi) /k as k — oo.

Proposition 3.3. For any ¢,7 € Z,

log H}ii) P, —a.s.

i ——— h(i,]) (3.26)
k—o00
where
h(i,j) = > m(0)+ > m(,j)+ > mlig) | - (3.27)
=1 =by 7 (i.5) 1=ay" ") (i) +1 N
Proof. Please see Appendix B.2. O

59



Algorithm 1: Grouping the sensors
1 Initialize ai(,7) = 1, a3(i,j) = 0, b}(i,5) = L, ¥3(i,j) = L+ 1, m=1,n = 1;
2 for [=1,2,...,s-2,s-1 do

!
3 if >  m(i,5) >0 then

k=ai"(i,5)
4 al(i,7) =1, a* (i, j5) =1+ 1;
5 m+ = 1;
6 end
7 for I=L,L-1,...,5s+2, s+1 do

!
8 if > nm(i,j) >0 then

k=b1"(4.5)
) byi,3) = 1, B (i g) = 1 — 1
10 n+ =1;
11 M(i,j)=m—1,N(i,j)=n—1
12 end

Then following the same steps of Section 3.4.3, we can prove that the multi-sensor thresh-
old SCD rule is asymptotically optimal as ¢; and ¢y go to zero. Plugging (3.27) in (3.13),
(3.16) and (3.17), we will have the optimal threshold and the corresponding Bayesian cost.
Different from the asymptotic optimality for the general case in Section 3.4.3, in this special
case when the first affected sensor is known, the asymptotic optimality does not need any
additional condition. This is because knowing first affected sensor makes the structure of
H (i, j) easier and thus we can prove Proposition 3 true in general. Moreover, if Condition 1
is true for any i, j € Z, we can easily check that the h(z, j) in Proposition 3.1 and equation
(3.3) are equivalent following Algorithm 1. With equivalent h(i, j), w(i, j) and the limit of
cost function in (3.17) will also be equivalent. This indicates that the performances of the

general case and special case will tend to be the same as ¢; and ¢, go to zero.
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3.5 Extension of the proposed SCD rules to 2D sensor
array Case

In the Section 3.4, we studied the SCD problem in a linear sensor array. In this section, we

extend our study to a 2D lattice array scenario.

3.5.1 Change Propagation Model on 2D Lattice

Consider an 2D lattice with vertices {V,;}1<a<m1<p<w, where V;;, denotes the vertex at the
ith row and the jth column of the lattice. An edge exists between vertex pair (V, 4, Vi)
if |a —c| +|b —d| = 1. A change could happen at any single vertex first and then start
to diffuse outward via the edges. At time k, the sensors collect the data samples ka =
(Tra1s Tha 1y - Thomw). Let S = (51,S2) be index of the sensor where the change happens
first, the prior probability P(S = (a,b)) = Kep is known. We denote (K11,K12,-..,Kew)
as K. The change propagation process is characterized by the distance between the target
sensor and the first affected sensor and follows a geometric distribution. let V(a,b,r) be
vertex layer whose distance to V,; is exactly r, i.e., V(a,b,7) = {Vipulla —m| + |0 —n| = r}.
The change will first propagate from Vg, g, to all the vertex in V(S1, Ss,1) at time Ay(s, 5,1
then to all vertices in V(S, 51, 2) at time Ay(s,,5,,2) and so on. The propagation of the change

in the 2D lattice follows a geometric distribution as

P [)‘V(a,b,rJrl) = k1 + k2| Aapr) = k1, S = (a, b)] =pi(1—p)" ke >0 (3.28)

where p; is the probability of the change propagates outward the next layer. As an example
of the 2D lattice sensor array, we illustrate the change propagation process in a 5 x 5 lattice
sensor array in Fig. 3.1. On each vertex, a sensor is implemented to collect data. x4

denotes the data sample collected by the sensor at V,; at time k. For the convenience of
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expression, we denote

C(S1,S2,7) ={(a,b)|la—Si|+[b— S| =r1<a< H1<b<W},
Z(S1,52,7) ={(a,b)|la—S1|+[b—952 <r,1<a<H1<b<W},
O(Sy, 52, 1) ={(a,b)|la— S|+ [b— 5] >r1<a<H1<b<W}

| R(51, 82) = mazicacui<ow (la — Si| 4 [b — Sal).

Now we have a new 2D lattice sensor array and a corresponding change propagation
model. The other parts in the SCD problem formulation, such as the prior distribution of

the change time A, observation model and etc., are the same as in Section 3.1.

3.5.2 Posterior Probability Analysis

In the SCD problem with the 2D lattice sensor array, the posterior probability Il defined

in (3.2) still plays a key role. However, the calculation of oz,(f) in (3.3) will be replaced as

ol = (1= 9 1T TT 1T ol
o no—1
o) = Z Z K81,8,Vif D [( p)" ( 1;[1 fo(%,sl,szo :

S1=1S5>=1 nog=0

< ﬁ fi($n751752)> \Ilgi)(kvn07slas2>]

n=maz(ng,1)

k
U (k. 1, 80) = (1= po)Foet! I1 I fo(znap)t+
(a,b)€O(S1,52,l) n=1
i n41—1

S {(1 e (( I fo(xn,a,b))
1= (a,b)€C(S1,52,l+1) n=1
k X
( H fi(xn,a,b)))\lll(ﬁg(ka ni4+1, Sl, 52>:| 5 R(Sl7 SQ) > l Z O

N=ni41

(@)
\ \Ij R(S51,52) +1(k nl)

Similar to Section 3.2, we want to compute II; recursively once a new sample X, arrives
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Figure 3.1: Change propagation model of the 2D lattice sensor array
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rather than remembering all historical data samples. To this end, we further define the event
T;,k,a,b,r = {Sl = a, SQ = bv )\V(a,b,r+1) > k7 >\V(a,b,r) < ka 0= Z}

for 1 <a< H/1<b<W1<r<R(ab),ic€Z From the definition, we know that event
T, ks, 1, denotes the event that the change with post-change distribution f; firstly reaches
vertex V,, and already propogates to vertices V(a, b, r) at time k. In addition, we define the
event that change has not happened yet as Ty, = {A > k}. In this change process setting,

we can see that the underlying probability space 2 can be partitioned as

a

Q= 66 U UTzkabr UTOk

a=1b=1 r=0 icl

Then, we denote the posterior probability as p; k.apr := P{T} k.ab.r = P{Tb | Fr}

Using Bayesian rule, we can derive the updating rule for these posterior probabilities as

Dik,abr = Nik.abr 71 S a S H7 1 S b S W/a 0 S r S R(CL, b),l € A

R(a,b)

H W
Z Z Z Z Ni,k,a,b,7'+N0,k

a=1b=1 r=0 €l

No,k
pO,k - H W R(a,b)
Z Z Z Ni,k,a,b,r+NO,k
a=1b=1 r=1 i€l
(3.29)
where N, i .5, denotes the probability density
dP((Xh---,Xk),ﬂ,k,a,b,r) = ( I1 fz(xmnk)> ( I1 fO(xm,n,k)> '
(m,n)eZ(a,b,r) (a,b)eO(a,b,r) (3 30)
(po,kma,bp(l — p) RN U ST Pikabr P (1= o) oERE)
Tk,1:1
and Ny denotes the probability density
. . H W
d]P((Xl, C.e ,Xk), TO,k) = pO,k71<1 — ) H H fO(xk,a,b)~ (331)

1b=

—_

a
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For k=0, we have pgg=1—p. For 1 <a < H,1 <b<W,0<r < R(a,b),i € Z, we have

l T a
Dikabr = KapUip(1l — pp)” r#R@0} pl.

Let P denote the 4-dimensional posterior probabilities tensor in which its elements
are Pirapr. 10 Pg, only elements satisfying 1 < r < R(a,b) can be non-zero values.
From (3.29) (3.30) and (3.31), we see that Py can be computed from Pj_; and observation
Xk at time k. Hence, we have the recursive update formula for the posterior probabilities

{Pk,pox}. More importantly, by the relationship between {Py, po} and I,

(i) H W R(ab)
I, = pi,kz,a,b,rai SA
apIPIPS (3.32)

we can update Il recursively. Afterwards, we can follow the same steps described in Section
3.3 and obtain the optimal SCD rule of the 2D lattice case. Similar to the linear sensor
array case, since the state space increase exponentially with H, W and I, the extreme high

complexity make the optimal method hard to implement.

3.5.3 Low-complexity rule

The low-complexity threshold given in (3.11) works for te 2D lattice sensor array case and
the asymptotic optimality also preserves. The only difference between the threshold rules
of the linear sensor case and the 2D lattice case is the proof of the convergence of the LLR
process. Therefore, we only provide the proof the convergence of the LLR process for the
2D lattice case.

For ¢ € Z and time k£ > 0, we define

H(i) _ i i K i ”ﬁl ( (1 - p)fU(ImSLSz)) _w(ﬂ(k na.Si. S )
- e (1= p1) fi(®n,s1,5,) P

S1=1 S>=1 no=0 n=1
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where

k

xna
o emosis)=T[0-p [ e+
n=1 (h)c0(5 50 T1(Fniab)
| - (3.33)

k} Npr41— 1

1 Z H H Md’rw (k,npg1, S1,52) , R(S1, S2) > r > 0.

fI/'
Nr41=Nr (a,b)EC(Sl,SQ,’r’—‘,—l) n=1 @ n.a b)

In addition, wnghSQHl (k,nR(ShSZ), Sl,SQ) = (1 — py)"8BGs1.597 1 Therefore, we can ex-

press log a,(f) as

1=
=

fz(:vmab)) + log ngi), fori el

ﬁ fo(xm,aﬁ)) :

m

log ay = log[vip(1 — p)] +log<

=l
o et

log Oék = (k+1)log(1 — p) + log (
1

Q
I
N
o
Il
—

The next proposition describes the limit of log H ,(f) /k as k — oo.

Proposition 3.4. For any ¢,j € Z, if Condition 1 is satisfied,

1 y i—a.s.
“log HY Z7%% b4, 5) (3.34)
k k—oo

where h(i,j) = (log(1 — p) + L(q(j,7) — q(4,0))), and L = HW.
Proof. Please see Appendix B.3. m

After proving the convergence of the LLR process, the asymptotic optimality of the
threshold rule (3.11) in the 2D sensor array case can be proved following the same steps

introduced in Section 3.4.

3.6 Benefits of Increasing Number of Sensors

In this section we will prove that adding more sensors to the sensor array will always improve

the performance of the multi-sensor threshold SCD rule when ¢; and ¢; are sufficiently small.
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From the Bayesian cost of the optimal threshold rule in (3.17), we can see that if constants
w(i) and w(i,0) increase, the cost will decrease. Although we know that C(2)(8%) — 0 as
c1, ¢y — 0, greater constants w(i) and w(i,0) can make C(°2)(§%) converge to 0 faster. Next,
we will analyze how w(i) and w(i,0) change as more sensors are added to different sensor

array structures.

3.6.1 Case 1: The first affected sensor is unknown

When Condition 1 is satisfied for 7,5 € Z, and the first affected sensor is randomly chosen

and unknown (as in Section 3.4 and 3.5). By (3.13) and Proposition 3.1, we have

w(i, j) =

By Assumption 2.1 and the fact ¢(i, j) is the KL divergence, ¢(i, j) is positive for i,j € Z.
Therefore, w(i) and w(i, j) will increase with the number of sensors. This implies that, with
more sensors in the sensor array, the performance of the multi-sensor threshold SCD rule

will be improved when Condition 1 is satisfied for all 7, j € Z in the general case.

3.6.2 Case 2: The first affected sensor is known

As we introduced in Section 3.4.4, when Condition 1 does not hold and the first affected
sensor is fixed and known, the calculation of constant w is more complicated. The reason is
that adding one more sensor to the array may change the grouping result of Algorithm 1.
Without of generality, we assume the sensor is added to the right of the first affected sensor
s, i.e., we added the [ = (L+1)th sensor to the array. Then ny (i, j) change from log(1—ps)+
4. 1) — 4(j,0) to q(j,) — 4(j,0). The new added 1y 11(i, j) = log(1 — pa) + 4(j, ) — 4(j,0).
Based on the value of 7.(4, j), the increment of h(i, j) could be different. However, it’s easy

to check that, the increment of h(i, j) is upper bounded by (¢(j,7) — ¢(7,0))+. Based on this
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observation and (3.13), we can see that by adding one sensor, w(i,j) will always increase.
Therefore, the performance of the multi-sensor threshold SCD rule can always be improved
by adding sensors to the sensor array.

It is worth noting that the benefit introduced in this section is for the asymptotic case,
ie. ¢1,co — 0. In other words, adding more sensors will improve the performance when
c1 and ¢y are sufficiently small. However, such property many not hold when ¢; and ¢y is

relative large.

3.7 Numerical results

Since the optimal SCD rule is too complex to implement in the multi-sensor case, obtaining
the optimal solution is extremely time-consuming, even for a simple case with L. = 2 and
I = 2. Therefore, we will not carry out experiments to directly compare the performance
of the optimal SCD rule and the threshold SCD rule. However, we still can validate that
the multi-sensor threshold SCD rule has a considerable improvement over a single sensor
threshold rule (all sensors except the first one are ignored) and a mismatched threshold rule
(changes of all sensors are falsely assumed to happen at the same time). Particularly, we will
investigate the performance of the multi-sensor threshold SCD rule in a general case (first
affected sensor is a random variable) and a special case (first affected sensor is fixed and
known). In this section, we provide 4 numerical examples to illustrate the performance of
the threshold SCD rule. In all following examples, the results are estimated by Monte-Carlo
simulations. Concretely, we generate data samples following the underlying SCD process
and apply the SCD rules to the generated sequence. An episode ends when the SCD rule
makes the final detection and identification decisions. Then we calculate the Bayesian cost
and start another episode. The Bayesian cost C(7y, 72, d) is approximated using the average
value of 10,000 episodes of Monte-Carlo simulation.

In the first example, the observed data samples are generated by a two-dimensional
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normal distribution, N (g, I5). The mean vector g changes at the change point. In the first
example, we consider the case with two possible post-change mean vectors fi; = (0, 1) and
pio = (0,—1) and the pre-change mean vector gip = (0,0). In addition, we set p; = 0.2,
p2 = 0.2, p = 0.01, (v1,v9) = (0.3,0.7) and c2/c; = 0.1. All the penalty factors of the
false alarm and misdiagnosis are set to be 1. For this problem formulation, we study 7
different cases: (1). L = 5 with K = [0.2,0.2,0.2,0.2,0.2] (General case); (2). L = 5 with
K = [0,0,1,0,0] (Special case); (3) L = 5 with K = [0,0,1,0,0] (Mismatch case); (4).
L = 2 with K = [0.5,0.5] (General case); (5). L = 2 with K = [0,1] (Special casc); (6)
L =2 with K = [0,1] (Mismatch case); (7) Single sensor case. The result of these 7 cases are
shown in Fig. 3.2. In addition, Table I presents the performance of the two-stage SCD rule
with different sensor arrays. In Table I, we have the following columns: FAP (false alarm
probability), MISDP (misdiagnosis probability), delayl (expected delay time in the detection
stage), delay2 (expected delay time in the identification stage), wrong decision costs (FAP
+ MISDP), total delay cost (ci*delayl—+coxdelay2), Bayesian cost (FAP+ MISDP+total
delay cost). From these results, we can see the general trends of the performance of the
threshold rule are: (1) Special case; General case; Mismatch case and single sensor case; (2)
L =5 L =2 for the general and the special case. The advantage of the special case over
the general case is due to the additional information that the first sensor affected by the
change is known in the special case. In conclusion, the results of this example indicate that
with more sensors and the correct information about the problem formulation, the proposed
multi-sensor threshold SCD rule can efficiently improve the performance.

In the second example, we illustrate our results using pre-change and post-change distri-
butions that are more complex than the one used in the first example. Firstly, we define a 2-D
distribution, Fp, (1, o). With F (1, p2), the two elements in each data sample are indepen-
dent and follow the Laplace distributions, L(u1,1/v/2) and L(us, 1/v/2), respectively. In this
example, we implement three experiments: (1) Change in the mean vector of F, (1, p2). The

pre-change distribution is F,(0,0), the post-change distributions are F1,(0,1) and F7(0, —1);
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a FAP | MISDP | Delayl | Delay2 | Wrong decision cost | Total delay cost | Bayesian cost

0.1 |0.1334 | 0.0045 | 7.6437 | 18.729 0.1379 0.9517 1.08956

0.05 | 0.058 | 0.0023 | 10.0065 | 10.0966 0.0603 0.5508 0.6111

Single sensor 0.02 | 0.0215 | 0.0013 | 12.4123 | 6.4296 0.0228 0.2611 0.2839
0.01 | 0.0099 | 0.0006 | 13.926 | 5.2957 0.0105 0.1446 0.1551

0.005 | 0.006 | 0.0004 | 15.3682 | 4.9344 0.0064 0.07931 0.08571

0.1 | 0.0887 | 0.0044 | 7.2048 | 11.0701 0.0931 0.8312 0.9243

General case 0.05 | 0.0459 | 0.0023 | 8.4144 | 6.9719 0.0482 0.4556 0.5038
(L=2) 0.02 | 0.0161 | 0.0004 | 9.6692 | 4.0748 0.0165 0.2015 0.218
0.01 | 0.0097 | 0.0002 | 10.5496 | 3.2829 0.0099 0.1088 0.1187

0.005 | 0.0043 | 0.0002 | 11.387 | 2.7081 0.0045 0.05829 0.06279

0.1 | 0.0286 | 0.0016 | 8.3372 | 4.5829 0.0302 0.8795 0.9097

General case 0.05 | 0.0134 | 0.0006 | 9.0294 | 2.7989 0.014 0.4655 0.4795
(L=5) 0.02 | 0.0049 | 0.0003 | 9.7337 | 1.9988 0.0052 0.1987 0.2039

0.01 | 0.0025 | 0.0003 | 10.3545 | 1.7942 0.0028 0.1053 0.10814

0.005 | 0.0015 | 0.0002 | 10.771 | 1.5232 0.0017 0.05461 0.05632

0.1 | 0.0885 | 0.0041 | 6.9261 | 11.1448 0.0926 0.8041 0.8967

Special case 0.05 | 0.0386 | 0.0022 | 8.1569 | 6.2093 0.0408 0.4389 0.4797
(L=2) 0.02 | 0.0166 | 0.0006 | 9.4394 | 3.9092 0.0172 0.1966 0.2138
0.01 | 0.0083 | 0.0004 | 10.2133 | 3.1732 0.0087 0.1053 0.114

0.005 | 0.0038 | 0.0002 | 11.0598 | 2.6632 0.004 0.05663 0.06063

0.1 |0.0265 | 0.0018 | 7.0316 | 4.2327 0.0283 0.7455 0.7738

. 0.05 | 0.0127 | 0.0005 | 7.6022 | 2.8422 0.0132 0.3943 0.4075
Special case 650,005 | 0.0003 | 8.3083 | L7477 0.0053 0.1697 0.175
(L:5) . . o . . . . 8} . . o

0.01 | 0.0038 | 0.0002 | 8.7582 | 1.6554 0.004 0.08924 0.09323

0.005 | 0.0008 | 0.0001 | 9.1803 | 1.2985 0.0009 0.04655 0.04745

0.1 0.045 | 0.0017 | 8.8483 6.957 0.0467 0.9544 1.0011

Mismatch case 0.05 | 0.0226 | 0.0009 | 9.8357 | 4.5418 0.0235 0.5145 0.538
(L=2) 0.02 | 0.009 | 0.0005 | 10.9599 | 3.3959 0.0095 0.226 0.2355
0.01 | 0.0035 | 0.0001 | 11.7296 | 2.5338 0.0036 0.1198 0.1234

0.005 | 0.0017 | 0.0001 | 12.5006 | 2.3469 0.0018 0.06368 0.06548

0.1 | 0.0115 | 0.0003 | 10.0698 | 2.7791 0.0118 1.03477 1.04657

Mismatch case 0.05 | 0.0064 | 0.0003 | 10.5553 | 1.9905 0.0067 0.5377 0.5444
(L=5) 0.02 | 0.0021 0 16.3119 | 1.7122 0.0021 0.3297 0.3318
0.01 | 0.001 0 11.5815 | 1.2742 0.001 0.1171 0.1181

0.005 | 0.0005 0 12.0188 | 1.229 0.0005 0.0607 0.0612

Table 3.1: Performance of the multi-sensor threshold SCD rule in 7 different cases for the
change on the mean of 2-D Gaussian distribution
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Figure 3.2: Performance of the multi-sensor threshold SCD rule in 7 different cases for the
change on the mean of 2-D Gaussian distribution

(2) Change in the covariance matrix of 2-D Gaussian distribution. The pre-change distri-
bution is 2-D Gaussian distribution, N (6, 0.51,), the post-change distributions are N (6, L)
and N(0,2I,); (3) Change in the type of the distribution. The pre-change distribution is
a 2-D Gaussian distribution, F7(0,0), the post-change distributions are N ((0,1), I5) and
N((0,—1), I5). All the other parameters in this example are the same as the first example.
The simulation results of the three settings are shown in Figure 3.3. These results are very
similar to the results in the first example. It indicates that the proposed multi-sensor thresh-
old SCD rule (general case and special case) works well for various settings of pre-change
and post-change distributions.

In the first two examples, we know that the additional information about the first sensor
affected by the change makes the special case has better performance than the general case.
However, from the analysis in Section 3.4.4, the limit of the cost function of the two cases
should be the same. In the third example, we implement an experiment to validate this
analysis result. Assume L = 5, for the general case, we assume K = [0.2,0.2,0.2,0.2,0.2].
For the special case, we assume K = [0,0,1,0,0]. Following similar setting of the first
example, we only change the mean vector to gi; = (0,0.2) and s = (0,—0.2). It is easy to

check that Condition 1 is satisfied for all i, j € Z. The cost functions of the two cases and the
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Figure 3.3: Performance of the multi-sensor threshold SCD rule in 7 different cases for
different types of change
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ratio between them are given in Table 3.2. From that table, we can see that, with smaller
¢1 (and smaller ¢y since ¢y /c; is set to be 0.1), the ratio between the cost of the special case
and the general case is getting closer to 1. From the experiments we did in the first three
examples, we can see that the prior information about the first affected sensor can help to
improve the performance of the multi-sensor threshold SCD rule, especially when ¢; and ¢y
is not very small. However, this improvement will get smaller as ¢; and ¢, approach zero.

As we introduced in Section 3.4.3, the threshold SCD rule is asymptotically optimal when
the Condition 1 is satisfied for all 7,7 € Z. If the condition is not satisfied, currently we
are not able to prove the asymptotic optimality of the threshold SCD rule for the general
case. In the fourth example, we numerically study the performance of the multi-sensor
SCD rule in the general case when Condition 1 is not satisfied. We still use the same 2-D
Gaussian setting of the first example except for the mean vector. We set fi; = (0,0.1) and
fio = (0,—0.1) in order to make the Condition 1 unsatisfied. In this setting, we compare
the performance of the general case and the special case. The result is shown in Fig. 3.4.
From this figure, we can see that the performance of the multi-sensor threshold SCD rule
in the general case is very close to that in the special case. According to our analysis in
Section 3.4, we know the multi-sensor threshold SCD rule is always asymptotically optimal
in the special case. Therefore, we know that without the asymptotic optimal guarantee, the
multi-sensor threshold SCD rule can still have good performance.

Finally, we provide a numerical experiment for the 2D sensor array described in Section
3.5. In this experiment, the propagation probability of the 2D lattice sensor array is p; = 0.2.
The change can happen to any sensor in the array following a uniform distribution, i.e.,
P(S = (a,b)) = 1/(HW) for any 1 < a < H and 1 < b < W. All other settings of this
experiment are the same as the first experiment. The Bayesian costs of the multi-sensor
threshold SCD rule with three different 2D lattice arrays are presented in Table. 4.2. The
performance of the single sensor case is also given as a reference. From this table, we can

see that the performance of the threshold SCD rule in the sensor array case is generally
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Figure 3.4: Performance of the multi-sensor threshold SCD rule in general case and special
case when Condition 1 is not satisfied

Table 3.2: Performances of the two-stage multi-sensor threshold SCD rules with different ¢,

c1 General Case | Special Case | Bayesian Cost Ratio
1072 0.5291 0.4956 0.937
1074 1.03e-2 9.83e-3 0.955
106 1.26e-4 1.23e-4 0.980
1078 1.69e-6 1.66e-6 0.988
10710 2.09e-8 2.08e-8 0.993

better than in the single sensor case. We also notice that the performance of a large sensor
array can be worse than a smaller sensor array when the unit delay cost is relatively big.
For example, the Bayesian costs of 10 x 10 and 5 x 5 sensor array are larger than that of
the 2 x 2 sensor array when ¢; = 0.1. This result indicates that the Bayesian cost of the
multi-sensor threshold SCD rule does not strictly decrease as the number of sensors increases
when the unit delay cost is not very small. However, the results in Table. 4.2 also validate
that, when the unit delay costs are sufficiently small, e.g. ¢; = 1x107% 1x 1078 or 1 x 10719,
the performance of the multi-sensor threshold SCD rule with a large sensor array is always
better than that with a smaller sensor array. This result is consistent with the conclusion

we obtained in Section 3.6.
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Table 3.3: Performances of the two-stage multi-sensor threshold SCD rules in 2D lattice

Sensor array case

c1=0.1 | ¢;=0.05 | ¢;=0.01 | ¢;=0.05 | ¢;=0.001 c1=1e-6 c1=1e-8 c1=1e-10
Single Sensor 1.08956 | 0.6111 | 0.1551 | 0.08571 | 0.01958 | 3.2514e-05 | 4.1536e-07 | 5.08306e-09
2 x 2 Sensor Array 0.8477 | 0.4504 | 0.09892 | 0.05267 | 0.01121 1.46e-05 | 1.73129e-07 | 1.96511e-09
5 x 5 Sensor Array 0.8534 | 0.4606 | 0.09743 | 0.05018 | 0.01049 | 1.2134e-05 | 1.3309e-07 | 1.3984e-09
10 x 10 Sensor Array | 0.9512 | 0.4803 | 0.1017 | 0.05129 | 0.01062 | 1.1824e-05 | 1.2765e-07 | 1.3422e-09
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Chapter 4

Data Driven QCD problems

In this chapter, we will introduce the data-driven QCD problem. Firstly, we will introduce
the formulation of the data-driven QCD problem under the i.i.d case and hidden Markov
model (HMM) case. Secondly, we will introduce the structures of the optimal solutions
for the Bayesian QCD problem in the i.i.d. case and HMM case. Then, we will introduce
the deep Q-learning based QCD rule. Afterward, we will present the neural Monte Carlo
based QCD rule for the i.i.d. case and HMM case, respectively. Finally, we will present

experimental results to validate the performance of the proposed methods.

4.1 Problem formulation

In this section, we mainly study the QCD problem with two different observation models,
i.e., the i.i.d. model and the Hidden Markov Model (HMM). As the observation model of the
i.i.d. case is the same as that introduced in Section 2.1, here we only give the observation
model for the HMM case. Afterward, we give the formulation of the data-driven Bayesian

QCD problem.
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4.1.1 HMM observation model

Let {Y;,t > 0} be a time-homogeneous Markov chain on a probability space (Qy, Fy,Py)
with finite state space ) = {1,2,..., I}, and transition matrix P in which P(k,1q) := P(i|k)
for i,k € Y. Suppose Yy = {ly + 1,1y + 2,....,1} is a closed subset of ), where Iy < I.
The collection of remaining states Yy = Y\J1 = {1, 2, ..., [y} does not have any closed sets.
In other words, in the transition matrix P, P(y;,y;+1) = 0 if 3, € Yy and y,01 € Vo. The
change time A : Q +— {0,1,...} is the first time the state Y; € ), i.e., A is the time when
the hidden states change from ) to ). In addition, the initial probability P(Yy = i) = n;
where » ., m; = 1. Let 7= (01,02, 1),

However, the sequence {Y;,t > 0} can not be directly observed. {X;}1<; is the directly
observable process hosted by a probability space (£2, F,P) and the distribution of X; depends
on the hidden state Y;. Let f,(X),y € ) be the probability measures on a measurable space
(X, X), then

PYo=yo,Yi=y1,... . Yi=y, X1 =21, -+, Xy = 2)
= 7(3/0> Hizl P (Yn-1,Yn) fy.(20)

for ¢ 2 1, Yo, Y1y ---5 Yt S y

4.1.2 Data-driven Bayesian quickest change detection problem

In Bayesian QCD problem, the change point, A, follows a prior distribution P,. We assume
P)\ is
0, if t=0

P{\ =t} = .
(L—p)p, if t#0

For the HMM case, the transition matrix satisfies ), .y, P(i,k) = p for every i € Jp and
the initial probabilities satisfy >, .y, m = p.
Our goal is to detect the change point A quickly and accurately, based on the observation

sequence {X;,t > 0}. Let 7 be the time we raise an alarm. Then the false alarm happens
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if 7 < A and the delay is (A — 7),. Hence we define the expected cost of the change point
detection problem as

C(7) = Ellrary + (A = 7),] (4.1)

where 17y the indicator function and c is the unit cost of detection delay. Therefore, the

best expected cost for the change point detection problem is
Vo = m%f Elgzan +c(X —7)4] (4.2)
TE

where T is the space of stopping time 7: Q — {1,2,--- | T'}.

As will be discussed in Section 4.2, the optimal solution for online Bayesian QCD problem
can be found when p, fy and f; or 77, P and P(z|y) are known. However, this knowledge is not
always available in real-world problems. When the true underlying model is different from
the model used to derive the optimal solution, the performance could be seriously affected.
In practice, a common situation is that the only information we have is the historical data
about the QCD process. In this section, we want to solve the online Bayesian QQCD problem
under the data-driven problem setting. Concretely, based on the historical dataset, our goal

is to find a data-driven stopping rule which can achieve or get close to V.

4.2 The Optimal solution with Prior Knowledge of the

QCD process

Before discussing the proposed data-driven solution, we introduce the optimal solution of
the online Bayesian QCD problem. The optimal solution only works when prior knowledge
of the QCD process is known. However, the structure of the optimal solution is important
for the understanding of the proposed NMC-based QCD rule, which will be introduced in
Sections 4.4 and 4.5 for the i.i.d. and HMM observation models respectively. Therefore,

in this section, we provide a brief introduction of the optimal solution for Bayesian QCD
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problems for the i.i.d. case and the HMM case. For detailed proof of the optimal QCD rules

in these two cases, please refer to [50,91].

4.2.1 The i.i.d. case
For t > 0, let I, = (H§°), Hgl)) € Z be the posterior probability process defined as HEI) =
P{\ < #|F} and TI” := P{\ > #|F,} where Z £ {IT € [0, 1]2|I® + IO = 1},

Following the derivation in [50], the expected cost in (4.1) can be expressed as

C(r) =E [ZT’; 1M + O] (4.3)

n=

Then we can define the cost-to-go function as a function of the posterior probability,
W (L) = min (T, eI + B W (IL1)| 7] ). (4.4)

The first item inside the minimization is the expected cost of raising an alarm immediately
and the second item is the expected cost of observing more data samples. W(Il;) is the
minimal expectation of the cost we still need to pay in the future based on the current state
IT;.

For the i.i.d case, when the pre-change distribution f, post-change distribution f;, and
the distribution of change p are known, we are able to update the posterior probability

recursively following:

(1 — p) LY, fola,)

) =
(1 - p)HzE(i)lfO(It) + (Hgl + Hz@ﬂ) fl(xt)

(4.5)

and H,El) =1- H,EO). The initial state, IIo = (1 — p, p). Based on this recursive updating rule,
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E [W (II;41)|F:] can be calculated as

BV ()| 7] = [ W(Tla(Meo) 3 @ do.
i€{0,1}
Then, we can use DP to solve the Bellman equation (4.4) and obtain the cost-to-go W (II)
for all IT € Z.

After solving (4.4) using dynamic programming, we have the cost-to-go function W(Il;)
for 0 < ¢t < T. The optimal stopping rule is 7% = inf {t\Wt(Ht) = Hgo)} . As discussed in
[50], when Py is a Geometric distribution, then the optimal solution can be further simplified
as

Topt = Inf{t > O\H,ﬁ‘)) <7} (4.6)

where 7 = sup{m € [0, 1]|m = W((w,1 — m))}. This rule indicates that we should raise an
alarm once the expected cost of false alarm is smaller than the expected cost of observing

more data samples.

4.2.2 The HMM case

For the HMM case, we can apply a similar solution as in the i.i.d. case. However, the
posterior probability we used in the i.i.d. case, II;, can not be recursively updated. For
this reason, we define the posterior probabilities II, = (1:[751),1:[?), ...,f[gl))tzo € Z, where
1 .= P{y, = i|F,} foralli € Y and Z = {II € [0,1)] D icy 11 = 1}. With this definition,
the posterior false alarm probability can be expressed as Zz‘eyo 1. Therefore, the expected

cost in (4.3) can be expressed as

C(r) = E [CZ;:) Sy ﬁgﬂ . (4.7)
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Then we can define the cost-to-go function for this DP problem as a function of the posterior

probability,

W (II;) = min <Zi€yo ﬁﬁ“,

(4.8)
> VIO [W<ﬂt+1)yft} ) .

The first item inside the minimization is the expected cost of raising an alarm immediately
and the second item is the expected cost of observing one more data sample. W(f[t) is the
minimal expectation of the cost we still need to take in the future based on the current state
I1;.

For the HMM case, when the sample distributions {f,},ecy, transition matrix P, and
the distribution of change p are known, we are able to update the posterior probability I,

recursively. Concretely, II; can be updated recursively as:

- I, P(k, i) f;
HEZ) — Zkﬁey t—1 ( 77’)f (xt> ,for i c y’ (49)

ey Shey TPk, 5) f ()

and IIy = (11,7, ...,n;). Based on this recursive updating rule, F [W(f[tﬂ)]}}} can be

calculated as

E[W(HL)IF] = [ W (o) Y, Al do.

Then, we can use DP method to solve the Bellman equation (4.8) and calculate the cost to

go W(II) for all IT € Z. The optimal stopping rule is

=it {wi(il) = > 1}, (4.10)

This rule indicates that we should raise an alarm once the expected cost of false alarm is

smaller than the expected cost of observing more data samples.
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4.3 A Deep Q-learning based QCD rule for the i.i.d
case

The online Bayesian QCD process can be formulated as a partially observable Markov deci-
sion process (POMDP). A POMDP is typically defined by a tuple {S, A, T,, R,Q,0,~}. S
is the state space. A is the action space. T, is the set of conditional transition probabilities
between states. R : .S x A — R is the reward function. 2 is the space of observations. O is a
set of conditional observation probabilities. Finally, v € [0, 1] is the discount factor. In the
POMDP, the state is unknown to the agent. However, the agent can make decision based
on the observations. At each time ¢, a new observation o; € €2 is obtained. The distribution
of o; is determined by the hidden state s;. Based on the observations, the agent can take
an action a; € A. Then the environment generates a reward r; = R(s;, a;) and a new state
s¢11 following the conditional transition distribution 7,.(s;y1|S¢, a¢). This procedure will be
repeated until the terminal state is reached. The goal is to design a policy that maximizes
the expected reward E [Y ;2 v'ry].

Now, we formulate the change point detection process as a POMDP. The state space of
the QCD process S := {0, 1, £'} includes three states, i.e., pre-change state (0), post-change
state (1) and terminal state (£). In the QCD problem, the state is hidden. However, we
can make decision based on the observations. At each time ¢, a new data sample X; € ()
can be collected. If s; = 0, then X, follows the pre-change statistic process. If s, = 1, then
X, follows the post-change statistic process. Based on the observations, the agent can take
an action a; € A = {1,0}. Here a; = 0 means keep observing more data and a; = 1 means

raising an change alarm. Then the environment generates a reward r; = R(s;, a;) and

—c, If ay =0and s; =1
R(as, s;) = —1, If ay =1and s; =0 - (4.11)

0, otherwise
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The new state in QCD process is determined as:

0, If sy 1#FE, a;1#1 andt <7
ss=94 1, f s, 1#F, aj_1#1 andt > 71 - (4.12)

E Ifa,=1ors;_1=Fort>T

By (4.1), we can see that the goal of QCD problem is to find a policy that minimizes
[ or-

When a historical dataset with finite samples is the only given resource, it is hard to
extract the information required by the optimal solution. In this case, the QCD process is a
black box to the decision-maker because only the input sequences and the true change-points
are known. Model-free reinforcement learning is a good method for this situation. Q-learning
is a classical and widely-used model-free reinforcement learning algorithm. Q-learning agents
make decisions based on the learned Q-function. The optimal Q-function of online Bayesian

QCD setting can be expressed as

]E[_]-{t by C()\ — t)+|XtL lf ay — 1
Q" (Xy,ar) = ) , (4.13)
E[—C<t +1-— )\)+ + max (Q*(Xt+1, 0), Q*<Xt+1, 1))|Xt], if at — 0

where X; = (Xi,---,X;) is the data sample available at time ¢ and a; is the action
taken at time ¢. Corresponding to this optimal Q-function, the optimal decision is a* =
arg maxae(o,13Q*(Xy, a). This rule is equivalent to optimal rule described in Section 4.2. In
[87], the authors discretized the observation space in order to apply tabular Q-learning. In
this paper, considering the dimension of the observation space could be much larger than
that in [87], we apply the DQN model [92].

DQN uses a neural network to approximate the Q function. Based on the observed
data and the approximated Q function, the agent can take the action corresponding to the
larger Q value. Since the dimension of the input layer of neural network is fixed, we can

not input all observed samples X; = (Xj,- -+, X}) to the neural network. Therefore, we set
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the input of the neural network as the observations in a sliding window with width w, i.e.
Xuwt = (Xt—wt1, -+, X¢). In addition, the Q-function could be different at different time
steps. Therefore, the input vector of the neural network is I, = (X;_y41, -+, X4, t). By
inputting I; into the neural network, the action value of a = 0 and a = 1, Q(I;,0,0) and
QI 1,0) are acquired. Here 0 denotes the parameters of the neural network. With these
two action values, the agent will take the action that has a larger action value. In other
words, the DQN-based decision rule is 7 = inf{t: 0 <t < T and Q(I;,1,0) > Q(1;,0,6)}.

The dataset includes N episodes of the change process. For the ith episode, the data
includes a sequence X; = (X; 1, -+, X;r) and the true change point 7;. To make the sequen-
tial data fit the sliding window, we need to preprocess the sequences in the dataset. For the
first w — 1 samples in each sequence, they do not have enough previous samples to make a
w long input sequence. To handle this issue, we add a w — 1 long prefix to every sequence
in the dataset. Firstly, we collect all pre-change data samples in the training set and obtain
a pool of pre-change samples. Then for each episode, w — 1 samples are randomly picked
from the pool of pre-change samples and added in front of the data sequence. As a result,
for the ith episode, the data sequence becomes X; = (X; 04, -+, Xi0, Xin, -, Xir).

The training process of the DQN is described in Algorithm 1. We apply the techniques
such as experience replay and target Q-network proposed by [92]. Experience replay ran-
domly applies historical data to the current update step in order to reduce the variance
of updates and achieves greater data efficiency. The target Q-network ()5 is a copy of the
main Q-network ()7 but with older parameters. After every C' steps, we update ()5 once.
()2 is used to calculate the expected continuing reward and can make the training process
more stable. Although the approximated Q function may not be very close to the optimal
Q function[93,94], this error in action value may not significantly affect the performance of
the DQN. As long as the order of two Q values is correct, the performance will be good.
The experiments in the next section validate that the DQN-based QCD rule has a good

performance. It is also worth noting that, although the prior distribution of the change
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Algorithm 2: Training of the DQN

1 Initialize replay memory D to capacity Np;

2 Initialize a DQN @ with random weights 61;

3 Initialize a target DQN Q) with the weights 0y = 601;
4 for e=1,...,N do

5 Initialize the input I; = (X;2-y, -+, Xi1, 1), and change point 7;
6 for t=1,...,T do
7 With probability € select a random action a;, otherwise select
a; = argmax Q1 (I, a, 01);
ac{0,1}
if t <7, and a; = 1 then
9 ‘ re = 1;
10 else if t > 7. and a; = 0 then
11 ‘ Ty = ¢
12 else
13 ‘ re =0 ;
14 end
15 Lt = (Xig—wsts s Xigse, t+1);
16 Store (Ij, 7y, ag, Iyq) in D;
17 Sample random minibatch of transitions (I;,7;,a;,1,41) from D;
rj,if j=T .
18 Set y; = i+ rena}f} Qs (Ij41, a;,6,) , otherwise Perform gradient descent
on (y; — Q1(1;,a;,61))? with respect to 6;. Every C steps reset 6 = 6.
19 end
20 end

point is assumed to be geometric in our problem setting, the DQN based approach also
works for other types of prior distributions of the change point since it takes time steps into

consideration.

4.4 A Neural Monte Carlo based QCD rule for the i.i.d
case

As described in Section 4.2, a key step in the optimal QCD rules is to update posterior
probabilities (II; or fIt) recursively. This updating step can only be implemented when

the a-priori information such as P, 77, p, fo, f1 and fy are known. However, in many
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applications, it is common that a historical dataset with finite data samples is the only
given resource. Concretely, only the observation sequences and the true change points in
the dataset are known. We even do not know if the data samples are i.i.d., following an
HMM, or some other non-i.i.d. process. In this case, it is hard to accurately extract these
a-priori information from the data set. Therefore, we need a data-driven method that can
help us estimate the posterior probabilities from the data. In this section, we will propose
the Neural Monte Carlo (NMC) based solution for the i.i.d. case. In the next section, we
will explain why this method also works for the HMM case and other non-i.i.d. cases.

From (4.6), we know that the posterior probability Hf’) and the threshold 7* are key parts
of the optimal QCD rule for the i.i.d. case. In the data-driven setting, if we can approximate
the posterior probability with 1:[750) for any time ¢, then we can select the optimal threshold
7* using line search and finally have a data-driven QCD rule similar to (4.6). To this end,
we propose a Neural Monte Carlo (NMC) based solution for the data-driven QCD problem.
The steps of the NMC-based QCD rule is given in Algorithm 1. Next, we will introduce
these steps of this NMC-based QCD method.

4.4.1 A Neural Monte Carlo approximation model

If the cost of false alarm cp = 1, H,EO) can be seen as the expected cost of raising an alarm
given all data samples collected by t. In other words, the value function corresponding to
the observations {1, s, ...z, } is HEO). Therefore, the problem of estimating Hgo) can be seen
as a value function approximation problem.

In the data set, we have the data sequences and the true change points of these sequences.
With this data set, we can use the Monte Carlo method to approximate Hgo). Because con-
tinuous observation data samples are common in the QCD problem, we have a continuous
input space. Therefore, we approximate H%O) using a randomized neural network. In a ran-

domized neural network, only the weights between the hidden layer and the output layer are

trained while all other weights are frozen after being initialized. In particular, the last layer
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of the randomized neural network is a linear layer. Therefore, training the randomized neural
network becomes a convex problem and has a convergence guarantee. More importantly, as
proved in [95,96], a randomized neural network can accurately approximate any continuous
functions with a sufficiently wide hidden layer. Therefore, we apply a simple shallow neural
network with one hidden layer. If we need a more powerful model for specific applications, a
deep extension to this neural network is immediate by adding more non-linear layers to the

model.

4.4.2 Data Preprocessing

Since the dimension of the input layer of the randomized neural network is fixed and the

size of all observed samples (X7, -, X;) changes with different time ¢, we can not input
(X1, -, X;) to the neural network. Therefore, we set the input of the neural network as
the observations in a sliding window with width w, i.e., X; = (X;_wi1, -+, X;). From

equation (4.5), we can see that recently collected data samples are usually more important
than earlier data samples in the calculation of Hio) for the i.i.d case. In other words, with an
appropriate value of w, the data samples in the sliding window X, are sufficient to make a

), Typically, we select a large w if earlier data samples are important

good estimation of H§0
in the calculation of posterior probability. Otherwise, we can use a relatively narrow sliding
window. For every time ¢ and the corresponding input X;, the reward of raising alarm at ¢,
R;, is 1if t < A. On the other hand, if t > A\, R, = 0.

The dataset includes N episodes of the change process. For the ith episode, the data
includes a sequence of T'samples, S; = (X, 1, -+ , X; r) and the true change point ;. To make
the sequential data fit the sliding window, we need to preprocess the sequences in the dataset.
For the first w — 1 samples in each sequence, they do not have enough previous samples to
make a w long input sequence. To handle this issue, we add a w — 1 long prefix to every

sequence in the dataset. Firstly, we collect all pre-change data samples in the training set

and obtain a pool of pre-change samples. Then for each episode, w — 1 samples are randomly
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picked from the pool of pre-change samples and added in front of the data sequence. As a
result, for the 7th episode, the data sequence becomes S, = (Xio—w, s Xios Xity -+, Xir).
For each data sequence Si, we can generate T’ input data samples {X; 1, X, ..., X; 7} where
Xit = (Xit—w+1, -, Xit). The corresponding reward samples are {R; 1, R; ..., R;r} where
R;; =0ift > \; and R;; = 1ift < \;. By combining M episodes of data samples, {Si}lgiSM,
we have the training data set {Xyuc, ﬁNMC}. The rest N — M episodes, {Si}MﬂgiSN, are
used for building the validation set and test set. Typically, we set M as 70% of N.
Following the steps stated above, we have built a training dataset. However, in some sit-
uations, the training set could be imbalanced. A common imbalanced situation is that, when
the length of the sequence T is very large, then there will be many more post-change data
samples than pre-change data samples in the training set. With such an unbalanced training
set, the accuracy of the posterior probability approximation model and the performance of
the data-driven QCD rule can be compromised. In this case, we can use rebalance tech-
niques, such as data selection or re-sampling, to process the training set {Xy o, ﬁ vue b if
it is unbalanced. Concretely, we can rebalance the training data set by discarding the data
samples after a threshold time 7" < T. Since most of the post-change data samples are at
the later part of the sequence, dropping the later data samples can reduce the fraction of
post-change data and make the training set balanced. In this method, the threshold time 7

is treated as a hyper-parameter that can be tuned using the validation data set.

4.4.3 Training Process of the Neural Monte Carlo model

The randomized neural network is trained using Monte Carlo methods, as shown in Algo-
rithm 1. Let 8, € R+1)*d he the weights of the hidden layer, where d is the number of
nodes in the hidden layer. Then the output of the hidden layer is Ogx = (61 4), where
In, = [Xy, 1] and X is an input data sample in the training set. Here o is the activation
function of the hidden layer. Elements in 8, are typically initialized by the standard normal

distribution and will not be changed in the training process. Let 8; € R be the weights
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of the output layer. Then the output of the neural network is 01TIM€ where I , = [Ogy, 1].
0, is the weights we want to optimize in the training process. Since 6y is fixed, we can get
a hidden output data set I xya¢ from Xype. In this case, this training problem becomes a
linear value-function approximation problem. In [88], the gradient Monte Carlo algorithm is
introduced to solve this linear value-function approximation problem and the updating rule
of 0, is

01’1«/4_1 = Hl,t + Oé(Rt - OftIl,t)Il,t (414)

for every step t, where « is the step size. Since the approximation model we apply is linear,
the convergence of this training process is guaranteed.

From the updating rule (4.14), we can see that
E[01:41]614) = 614 + «(E[R ]I, ,] — E[I 17 ,]61,).
Therefore, this algorithm will converge to 6 garc at which
E[Rd,] — E[I,I7,]01 e = 0.

Since the data set {I; yac, ﬁ ~uc} is given in the data-driven QCD problem, we can esti-
mate E[R;I; ;] and E[IMIlT’k] with the sample mean. Here I; yye € R+ *MT ﬁNMC €
RMTIf there is enough data such that E[R.I; ] and E[I; I ,] can be well estimated by

their sample mean of the data set, the weights can be directly calculated as

0, = (Il,NMC’I{NMc)_l(Il,NMCﬁNMC)- (4.15)

Considering the case of I MCI{ ~ae 1s not invertible or the matrix inversion requires com-
putational complexity, the direct calculation (4.15) can only be used if Il,NMcllT, NMC 1S
invertible, and the number of hidden nodes is relatively small such that a (d+ 1) x (d + 1)

matrix can be inverted with a reasonable running time and memory. Therefore, as shown
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in Algorithm 1, if I} x MCI{ ~ue 1s invertible and we have enough computational resource to
invert a (d+ 1) x (d+ 1) matrix, we can directly calculate 8;. Otherwise, we can update 6,
following (4.14) iteratively.

Although the neural network is designed to approximate the posterior probability, the
output may not necessarily fall in [0, 1] since the output layer is a linear layer. Therefore,

after getting the output of the neural network, we clip the output to make sure it is a value

in [0, 1] as
1, if 671, >1
6, X;) =< o, if 071, <0 -
071, , Otherwise

4.4.4 Threshold Selection

After training the neural network, we can estimate posterior probability f[go) for any time
t. Next, we need to determine the threshold 7, for our NMC-based QCD rule. First,
we apply the well-trained neural network to approximate the posterior probability ﬂ§°)
for every sequence in the validation set. Second, we run Monte Carlo experiments on se-
quences of in the validation set and record the Bayesian costs for all candidate threshold
7 e {1/K,2/K, ..., (K —1)/K,1}, using the threshold rule 7 = inf{t > 0|II\”’ < 7}. Here, K
is the number of candidates in the line search method. Finally, based on the Bayesian cost

records, we set 7* as the candidate m which is corresponding to the lowest Bayesian cost.

Finally, we have the NMC-based QCD rule as

7 =inf{t > 0TI\ < #*}. (4.16)
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Algorithm 3: NMC-based SCD rule
1 Data preprocessing following Section 4.4.2. Get data set {Xyuc, BNMC};

2 Initialize a random neural network with hyper parameter d, w, T and weights
following standard gaussian distribution;

3 Get data set Ij yycs

4 if a (d+ 1) x (d+ 1) matriz can be inverted with reasonable computational resource
then

‘ 0, = (L,NMCI{NMC)_l(L,NMcﬁNMc);

5
6 else

7 for I, € I nyc do

8 ‘ 01111 =01+ (R — HftIl,t)Il,t
9 end
10 end

11 Select the threshold 7* by line search method.
12 Fine-tune the hyper-parameters w, d and T.
13 Finally, the NMC-based QCD rule is 7 = inf{¢ > O[T\” < #*}.

4.5 A Neural Monte Carlo based QCD rule for the

HMM case

In Section 4.4, by replacing the two key parts in the optimal QCD rule, {HEO),W*}, with
corresponding approximations {f[ﬁo) ,m*}, we proposed a NMC-based rule (4.16) for the data-
driven Bayesian QCD problem in the i.i.d. case. It’s natural to consider if we can do the
same thing to the optimal rule in the HMM case. Unfortunately, it is challenging to extract
sufficient information for the optimal HMM QCD rule from the observations. Concretely, it
is hard to estimate the hidden process from observations, e.g., the number of hidden states,
which state the post-change state is and which state the pre-change state is, etc.. Without
these information, even the number of elements II, should include is unknown. Hence it is
challenging to directly extend the optimal SCD rule for the HMM to a data-driven version.

However, although we cannot estimate II;, we can still estimate the posterior probability
H§°) =D i, ﬁf), similar to in the i.i.d. case. As the sufficient statistics II, is unavailable,

the posterior probability H,go) becomes a reasonable alternative indicator that can help to
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Figure 4.1: QCD boundaries of a simple QCD example in HMM case

detect the change. Concretely, we can apply the threshold rule as
7 = inf {t > 0|H§0) = Z f[g’) < 7T} . (4.17)

To illustrate this threshold rule, a simple example is given in Fig. 4.1. Assume we have a
HMM QCD problem in which Y = {1,2,3}, My = {1} and ), = {2,3}. In the posterior
probability space Z = {II € [0,1*|3,, II) = 1}, the optimal decision boundary given
by (4.10) is the red curve. The straight blue line represents the decision boundary of the
QCD rule (4.17). In general HMM QCD problems, the decision boundary of the QCD rule
(4.17) is a plane in the space Z while the decision boundary of the optimal rule (4.10) is a
surface in Z. Since the information about the HMM is incomplete, we use a plane as the
alternative of the surface. In the data-driven QCD problem, we apply the NMC-based QCD
rule introduced in Section 4.4 to approximate the plane of the QCD rule (4.17). Finally, we
obtain the same NMC-based QCD rule as (4.16).

Due to the difference between the HMM case and the i.i.d. case, we need to make some
adjustments when we apply the NMC-based SCD rule to HMM QCD problems. In HMM
case, the data samples in one sequence are not independent. Therefore, the elements in the

prefix of the data sequence should not be independently selected as in the i.i.d. case. In
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Figure 4.2: The Bayesian costs of the three QCD methods in the i.i.d. Bernoulli experiment

order to apply the NMC-based QCD rule to the HMM case, one change is needed for the
data preprocessing step. In HMM case, we collect all pre-change subsequences from the data
sequences {S;}1<i<n as the pool of pre-change subsequences. Note that, we only collect pre-
change subsequence longer than w — 1 samples. After that, for every sequence {S;}, w —1
continuous data samples are randomly selected from the pool of pre-change subsequences
and added to S; as the prefix. Afterwards, following the same steps as discussed in Section
4.4, we have the NMC-based QCD rule for the HMM case, which has the same expression
as (4.16).

In the general non-i.i.d case, the posterior analysis and the detection boundary could be
even more complicated than in the HMM case. That means getting the optimal solution for
a QCD problem in general non-i.i.d. case becomes even harder. However, the posterior false
alarm probability is still a reasonable indicator for the non-i.i.d. QCD problem and can be
learned by following similar steps as those in the i.i.d. case and the HMM case. Therefore,
the NMC-based rule could still be used for the QCD problem in different non-i.i.d. settings.

This will be validated in the following section by simulation.
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Table 4.1: Performances of the three QCD rules in the i.i.d. Bernoulli experiment

po=0.2,p =08, p=0.01 po=0.3,p =0.7, p=0.01
Delay | False alarm probability | Bayesian cost | Delay | False alarm probability | Bayesian cost
¢=0.5 |0.1912 0.8427 0.9383 0.0401 0.9505 0.9706
c=0.1 | 3.6891 0.1733 0.5422 2.7852 0.511 0.7895
Optimal ¢=0.05 | 5.2904 0.0695 0.334 6.8788 0.2224 0.5663
c¢=0.01 | 7.6478 0.0123 0.0888 14.1973 0.03 0.172
¢=0.005 | 8.9288 0.0044 0.049 16.1054 0.0157 0.0962
c=0.5 |0.2178 0.8316 0.9405 0.0137 0.9688 0.9757
NMC_based ¢=0.1 | 3.5632 0.191 0.5473 2.3779 0.5549 0.79269
¢=0.05 | 5.4253 0.0717 0.343 6.6513 0.2508 0.5832
method =001 | 7.9296 0.0177 0097 | 13.8156 0.0639 0.2021
¢=0.005 | 8.4346 0.0113 0.05347 17.3196 0.0382 0.1248
c=0.5 | 0.017 0.9707 0.9792 0.0792 0.9528 0.9924
DQN-based c=0.1 | 3.8384 0.2089 0.5928 3.73 0.5373 0.9042
o ¢=0.05 | 3.2874 0.2423 0.4066 5.4489 0.4519 0.7243
¢=0.01 | 7.4965 0.0268 0.1017 13.0369 0.1922 0.3225
¢=0.005 | 7.4978 0.0539 0.0914 17.4648 0.1199 0.2072

4.6 Numerical results

To evaluate the performance of the proposed Neural Monte Carlo QCD method, different
numerical examples are provided. In the following examples, we evaluate the performance
of the NMC-based QCD method in i.i.d. and non-i.i.d. cases. We also test the robustness
of the NMC-based QCD method using data generated by distributions that are different
from the training data. Moreover, we compare the performances of the optimal solution, the
DQN-based solution, and the NMC-based solution in these numerical examples.

In all the following experiments, we assume the pre-change and post-change distribu-
tions, and the prior distribution of the change point is known for the optimal QCD method.
On the other hand, for training the NMC-based and DQN-based QCD rules, we only use
a limited historical dataset, including data sequences and the corresponding change points.
Concretely, we build the NMC-based and DQN-based QCD rules with data set including
20000 observation sequences and corresponding change points. Each sequence includes 600
observations. For the NMC-based method and DQN method, 14000 sequences are used to

train the neural network, 3000 sequences are used for the validation set (tuning hyperpa-
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Figure 4.3: The Bayesian costs of the Gaussian QCD experiment with change in mean vector

rameters such as the size of the neural network, the width of the sliding window, the data
rebalance parameter T, and the best threshold 7*, etc.) and the rest 3000 sequences are used
to test the performance of these methods. The hidden layer of the neural network in the
NMC-based method has 1000 nodes. The DQN model includes two hidden layers with 200
and 100 nodes respectively. ReLLU is used as the activation function of all the hidden layers
in these two methods. For the training of the NMC-based method, the rebalance parameter
is set as T = 100. In addition, the width of sliding windows for the NMC-based method and
the DQN-based method are both 10. In most of the following experiments, the DQN-based
and NMC-based models are implemented following these instructions. Further information

will be provided if we need to make changes to these parameters in specific experiments.
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Table 4.2: Performances of the three QCD rules in the i.i.d. 2D Gaussian experiment: change
in mean vector

ﬁU:(Ovo)a ﬁ1:<1>1) ﬁ():(ovo)aﬁl = (22) ﬁU:(070)7ﬁ1:(44)
False alarm | Bayesian False alarm | Bayesian False alarm | Bayesian
Delay Delay Delay
probability cost probability cost probability cost
c=0.5 | 0.2412 0.8059 0.9265 | 0.6128 0.1707 0.4771 | 0.0269 0.0091 0.02255
c¢=0.1 3.4536 0.1447 0.49 1.2526 0.0236 0.1489 0.054 0.0024 0.0078
Optimal ¢=0.05 | 4.7335 0.0574 0.294 1.4577 0.011 0.0839 | 0.0015 0.0659 0.0048
¢=0.01 | 6.6182 0.01 0.0783 | 1.7059 0.0044 0.0215 | 0.1071 0.0006 0.0017

¢=0.005 | 7.1565 0.0064 0.0422 | 2.0608 0.0012 0.0115 | 0.1449 0.0004 0.0011
c¢=0.5 | 0.1731 0.8521 0.9387 0.227 0.6139 0.5338 | 0.0495 0.01644 0.04115
c=0.1 3.374 0.1668 0.5041 | 1.9943 0.00361 0.203 0.109 0.00711 0.018

NMC-based

method c¢=0.05 | 4.5207 0.0818 0.3077 | 2.0039 0.0341 0.1036 | 0.1269 0.00411 0.01045
c¢=0.01 | 7.0666 0.01532 0.08567 | 2.0391 0.0042 0.02459 | 0.2018 0.0011 0.0031
¢=0.005 | 7.5891 0.0106 0.04855 | 2.3923 0.002 0.01396 | 0.2329 0.0005 0.00166

c=0.5 | 0.2645 0.8648 0.9971 | 0.5649 0.2999 0.5823 | 0.0589 0.0196 0.049

DQN-based c=0.1 3.7571 0.2308 0.6066 | 1.3214 0.0977 0.2298 | 0.0418 0.0171 0.0213
method c¢=0.05 | 3.7968 0.2059 0.3958 | 1.4892 0.0339 0.1084 | 0.0629 0.0112 0.0144

c¢=0.01 | 9.2189 0.0166 0.1088 | 2.8778 0.0383 0.0671 | 0.0968 0.0024 0.0034
¢=0.005 | 10.2965 0.0154 0.0668 | 3.6808 0.0176 0.036 0.493 0.0003 0.0028

4.6.1 QCD experiments in i.i.d. case

In the first example, we study the performance of the optimal QCD solution, the NMC-based
solution, and the DQN-based QCD solution when the observations are i.i.d. discrete random
variables. Concretely, fo = Bern(py) and f; = Bern(p;), where py and p; are the param-
eters of the pre-change and post-change Bernoulli distributions. The prior distribution of
the change-points, P, is a geometric distribution with parameter p = 0.01. Based on this
information, we can calculate the posterior probability and further obtain the optimal solu-
tion by dynamic programming. Using the training data set, we obtain the DQN-based and
NMC-based QCD rules. After that, we compare the Bayesian costs, C'(7), of the optimal
QCD solution, DQN-based method, and the NMC-based method under different Bernoulli
settings on the test set. The results are shown in Fig. 4.2. From Fig. 4.2(a), compared with
the DQN-based method, the Bayesian costs of the NMC-based QCD method are generally
closer to that of the optimal QCD method. As the unit delay cost decreases, the perfor-

mance gap between the two solutions also decreases. Besides, by comparing Fig.4.2(a) and
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Table 4.3: Performances of the three QCD rules in the i.i.d. 2D Gaussian experiment: change
in variance

Yo=1,, % =21, Yo=1I), ¥, =4I,
Delay | False alarm probability | Bayesian cost | Delay | False alarm probability | Bayesian cost
c¢=0.1 | 2.6591 0.5368 0.8027 2.9756 0.0875 0.38296
c=0.05 | 6.762 0.2553 0.5934 3.6813 0.0383 0.2224
Optimal ¢=0.01 | 15.3527 0.03228 0.1858 4.7954 0.0058 0.05375
¢=0.005 | 18.2008 0.01242 0.1034 5.3881 0.0025 0.02944
¢=0.001 | 23.5036 0.0021 0.0256 5.9819 0.001 0.00698
c¢=0.1 | 2.5955 0.5637 0.82325 3.1248 0.104 0.41458
NMC.based c=0.05 | 6.8413 0.2699 0.6119 3.9871 0.0396 0.2369
c¢=0.01 | 15.5789 0.05033 0.206 5.1454 0.0048 0.05625
method ¢=0.005 | 18.6246 0.02835 0.1214 5.8751 0.0018 0.03117
¢=0.001 | 26.7755 0.007 0.03378 6.801 0.0006 0.0074
c=0.1 | 2.4158 0.7391 0.9807 2.9831 0.2373 0.5357
DON-based c=0.05 | 8.0369 0.4427 0.8445 5.6804 0.0681 0.3521
method c¢=0.01 | 16.9336 0.1606 0.3299 9.5317 0.019 0.1143
¢=0.005 | 23.093 0.0906 0.2061 11.5702 0.0021 0.06
¢=0.001 | 41.7379 0.0254 0.0671 18.4294 0.0009 0.0193

Fig.4.2(b), we can see that when the KL-divergence between pre-change and post-change dis-
tributions gets smaller, i.e., the QCD task becomes harder, the costs of the three solutions
increase. Although the Bayesian cost of the NMC-based solution increases as the QCD prob-
lem becomes harder, the performance gap between the NMC-based solution and the optimal
solution is still small. In addition, Table 4.1 presents the more detailed performance of the
three methods, including the delay and false alarm probability. In Table 4.1, the DQN-based
often achieves a lower delay or false alarm probability than the NMC-based method. But
it still can not beat the NMC-based method on Bayesian cost. This result indicates that
the NMC-based method achieves a better balance between the false alarm cost and delay
cost than the DQN-based method. In addition, as the key of the NMC-based SCD rule,
we also evaluate the estimation of the posterior probability Hl(to). On the test set, the mean
absolute errors of the posterior probability of the two experiment cases, i.e. the mean value
of |f[,§0) — HS’)], are 0.0530 and 0.0935, respectively.

In the second numerical example, we study the performance of the three QCD methods

when the observations are continuous random variables. The observations in this experiment
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Figure 4.7: Bayesian costs of 10D Gaussian data

are 2-D Gaussian random variables with fo = N (fio, Xo) and f; = N (fi1, 31). To illustrate
the performance of the NMC-based QCD method facing different kinds of changes, we study
2 different cases : (1). The change happens to the mean vector of the 2-D Gaussian distribu-
tion; (2) The change happens to the covariance matrix of the 2-D Gaussian distribution. For
the first case, we set 3y = ¥y = I, and pg = (0,0). Then we carry out three experiments
with pq = (1,1), g1 = (2,2), and p; = (4,4), respectively. In addition, Py, is a geometric
distribution with parameter p = 0.01. These three NMC-based models are denoted as model
A, B and C. In Fig. 4.3 and Table 4.2, we compare the performance of the three QCD
methods in this mean vector QCD problem. On the test set, the mean absolute errors of the

posterior probability of the three models are 0.1321, 0.0319 and 0.0315, respectively. For the
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second case, we set o = 1 = (0,0) and 3y = I,. Then we implement two experiments with
3, = 2I,, 3 = 41,. In Fig. 4.4 and Table 4.3, we compare the performance of the three
QCD methods in this variance QCD problem. On the test set, the mean absolute errors of
the posterior probability of the two cases are 0.1320 and 0.1382, respectively. In Fig. 4.3
and 4.4, the Bayesian costs achieved by the NMC-based method are close to the costs of the
optimal QCD rule and are lower than the costs of the QQCD-based methods. These results
validate our conclusion that the NMC-based QCD method has a good performance for the
2D continuous QCD problem. From Table 4.2 and 4.3, we can also see that the NMC-based
method performs better in balancing the false alarm probability and delay costs than the
DQN-based method. Next, we conduct another two experiments to test the robustness of
the NMC-based method in the 2D Gaussian experiment. Firstly, we test the performance
of models A, B, and C on data whose mean vector is different from the training data. Con-
cretely, the mean vectors of the testing data for Model A, B and C are (3.2,3.2), (1.6, 1.6)
and (0.8,0.8), receptively. Other parameters of the testing data distributions are the same
as the training data. The Bayesian costs of the optimal QCD rules and the NMC-based
model A, B, and C obtained on the testing data are shown in Fig. 4.5. Secondly, we inves-
tigate the performance of the NMC-based model C on data whose post-change distribution

is non-Gaussian. For the testing data distribution, we define a 2-D distribution, Fy(1,1) as
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Figure 4.9: The Bayesian costs of the NMC-based and optimal QCD solutions in the HMM
case

the post-change distribution of the testing data. With Fp(1,1), the two elements in each
data sample are independent and follow the Logistics distribution, L(1,/3/27). The other
parameters of the testing data are the same as the training data of NMC-based model C. The
Bayesian costs of the optimal QCD rules and the NMC-based model C are shown in Fig. 4.6.
In Fig. 4.5 and 4.6, the optimal solutions are obtained using the distribution of the testing
data. From the results shown in Fig. 4.5 and 4.6, we can see that the performance of the
NMC-based method is close to the optimal QCD rules for data generated with distributions
different from the training data. These results indicate that the NMC-based QCD rule is
robust to the instability of data.

In addition, we also implement an experiment for high dimensional data with a more
complicated covariance matrix. Here, the observation data follows a 10D Gaussian distribu-
tion with mean vector gy = (1,...,1), g = (0,...,0). The covariance matrix is a randomly
generated positive-definite matrix. The width of the sliding window in this experiment is
set as 1. The Bayesian costs of the optimal rule and the NMC-based method are shown in
Fig. 4.7. From this figure, we can see that the NMC-based QCD method works well for
high-dimensional data. On the test set, the mean absolute error of the posterior probability

estimated by the NMC approximation model is 0.0887.
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Table 4.4: Performances of the three QCD rules in the HMM experiment

case 1: po =0.1,p;, =0.9 case 2: pp =0.2,p; =08
Delay | False alarm probability | Bayesian cost | Delay | False alarm probability | Bayesian cost

c¢=0.1 | 3.1978 0.4444 0.7642 2.0889 0.6452 0.8541

¢=0.05 | 6.9195 0.1717 0.5177 6.6656 0.3174 0.6507

Optimal ¢=0.01 | 12.0809 0.0276 0.1484 17.3519 0.0404 0.2139
¢=0.005 | 14.4003 0.0105 0.0825 19.9785 0.0215 0.1214

¢=0.001 | 18.0703 0.0023 0.0204 28.3053 0.0024 0.0307

c=0.1 | 3.4926 0.4485 0.7978 2.3752 0.6522 0.8897
NMC.-based ¢=0.05 | 6.7486 0.2073 0.54473 6.3758 0.3634 0.68219
method ¢=0.01 | 14.6158 0.0217 0.1679 17.5915 0.0681 0.2440
¢=0.005 | 15.4936 0.0171 0.09457 21.1274 0.0389 0.1445

¢=0.001 | 20.4434 0.0055 0.02594 34.2069 0.0114 0.0456

c=0.1 | 3.2805 0.5808 0.9089 1.7592 0.7579 0.9338

DQN-based ¢=0.05 | 7.5862 0.2399 0.6192 6.1065 0.5217 0.827
method ¢=0.01 | 14.1083 0.1097 0.2508 14.8038 0.2252 0.3733
¢=0.005 | 21.4553 0.06093 0.1682 20.7133 0.1262 0.2298

¢=0.001 | 80.0278 0.00877 0.0888 15.701 0.1394 0.155

4.6.2 QCD experiments in non-i.i.d. case

To evaluate the performance of the NMC-based method with non-i.i.d. data, two numerical
examples are conducted.
In the first numerical example, the data samples are generated by the Markov Gaussian

sequence

0.52;_1 + €, if t <A
Ty =

—0.5xi_1 + €, if t >\

where €; SV (0,1) for t > 0. Since the distribution of the current data sample only depends
on the last data sample, we set w = 2 for both the NMC-based method and the DQN-based
method. The Bayesian cost of the NMC-based rule and the QCD-based rule are shown in
Fig. 4.8. From the results, we can see that the NMC-based QCD method outperforms the
DQN-based methods in this non-i.i.d. QCD problem.

In the second example, we study the performance of the NMC-based method when the
data follows an HMM. There are two hidden states in the HMM. For state 1: the data will

generate data following Bernoulli distribution with parameter 0.1. For state 2: the data will
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generate data following a Bernoulli distribution with parameter 0.9. The change happens to
the transition probability of the HMM. Before the change, the transition probability between
states 1 and 2 is py. After change, the transition probability becomes to p;. In addition, Pj,
is a geometric distribution with parameter p = 0.01. In the HMM experiment, we set the
width of the sliding window w = 15 for both the NMC-based method and the DQN-based
method. In Fig. 4.9 and Table 4.4, we compare the performances of the NMC-based QCD
method and the optimal solution with different values of py and p;. Similar to the results
of the i.i.d experiments, the performance of the NMC-based QCD method is still generally
closer to the optimal QCD rule than the QCD method. In addition, the mean absolute errors

of the posterior probability of the two experiment cases are 0.0957 and 0.1244, respectively.
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Chapter 5

Conclusions and Extensions

In this chapter, we summarize the contributions of this dissertation and propose several

possible extensions.

5.1 Summary and Conclusions

The goal of this dissertation is to formulate and solve more realistic change-point analy-
sis problems. In Chapter 2, we have formulated the Bayesian two-stage sequential change
diagnosis problem. We have converted the problem into two optimal single stopping time
problems and obtained the optimality equations of them. After solving these equations using
dynamic programming, we have obtained the optimal rule for the Bayesian two-stage SCD
problem. However, the complexity of the proposed optimal solution is high due to the DP
steps. To reduce the computational complexity, we have designed a threshold two-stage SCD
rule and proved that this threshold rule is asymptotically optimal as the per-unit delay costs
of the two stages go to zero.

In Chapter 3, we have formulated the Bayesian two-stage sequential change diagnosis over
a linear sensor array problem. By analyzing the posterior probability, we have converted the
multi-sensor version SCD problem to a normal SCD problem and characterized the optimal

solution. However, the complexity of the proposed optimal solution is high due to the
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DP steps. To reduce the computational complexity, we have designed a threshold multi-
sensor two-stage SCD rule. For the general case in which the first sensor affected by the
change is randomly chosen and unknown, we have proved that the threshold SCD rule is
asymptotically optimal under Condition 1. For the special case that the first affected sensor is
fixed and known, we have proved that the threshold rule is generally asymptotically optimal.
Furthermore, we have extended the threshold SCD rule to a more general 2D sensor array
case and proved its asymptotic optimality. Finally, we have analyzed how increasing the
number of sensors can improve the performance of the threshold SCD rule.

In Chapter 4, we have studied the online data-driven Bayesian QCD problem with geo-
metrically distributed change points and proposed two approaches for this problem. Firstly,
After formulating the online Bayesian QCD process as a POMDP, we have proposed a DQN-
based QCD rule for the data-driven Bayesian QCD problem. Secondly, inspired by the key
role that the posterior false alarm probability plays in the i.i.d. QCD problem, we have pro-
posed an NMC-based QCD rule for the data-driven Bayesian QQCD problem. Trained by the
Gradient Monte Carlo algorithm, a randomized neural network is applied to approximate the
posterior false alarm probability. By comparing the posterior false alarm probability with
a well-chosen threshold, we obtain an NMC-based QCD rule. These two methods work not
only for the i.i.d. QCD problem, but also for the HMM QCD problem or the more general
non-i.i.d. QCD problems. Moreover, the NMC-based method is guaranteed to converge.
Numerical results have been carried out to evaluate the performance of the NMC-based
method. The results have validated that the performance of the DQN-based QCD solution
is generally better than the DQN-based method and close to the performance of the optimal

solution.

105



5.2 Extensions

We expect several possible extensions of the research works related to change-point analysis

as follows:

e Online Bayesian Change Point Detection and Post-change Distribution Es-
timation: In the SCD problems studied in this proposal, there is a finite candidate
set of possible post-change distributions and we need to select the correct post-change
distribution from the candidate set. However, in many applications in the real world,
the post-change distribution is fy(z) and 6 is the unknown parameter vector that be-
longs to a parameter space ) and follows a prior distribution with pdf A(#). In the
traditional non-Bayesian change-point detection method, e.g., the GLR test, we first
estimate the parameter of the post-change distribution and then use this estimation for
the change-point detection. In these methods, we only care about the performance of
change point detection and disregard the accuracy of the parameter estimation. How-
ever, in some specific applications, we not only want to detect the change point as soon
as possible but also to estimate 6 as accurately as possible. For example, in network
traffic monitoring, knowing the network state after an abrupt change in the network
traffic is crucial for the administrator to decide what action should be taken next to
avoid congestion. Another application is online seismic event analysis. Information
of the distribution of signal after an abrupt seismic event is important to know the

magnitude and other properties of the seismic event.

e Two stage SCD problem in more general change propagation model and
sensor array structure: In this dissertation, we have studied the two-stage SCD
problem in linear sensor array and the 2D lattice sensor array. However, the high
complexity of calculating the prevent us from applying the proposed method to more
general change propagation model and sensor array structure. In terms of future work,

it is of interest to investigate the proposed two-stage change diagnosis model in more
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general scenarios, for example, the more general change propagation models and more
complex sensor arrays, the case with unknown parameters (such as v;) and the case

that the post-change distributions are unknown, etc.

Data driven SCD problem: In this dissertation, we have proposed two approaches
for the data-driven QCD problem. As a topic evolved from the QCD problem, the
SCD problem has many similarities with the QCD problem. In the Bayesian setting,
the SCD process can be abstracted to a POMDP, like the QCD process. On the
other hand, the posterior probability also plays a key role in the optimal solution of
the SCD problem. Therefore, it can be expected that the two approaches provided
in this dissertation also can be extended to the data-driven SCD problem. It will be
interesting to investigate whether these two methods can have good performance in

the data-driven SCD problem.
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Appendix A

Appendix of Chapter 2

A.1 Proof of Theorem 2.1

Now we consider the infinite-horizon DP and show that it is well-defined. Towards this end,
we need to establish that linnTQHooVkTQJ”1 (+) exists, which is done as the following derivation.

By an induction argument, we know that for any Il and 7, 4+ 71 fixed, VkTQJ“Tl(H) <
V2 (I0) for k € [y, Ty +7 — 1]. Similarly, by an induction argument, we have that for
any IT and Ty + 7 fixed, V2T HH(IT) < V>T7(IT). Heuristically, this is true because the set
of stopping times increases with the time upper bound 7, + 7. With a larger set of stopping
times, a lower expected cost can be achieved. Since max; jez,bi; > VkTQJrTI(H) > 0 for all &
and Ty + 11 for any fixed k, let T, + 7 — 00, then

lim  VEI(ID) =  inf VEI(I) 2 VeI,

Ta+11—00 Totm1:To+11>k

Furthermore, the memorylessness property and the i.i.d. observation process results in the
invariance of V,°(II) on k. This is shown by a simple time-shift argument. This common
limit is denoted as V' (II).

Since VkTQJ“T1 (IT) is decreasing with T5 + 7 and has a well-defined limit as Ty + 7 — o0,

dominated convergence theorem can be applied to the bounded G7>*™(IT). By doing this,
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we know that limg, ,, .oG>T™ (II) is well defined and independent of k. Denote the limit

as Gy (IT), it equals to

E[V(IDIF] = [ [V, 2)) Sy, fi(2)1O] da

Here, II and X denote the posterior probability and data sample at time next to the time of
IT and F. Hence, the infinite-horizon cost-to-go function for the distribution identification

stage can be written as V(II) = min(B(II), ¢ + Gy (I1)).

A.2 Proof of Proposition 2.4

By Proposition 2.3, for ¢« € Z, we know that

This implies that, for any €,0 > 0 and any j € Z\{i}, there exists N; such that

An(i, )

n

An(2,5(2))

n

< e and

_l(lvj)

—l(i,j(i))‘ < e foralln > Nj} >1—o.

Pi{AnSjw - AT - 4 4y 16406 - 22 for all m > NJ} o

By letting 2 < (4, j) — (4, j(i)), there exists N; > 0,

P; {An(4,7) > Ay(4, (7)) for all n > N;} > 1 —o.
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Let N = max N;. Summing up the cases for « € Z, we have
j€

]P,-{— log Z exp(—A,(i,7)) > — log [M exp(—A,(7,75(7)))] for all n > N} >1— Mo.
JETo\{1}

Thus

(%) _ ..
> {cbn An(ig(0) o loa M s N} >1— Mo.
n n

By definition of A(i, ) and 4, we know that

(0 @

- lOg Z eXp<_An<Z7j)) = (I)Sz) = IOg 1— H(Z) < log m = An(%])

JE€Lo\{i}

for any j € Z\{i}. Therefore,

|

Let & = =198 [¢ ~ (. Then for £ > 0, ¢ = Mo > 0, there exists a N = N V K such

K
Pi{

Hence, by squeeze theorem and Proposition 2.3, we know that P; a.s.

oY — A, (i,5(9))

n

log M
<28
n

foralln>N}>1—Ma.

that A
Y — A, (i, (i)

n

<§foralln>N}>1—&.

lim 20— g AT ey,
n—oo N n—o0o n

By Proposition 2.3. For i € Z, we know that
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This means that, for any ¢,0 > 0 and any j € Z\{i}, there exists N, such that

1

Here we should note that A, (0,75) — An(0,7) = A, (3, j).

An(oaj) — An(oa 7’)

— (i, 7) <5f0ralln>N]}>1—a.

If we pick 0 < e < (7, 7), we will have
P; {A,(0,7) < A,(0,7) for alln > N;} > 1 —o.

Therefore

P; {e M) > =409 for all n > N;} > 1 — 0.

Let N = max N;. Summing up the cases for i € Z, we have
JE

]P)i{—%log [Z exp (—An(O,j))] > —% log [M exp (—A,(0,14))] for all n > N} >1— Mo.

jeT

By definition of A(0,%) and 3 we know that

—log

0, Y o
Zexp(—An(O,j)) = (I’gz) = 10gw < 10gm = Ay (0, 7).

jeT — Un n

Hence

1 1
P; {‘—-@S” — —A,(0,49)
n n

1
<—longoralln>N} >1— Mo.
n

Let € = _I‘EM,K > 0. Then for € > 0, ¢ = Mo > 0, there exists a N = N V K such

that

1 1
P, {‘——cbg’) — —A,(0,4)
n n

<éfora11n>]\7}>1—&.
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Therefore, by squeeze theorem and proposition 2.3, we know that P; a.s.

ol A, (0,7
im 2 = i 200 ),
n—oo N n—00 n

A.3 Proof of Proposition 2.5
By Propositions 2.2 and 2.3, we know that for any i € 7

i P;—a.s.
T(f) + T4 — 0
B B;—0

I’I(’Z) Hz—a.s
—__>

n n—00

10}

This means that, for any N > 0 and o, > 0, there exists B; > 0 such that
Pi{rg)—i-m > N for all B; SE} >1—o0,
and for any ¢ > 0 and o, > 0, there exists N > 0 such that

|

Therefore, by picking N > N, we can see that, for any £ > 0, a1, g5 > 0, there exists B; > 0,

oL
— —1(7)
n

<sforalln2N}>l—ag.

such that "
(I)T(f>+7',4 J—
P; ()B——l(l) <5f0rallBi§Bi >1— 01— 09,
T 4+ TA
B
ie.,
(I)(i()')
T T i —a.s. .
ol — 2 1),
T +Ta P70
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Similarly,

(I)(i()')
b ra—1 _a.s. .
O - % 1(i).
5 TTA— 1 Bi—0

So for € > 0, 0 > 0, there exists B; > 0, such that

o0 0
T(j)-‘rTA . T(f)—l-TA—l . J—
Pid o <) +eand 72——>1(i) —cforall B;<B; p >1—o0.

This happens if and only if

() ()
Ts +7a 1 Ty +74—1 1 _
P; B(z) > — an B @ < — forall B; < B; p >1—o0.
o' (i) +¢ o' (i) — ¢
T +74 T +714—1

Following the proposed SCD rule, we know

(@)

—log B; TP +ra-1
Tg)—i—m—l N Tg)+7A—1
and
0)
—log B; 7474

Tg) + T Tg) + T4

Therefore, we have

(@) (®)
Ts +7a 1 Ty + 74— 1 1 —
B B
{—logBZ- (i) + ¢ o —log B; (i) — ¢ ora } ?

This implies that

(@)
e TS + T4 1 c 1 o
Fiy— = Ty — forall B; < B, p >1—o.
Z{ 1(7) (1(7) + ¢€) = —logB; (1) <l(i) () —2) logB;’ or all B; < z} > o

Let
€ 1

(i) (1() =€) logB;’

£ =
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Therefore, for & > 0, ¢ > 0, there exists B; > 0 such that

|

(@)
Té + Ta 1

1
—logB; (i)

<€forallB¢§E}>1—0.

So "
Té +Ta Pi—a.s.. 1

In addition, we know that Tg) +74— A< (Tg) +74— M)y < Tg) + 74 and A is almost surely

finite. Therefore, the first part of this lemma is true.

By Propositions 2.2 and 2.3, we know that for any ¢ € Z

P;—a.s

— 00

and

B Bi-as
(A}

n n—00

This means that, for any N > 0 and o, > 0, there exists A > 0 such that
IP’Z-{TA>Nf0raHA2X} >1—o04
and for any € > 0 and o9 > 0, there exists N > 0 such that

g

Therefore, by picking N > N, we can see for any € > 0, 01,09 > 0, there exists A > 0, such

o (—l(z’,O))

<€foralanN}>1—02.
n

that
(I)(O) .
P, TA—(—Z(i,O)) <eforal A>A} >1—01— 09,
TA
ie.,
L) b as
4 Fizas, —1(4,0).
TA A—o00
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Similarly,
—A s (4, 0).

T4 —1 A-co

So for e > 0, 0 > 0, there exists A > 0, such that

TA TA —

o0 o -
P;¢ —2 <—l(i,0)+5and%>—l(i,0)—sforallA2A >1—o.

This happens if and only if

TA 1 TA — 1 1 —
P; > y d < y it NA>A), >1—o0.
{@“” (@0 +e g0 . —lE0)—¢ neas } 7

TA TA—

Following the proposed SCD rule, we know

—log A - CIDQ,)

TA TA

and
. o
log A S

Ta—1

TA—l _TA—l'

Therefore, we have

TA 1 T4 — 1 1 —
P; > , d < : foral A>A} >1—o0.
{—logA —1(3,0) + ¢ an —logA ~ —I(i,0) — ¢ ora - } “

This implies that

P g TA 1 g 1
N TG0 (<06,0) 12) © —log A —1(3,0) —1(5,0) (—1(,0) —2) logA

forallAzz}>1—a.

Let

o
I

—1(1,0) (—1(,0) — &)
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Therefore, for & > 0, 0 > 0, there exists A > 0 such that

TA 1 - —
P; - forall A> A 1—o.
Z{’—logA —l(i,O) <€ Ior a = } > o

So
TA Pifa.s.\ 1
—log A Ao —I(i,0)

A.4 Proof of Proposition 2.8

By equation (3.2),

-1
0 POV, H (X Z Z H Z Xm

1€T €L =1m=k

_ Pov; fi(Xk)
— {iez 2% exp (nlog <1 p) + Z log XIZ))

+1+vaiiexp[(n—k‘+l)log< )—l—Zlog( ;)]}

i€l k=1

To analyze the value of H,(IO), different cases should be considered here.

Case 1: If log ( > > ¢(0,14) for any i € Z, then

> 1o exp (n log ( > + Z log]f;(())?z))> Fiesy

i€l n—00

Thus the proposition is true in this case.

Case 2: If log (ﬁ) = ¢(0,1) for any ¢ € Z, then

: U; 7 ) I (%
nh—>nolo {lpo exp(nlog( )—i—Zlogf( )>}—ffp0,

which is a positive constant. So the proposition is true for this case.
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Case 3: If log (ﬁ) < q(0,4) for any i € Z, then

1€T k=1

dpvi > exp [(n—k+1)log (ﬁ) + mZ::k log (}”;((if{:))) ]

= > puv;exp <10g<1 p) —i—lOg( ((X ))))—i—

i€T
o ok (25) « £y (382) )

Under the condition A = 0, there is a lower bound for log(f;(z,)/fo(x,)). So the above

quantity does not converge to 0. Therefore, there is a corresponding upper bound for H%O),

which is less than 1. In conclusion, the proposition is true in all cases.

A.5 Proof of Proposition 2.9

The proof of Proposition 2.9 is close to Theorem 5.1 in [58]. By Proposition 2.5,

(Tg) +TA— )\)+ P;—a.s. 1

—log B; Bi—0 (i)’

Since \ is finite almost surely, for any € > 0, ¢ > 0, there exists B such that

1

where ‘E ’ is the infinity norm of B. Thus

IP’Z{

Tg)+TA

1
—logB; (i)

> ¢ for all‘é‘ SE} < o,

Tg+tTA

—log B; ﬁ

5], <)

=P { T!loj; — | > & for all ‘é‘ <Byrg+ra=71Y +m}
J€To [e’e]
Ta+rd) . _ '
SR{%_ﬁ >5forall‘B) SB}+ > Pi{TB’+TA:Tg)+TA}<0‘—|—’UiBi.
Z oo JETO\{i}
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Since B; — 0 and o can take any positive value, for any @ = o + v; B; > 0 and € > 0, there

exists a B > 0 such that

. |

TETTA 1
—log B; 1(7)

> ¢ for all ‘é’ SE} <0,

ie.,
(TB‘ + TA) Pi—a.s.\ L

Since A is almost surely finite, the proposition is true.

A.6 Proof of Lemma 2.2

The main idea of the proof is similar to that in [67], which focuses on one-stage SCD. Here
we extend and modify the techniques developed in [67] to the considered two-stage SCD
case. Since the proofs of the two inequalities in this lemma follow similar steps, here we only
give proof of the first one.

Before proving Lemma 2.2, some supplemental lemmas are introduced as follows.

Lemma A.1. Let 6 = (7, 72,d) € A. Foreveryi € Z, j € Zy\{i}, L > 0, f > 1, then

Pi(r +m—A>L)>1— S @ s R o)
keTo\{i} keT

_ef“(i*i)iRﬂ(‘S_) —P; 9 sup A,(i,7) > le(i,j)}.
n<A+L

Proof. The misdiagnosis probabilities

RJ((S) = UiEi[1{d:iv>\§‘r1+7'2<oo}€7A71+72 (i’j)]

— _AT T ‘7‘ _AT 7 ‘7‘
= E[l{g=incn+m<ooo=iye 1" 2(”)] = E[1{d:i,)\§n+¢2<A+L,0:i,Arl+rz(i,j)SB}e 14m2(67)]

>e PP{d=i, A< +7<A+L,0=iMA,.(ij) < B}
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for every fixed B > 0.

]P){d:’i,)\STl—f-TQ < /\+L,¢9:’i,ATl+T2(i,j) SB}

>P{d=i,A<n+7m<A+L,0=i sup A,(i,j) < B}
n<A+L

:P{d:Z,A§T1+TQ</\+L,¢9:Z}—

]P){d:Z,A <7+m< )\+L,9:Z7 sup An(ZL]) > B}
n<A+L

>P{d=i,A<T+m <A+ L0=i}—P{0 =i, sup A,(i,5) > B}
n<A+L

=P{d=i,A<m+m<oof=i} —P{d=1i0=i A+ L<7+7 <o}
—P{0 =i, sup A,(i,j) > B}
n<A+L

>Pld=i d<mi+7m<c0,l0=i}-P{d=i\+L<7+7 <00}
P{0 =i, sup A,(i,j) > B}.

n<A+L

With this lower bound, we have

Ri(0) > e B{Pld=i A<m+m<o0,0=i}—PA+L<7+m<o00=i}

—P{0 =i, sup A,(i,j) > B}}

n<A+L
and hence
P{IL<m+1m—-N0=i}=P{AN+L<7m+m<o0,0=1i}

>P{d=i, A<+ <00,0 =i} —P{0 =4, sup A,(i,j) > B} — e®R;i(6).
n<A+L
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Divide v; on both sides,

IP’i{LSﬁ—}—Tg—/\}ZIP’i{d:i,)\§71+Tg<oo}—M—IP’Z»{ sup A,(i,j) > B}
‘ n<A+L

=1- Z Pi{d:k’Agﬁ—i_TZ<OO}+]PZ'{7—1+T2<)\}_€B}21'(5)

keZo\{i}
~Pi{ sup A,(i,5) > B}
n<A+L
=1- > R’+@—R~{ﬁ+7'2 <)\}—M—R~{ sup A,(i,j) > B}.
keTo\{i} ’ n<A+L

Since the stopping time is independent to the state after change, so Pi{r + 7 < A} =
P{m + 7 <A} = > Rox(d). Therefore,

kel

P{ri+m—A>L}>1— Y 20 s p ) - 25O _poosup A, ) > B}
keTo\{i} kez ‘ n<A+L

Finally, the lemma is proved by setting B = fLI(i, 7). O
By Lemma A.1, we can easily have the following lemma.

Lemma A.2. Let 6 = (71, 72,d) be an SCD rule in A. For every i € Z, j € Zp\{i}, L > 0,

f > 1, then
. Ry
inf Pi{ri+m—A>L}>1— > +
seA(R) reTov(i} v
_ eILGOR
N Row — 2L —Pi{ sup Au(i,5) > FLUG. )}
e (% n<A+L

To control the probability part on the right hand side of Lemma A.2, we derive the

following lemma.

Lemma A.3. For every i € Z, j € Zp\{i}, f > 1, then

n<A+L L—o0

120



Proof. By Proposition 4.1 in [67], we know that A, (7, j)/n converges P; a.s. to [(i, 7). There-

fore, there must exist a IP; a.s. finite random variable Ky such that

An Z‘, . An .. 1
qup Anld)e A ) (S
n>Kf n ’rL>Kf n 2

)W(i,7),P; a.s..
Moreover,

lim R-{ sup An(i, j) > le(i,j)} < ngx;OPi{ sup An(i,j)s > le(i,j)}

L—o0 n<A+L n<A+L
< hm P, { sup Ap(i,7)+ +  sup  A,(4,7)4 > le(i,j)}
—00 nSKf Kf<7LS)\+L
< lim P sup A(i,j)e + (A+ L) sup  200e le(i,j)}
—00 n<K; Ky<n<A+L
B ot
= lim P, —L—— + 2L sup "”* > fl(i, j) ¢
L—oo Ky<n<A+L

Since A and K are IP; a.s. finite, then

sup An(4,5) . .
lim [Mff + 2L sup An(:J)Jr] = sup An(;’J)Jr < (i, ) < f1(i, ).
L5500 Kp<n<A+L Ky<n
Therefore,
2P Anlid)y An(i))
lim P¢ —L—— 4+ 2L qup =Bt > fU(4 ) 2 = 0.
L—oo Ky<n<A+L
Hence Lemma A.3 is proved. O]

By lemma A.2 and A.3, we have the following result.

Lemma A.4. Let 6 = (71, 72,d) be an SCD rule in A. For 0 <y < 1,7 €Z, and j = j(i),

then

log(Rj()i/ vi
liminf inf P; 7-1_|_7—2_)\27‘Og( ].()/v)| > 1
R—0 6eA(R) 1(i)

Proof. Tf weset j = j(i) and L = M,

16 and choose f > 1 such that 0 < fy < 1, then
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L — 00 as R — 0. Then plug them in Lemma A.2 and apply Lemma A.3, we have

liminf inf Pi{ﬁ + T —A> _7|1°g<fgi<;>i/vi>! }
R—0 (8)eA(R)

(%3

k-0 k€To\{i} kez

n<A+L

> lim inf [1— > — 3 Ry — ( J‘”)l P — IP’Z»{ sup An(i,j(i))>le(i)}]
=1-o0(1).
O

Now we prove the first inequality in Lemma 2.2. Fix a set of positive constants R,

0<vy<1landd=(m,m,d) € A. By Markov inequality

(T14+72—A) (T14+72—X)
E; | — oty P, >
i {|1og(Rj<i>i/vz—)|/l<z‘>} = [llogu% o] /16) 7}

>~ inf P; [(7’1+7~'2—)\) (l{log /vz)‘] :
s5eA(R)

Here 0 = (71,7, d) is any SCD rule in A(R). Hence

. (F1+72—A) . ~ ~
inf [, ————| > _inf Pi[T + T — A L]O v; ]
FeA(R) |:|10g(Rj<i)i/vi) /l(l)] = VSEA(E) (71 + T2 )+ 16) { g(R / )‘

Therefore,

. . (T1+7'2 )\)
liminf inf E; >
R—0 4cA(R) [|1og R >Z/”’)|/l } B

~vliminf inf P, [(ﬁ +T=A), > 0] |log(
R—0 §cA(R)

Rj(i)i/vi)}] %7‘

The inequality (a) is due to Lemma A.4 and the fact (7 + 72 — A). > (71 + T2 — A). Finally,
the first inequality in (2.39) is proved since + is arbitrary constant between 0 and 1. The

proof of second inequality in (2.39) is similar and thus omitted.
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A.7 Proof of Proposition 2.10

The proof follows the idea of the proof of Proposition 6.2 in [67]. Here we extend the

technique in [67] to the two-stage SCD case considered in this section. Assume that

iy Waeal (9)

Woear ~ 10 g
a0 C@ (o)

for contradiction. This means that there exists a monotonically decreasing sequence {cap, fn>1 —

0 and their corresponding SCD rules 67, = (7{,, ;T5.,,>d3.,,) such that

. 0(02’71)(5:2 n)
lim :

— e < L.
n—00 C(CQ‘H)(dT)

Since we know that C2)(67) — 0 as ¢y — 0. Therefore, C(27)(§7) — 0 as n — oco. This

further implies that
R()((S* ) —_— 0,

c
277 pvco

C2.n

Ri;(02,,) —0i€L,j € To\{i}.
By Lemma 2.2, as these false alarm and misdiagnosis probabilities go to 0,

.
Eil(mf. —A)4+]> inf E{(ri — A
(e N2 nt Blim =)

/1(i,0)

Eil(T ey + T5ea, — Nt] (A1)

R *
Z 10g O(Tl ’vCZ’")

CH

> inf E; — A
- 5€A(}%I%632,n)) (47 = A)y]

J1(3).

Ry(ii(8%, )
> ‘log el
\ Vi
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Now we can apply these results to analyze the total Bayesian cost. We know that 7, > A

a.s. when the false alarm of the first stage goes to 0. Then, as n — oo (i.e. ¢a, — 0),

Cle2n)(07, ) = com Y OEl(T5 oy 4+ 750y = M) 4 Com (2= 1) Y 0iEi(77,,, — N

1€T €T

+ > > buR(dr,,) +aR(dr,))

1€2Lo j€To\{i}

>3 [CQ,nviEi[(Tf,CQ,n + ey, — A+ bj(z‘)z‘Rj(z‘)i(fsél,n)}

iet
teon (1= 1) D uBil(ri,,, — N +aRe(37,)
1€
Rjyi(0, by
> v, { CZ,n. log J()( Q,n) i 5(3) Rj(i)i((SZQn)}
@< L=lE) v v; :
Ttem1 log Fu(3%. )
1 v; log Ro (0 1 v; log v;
Ry(o* —Con | ——1 — - o al——1 - .
ot = (5 1) ST e (1) D
It;IFHQ It;rrn3

Here, inequality (a) is due to (A.1).

Since (1/r —1) > (v;logv;/1(3,0)) is a finite constant and
i€z

(% N 1) Z U4 logl$?55227n) . 00,

€T
1 L TOUCHS)
iy 108 ( :

7

) = o,

as n — oo, Item 3 is negligible compared with Item 1 and Item 2. So we can conclude that

Cle2n) (87 ) > Item 1+ Item 2. Let

\n

! 1
A= Ro(d5, )’

B = (B,...,By),

Ry (65, ) .
By =02 e T
(3
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Then, we have

Com , , 1 v; , a
Item1 + [tem2 = i | —==log (B;) + b B; nl——1 —— log A" + —.
eml + Item E v {—l(i) og (B;) + bju) l] + ¢y, (r );EI 1G.0) og A"+ -

1€T

Now we can find that Item 1+ Item 2 have a very similar form of the Bayesian cost
function of the threshold rule, C(°)(d7). But there are two differences between them. One
difference is that the false alarm probability in item 2 is 1/A’, while it is k,/(1 4+ A) in
C(©2)(§7). But they are almost equivalent when A and A’ goes to infinity. The other difference
is the coefficient of false alarm in Item 1 is bj¢;, while it’s k; in C(®?)(67). However, as we
discussed in Section 2.4, taking different value of k; will not change the asymptotic behavior
of the Bayesian cost. So this difference becomes negligible as ¢ — 0. So we can conclude
that

Cl2n) (57, ) > Iteml + Item2 &~ C2) (A, B') > €' (57),

where C(e2n)(A’, B') is the cauculated as (2.29) with thresholds A’ and B’. As the result,

the proposition is true.
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Appendix B

Appendix of Chapter 3

B.1 Proof of Proposition 3.1

Before we prove Proposition 3.1, we introduce some helpful results.

Lemma B.1. Let {&},>1 be a positive stochastic process and T be an a.s. finite random

time defined on the same probability space (€2, ¢,[P). Given 7', the random variables {&}r>1

are conditionally independent, and {&}1<x<r—1 and {& }r>7 have common conditional prob-

ability distributions P(*) and P(¥) on (R, B(R)), the expectations with respect to which are

denoted by E(*) and E©, respectively. Suppose that E(*[log¢;] and E©[logé,] exist, and
define 1 := E©[log¢,]. Then for any fixed constant ¢ > 0
1 LA P—a.s.

z log (c+l:z:1nnlfn) PRV (B.1)

This lemma is the first part of Lemma 5.5 in the paper [67]. Here we further extend this

lemma so that it can be applied to our sensor array problem.

Lemma B.2. Let {{ }x>1 be a positive stochastic process and Ty, < T}, are two a.s. finite
random times defined on the same probability space (€2, e, P). Given T, and T}, the random

variables {&;}r>1 are conditionally independent, and {&}r, ,<k<r,—1 and {& }r>1, have
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common conditional probability distributions P and P() on (R, B(R)), the expectations
with respect to which are denoted by E(*) and E(©)| respectively. Suppose that E()[log]
and E©[logé;] exist, 0 < & < oo for all k& > 1 and define  := E(©[log&;]. Then for any

fixed constant ¢ > 0

1 . log (c + Z H 5n> % T+ (B.2)

=1n=1

Proof.

By Lemma B.1, we can see that

110g <C+ > H 571) NN

=Ty 1 n=Tp 1

On the other hand, since T _; is a.s. finite, we have

Tr_i-1 P—a.s.
zlog| [I & | —0.

n=1 k*)OO

Then the lemma is proved. O

Now, we first prove that, for any i, j € Z, we have
1 i - .
liminf log Hy > (log(1 — p) + Lq(j.) — Lq(j.0))., (B.3)
— 00
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P; almost surely.

For any ¢ € Z, define

i) =g 0<i< L1,

l x
&) = 21— py),

l(cL)(Z> _ fo(xk,l)(l

filee) \T p2)'

With this definition, we can have

ko fnsl () (5
,g = ;ns; (1:[ < ; _plf)))(ln_(;))) w (K, )qngrl(/{; ng) (B.5)

() : e SE s SPOVRG
U (kyuga) = 1:[1(1 —pl)tljlfn @) +pr 2o 11 & (@2 (k)

L-1>1>1
ny=n;4+1 n=1
v (ko) = 1

(B.6)
and
(

o (k) = 11 (0= ) [TEV0

+p2 Z H fv(zl

n;=n;_1 n=1

3

(@), (kyn),2 <1< L - (B.7)

L 9255:@11 (kanL) =L

Then, we can see that

o0 2o (T 060 §?1<k,m+1>)>ﬂ—12121

(B.8)
I §S><z‘>¢§21<k,m_1>) a<i<lL
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Applying equation (B.8) repeatedly, we have

)5 5= 0 = T 0o T folees) na=1
H" 2 ) ks 2 (=) (1—p2) fi(wom) [ (H 1) vy > (1—p1)" } '

s=1 ns=0 n=1 1 n=1
st [ & 5T o) 1 L | Loso1 kel L fo@en)
—S5— Tt,n Ng— S— —5— Tt,n
[,02 <tl_[+1 Il f(j(xt,n)) (1—p2) } - (Zl DN ) (ZO 1 (1= p) 1] 265

Then we have

. k ns—1 L
%logH,gZ)E% (Z kopS L pbe 1)+%log<z_:0 ]:[1( )H i::;) (B.9)

Since the parameters p;_; are all positive for all 1 < s < L, we have

log <Z kop Tt ph T 1) —0. (B.10)

Since the change will happen at all sensors at an almost surely finite time 7', then by applying

Lemma B.2, we have

1 Lo F holwn) | _ 1 o F o(zin)
10g<2 (1=p) I 7625 ) = log (2+ 2 1 (=p) I f?ui:Z))

n;=0 n=1

2 (log(1 — p) + La(j, 1) — La(4,0)).,.

k—o0

Combining (B.9), (B.10) and (B.11), we can see that (B.3) is proved. Next we need to

prove the other direction, i.e., for any ¢,; € Z,

lim sup —
k—o0 k

logH < (log(1 = p) + Lq(j, i) — Lq(4,0)).., (B.12)

P; almost surely.
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For any integer n, > 0, we can see that for L —1>1>1

[T-m]][e%0) = <H§,§l>(z‘)> (H (1- m)l:[éff)@')) (B.13)

n=1 t=1

IN
1=~
m
\_/
=
N
S
N
w
—
N

Similarly, for 2 <[ < L we have

11— o) 190 < (Hén()) o0 (k). (B.15)

n=1 t=l

From (B.7), using (B.14) and (B.15) with n, = k + 1 and the fact that p; < 1 and ps < 1,

we can see that

Wt s © (Te0)etm.r-12021

=N, n=1

k41l /-1 (B.16)
k)< S (Hsm) (o), 2 <1< L.

n,=n,_, n=1

Applying these two inequalities in (B.16) recursively, we have

| b frl ) )
HliZ) < Z“s Z (H <(1(1_ plp))(glk_(;)>> ¢ 1 (K, ns)¢s+1(kans) (B.17)

where

( k+1 n;—1
w (k?’flz+1 Z (Hf(l ) k), L—1>1>1

ny=nj41 n=1

~(()i) (kvnl) =1,

k+1 n;
¢zz(k’”ll Z (Hf ) k), 2<I<L

ny=nj_q n=1

(B.18)

L ¢L+1 (k,ny) = 1.

Since n; in (B.17) is no larger than ny, and n; in (B.18), so the right hand side of (B.17) will
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become larger if we cancel all (1 — p;) and (1 — po) in (B.17). Furthermore, we know that

N
+

?zl(i)(kanlﬂ) < ( I1 51)( )) ~z(i)l(k’nl)’L —1zi=21

l

39k, miy) < Z: (nH & (i )) A (k)2 <1< L.

(B.19)

w:

By canceling all (1 — p;) and (1 — ps) in (B.17) and applying (B.19) reversely, we have that

, L
H ,Ef) < Y kg5 where

o (5 0-n))- (1 (5 () (5 ()

(B.20)

By Lemma B.2, for any 1 < s < L we have

%log (7s) k;—oﬁ (L —1)(q(4,%) — q(4,0)), + (log(1 — p) +q(4,7) — q(4,0)),

L
Since ks > 0 and ) ks = 1, we have
s=1

L

10g<z Hs')’s)
min (log (%) ,log ("’—k?) ,...,log (%)) < % < max (log (%) , log (%2) , ..., log (%)) )

We can have

_log (Z m) — (L —1) (q(4,©) — q(4,0)), + (log(1 — p) + q(j, ) — 4(4,0)),

When Condition 1 is satisfied, we have

(log(1 — p) + Lq(j, i) — Lq(j,0)), = (log(1 — p) + q(j, 1) — q(4,0))+ + (L — 1) (¢(4, %) — q(4,0))

(B.21)

Hence (B.12) is proved. Therefore, Proposition 3.1 is true.
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B.2 Proof of Proposition 3.3

Now, we first prove that, for any i, j € Z,

hmlnf—logH > h(i,j) (B.22)

k—oo k

IP; almost surely. Please note that the h(i, j) in this section is defined as (3.27) since we are
studying the special case.
In (B.8), we have four inequalities about wl(i)(k,nlﬂ) and ¢l(i)(k,nl_1). For (3.24), we

apply the first inequality of (B.8) to {¢l(z } the second inequality of (B.8)

s— 1>l>aM<7 ])(’Lj +1°

to {wl(i)}lggagm,j)(m) , the third inequality of (B.8) to {qblZ } and the fourth

s+1<1<0) 9 (i,) -1

inequality of (B.8) to {qbl(i)}LZZZbéV(i’j)(i,j)-H' Then we have

k 1 by 0 (ig)—1 2O (0,5) k-1 L k=1
7o s s I (1=p) 0 (; g o B R P OF T 0
B2 (1—p1)(1—-p2) I1 & (4) | - [T II&°() NH [T &)
- I=b)

ns=0 n=1 l:a;w(i’j)(i 3)+1 =1 n=1

= =05 9 (i.5)
N (i,5)
1] N ) R @ 1] 1 1] 1 k-1
o | 2 Il o 11 &7(@) og (1= p1)"") + glog (1 = p2)*)
s= = _ s .. 1
n n l ay %) (1/7])_’_
Since L is a finite integer, we have
zlog (p1* tpatT) —— 0. (B.23)
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By Lemma B.2 and the definition of 7; in (3.25), we can see that

by ) (i,5) -1

> mhj) | - (B.24)

1=a 9 (i j)+1

ns—1 by 9 (i) —1

k

| (1-p) W

plog | X 1:[1 (T I1 &n’ (1)
0 ne _

P;—a.s.

k—o00
+

In addition, by the definition of 7, and Algorithm 1, we can see that

R U ey L1 e
T (n ¢ <z>) Fllog (- p) )+l 5 log (H ¢ <z>)
ay" "7 (i.5) L (B:25)
Pj—a.s. 2 ’ .. .
+% log ((1 — p2)k_1) —— > (i, j) + > (i)
= N(z,9),. .
k—o0 =1 l=b2 ( ’”(7,,])

Combining (B.23), (B.24) and (B.25), (B.22) is proved. Next, we need to prove the other

direction, i.e., for any i,j € Z,
1 A
lim inf — log H" < h(i, ) (B.26)
k—oo k

P; almost surely.

Applying (B.16) recursively, we have

n;—1 . 0) i » -
w3 (I (F5E5)) emitan. o

n;=0

Here él(i)l(k,nl) and z/;l(?l(k,nl) are given (B.18). We apply the first inequality in (B.19)
to @Dlﬂ(k‘,m) for I = al'(i,j) and 1 < m < M(i,j), following the order from m = 1 to

m = M(i, j). Then we also apply the second inequality in (B.19) to gzgl(fgl(k, ny) for I = by (i, j)
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and 1 <n < N(i, ), following the order from n =1 to n = N(i, 7). We define

( k+1 Mo (i,g) ~1 (@ (i3)) ©
Q=X . Hl &n? (2) Cma ™ (3,5)— (napp) |1 <m < M(i, j),
Mal (i,5) = n=

kt1 mEEDTE ) () -
On= o |\ AL &t ) )b (i) | NG ) 2 n > 1, (B.28)
g (i,5)=

\ ns=0

k+1 ns—1 () ()
= > <H &L ())Q zj)+1,sfl(ns)eN(i,j)Jrl,erl(ns)

where
( () k+1 ng—1
i) = 3 [(an()) o, 1<nt>] P0)~ 12 1> 0P,
1<m< M(i,j)+1,
Y Cmelnesn) =1t =ap(i,5) - 1, (B.29)
) k+1 ng—1 )
D)= 3 [(m ) m+1<nt>] 0.5) 2 12 B5(60) + 1

N(@i,j)+1>n>1.

With the definitions in (B.28), we have

< ﬁJ)Q > (Nﬁj) @n> . (B.30

In (B.28), we denote

a5y = 6" (6, 5) + 1,
ay (G, j) =5 — 1,
oY I gy = by (L ) 1,

by i) = s+ 1

(B.31)
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Now, it suffices to show that

( ay' (4,)
hmsupklogﬂ Z 77l<27j)71§m§M(27])
k—o0 =a"(i,5)
?( i.7)
) limsup%log Om= > nij),1<n<N(,j) (B.32)
k—00 1=b2 (i,7)
by ) (1,5) -1
limsup ; logT" = > m(7,7)
| Fo 1=aM D ()11

IP; almost surely. The proof of the three inequalities are similar, and the third one is more
complicated. So here we only provide the proof of the third one. For any 1 <1 < L,

k+1  mny—1 k+1  ngp—1 (141)

> oMen| X I &

ng=n;—1 my=1 ngy1=n; mp41=1

k+1 mn;—1 k+1 ngy1—1

(1+1) (I+1
- Z H gng Z H gmlJrl)
ny=n;_1 my=1 npL1=n; my1=mny
k+1 n;—1 k+n;+1 77fl+1_1
(I+1) (I+1)
< 311 gngn > IT &
np=n;—1 my=1 Np41=N M41=N
kE+1 my—1 k4+ni+1 ny41—1
I+1) (1+1)
< 3 Il gugh | max > I &l
ng=n;—1 m;=1 "lgk+1m+1:nz mpy1=ny

Similarly, we have

k+1  mny—1 k+1 mng—1—1 (1-1) k+1 my—1 k+n;+1 ng—1—1 (1-1)
S oIl en| X I ént)< X I emen? | max > [ &nt

ny=nj41 m;=1 nj—1=n; m;_1=1 ny=ni41 my=1 Skl gy ey my =y
(B33)

For T, apply (B.33) from | = a)"“?(i,j) + 2 to | = s, then apply (B.2) from to [ =

by (i, j) — 2 to | = s, we have

k1 [ ne—1 b7 E5)—1 s by D) (4,5)—1

r<> (I I &0 I < 11 D, (B.34)

=0\ T i=ay Y (1) 41 =a3' 9 (i.)+1 =5
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where

k+mny np_i l

(t)
Cr=max (1+ > ] 1 &,
n<k+1 nj_1=n; mj_1=ny t:agf(i,j)(i7j)

ke s 03O0 G) )
D= (0,2, L e

Ni41=N] Mj41=N] t=l

By Lemma B.2, for s <1 < bév(i’j)(i,j) — 1, we have

X k-t - bé\,(i’j)(i,j) " Pj—a.s. bév(i’j)(i,j) o
Elog 1_'_ Z H l_Il fml-H ? Z nt(l>j) = 0.
t=
Jr

NyL1=n; M41=n k—o0 t=l
And for aéw(i’j)(i,j) +1 <1 <s, we have

k+ny ni—1

! !
t P;—a.s. Lo
plog (14 X T I &ua|—=| X ]| =0
ni—1=n; m—1=ny t:aé”(i‘j)(i,j) aé/f(’b,])(i7 ) .
Therefore, we have
Pj—a.s.
% log C) L 0,
k—oo
Pj—a.s.
% log D, ~ 0.
k—o0
Similarly, by lemma B.2, we can see that,
> | I II & (1)) ——— > m@g) | - (B.35)
ms=0 \ ¢=1 129 jy4q 0 =9 ()1 .

By (B.34), (B.2) and (B.35), we know that the third inequality in (B.32) is true. Using

similar steps, we can prove the other two inequalities in (B.32). Hence (B.22) is proved.

Finally, by (B.22) and (B.26), the proof of Proposition 3.3 is complete.
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B.3 Proof of Proposition 3.4

we first prove that, for any i,j € Z,

hmlnf—logH > h(i,j) (B.36)

k—oo k

P; almost surely. Please note that the h(é,j) in this section is defined in Proposition 3.4
since we are studying the 2D case.

Then, we can see that

wT-‘rl (k 77/7-,51,52) >p1( | C(SH ) ;::Z wr—f—Q (kanrasbSQ)?R(Sl)SQ) >7ﬂ20 .
a,b)e 1,52,r+1
(B.37)
Applying equation (B.37) repeatedly, we have
. H W k no—1
(i) > (1—p) fo(zn,s;, SQ) )
Hk N 5'12:1 512:1 5 noZ:() nl;ll (1=p1)fi(@n,51,5,)
R(S1,S2)—1 [ - )
pr LI ) e (B39
(a,b)€0O(S51,52,0) n= 1

(5, 5wl (5 ”if(

S1=151=1 no=0 n=1

o

w
fo (xn,a,b)
H fi(wn,a,b)) ’

b=1

Since R(S1,Ss) is finite for 1 < 51 < H,1 < Sy < W, we have

H W
1 R(S1,52)—
Elog( E E fisl,52p1( 152) 1) E} 0. <B39)

S1=151=1

Since the change will happen at all sensors at an almost surely finite time 7', then by applying

Lemma B.2, we have

no—1 0w no—1 Howo
%bg(Z [ a-nIl H m"”;) = ; log <2+ 2 1T A=p) 1111 f(?(:cn'a’:))
no=0 n=1 a=1b=1 e no=2 n=1 a=1p=1 """
Pj—a.s.
" (log(1 — p) + HWq(j,i) — HWq(3,0)) .
(B.40)
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Combining (B.38), (B.39) and (B.40), we can see that (B.36) is proved. Next we need to

prove the other direction, i.e., for any ¢,; € Z,

1 .
lim sup z log H" < h(i, §). (B.41)

k—00

For any integer n, > 0, we can see that

k Jo(%n,a,b)
[TA=p) I FEey
n=1 (a,b)EO(SIyS27T) o
k
fol@na, Jo(Zn,a,
ftnas) (H@—po I °-Eifn,a,;’§) (B.42)

n=1 (aab)eo(slst»T+1) Ji

I
-

3
Il

1 (a,b)EC(Sl,SQ,T‘JrI)

% ¢7<'l+)2 (k7nx751732).

IN
=

3
I

1 (a,b)EC(S1,Sg,r+1)

From (3.33), using (B.42) with n, = k£ + 1 and the fact that p; < 1, we can see that

k Ny —
(3) . g fO
wr—i—l (k,nT,Sl,Sg) ~ E H H 7~.|_2 (kanrJrlaSlaSZ)?
nr4+1=nr (a,b)eC(S1,52,r+1) n <B43)

R(Sl, SQ) >r > 0.

Applying these two inequalities in (B.43) recursively, we have

H w k mno—1
) < fO xnsl Sg) . 7(7) k S S
- SZ:: 2:: 51,5 2:: g 1_p1 ‘]('1(‘%,1/]”5V1 32) 1/}1 ( y 0, 91, 2) <B44)
where
( ]{?"1‘1 Npr4+1— 1

wr+1 (k) nr,Sl,Sg) Z H H fO 7"+2 (k TLT_H,Sl,SQ)

nr41=nr (a,b)€C(S1,52,r+1) n=1 il Tn.a

R(Sl,SQ) >r >0

\ 1/;1(1;251,52)—‘,-1 (k7 Ny, Sly 52) = (1 - pl)nR(SleZ)_l‘
(B.45)

Since ng in (B.44) is no larger than nps, s,) in (B.45), so the right hand side of (B.44)
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will become larger if we cancel all (1 — p1) in (B.44).

Furthermore, we know that

k+1 npy1—1

¢r+1 (k nraslaSZ S Z H H fO T+2 (k 7”L7~+1,Sl,5’2)

nr11=0 (a,b)€C(S1,S2,7+1) n=1 (B.46)

R(Sl, SQ) >7r > 0.

By canceling all (1 — p;) in (B.44) and applying (B.46) reversely, we have that H,gi) <
H W

Y. Y. KapYs,s, Where
S1=15>2=1

no—1 R(51,52) [ k+1
(1—p) fo(zn, ) folna
e (BT ). (i ()
e r= (a,0)€C(S1,S2,-+1) =1

By Lemma B.2, for any 1 < S < H and 1 < S5 < W, we have

%log (751,5,) Pk;—;> (HW —1) (q(4,7) — q(5,0)), + (log(1 — p) + q(j,7) — q(4,0)),

Since kqp > 0 and > Kap = 1, we have
1<a<H1<b<W

10g< > Z KS1,59757, 52>
< s

1=153=1
k

We can have

_log (Z Z Ks$1,5,75, SQ) P;_Z:

S1=15>=1

(HW - 1) (Q(j7 7’) - Q(j7 O>)+ + (log(l - p) + Q<j7 Z) - Q<j7 O))+

139



When Condition 1 is satisfied, we have

(log(1 — p) + HWq(j,1) — HWq(3,0)), = (log(1 — p)+

(B.47)

Hence (B.41) is proved. Therefore, Proposition 3.4 is true.
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