
Change-points Estimation in Statistical Inference and Machine
Learning Problems

by

Bingwen Zhang

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Electrical and Computer Engineering

by

May 2017

APPROVED:

Professor Lifeng Lai, Major Thesis Advisor

Professor Donald R. Brown III, ECE Department, Worcester Polytechnic Institute

Professor Weiyu Xu, ECE Department, The University of Iowa

Abstract

Statistical inference plays an increasingly important role in science, finance and industry.

Despite the extensive research and wide application of statistical inference, most of the

efforts focus on uniform models. This thesis considers the statistical inference in models

with abrupt changes instead. The task is to estimate change-points where the underlying

models change.

We first study low dimensional linear regression problems for which the underlying

model undergoes multiple changes. Our goal is to estimate the number and locations

of change-points that segment available data into different regions, and further produce

sparse and interpretable models for each region. To address challenges of the existing

approaches and to produce interpretable models, we propose a sparse group Lasso (SGL)

based approach for linear regression problems with change-points. Then we extend our

method to high dimensional nonhomogeneous linear regression models. Under certain

assumptions and using a properly chosen regularization parameter, we show several de-

sirable properties of the method. We further extend our studies to generalized linear

models (GLM) and prove similar results.

In practice, change-points inference usually involves high dimensional data, hence it

is prone to tackle for distributed learning with feature partitioning data, which implies

each machine in the cluster stores a part of the features. One bottleneck for distributed

learning is communication. For this implementation concern, we design communication

efficient algorithm for feature partitioning data sets to speed up not only change-points

inference but also other classes of machine learning problem including Lasso, support

vector machine (SVM) and logistic regression.

Acknowledgements

First and foremost, I shall greatly thank my research advisor, Dr. Lifeng Lai. He is not

only a respectable and responsible person, but also provides valuable guidance, supports

and excellent atmosphere for my research. It has been an honor to be his Ph.D. student.

His enthusiasm for research is very encouraging for me when I am through the hard times

in my research and Ph.D. study.

Thanks to my committee members, Dr. Donald R. Brown III and Dr. Weiyu Xu

for sharing their time on this thesis. Dr. Brown’s knowledge and guidance on signal

estimation and detection laid a solid foundation for me in the area of signal processing and

related research. Dr. Xu’s innovative ideas on research helped me a lot on the way to do

research during the time when I visited the UIowa. All of my committee members provide

me guidance, supports and encouragement for my research and me. I appreciate each of

them for their efforts and helps they provided during my Ph.D. study. The experience of

working with these three scholars in my committee is a wealth of my life.

Thanks to all my lab mates Jun Geng, Ain Ul Aisha, Wenwen Zhao, Wenwen Tu and

Mostafa El Gamal. They give me a lot of help both in life and on my research. Our

lab has always been a source of friendships as well as good advice and collaboration. I

am especially grateful for Jun Geng, the talks with him and his ideas helps me for my

research.

I would like to thank my many friends and roommates during my time at WPI. They

made the life more enjoyable and comfortable.

Thanks to my family. My mother Ziping Zhang and my father Zhenpeng Zhang, the

most important persons for me, give me life, love and whatever I want unconditionally.

A word of thanks A special word of thanks also goes to my family for their continuous

support and encouragement.

i

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.1.1 Statistical Learning in Homogeneous Models 1

1.1.2 Change-points Inference in Heterogeneous Models 4

1.2 Related Efforts . 10

1.3 Contributions . 13

1.4 Notation . 14

1.5 Roadmap . 14

2 Low Dimensional Change-points Inference 16

2.1 Model . 16

2.2 Proposed SGL Based Approach . 20

2.3 Consistency . 23

2.4 Complexity . 29

2.5 Numerical Results . 34

3 High Dimensional Change-points Inference 39

3.1 Model . 39

3.1.1 Problem Formulation . 39

3.1.2 Assumptions on Data . 41

ii

3.2 Consistency . 42

3.2.1 Preliminary . 42

3.2.2 Results for General Models . 43

3.2.3 Simplified Results with Knowledge of Model Details 48

3.3 Generalized Linear Models . 51

3.4 Numerical Simulation . 53

4 Speeding Up Change-points Inference 58

4.1 Algorithm . 58

4.2 Performance Analysis . 67

4.3 Numerical Examples . 69

4.3.1 Lasso . 71

4.3.2 SVM . 73

4.3.3 Logistic Regression . 78

5 Conclusion 82

A Proof Details 84

A.1 Supporting Lemmas . 84

A.1.1 Lemma 4 . 84

A.1.2 Lemma 5 . 87

A.2 Proof of Proposition 1 . 88

A.2.1 Prove: P (An,k ∩ Cn)→ 0. 88

A.2.2 Prove: P (An,k ∩ C̄n)→ 0. 91

A.3 Proof of Proposition 2 . 94

A.4 Proof of Proposition 3 . 96

A.5 Proof of Proposition 4 . 96

iii

A.6 Proof of Proposition 5 . 100

A.6.1 If t̂k − t̂k−1 < nδn . 104

A.6.2 If t̂k − t̂k−1 ≥ nδn . 104

A.7 Proof of Proposition 6 . 107

A.7.1 Inner loop . 107

A.7.2 Outer loop . 107

A.8 Proof of Supporting Lemmas in Section 3.2.2 109

A.8.1 Proof of Lemma 1 . 109

A.8.2 Proof of Lemma2 . 110

A.9 Proof for Consistency Results in Section 3.2.2 111

A.9.1 Proof for Proposition 7 . 112

A.9.2 Proof for Proposition 8 . 122

A.9.3 Proof for Proposition 9 . 123

A.9.4 Proof for Proposition 10 . 124

A.9.5 Proof for Proposition 11 . 124

A.9.6 Proof for Proposition 12 . 126

A.10 Proof for Simplied Results in Section 3.2.3 127

A.10.1 Proof of the first and second item in Lemma 3 127

A.10.2 Proof of the third item in Lemma 3 127

A.11 Proof for results on GLM in Section 3.3 131

A.11.1 Supporting Results . 131

A.11.2 Proof for Proposition 13 . 134

A.11.3 Proof for Proposition 14 . 135

A.11.4 Proof for Proposition 15 . 135

A.11.5 Proof for Proposition 16 . 136

A.11.6 Proof for Proposition 17 . 136

iv

A.11.7 Proof for Proposition 18 . 136

A.12 Proof of Proposition 19 . 137

A.13 Proof of Proposition 20 . 139

A.14 Proof of Proposition 21 . 140

v

List of Figures

2.1 Illustration of model. 17

2.2 Change-points locations estimation using SGL, λ = 0.003778942. 34

2.3 Change-points locations estimation using DP, Kmax = 3. 36

2.4 Change-points locations estimation using DP, Kmax = 20. 37

2.5 Change-points locations estimation using SGL, λ = 0.01546122. 38

3.1 Illustration of an isolated change-point t̂j 47

3.2 Change-points locations estimation for ordinary linear regression. 54

3.3 l2-norm of θ̂t, t ∈ [n] for ordinary linear regression, λn = 0.009125759. . 55

3.4 Change-points locations estimation for logistic regression. 56

3.5 l2-norm of θ̂t, t ∈ [n] for logistic regression, λn = 0.002369588. 57

4.1 Feature partitioned data matrix X for m machines with
∑m

i=1 di = d. . . . 59

4.2 Number of exact communication iterations for Lasso. 71

4.3 Values of the objective function versus the number of iterations for Lasso

d = 400. 72

4.4 Number of exact communication iterations for SVM. 74

4.5 Objective function value after minimization for SVM. 75

4.6 Value of the objective function with the number of dimension d = 200

for SVM. 75

vi

4.7 Number of iterations comparison for different values of α 77

4.8 Number of exact communication iterations. 78

4.9 Objective function value after minimization. 79

4.10 Value of the objective function with the number of dimension d = 200. . 79

4.11 Number of exact communication iterations. 80

4.12 Objective function value after minimization. 81

A.1 Case 1): t̂k−1 < t∗k−1 and t̂k < t∗k . 95

A.2 Illustration of case 1) . 97

A.3 Illustration of the case t∗j − t̂j > nδn, n > t̂j+1 − t∗j > Imin

2
and t̂j+1 ≤ t∗j+1.113

A.4 Illustration of the case with t̂l+1 − t∗k ≥ Imin/2 and t∗k − t̂l ≥ Imin/2. . . . 123

vii

List of Tables

1.1 Examples of loss function and penalty function 3

4.1 Basic algorithm for crime data . 72

4.2 Algorithm with inexact iterations for crime data 73

4.3 Basic algorithm for a9a . 76

4.4 Algorithm with inexact iterations for a9a 76

viii

Chapter 1

Introduction

In this chapter, we first introduce the background of statistical learning in homogeneous

models. Then we list applications in which the model is not homogeneous and thus

provide motivations for change-points inference in Section 1.1. In Section 1.2, we provide

a summary of related works of this thesis. In Section 1.3, we list our main contributions

of this thesis. In Section 1.4, we introduce common notations used throughout this thesis.

Finally, in Section 1.5, we list the organization of this thesis.

1.1 Background and Motivation

1.1.1 Statistical Learning in Homogeneous Models

Statistical learning in homogeneous models, in which the data is assumed to be generated

from a single underlying model, plays a key role in almost every branch in modern science

and industry. Here, we give a few real life applications:

• Distinguish cancer versus normal patterns from mass-spectrometric data [1].

• Predict whether the income of a person exceeds 50K/year based on data feature

1

like person’s age, work type, education and capital-gain etc [2].

• Identify relationship between murder rate and community population, per capita

income, police operating budget and violent crime rate etc [3].

• Judge whether an email is a spam or not [2].

All these tasks are either linear regressions or classifications. Let n denote the number

of sample, p denote the number of features. For example, for the third task mentioned

above, murder rate is the target variable and thus we can use a vector Y ∈ Rn to represent

the murder rates of n given samples. All other variables such as community population,

per capita income, police operating budget and violent crime rate can form a matrix X ∈

Rn×p, whose jth row xj ∈ Rp corresponds to jth sample. Thus the problem can be

transformed into a linear regression and the task is to infer the linear relationship between

Y and X, which can be stated as

min
β∈Rp

1

2
‖Y −Xβ‖2

2, (1.1)

where ‖·‖2 denotes the `2 norm. To avoid overfitting and to produce interpretable models,,

usually an `1 penalty is added to (1.1) and thus forms Lasso [4]

min
β∈Rp

1

2
‖Y −Xβ‖2 + λ‖β‖1, (1.2)

where λ > 0 is the regularization parameter, and ‖ · ‖1 denotes the `1 norm.

The other tasks mentioned above are binary classifications which can be done by either

support vector machine (SVM) or logistic regression. Since they are binary classification

tasks, we can take the positive labels as +1 and the negative labels as −1 and then we

form a label vector Y ∈ Rn. And X ∈ Rn×p is formed the same way as linear regression.

2

Table 1.1: Examples of loss function and penalty function
Task L(β) R(β)

ordinary linear regression 1
2
‖Y −Xβ‖2 0

Lasso 1
2
‖Y −Xβ‖2 λ‖β‖1

SVM
∑n

j=1
1
2

max
{

0, 1− yjβTxj
}

λ
2
‖β‖2

logistic regression
∑n

j=1 log
(
1 + exp

(
−yjβTxj

))
0

`1 regularized logistic regression
∑n

j=1 log
(
1 + exp

(
−yjβTxj

))
λ‖β‖1

For SVM, we solve the following optimization problem

min
β∈Rp

n∑
j=1

1

2
max

{
0, 1− yjβTxj

}
+
λ

2
‖β‖2, (1.3)

where yj is the jth element of Y. For logistic regression, we solve

min
β∈Rp

n∑
j=1

log
(
1 + exp

(
−yjβTxj

))
. (1.4)

Again to avoid overfitting and produce sparse results, we usually add a `1 norm penalty

as in Lasso to have [5]

min
β∈Rp

n∑
j=1

log
(
1 + exp

(
−yjβTxj

))
+ λ‖β‖1. (1.5)

In these tasks above from (1.1) to (1.5), our goal is to infer a parameter vector β by

minimizing a certain function. The optimization problem can be stated as

min
β∈Rp
L(β) +R(β), (1.6)

where L is loss function and R is penalty function. By adding penalty, the produced

models have a certain sparsity structure, which is more interpretable and hence more

desirable in practice. Lasso is such an example [4].

3

In Table 1.1, we list corresponding L(β) and R(β) in the above examples. We in-

fer one parameter vector β ∈ Rp by minimizing the sum of the loss function L(β) and

penalty functionR(β). This implies that β is same across all the samples. So one under-

lying assumption is that the models in the above tasks are homogeneous and all the data

samples come from one uniform model, or the model is static. It is reasonable to make

this assumption for the examples we mentioned at the beginning of this section. However,

as will be discussed in the sequel, it might not be the case for some other applications.

1.1.2 Change-points Inference in Heterogeneous Models

As mentioned above, a typical assumption made in the existing work is that the data

come from a single underlying model [4, 6–8]. However, this assumption might not hold

in certain dynamic systems.

• In building economic growth models from various indicators, it is more appropriate

to assume that the available data obeys different models over different time period

as the economic growth pattern undergoes structural changes over the years [9].

• In the analysis of array-based comparative genomic hybridization (array-CGH)

data, the underlying model varies in different segments of the DNA sequence [10].

• In the analysis of time dependent Gaussian graphical model, which has wide-spread

applications in network traffic analysis and cyber attack detections, the edge struc-

ture varies [11].

In all above examples, it is of interest to identify the change-points and build proper mod-

els for different regions. This motivates the study change-points inference in statistical

models.

For data that come from multiple underlying models, we cannot use homogenous

models. Also, since the data are from different models, the learning algorithms in homo-

4

geneous models do not work. To address these issues, in this thesis we focus on learning

algorithm design and analysis in heterogeneous models.

More specifically, we study the change-points inference problem in this thesis. The

change-point identifies the shift point from one model to another. There are two typi-

cal formulations for change point problems: online and offline [12, 13]. In the online

formulation, the observer receives observations sequentially. And the goal is to design

real time algorithms to detect the change in the statistic behavior of the observations. To

reduce the computational complexity, a statistic with a recursive form is desirable in the

online detection. If such a recursive form exists, the statistic can be updated whenever a

new observation arrives. For example, [14] proposes to track the gradual change of en-

vironmental parameters, and its statistics are updated recursively by minimizing a regret

function.There are many other interesting papers focusing on the online detection prob-

lem, such as [15, 16]. In the offline formulation, initiated by [17], the observer is given a

complete set of data and the goal is to estimate the location of change-points that segment

the data set into several homogenous segments. The offline formulation has also attracted

significant research interest (see survey [18] and Chapter 2.6 and 11 of [12]). Here, we

list only a few of them to illustrate the its potential applications. For example, a direct

application of the offline change-points estimation is data fitting [19]. The offline change-

points estimation is also widely used in economic [20–22], molecular biology [10, 23],

and climate data analysis [24].

In this thesis, we focus on the offline formulation with the goal of designing offline

algorithms to estimate the location of change-points in a given data set. Since our data

set is fixed, we do not focus on the recursive property of our algorithm. Instead, we

mainly consider the consistency property and complexity of our estimator. This thesis

mainly focuses on offline setting with both low dimensional and high dimensional cases

studied. So we divide our work on offline change-points estimation in this thesis based

5

on different data dimensions. Next, we introduce three main parts of this thesis on offline

change-points estimation.

Thrust 1: Low Dimensional Change-points Inference

We begin by considering offline low dimensional linear regression problems in which the

underlying true linear coefficients might undergo multiple changes. Our goal is to esti-

mate the number and locations of change-points that segment available data into different

regions, and further to produce sparse interpretable models for each region. The problem

considered here has been studied extensively in other fields [12], and existing approaches

to estimate multiple change-points are mainly based on least-square fitting via dynamic

programming (DP) [25–28]. This DP approach will be discussed in detail in Chapter 2.

Although one can also apply the DP approach to solve this problem, there are sev-

eral challenges associated with this approach. First, the DP algorithm cannot estimate

the number of change-points accurately. It should be noticed that the DP approach needs

information about the true number of change-points K∗. However, K∗ in most cases

are unknown. In particular, if we only know an upper-bound Kmax on the total number

of change-points, then the DP algorithm will always return Kmax change-points. This

is due to by adding new segments, one can always decrease the value of cost function.

Hence, the DP algorithm cannot find the true number of change-points unless it is known

perfectly. Second, the solution of the DP algorithm does not possess a sparse structure,

hence, the model cannot be easily interpreted. Third, the computational complexity of the

DP algorithm is high. In particular, for the model with K∗ change-points, the computa-

tional complexity is O(K∗n3) with n being the total number of observations (samples).

To address these challenges, we propose to solve the change-points estimation prob-

lem using sparse group Lasso (SGL), a model fitting method proposed very recently

in [29,30]. In SGL, the parameters are divided into groups. There are two penalty terms in

6

the SGL problem formulation: the l2 norm penalty, which encourages most of the groups

of the solution to be zero, and the l1 norm penalty, which will promote sparsity within

those non-zero groups. We show that after a proper transformation, the parameters to be

estimated possess both inter and intra group sparsity structure. Therefore, after a proper

transformation, the problem studied in this thesis fits the scope of SGL and can be solved

using SGL. In particular, we reformulate the original linear regression with change-points

problem into a convex optimization problem with both l1 and l2 penalties. The solution

of this convex optimization problem then directly provides the number and locations of

change-points and the regression coefficients of each region. We prove that, under certain

assumptions and a properly chosen regularization weight, the solution of the proposed

approach possesses several desirable features: 1) the l2 norm of the estimation errors of

the linear coefficients diminishes as the number of available data increases; 2) the esti-

mated locations of the change-points are close to those of the true change-points. We

also propose a data-dependent method to choose a proper regularization weight. Further-

more, using efficient algorithms for solving SGL problems [30,31], the complexity of the

proposed approach is much lower than that of the DP approach.

Thrust 2: High Dimensional Change-points Inference

There is a growing interest in statistical inference in high dimensional models, in which

the number of features or parameters to be estimated p is on the same order of or even

larger than the number of data points or observations n, i.e. p
n
9 0 or p � n [32–34].

In this thrust, we focus on change-points estimation in high dimensional linear regression

models.

Our goal remains the same as in that of the low dimensional setting. Although the

SGL based approach for change-points estimation possesses desirable properties for low

dimensional models, the analysis in the low dimensional setting does not apply in the

7

high dimensional setting anymore, as it relies critically on the assumption that p is fixed

as n increases. In the high dimensional setting, we develop new tools to analyze the

performance of the proposed SGL based approach. The overall strategy of our analysis is

to use contradiction. To be more specific, we focus on the difference between the optimal

value of the objective function and the objective function evaluated at the true parameters

of the model. This difference should always be less than or equal to zero due to the fact

that the optimal solution achieves the minimum of the objective function. Suppose some

variables satisfying some constraints can be the optimal solution, then if that difference

mentioned above is greater than zero, then we form a contradiction. This contradiction

means that those constraints do not hold for the optimal solution. Then we can find

properties of the optimal solution by reversing those constrains.

Using this strategy, under certain assumptions and using a properly chosen regulariza-

tion parameter, we show that the estimation errors of linear coefficients and change-point

locations can be expressed as functions of the number of observations n, the dimension

of the model p and the sparse level of the model s. From the derived error functions, we

can characterize the conditions under which the proposed estimator is consistent.

We further extend our study to general linear models (GLM), which is a broader class

of linear models and includes classic models such as logistic regression models. We

show that using our approach, if the link function in GLM model is strictly convex, then

GLM enjoys the same consistency properties as those of ordinary linear models except for

some constant scaling factors. The extension to GLM reveals a broader area of potential

applications of the proposed approach.

Thrust 3: Speeding Up Inference Process

Here we consider how to solve change-points estimation problem more quickly. Since

we have reformulated the change-points estimation problem as the SGL problem, so here

8

we consider how to speed up solving SGL especially for high dimensional data. We are

motivated by distributed learning techniques which are increasingly utilized due to the

emergence of big data.

For big volume of data, the size of optimization problem is dramatically increasing

and hence each machine cannot store all the data. The whole data set is split into parts

and each part is stored in one machine. For a machine learning task in this scenario, each

machine can only access its local data set and cannot access the whole data set. Since

each machine can only store a part of data, the way to partition the whole data set is

critical. There two popular ways to partition the data set: partitioning by sample [35] and

partitioning by features [36, 37].

In SGL problem formulation, the features of the data are divided into groups. Hence

we consider the way of data is storage is partitioning by features. In utilizing distributed

learning for speeding up change-points estimation, one of the key steps is to communicate

between nodes to update the parameters in the current optimization iteration. The amount

of communication has become an bottleneck for speeding up distributed machine learning

tasks [35–38]. This motivates us to design communication efficient distributed learning

algorithms for feature partitioned data.

One major bottleneck in the design of large scale distributed machine learning algo-

rithms is the communication cost. In this thrust, we propose and analyze a distributed

learning scheme for reducing the amount of communication in distributed learning prob-

lems under the feature partition scenario. The motivating observation of our scheme is

that, in the existing schemes for the feature partition scenario, large amount of data ex-

change is needed for calculating gradients. In our proposed scheme, instead of calculating

the exact gradient at each iteration, we only calculate the exact gradient sporadically. In

the iterations when exact gradients are not calculated, we will use the most recently cal-

culated gradient as proxy to compute the next update. We provide precise conditions to

9

determine when to perform the exact update, and characterize the convergence rate and

bounds for total iterations and communication iterations. We further test our algorithm

on synthesized and real data sets and show that the proposed scheme can substantially

reduce the amount of data transferred between distributed nodes.

1.2 Related Efforts

For low dimensional setting, [14, 39–45], are most relevant to our work. [14] focuses on

developing online algorithms to track a gradually changing parameter in the environment.

Our work, on the other hand, focus on developing offline algorithms to estimate abrupt

changes in a given data set. In [39], the authors proposed an adaption of Lasso algorithm

to detect changes in the mean value of a sequence of Gaussian random variables and hence

the dimension is one. In [40,41], the authors use group fused Lasso to solve the structural

changes in linear regression problems. [42] considers the recovery of models that have

multiple types of sparsity structure under a noiseless observation model. As will be clear

in the sequel, in our work, two types of sparsity arises only in the transformed domain.

This transformation imposes special constraints on the observation matrix, which does not

satisfy the assumptions made in [42]. Furthermore, we consider noisy observation model

and hence do not aim to recover the underlying signal exactly. [43, 44] discuss change-

points detection under a Bayesian setup, i.e., there is a prior distribution on the possible

locations of the change points, while this thesis is non-Bayesian. [45] discusses a method

to partition observations into different subsets. Similar to [43, 44], the model assumes a

prior probability of each partition. Furthermore, the algorithm needs precise knowledge

of the distribution of the observations and has a very high complexity (exponential in n).

Our work is different from these works in the following aspects. First, we impose an

additional sparsity structure in the linear regression coefficient, which is often of interest

10

in practice. Hence, instead of group fused Lasso, we use sparse group Lasso to solve the

problem at the hand. The additional l1 term in our problem formulation brings significant

technical challenges when analyzing the performance of the algorithms. Moreover, we

have analyzed the computational complexity of our proposed algorithm, while no such

analysis was presented in [40, 41]. We also note that SGL has been used for anomaly

detection in smart grid [46].

In addition to the above mentioned work on the change-point estimation in low di-

mensional models, our work is also related to existing work on high dimensional uniform

models [8, 47–51]. [47] discusses the restricted eigenvalue condition in Gaussian design

matrices, which is quite useful in high dimensional sparse models. [8, 47, 48] study high

dimensional estimation problems under uniform models. In [48], the authors study high

dimensional estimation under the sparsity constraint that the parameters are in `q balls.

In [8], the authors show a very general approach to show that, under the assumption that

data are from one uniform model, one can prove oracle consistency inequalities in the high

dimensional case. In [49], the authors study the change-points detection problem in linear

regression with identity design matrices. [50, 51] consider the detection of change-point

in high-dimension data using low-dimension compressive measurements in an online set-

ting. Our work is different from the works mentioned above in several aspects. First, we

consider nonhomogeneous models. Second, we consider high dimensional setting. Third,

we require less information about the change-points. For example, we do not need the

number of change-points (as required in the DP approach) nor the prior distribution of

change-points/partitions (as required in the Bayesian approach).

For speeding up distributed learning, there have been a large number of recent in-

teresting works on the sample partition scenario. For example, [52] and [53] proposed

Communication Efficient Distributed Dual Coordinate Ascent (CoCoA) algorithm and its

variant CoCoA+. In these algorithms, each machine solves a variant of a local dual prob-

11

lem and then updates the global parameters at each iteration. [54] designed Distributed

Approximate Newton (DANE) algorithm. DANE is suitable for smooth and strongly

convex problems and takes advantage of the fact that the subproblems at local machines

are similar. In [36], Distributed Self-Concordant Optimization (DiSCO) algorithm was

proposed. DiSCO uses an inexact damped Newton method and in each iteration step a

distributed version of Preconditioned Conjugate Gradient (PCG) method is used to com-

pute the inexact Newton step. In [55–59], variants of stochastic gradient descent (SGD)

are proposed.

Compared with the sample partition scenario, the feature partition scenario is rela-

tively less well understood. Among limited number of works on the feature partition

scenario, in [35, 38], the authors propose to use randomized (block) coordinate descent

to solve distributed learning problems for the feature partition scenario. In each iteration,

each machine randomly picks a set of coordinates to optimize and apply updates to the

parameters and gradients. As pointed out in [35] (will also be discussed in detail in the

sequel), the communication cost associated with computing gradients, which are needed

to calculate the next update, is very high.

Our work is also related but different from recent interesting work on the design of

optimization algorithms with inexact updates. In [60], the convergence rate of inexact

update of proximal method is proved. In [61], the optimal trade-off between convergence

rate and inexactness is provided. In [62], the authors use an inexact method to solve

distributed Model Predictive Control (MPC) problem. In [63], the authors analyze inexact

updates in the coordinate descent. The main motivation for these works is to address the

case that the subproblem for each machine cannot be solve exactly. In this thesis, however,

we assume that each subproblem can be solved exactly and we try to introduce inexact

updates or approximations to reduce communication cost. Our works is different from the

works mentioned above in several aspects. First, this thesis focuses on feature partitioned

12

data. Second, we use inexact updates to reduce communication cost, not based on the

assumption that subproblem at each machine cannot be solved exactly. Third, we take a

deterministic approach.

1.3 Contributions

We begin our work by studying multiple change-points estimation in low dimensional

linear regression models. In this part, we list our contributions as follows [64].

• We transform the multiple change-points estimation problem into an SGL problem.

• We prove that the solution enjoys desirable properties: the estimation errors of

the linear coefficients diminishes as the number of available data increases; the

estimated locations of the change-points are close to those of the true change-points.

• We show that the complexity of the proposed approach is much lower than that of

the DP approach.

Then we extend our results to high dimensional setting [65].

• We show that the estimation errors of linear coefficients and change-point locations

can be expressed as functions of the number of observations n, the dimension of

the model p and the sparse level of the model s.

• We can characterize the conditions under which the proposed estimator is consis-

tent.

• We further extend our method to generalized linear models (GLM) and prove more

general results.

For speeding up computation using distributed learning, we have the following contribu-

tions [66].

13

• We propose a communication efficient distributed learning algorithm to speed up a

wide class of learning problems.

• We provide analytical results of communication amount of the proposed algorithm.

• We provide several practical techniques and simulations to show its feasibility in

practice.

1.4 Notation

Here we introduce the notation convention used throughout this thesis. We use upper

case boldface letters (e.g., X) to denote matrices and lower case boldface letters (e.g., x)

to denote column vectors. For a matrix X, we use Xi,· to denote the ith row of X, and

use X·,j to denote the jth column of X. For a positive integer k, we use [k] to denote

{1, 2, · · · , k}. We define [b, e] := {b, b+ 1, · · · , e} where e and b are integers with e ≥ b.

Similarly, [b, e) := {b, b+1, · · · , e−1}. We use R to denote the set of real number. Let f

be a function, we use ∇f(x) to denote the gradient of f at x. We use c, c′ and c1, c2, · · ·

to denote positive constants.

1.5 Roadmap

Chapter 2 begins by introducing our problem formulation in low dimensional linear re-

gression models. Then we show how to transform the multiple change-points estimation

problem into an SGL problem. Theoretical guarantees are provided for the results of our

approach. We provide simulation results of our approach.

Chapter 3 begins by extending our approach in low dimensional linear regression

models to high dimensional linear regression models. Then we provide theoretical results

for characterizing the estimation errors in expression of number of observations n, the

14

dimension p and the sparse level s. Using these theoretical results, we can find the growth

order of n, p and s to get a consistent estimator. We further extend our approach to

GLM and prove corresponding analytical results, which implies our approach has a wide

application range in practice.

Chapter 4 begins by introducing the concerns of high dimensional data which needs

huge amount of computation power for change-points inference and other similar ma-

chine learning tasks. Hence we consider utilizing distributed learning. We propose a

communication efficient distributed learning algorithm and propose analytical results for

the amount of communication. Furthermore, we show how to set the parameters in the

algorithm and show performance of our algorithm in practice.

Chapter 5 concludes the dissertation. It outlines the contributions of the dissertation

and summarizes the thesis statement of this work.

Appendix A includes proof details and supporting lemmas.

15

Chapter 2

Low Dimensional Change-points

Inference

This chapter begins the main part of this thesis by focusing on change-points inference in

low dimensional linear regression models. In Section 2.1, we describe the model under

consideration. In Section 2.2, we describe the proposed SGL based approach. In Section

2.3, we prove the consistency of the solution of our approach. In Section 2.4, the com-

plexity of SGL algorithm is discussed. In Section 2.5, we provide numerical examples to

validate the theoretic analysis.

2.1 Model

We consider the linear regression model

yt = β∗Tt xt + εt, t ∈ [n], (2.1)

where xt is a p dimensional vector, β∗t is a p dimensional sparse coefficients vector, where

p > 1 is an integer, and εt is the observation noise. We assume that εt’s are independent

16

and identically distributed (i.i.d.) withN (0, σ2). HereN (0, σ2) is the probability density

function (pdf) of Gaussian random variables with zero mean and variance σ2.

We consider the scenario that the values of β∗t ’s change over time. In particular, we

assume that the linear model experiences K∗ times of changes in the values of β∗t ’s,

and the set of change time instances (or change-points) are denoted as T ∗ = {t∗k, k =

1, . . . , K∗}. Hence, for 1 ≤ k ≤ K∗ + 1, we denote

β∗t = α∗k, for t∗k−1 ≤ t ≤ t∗k − 1, and α∗k 6= α∗k−1,

where t∗0 = 1 and t∗K∗+1 = n + 1 by convention, and {α∗k, k = 1, · · · , K∗} are the true

values of coefficients, which are fixed but unknown. Our goal is to estimate the change-

points {t∗k}, the coefficients {α∗k} and the number of change-points K∗ through n pairs

of observed data (xt, yt). Figure 2.1 illustrates the model.

Figure 2.1: Illustration of model.

Let Kmax be a known upper bound on the number of change-points and Kmax << n,

then the multiple change-points estimation problem can be written as

min
β

1

n

n∑
t=1

(yt − βTt xt)
2,

s.t.
n−1∑
t=1

1{βt+1 6= βt} ≤ Kmax, (2.2)

where 1{·} is the indicator function, whose value is 0 if βt+1 = βt and is 1 otherwise.

An intuitive approach to solve (2.2) is the exhaustive search, in which one solves a

17

least square fitting problem for each possible change pattern, and picks the solution with

the least residual square error. However, the total number of possible change patterns is∑Kmax
K=0

(
n

K

)
, which results in an extremely high computational complexity.

A more efficient way to solve (2.2) is to use DP as described below. Note that the the-

oretical analysis follows directly from discussion in [28], and the pseudocode is revised

from DP algorithm in [67]. Let MK,n be the set of all segmentations with K change-

points (K + 1 segmented intervals) up to nth sample. Let rk(m) = [tk, tk+1) be the kth

interval of segmentation m delimited by change-points tk and tk+1. Any segmentation m

of MK,t can be written as {[t0, t1), · · · , [tK , tK+1)} = {r0(m), · · · , rK(m)} with con-

vention t0 = 1 and tK+1 = n + 1. Then our task is to find an optimal segmentation

m ∈MK,n to minimize to total cost. Our problem is to solve

min
m∈MK,n

{∑
r∈m

min
α∈Rp

{∑
i∈r

(yi −αTxi)
2

}}
.

For any segment r, we define the cost as gr(α) =
∑

i∈r(yi −αTxi)
2 and the optimal

cost as cr = minα∈Rp gr(α). Let CK,n = minm∈MK,n

{∑
r∈m cr

}
. So we can retrieve the

update equation

∀t ≥ K CK,t = min
K−1≤j≤t−1

{
CK−1,j + c[j+1,t]

}
. (2.3)

CPE DP solves multiple change-points estimation problem using DP, and PRINT SOLUTION

reconstructs and prints the solution.

In low dimensional case, the dimension p can be viewed as a constant. Hence the

18

Algorithm 1 CPE DP(X,Y,p,n,K∗)
let r[0 · · ·K∗, 1 · · ·n] be a new matrix and s[1 · · ·K∗, 1 · · ·n] be a new matrix
for t = 1 to n do

r[0, t] = c[1,t]

end for
for K = 1 to K∗ do

for t = K to n do
q =∞
for j = K − 1 to t− 1 do

if q > r[K − 1, j] + c[j+1,t] then
q = r[K − 1, j] + c[j+1,t]

s[K, t] = j + 1
end if

end for
r[K, t] = q

end for
end for
return r and s

Algorithm 2 PRINT SOLUTION(X,Y,p,n,K∗)
(r, s) = CPE DP(X,Y,p,n,K∗)
K = K∗

while K > 0 do
Print s[K,n]
n = s[K,n]
K = K − 1

end while

19

complexity to compute c[j+1,t] is Θ(t− j), then

K∗∑
K=1

n∑
t=K

t−1∑
j=K−1

(t− j)

=
K∗∑
K=1

n∑
t=K

(t−K + 2)(t−K + 1)/2

=
K∗∑
K=1

((n−K)(n−K + 1)(2n− 2K + 1)/12 + 3(n−K)(n−K + 1)/4 + n−K) .

From analysis above, we know the complexity of DP approach is Θ(K∗n3)1.

Here we list two more drawbacks of this approach. First, the time complexity of DP

approach Θ(K∗n3) is still very high especially when n is large. Second, the solution of

DP is not sparse in the sense that the estimated β̂ts are not sparse vectors, which is not

desirable when the interpretability of the model is important.

Motivating by the challenges of exhaustive search and DP approaches, we propose

the SGL based approach for the proposed change-point estimation problem, which is

described in the following section in detail.

2.2 Proposed SGL Based Approach

Let θ∗1 = β∗1 and θ∗t = β∗t−β∗t−1 for t = 2, · · · , n. Furthermore, letβ∗ = (β∗T1 ,β∗T2 , · · · ,β∗Tn)T ,

θ∗ = (θ∗T1 ,θ∗T2 , · · · ,θ∗Tn)T . Notice that both β∗ and θ∗ are np dimensional column vec-

tors. From Section 2.1, we observe that most of θ∗t are zero vectors (there are at most

Kmax nonzero θ∗t vectors). Furthermore, for those non-zero θ∗t ’s, most of the entries in

1Throughout the thesis, op(f(n)) = g(n) means that limn→∞ P (|f(n)/g(n)| > ε) = 0 for any ε > 0;
Op(f(n)) = g(n) means that for any ε > 0, there exists a finite c > 0 such that P (|f(n)/g(n)| > c) < ε
for any n; o(g(n)) = f(n) means that for any positive constant c > 0, there exists a constant n0 > 0 such
that 0 ≤ f(n) < cg(n) for all n ≥ n0; O(g(n)) = f(n) means that there exist positive constants c and n0
such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0; Θ(g(n)) = f(n) means that there exist positive constants c1,
c2, and n0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0; Ω(g(n)) = f(n) means that there exist
positive constants c and c0 such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0.

20

θ∗t are zero, as β∗t ’s are sparse vectors. As the result, if we view θ∗t ’s as groups within

θ∗, then θ∗ has the following group sparse structure: most of the groups are zero, and for

those non-zero groups, most of the entries within the group are zero.

Let Y = (y1, y2, · · · , yn)T , e = (ε1, ε2, · · · , εn)T and

X =

xT1

xT2

· · ·

xTn

,

Ã =

Ip

Ip Ip

· · · · · · · · ·

Ip Ip · · · Ip

,

where Ip is the identity matrix of size p× p. Hence Y and E are vectors of n dimension,

and X and Ã are matrices of size n× np and np× np, respectively. Define

X̃ = XÃ =

xT1

xT2 xT2

xT3 xT3 xT3

· · · · · · · · · · · ·

xTn · · · · · · · · · xTn

, (2.4)

then, it is easy to verify that our model can be rewritten as

Y = Xβ∗ + e = X̃θ∗ + e. (2.5)

To obtain the estimates of the number and locations of change-points and linear coeffi-

21

cients of each region, let β0 = 0p×1, we propose to solve

min
β

1

n
‖Y −Xβ‖2

2 + γλn

n∑
t=1

‖βt − βt−1‖2

+(1− γ)λn

n∑
t=1

‖βt − βt−1‖1, (2.6)

which can also be rewritten as

min
θ

1

n
‖Y − X̃θ‖2

2 + γλn

n∑
t=1

‖θt‖2 + (1− γ)λn‖θ‖1, (2.7)

where ‖·‖2 is the `2 norm, ‖·‖1 is the `1 norm, λn is the regularization penalty weight, and

γ ∈ (0, 1) adjusts the relative weight for the two penalty terms. γ affects the inter and intra

group sparsity of the solution obtained from this optimization problem. The inter group

sparsity is increased when we increase γ, while the intra group sparsity is increased when

we decrease γ. Theoretically, as we can see from Proposition 1 and Proposition 2, as long

as γ is a constant in (0, 1), we will have the consistent results in the change-point and

coefficient estimations under proper assumptions. In practice, the choice of γ depends

on the application. If one expects a strong group-wise sparsity, one should select γ to

be a larger constant. If, in other applications, one expects mild group-wise sparsity, one

should choose γ to be a smaller constant. We will discuss how to choose λn in Section

2.3. We note that the proposed problem formulation and algorithm do not depend on the

parameter Kmax or knowledge of K∗.

Notice that problem (2.7) is of the form of SGL proposed in [30]. As illustrated

in [30], the penalty term
∑n

t=1 ‖θt‖2 encourages the group-wise sparsity, which implies

that in the solution of (2.7) most of θts are zero vectors, while ‖θ‖1 encourages sparsity

within each group, which implies that in the solution of (2.7) most of entries are zero

for those nonzero vectors. We also notice that (2.7) is a generalization of the problem

22

considered in [41], in which a particular case with γ = 1 and p = 1 is considered.

Let {θ̂t}, {β̂t}, K̂ and T̂k̂ = {t̂k, k = 1, · · · , K̂} denote estimates of {θt}, {βt},

K∗ and T ∗, respectively. For a given solution {θ̂t} of (2.7), we can obtain {β̂t} from

the linear relationship between θ and β. We can treat the nonzero vectors among θ̂t’s

as change-points, from which the estimate of the total number K̂ and locations T̂k̂ =

{t̂k, k = 1, · · · , K̂} of the change-points can be determined.

For 1 ≤ k ≤ K̂ + 1, we denote

α̂k = β̂t, for t̂k−1 ≤ t ≤ t̂k − 1, and α̂k 6= α̂k−1.

By convention, we set t̂0 = 1 and t̂K̂+1 = n+ 1.

2.3 Consistency

In this section, we study the properties of the solution of our SGL based approach (2.7).

We provide consistency results and discuss how to choose the regularization parameter

λn properly.

To assist the following presentation, we define

Imin = min
1≤k≤K∗

|t∗k+1 − t∗k|, (2.8)

Jmin = min
1≤k≤K∗

‖α∗k+1 −α∗k‖2. (2.9)

Hence, Imin is the minimal interval between two consecutive change-points, and Jmin is

the minimal `2 distance between two consecutive true different coefficient vectors.

Let {δn} be a sequence of positive quantities that decrease to zero as n→∞. Let xt,m

denote the mth element of xt. Throughout this chapter, we make following assumptions:

23

A1:

0 < l ≤ inf
1≤s<r≤n+1
r−s≥nδn

µmin

(
1

r − s
r−1∑
t=s

xtx
T
t

)

≤ sup
1≤s<r≤n+1
r−s≥nδn

µmax

(
1

r − s
r−1∑
t=s

xtx
T
t

)
≤ L <∞,

as n → ∞, where µmin(·) and µmax(·) are the minimum and maximum eigenvalue of a

matrix respectively.

Intuitively, A1 means that the eigenvalues of the averaged matrix
(

1
r−s
∑r−1

t=s xtx
T
t

)
are bounded, which indicates that xtx

T
t is a well behaved matrix.

A2: Imin/(nδn)→∞, as n→∞.

A2 sets a requirement on the minimum intervals between any two consecutive change-

points. In particular, we require Imin to grow as n grows. This assumption is reasonable

as if Imin does not increase when n increases, then there exists an interval whose length

is diminishingly small compared to n. It will be challenging to identify this interval from

the whole data sequence.

A3: ∀1 ≤ m ≤ p, ∀1 ≤ s < r ≤ n+ 1 and r − s ≥ nδn,

lnn

(r − s)2

r−1∑
t=s

x2
t,m/J

2
min → 0.

x2
t,m can be viewed as the power of the mth dimension of xt. Intuitively speaking, A3

implies that Jmin, the minimal `2 distance between two consecutive true different coef-

ficient vectors, cannot be too small. This is a reasonable assumption, as if Jmin is too

small, there exists a change point at which the coefficient changes very little. It will be

challenging to detect such as a change.

Proposition 1. Under A1-A3, if K̂ = K∗, and we choose λn such that λn
Jminδn

→ 0 as

24

n→∞, then

P

(
max

1≤k≤K∗
∣∣t̂k − t∗k∣∣ ≤ nδn

)
→ 1, as n→∞. (2.10)

Proof. Please see Appendix A.2.

Proposition 2. Under A1-A3, if K̂ = K∗, and we choose λn such that λn
Jminδn

→ 0 as

n→∞, then

‖α∗k − α̂k‖2 ≤
nλn(γ + (1− γ)

√
p) + IminoP (Jmin)

(Imin − 2nδn)l
, (2.11)

in probability as n→∞, for ∀1 ≤ k ≤ K∗ + 1.

Proof. Please see Appendix A.3.

As discussed above, K∗ is the true number of change-points, which is assumed to be

a constant. Furthermore, from A2, we know that Imin is assumed to be sufficiently large,

which implies that K∗ cannot be arbitrarily large.

Remark 1. Propositions 1 and 2 indicate that the proposed SGL based algorithm can lead

to consistent estimations of the change-points and the linear coefficients. Proposition 1 is

easy to interpret: from A2, we know that nδn/Imin → 0, which implies that the maximum

relative change-points location estimate error is diminishing. Proposition 2 is a little

complicated. Actually, there are several combinations of Imin, Jmin that can make the

estimation of the linear coefficients consistent. For example, if Imin = Θ(n) and Jmin is

a constant, then as long as λn → 0, we have ‖αk− α̂k‖2 → 0. To see this, we first notice

that IminoP (Jmin)/((Imin − 2nδn)l)→ 0. Moreover,

nλn(γ + (1− γ)
√
p)

(Imin − 2nδn)l
=
λn
δn

γ + (1− γ)
√
p

(Imin/(nδn)− 2) l
→ 0 (2.12)

since λn/δn → 0 (from the assumption λn/(Jminδn) → 0 indicated in the condition of

25

Proposition 2 and Jmin being a constant mentioned above) and Imin/(nδn) → ∞ as

indicated in A2.

Remark 2. Due to the special structure of X̃ as shown in (2.4), we cannot directly apply

the existing bounds on the performance of regularized M-estimator (see, e.g., [8]). Hence

we need a different approach to bound the l2 norm of the error in the proof of Proposition

2.

The above results require K̂ = K∗. In the following, we show that even if this

assumption does not hold, we can still guarantee certain accuracy of the estimated change-

points. For two sets S1 and S2, we define

ε(S1||S2) = sup
s2∈S2

inf
s1∈S1

|s1 − s2|. (2.13)

Notice that max{ε(S1||S2), ε(S2||S1)} is the Hausdorff distance between S1 and S2 [68].

Since T̂K̂ and T∗ are the set of estimated change-points and the set of true change-points

respectively, so they can be written as

T̂K̂ :=
{
t̂1, t̂2, · · · , t̂K̂

}
,

T∗ := {t∗1, t∗2, · · · , t∗K∗} .

Using this notation, Proposition 1 can be restated as that ε(T̂K̂ ||T∗) ≤ nδn and ε(T∗||T̂K̂) ≤

nδn hold at the same time in probability as n→∞ when K̂ = K∗. The following propo-

sition is parallel to Proposition 1 for the case K∗ < K̂ < Kmax.

Proposition 3. Under A1-A3, and choose λn such that λn
Jminδn

→ 0 as n → ∞, then if

K∗ < K̂ ≤ Kmax, we have

P (ε(T̂K̂ ||T∗) ≤ nδn)→ 1, as n→∞. (2.14)

26

Proof. Please see Appendix A.4.

Proposition 3 implies that, if the number of the change-points is overestimated, i.e.

K̂ > K∗, then there exists at least one estimated change-point falling in the range nδn

of each true change-point. In the following, we show that the event {K̂ ≥ K∗} happens

with a large probability.

We define

Imax = max
1≤k≤K∗

|t∗k+1 − t∗k|,

Jmax = max
1≤k≤K∗

‖α∗k+1 −α∗k‖2,

and we impose another assumption:

A4. Imin = Θ(n); Jmax = O(1); Jmin = Ω(1).

Proposition 4. Under A1-A4, and we choose λn such that λn
Jminδn

→ 0 as n→∞, then

P (K̂ ≥ K∗)→ 1, as n→∞. (2.15)

Proof. Please see Appendix A.5.

Remark 3. With A4, the conclusion of Proposition 2 can be further simplified. Notice

that Jmax = O(1) indicates oP (Jmin) → 0. Moreover, A2 and λn
Jminδn

→ 0 indicates

nλn
IminJmin

→ 0, which further indicates nλn
Imin

→ 0 as Jmin ≤ Jmax. Therefore, we can

conclude
nλn(γ + (1− γ)

√
p) + IminoP (Jmin)

(Imin − 2nδn)l
→ 0.

That is, K̂ = K∗ with A1-A4 can guarantee the estimations of linear coefficients are

consistent.

Remark 4. From Proposition 4, we know that if A1-A4 are satisfied and λn is chosen

27

such that λn
Jminδn

→ 0, we will have either: 1) K̂ = K∗, in which case we have Propo-

sitions 1 and 2 for the consistency of the estimates; or 2) K̂ > K∗, in which case, we

have Proposition 3 for the consistency of the estimates. However, if K̂ < K∗, then some

change-points are not detected. Hence it is more desirable to have K̂ ≥ K∗.

If one insists on having K̂ = K∗, we have the following data-dependent method to

choose λn. This approach is based on the Akaike information criterion (AIC) [69]. For

any given λn, we first solve (2.7) and obtain K̂ and T̂K̂ = {t̂k, k = 1, · · · , K̂} that divides

the data into K̂ + 1 regions. We define

B(T̂K̂) =
1

n

K̂+1∑
k=1

t̂k−1∑
t=t̂k−1

(yt − α̂Tk xt)
2, (2.16)

where α̂k is the ordinary least squares (OLS) estimator in the interval [tk−1, tk − 1].

Then we propose to minimize the cost function

C(λn) = ln(B(T̂K̂)) + ρnp(K̂ + 1), (2.17)

where ρn is a designed parameter such that ρn → 0 and ρn
δn
→ ∞ as n → ∞. In (2.17),

ln(B(T̂K̂)) measures the accuracy of how well the model is fitted, and ρnp(K̂ + 1) is the

penalty of the number of estimated change-points.

Denote Ω = [0, λmax], in which λmax is the maximum value of λn such that the

solution to (2.7) is not all zero vectors. λmax can be easily computed. Define

Ω− = {λn ∈ Ω|K̂ < K∗},Ω+ = {λn ∈ Ω|K̂ > K∗},

and λ∗ is any λn such that K̂ = K∗.

Then, we have following proposition.

28

Proposition 5. Under A1-A4, and λn
Jminδn

→ 0, we have

P

(
inf

λn∈Ω+∪Ω−
C(λn) > C(λ∗)

)
→ 1, as n→∞.

Proof. Please see Appendix A.6.

Remark 5. Proposition 5 provides a method to choose the regularization parameter λn

to guarantee the stronger result. In particular, if we choose λn = λ∗ and use this value

in (2.7), then we have K̂ = K∗ with probability 1. On the other hand, if one does not

insist in having K̂ = K∗, λn can be simply chosen to satisfy λn/(Jminδn)→ 0. Any value

satisfying this condition will guarantee that the consistent results in Propositions 1 ∼ 4

hold.

Remark 6. If we set p = 1, the problem considered in this thesis becomes a basic To-

tal Variance (TV)-regularization problem [70–72]. By setting p = 1 in the propositions

above, we have the consistent results for this special case. Note that these results do not

mean that we obtain full understanding of the TV-regularization problem. They simply

imply that for the basic TV-regularization problem, we have certain consistency results

regarding the change-points estimations and coefficient estimations under the assump-

tions made in this thesis.

2.4 Complexity

In this section, we study the computational complexity of SGL algorithms. Denote the

cost function in (2.7) as

φ(θ) =
1

n

∥∥∥Y − X̃θ
∥∥∥2

2
+ γλn

n∑
t=1

‖θi‖2 + (1− γ)λn

n∑
t=1

‖θi‖1 , (2.18)

and let φ∗ be the minimum value of φ(θ).

29

In our model, we have an n × 1 output vector Y, an n × np data matrix X̃ which

can be divided into n sub-matrices, X̃(1), · · · , X̃(n), and each X(t) is an n × p matrix

for t = 1, · · · , n, and an np × 1 coefficient vector θ which can be divided into n p × 1

sub-vectors, θ1, · · · ,θn. The cost function (2.18) can be rewritten as

φ(θ) =
1

n

∥∥∥∥∥Y −
n∑
t=1

X̃(i)θi

∥∥∥∥∥
2

2

+γλn

n∑
t=1

‖θi‖2 + (1− γ)λn

n∑
t=1

‖θi‖1 , (2.19)

and X̃(i) =

(
0p×1 · · · 0p×1 xi · · · xn

)T
.

We define another function which will be used in further analysis. Define

φinner(θk) =
1

n

∥∥∥r(−k)− X̃(k)θk

∥∥∥2

2
+ γλn ‖θk‖2

+(1− γ)λn ‖θk‖1 + φother(k), (2.20)

where r(−k) = Y − ∑n
t=1,t6=k X̃(t)θt and φother(k) = γλn

∑n
t=1,t6=k ‖θi‖2 + (1 −

γ)λn
∑n

t=1,t6=k ‖θi‖1. φinner(θk) is a function of coefficients of group k while keeping

the coefficients of other groups as constants.

First, we discuss a modified version of SGL algorithm in [30]. We only describe an

outline of the algorithm whose details can be found in [30]. For any given λn and γ, the

algorithm can be described as follows.

30

Algorithm 3 SGL RBCD(X,Y,p,n)
initialize θ to be a np× 1 zero vector

r = Y −∑n
t=1 X̃(t)θt

repeat pick k = 1, · · · , n with probability 1
n

. outer Loop

r(−k) = r + X̃(k)θk

if the optimal coefficients of group k are identically zeros then

θnewk = 0

else

initialize θnewk (0) to be a p× 1 zero vector

i = 0

repeat i = i+ 1 . inner Loop

θnewk (i) = U(θnewk (i− 1))

until convergence

θnewk = θnewk (i)

end if

r = r + X̃(k)(θk − θnewk)

θoldk = θk

θk = θnewk

until convergence

return θ

In this algorithm, we have an outer loop which iterates over all groups until conver-

gence, and an inner loop which calculates the optimal coefficients of a particular group

while the coefficients of other groups are viewed as constants. The function U in the in-

ner loop is the update function. The function U takes in the old coefficients of group

k θnewk (i − 1) and output the new coefficients of group k θnewk (i) until convergence.

The function U can be viewed as a black box. For completeness, we expand U as its

31

simplified form in [30]. Let S(·) be the coordinate-wise soft thresholding operator and

(S(z, b))j := sign(zj)(|zj| − b)+, where z is a vector, b is a scalar and (S(z, b))j is the

jth element of the output vector of S(·). Let l(r(−k),θk) = 1
n

∥∥∥r(−k)− X̃(k)θk

∥∥∥2

2
be the

unpenalized loss function. Then the function U is defined as

U(θk) =

(
1− tγλn∥∥S(θk − t∇l(r(−k),θk), t(1− γ)λn)

∥∥
2

)
+

S(θk − t∇l(r(−k),θk), t(1− γ)λn),

where t is the step size of the gradient method.

The “convergence” is the termination condition, e.g., ‖θnewk (i) − θnewk (i − 1)‖2 < ε,

|φ(θnewk) − φ(θoldk)| < ε, etc. In the original algorithm proposed in [30], the outer loop

is chosen in a cyclical order. Since the convergence rate of cyclically block-coordinate

descent method is unknown except for some special cases [73], in the algorithm described

above, we modify the outer loop of algorithm in [30] to the randomized block-coordinate

descent (RBCD) method in [74]. We will use Algorithm 2.4 in our simulation.

Although Algorithm 2.4 is easy to implement, it is difficult to analyze its complexity

due to its inexact nature of the inner loop. In the following, we introduce the modified

Signed Single Line Search (SSLS) algorithm in [31], which is more amenable to com-

plexity analysis.

32

Algorithm 4 SSLS RBCD(X,Y,p,n)
initialize θ to be a np× 1 zero vector

r = Y −∑n
t=1 X̃(t)θt

repeat pick k = 1, · · · , n with probability 1
n

. outer Loop

r(−k) = r + X̃(k)θk

θnewk = argminθk {φinner(θk)} . inner Loop

r = r + X̃(i)(θk − θnewk)

θk = θnewk

until convergence

return θ

The original SSLS algorithm has a similar structure as the SGL algorithm in [30]. In

the description above, we make the same modification, i.e., change the cyclical order to

random order in the outer loop. The main difference between Algorithm 2.4 and 2.4 lies

in the inner loop. In the inner loop, SSLS explicitly solves the optimal group coefficients

for one group while keeping the coefficients of other groups as constants. The main result

is in the following Proposition.

Proposition 6. For an error tolerance ε and a given constant confident level ρ ∈ (0, 1),

the complexity of the randomized block-coordinate descent method version of SSLS for

the worst case is O(n2λ−2
n) that guarantees

P (φ(θ̂)− φ∗ ≤ ε) ≥ 1− ρ. (2.21)

Proof. Please see Appendix A.7.

The complexity relies on λn. For example, if λn = 1√
lnn

and δ = 1
3√

lnn
, a valid choice

for Proposition 1-4 under A1-A4, then the complexity is O(n2 lnn), which is better than

the complexity of DP approach O(n3).

33

2.5 Numerical Results

Our simulation is based on the Algorithm 1, a slightly modified version of the algorithm

in [30] that has an R implementation in the package SGL. We first test our algorithm on

synthesised data. We select p = 20, and set the number of nonzero coefficients to be 4. In

particular, we set the first four coefficients to be nonzero in each βt. In our simulation, we

set γ = 0.927, n = 1000, K∗ = 3, and the real change-points are at 100, 300, 900. The

first four coefficients of βts are all 2 for points t = 1, · · · , 99 and for t = 100, · · · , 299,

and are all −2 for t = 300, · · · , 899 and for t = 900, · · · , 1000. Each xt,m ∼ N (0, 4),

and the noise εt ∼ N (0, 0.01).

In our simulation result figures, x-axis represents the locations from 1 to n, and y-axis

represents whether the data point at each location is an estimate change-point (1 means

that it is an estimated change-point, i.e., θ̂t 6= 0, while 0 means θ̂t = 0.).

0

1

0 100 200 300 400 500 600 700 800 900 1000
Number of Observations

C
ha

ng
e−

po
in

t

Figure 2.2: Change-points locations estimation using SGL, λ = 0.003778942.

From Figure 2.2, we can see that most of the estimated θ̂t are zero vectors. Further-

34

more, the nonzero vectors are clustered around the true change-points. This implies that

our approach can successfully identify the locations of change-points.

We also examine the regularization path of θ̂300 by choosing different values of λn. If

we select λn large enough, then the penalty term will dominate the SGL and encourages

the sparsity, thus the coefficients are tending to be all zeros. If we decrease λn, the least

square term becomes more and more dominant, thus the sparsity of coefficients will de-

crease. On the other hand, from our asymptotic results, we know that the accuracy will

increase. Hence, in practice, we need to set λn properly to balance between accuracy and

sparsity. From regularization path, we find that once λn is properly chosen, our algorithm

can properly identify the important coefficients.

Here we compare our approach with the DP based approach. Figure 2.3 illustrates

the estimated change point using the DP based approach when Kmax is set to be 3, the

true value of K∗. It shows that the change-points location estimates are accurate if we

know K∗. However, as discussed in Section 1.1.2, if K∗ is unknown and only Kmax

is known, the DP based approach will return Kmax change-points. Figure 2.4 shows

the change-points estimates using the DP based approach when Kmax is set to be 20.

From the figure, we can see that the returned change-points estimates do not concentrate

around the true change points and hence do not provide accurate estimates of the true

underlying change-points. Furthermore, the coefficients of all the results by DP approach

do no possess sparse structure, which means that most or even all of the coefficients are

nonzero while the results of our SGL based approach possess sparsity.

Next, we test our approach on real weather data collected by NOAA. We use NCEP/NCAR

Reanalysis 1 Surface Monthly Mean dataset [75]. The dataset records monthly means

of precipitation for 1948-present for all locations on the globe, and each locations has

2.5◦ × 2.5◦ resolution. Our goal is to find change-points in climate models for dif-

ferent locations. We pick 5 target locations, i.e., Eastern USA, Brazil, Western USA,

35

0

1

0 100 200 300 400 500 600 700 800 900 1000
Number of Observations

C
ha

ng
e−

po
in

t

Figure 2.3: Change-points locations estimation using DP, Kmax = 3.

South Africa and India because of their diverse geological properties. The parameters of

these target locations are considered as Y in our model. Then we pick 40 locations near

the target locations as the {xt} in our model. For each location, we pick the first 400

data. Then we concatenate the data Y and {xt} for different locations. Hence, we have

n = 5 × 400 = 2000 and p = 40. And in our concatenated data, the first segment, i.e.,

1 ≤ n ≤ 400, the model describes the relationship between Eastern USA and our 40 data

locations, the second segment, i.e., 401 ≤ n ≤ 800, the model describes the relationship

between Brazil and our 40 data locations, and so on. We choose the precipitation as the

parameter to be investigated in the model, and γ = 0.8634729 in our simulation.

Figure 2.5 shows the l1 norm of our result. From Figure 2.5 we can see the inter-group

sparsity of the result. Furthermore, the estimated change-points are clustered around

the true change-points.We also examine the regularization path. For the first estimated

interval, when λ = 0.01267545, coefficients at indices 9−16 and 25−32 are zero, that is

36

0

1

0 100 200 300 400 500 600 700 800 900 1000
Number of Observations

C
ha

ng
e−

po
in

t

Figure 2.4: Change-points locations estimation using DP, Kmax = 20.

16 coefficients out of 40 are zero, which show the sparsity within the group. Furthermore,

these coefficients corresponds to locations near eastern US, western US and India. Since

the data in Y of segment n = 1 to n = 400 is from eastern US, the result above indicates

that precipitation of eastern US has a higher correlation with precipitation of locations

near eastern US, western US and India than precipitation of Brazil and South Africa,

since eastern US, western US and India are all located in northern hemisphere and near

heavily rained regions which is consistent of [76].

37

0

1

0 400 800 1200 1600 2000
Number of Observations

C
ha

ng
e−

po
in

t

Figure 2.5: Change-points locations estimation using SGL, λ = 0.01546122.

38

Chapter 3

High Dimensional Change-points

Inference

In this chapter, we extend our analysis in low dimensional linear regression models to high

dimensional setting and further extend it to GLM. In Section 3.1, we describe the model

under high dimensional setting. In Section 3.2, we prove the consistency and properties

of the solution of our approach. In Section 3.3, we extend our study to generalized linear

models. In Section 3.4, we provide numerical examples to illustrate the performance of

our approach.

3.1 Model

3.1.1 Problem Formulation

Here we consider the linear regression model in (2.1). Since this section focuses on high

dimensional case, here β∗t ∈ Rp is a sparse coefficients vector with sparse level s and p/n

does not go to zero as n→∞.

Here we perform the same transformation as in Section 2.2. We note that θ∗ has a

39

very unique sparsity structure. In particular, as there are only K∗ change-points among n

observations, we can see that there are only K∗ + 1 sub-vectors of θ∗ are nonzero. We

call this group-wise sparsity. Furthermore, even for those non-zero sub-vectors θ∗t , as

both α∗k+1 and α∗k are s-sparse vectors, most of the entries of the non-zero subvector θ∗t

are zero. We call this within group sparsity. Hence, θ∗ possesses both group-wise and

within group sparsity structure.

Motivated by this unique sparsity structure of θ∗, we propose to solve the multiple

change-points estimation problem via solving the same optimization problem as (2.7)

min
θ∈Rnp

ϕ(θ) :=
1

n
‖y − X̃θ‖2

2︸ ︷︷ ︸
L(θ)

+λn

[
γ

n∑
t=1

‖θt‖2 + (1− γ)‖θ‖1

]
︸ ︷︷ ︸

R(θ)

, (3.1)

in which L(θ) is referred as the loss function, the function R(θ) is referred as the regu-

larization penalty function, λn is the regularization penalty weight, and γ ∈ (0, 1) adjusts

the relative weight between the two terms in R(θ). Here, the design of the penalty term

R(θ) is motivated the unique sparsity structure of θ∗ discussed above. In particular, the

term
∑n

t=1 ‖θt‖2 is used to encourage the group-wise sparsity in the solution, and the

term ‖θ‖1 is used to encourage within group sparsity in the solution.

As the analysis in Chapter 2 relies crucially on p being fixed, the analysis approach

used in Chapter 2 does not apply in this high-dimension case. In this thesis, we will

provide new analysis that works for the high-dimension case.

As there is a one-to-one correspondence between θ and β, the optimization problem

in (3.1) can be equivalently written as

min
β∈Rnp

1

n
‖y −Xβ‖2

2 + λn

[
γ

n∑
t=1

‖βt − βt−1‖2 + (1− γ)
n∑
t=1

‖βt − βt−1‖1

]
. (3.2)

Let θ̂ and β̂ denote the optimal solution of (3.1) and (3.2) respectively. θ̂ and β̂ can

40

be transformed to each other by noticing

β̂t =
t∑
i=1

θ̂i, (3.3)

θ̂t = β̂t − β̂t−1. (3.4)

Furthermore, the locations of estimated change-points are those t’s such that θ̂t is nonzero,

and the estimated total number of change-points K̂ is the total number of nonzero θ̂t’s.

Let

∆θ := θ̂ − θ∗,

∆β := β̂ − β∗,

be the estimation error vectors. Directly from the definition above, we have

X∆β = X̃∆θ. (3.5)

3.1.2 Assumptions on Data

Throughout the chapter, we make following assumptions:

A1. xt is generated from the distributionN (0,Σ), and 0 < l ≤ µmin(Σ) ≤ µmax(Σ) ≤

L <∞, where l and L are constants independent of n and p.

A2. ρ(Σ) = max1≤i≤p Σi,i ≤ ρc, where ρc is a positive constant independent of n and

p.

A1 indicates that our design matrix is Gaussian ensemble as discussed in [8, 47, 48].

A2 puts a constraint on the covariance matrix of the Gaussian ensemble. Notice that the

diagonal elements of Σ are variances of elements in xt. A2 means that the variance of

41

each element of xt is upper bounded by a constant.

In the next section, we will first derive general results without making particular as-

sumptions on Imin and Jmin which are defined in (2.8) and (2.9). We will then simplify

the results when particular assumptions on these quantities are made. Those particular

assumptions will be introduced in Section 3.2.3.

3.2 Consistency

In this section, we develop consistency results of our approach and provide theoretical

guarantees. We will introduce several useful notions and supporting lemmas before pre-

senting the results.

3.2.1 Preliminary

We first recall the concept of dual norm and then present two lemmas that will be fre-

quently used in the proof.

Definition 1. Let Ξ be a norm on Rm, its dual norm Ξ∗ is given by

Ξ∗(θ) = sup
v∈Rm\{0}

< v,θ >

Ξ(v)
= sup

Ξ(v)≤1

< v,θ >,

in which < ·, · > denotes the inner product of two vectors.

Lemma 1. Let θ̂ be an optimal solution to the optimization problem (3.1) when we choose

λn ≥ 2R∗ (∇L(θ∗)) ,

42

in whichR∗ is the dual norm ofR, then we have

R(∆θ) ≤ 4R(θ∗). (3.6)

Proof. Please see Appendix A.8.1.

Lemma 2. Let U ∈ Rm1×m2 , suppose each row Ui,·, i = 1, · · · ,m1 are independently

generated using N (0,ΣU) with 0 < lU ≤ µmin(ΣU) ≤ µmax(ΣU) ≤ LU <∞, then we

have

√
l‖v‖2 ≤ ‖Σ

1
2
Uv‖2 ≤

√
L‖v‖2. (3.7)

Furthermore, with a probability at least 1 − c′ exp (−cm1), in which c, c
′

are universal

positive constants from [47, Theorem 1], we have

1

m1

‖Uv‖2
2 ≥

l

32
‖v‖2

2 −
9

4

√
Lρ(ΣU)

√
logm2

m1

‖v‖2‖v‖1, (3.8)

hold for all v ∈ Rm2 simultaneously.

Proof. Please see Appendix A.8.2.

3.2.2 Results for General Models

In this subsection, we present our main results regarding the estimation error for the

general model specified in Section 3.1. These results will be further simplified in Sec-

tion 3.2.3 once we assume more details about the model.

Although the detailed proofs of the following propositions are long and tedious (as we

need to properly address different cases), the basic idea is clear. In particular, let θ̂ be the

optimal value obtained from the optimization problem (3.1), then we have the following

43

inequality

ϕ(θ̂) ≤ ϕ(θ∗). (3.9)

The basic idea of the proofs is to show that, for (3.9) to hold, the conclusions in the

following propositions must hold.

Before presenting the results, we define a quantity that will be frequently used

δn :=
64

lJ2
min

(
72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗) + 2λnR(θ∗)

)
. (3.10)

In all results presented in this subsection, we assume that A1-A2 hold and we choose

2R∗ (∇L(θ∗)) ≤ λn <
1

2R(θ∗)

(
Imin

2n

lJ2
min

64
− 72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)

)
.(3.11)

Before moving further, we would like to comment on (3.11), which puts lower and

upper bounds on λn. It is reasonable to have lower and upper bounds on λn. If λn is too

small, the solution of problem (3.1) will be similar to the solution of the problem without

penalty and thus the solution will not possess the special sparsity structure. On the other

hand, if λn is too large, the solution of problem (3.1) will not be able to capture change-

points, as the estimated vector will become sparser as λn increases. The particular choice

of lower bound stems from Lemma 1. The upper bound is equivalent to Imin

2n
> δn, which

is a quantity frequently arises in the detailed analysis. The particular form of upper bound

comes from the application of (3.8) in the detailed analysis. It is natural to ask whether

such λn exists and if so how to choose such λn without knowing the values of quantities

such as θ∗ and Imin etc. We will answer these questions in Section 3.2.3 which shows

such λn exists under some mild assumptions and shows how to choose one.

Here we make an additional mild assumption on Imin and δn.

44

B1. nδn →∞ as n→∞; Imin − 2nδn →∞ as n→∞.

This assumption can be satisfied for models in Section 3.2.3. Furthermore, noticing that

since we choose λn satisfying (3.11), then we have Imin > 2nδn. So Imin → ∞ as

n→∞. Note that in assumption B1, we only require the quantities involved to increase,

we do not put any requirement on the growth order.

Under assumptions A1, A2 and B1, we have the following propositions.

Proposition 7. If K̂ = K∗, then we have

max1≤k≤K∗ |t̂k − t∗k|
n

≤ δn. (3.12)

Proof. Please see Appendix A.9.1 for details.

Proposition 7 shows that, if K̂ = K∗ and δn goes to zero as n and p increase, then the

relative errors of estimated change-points locations diminish.

Proposition 8. If K̂ = K∗, then for k ∈ [K∗ + 1],

‖α̂k −α∗k‖2
2 ≤

32n

(Imin − 2nδn)l

(
36

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗) + 2λnR(θ∗)

)
.(3.13)

Proof. Please see Appendix A.9.2.

The condition for Proposition 8 is the same as the conditions for Proposition 7. As

will be shown in Section 3.2.3, if more details of the model is provided, the result can be

further simplified.

Proposition 9.

K̂ ≥ K∗. (3.14)

45

Proof. Please see Appendix A.9.3.

Proposition 9 shows that, if we cannot have K̂ = K∗, we can still guarantee that

K̂ ≥ K∗. If K̂ < K∗, then we miss some true change-points. Hence it is more desirable

to have K̂ ≥ K∗.

The results in Proposition 7 and 8 holds when K̂ = K∗ occurs. In the following, we

show that even if K̂ = K∗ does not occur, we can still guarantee certain accuracy of the

estimated change-points. The following proposition is parallel to Proposition 7 for the

case K̂ > K∗.

Proposition 10.

ε
(
T̂K̂ ||T∗

)
n

≤ δn.

Proof. Please see Appendix A.9.4.

Proposition 10 implies that, for each true change-point, there is at least one estimated

change-point that is less than nδn far away. However, this proposition does not exclude

the case that some estimated change-points are far away from all true change-points,

which indicates that this proposition does not exclude the existence of isolated estimated

change-points between the interval of true change-points. The term isolated estimated

change-point will be defined precisely in the squeal. Informally, an isolated estimated

change-point is an estimated change-point that is far from the true change-points and

other estimated change-points. In the following, we show that such events do not occur.

To proceed, we define event

Tisolate :=
{
∃t̂j ∈ [t∗k, t

∗
k+1 − 1] for some k ∈ [K∗ + 1] s.t. min

{
t̂j+1, t

∗
k+1

}
− t̂j ≥ nδn,

t̂j −max
{
t̂j−1, t

∗
k

}
≥ nδn, ‖α̂j+1 − α̂j‖2 > Jmin

}
,

46

where δn is the nonnegative quantity defined in (3.10). The estimated change-points de-

scribed in Tisolate are the isolated change-points with a big change in coefficients. The

variable δn is used to measure the distance between the isolated change-point and its near-

est true or estimated change-points. Figure 3.1 illustrates such an isolated change-point

t̂j for the case t̂j−1 ≥ t∗k and t̂j+1 ≤ t∗k+1. The question arises naturally that whether such

isolated estimated change-points can occur. The next proposition answers this question.

t∗k

t̂j−1 t̂j t̂j+1

t∗k+1

× × ××× ×

≥ nδn ≥ nδn

Figure 3.1: Illustration of an isolated change-point t̂j with t̂j−1 ≥ t∗k, t̂j+1 ≤ t∗k+1, t̂j+1 −
t̂j ≥ nδn, t̂j − t̂j−1 ≥ nδn, and ‖α̂j+1 − α̂j‖2 > Jmin.

Proposition 11. Tisolate does not happen.

Proof. Please see Appendix A.9.5.

Proposition 11 shows that isolated change-points do not occur, and hence the esti-

mated change-points are clustered around true change-points. As the result, we will

have long ‘blank’ intervals, in which there are no estimated change-points, between true

change-points. In the following, we show that, these long ‘blank’ intervals enable us to

obtain very good estimate of the linear coefficients.

To make the statements above precise, we first introduce some definitions. Let ξ∗k :=

[t∗k−1, t
∗
k) be the kth true interval. Let ξ̂i := [t̂i−1, t̂i) be the ith estimated interval, and Îi

be the length of the ith estimate interval. We define the set

Υ(ςn) := {i ∈ [K̂ + 1]|ξ̂i ⊆ ξ∗k for some k ∈ [K∗ + 1] and Îi > nςn},

where ςn is some nonnegative quantity. In the following, we take nςn = Imin

10
. Then

Υ(Imin

10n
) contains all i’s such that the ith interval between estimated change-points is

47

longer than Imin

10
. Here we pick nςn = Imin

10
since we focus on long estimated intervals

that are not too short compared to Imin. Actually, for our result to hold, Imin

c
would suf-

fice, where c > 0. Let α∗k(i) be the coefficients of “long” intervals containing ξ̂i for

i ∈ Υ(ςn).

Proposition 12 (Bounds for long intervals). For i ∈ Υ
(
Imin

10n

)
, we have

‖α̂i −α∗k(i)‖2
2 ≤

320n

Iminl

(
36

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗) + 2λnR(θ∗)

)
. (3.15)

Proof. Please see Appendix A.9.6.

3.2.3 Simplified Results with Knowledge of Model Details

The results provided in Section 3.2.2 are for general models. These results can be further

simplified under more specific model assumptions. These simplified results can provide

more insights. To proceed, we make the following additional assumption.

A3. Imin = Θ(n); Jmin = Ω(1);R(θ∗) = O(s); s2
√

log p
n
→ 0 as n→∞.

Since Imin ≤ n, then Imin = Θ(n) means that intervals between true change-points

are comparable with the total number of samples, i.e., the intervals between change-points

are not too small. Jmin = Ω(1) means the growth order of Jmin is at least the same as

a constant, i.e. the “jump” between two consecutive intervals are not too small. Since

there are at most (K∗ + 1)s nonzero elements in θ∗ and K∗ is a constant, we can assume

R(θ∗) = O(s) if we know each entry of the coefficients are bounded. s2
√

log p
n
→ 0 as

n → ∞ means that the growth order of the sparse level s is not too big compared to the

growth order of (n/ log p)1/4.

In the following lemma, we show a particular choice of λn has very desirable proper-

ties that will enable us to simply the results obtained in Section 3.2.2.

48

Lemma 3. If A1-A3 holds and we choose λn = 8σ
√

5ρc
1−γ

√
lognp
n

, then the following hold

•

c5
log p

n
≤ δn ≤ c4s

2

√
log p

n
.

• The right hand side of (3.13) can be upper bounded by

c8s
2

√
log p

n
.

• Condition (3.11) is satisfied with probability at least 1− 2
np
− np exp (−n).

Proof. Please see Appendix A.10.

Using Lemma 3, it is easy to see that assumption B1 is satisfied for large n and

we can rewrite Proposition 7-12 into simplified versions in the following remarks. In

the following remarks, we assume A1-A3 hold, n is large enough and we choose λn =

8σ
√

5ρc
1−γ

√
lognp
n

.

Remark 7. If K̂ = K∗, then

max1≤k≤K∗ |t̂k − t∗k|
n

≤ c4s
2

√
log p

n
,

with probability at least 1− 2
np
− np exp (−n).

Note that a probability 1 − 2
np
− np exp (−n) is introduced compared to Proposition

7. This is due to the choice of λn = 8σ
√

5ρc
1−γ

√
lognp
n

, which satisfies condition (3.11) with

a probability as shown in Lemma 3. Since we require (3.11) to be true for Propositions

7-12 to hold, hence in the following remarks, we add an extra probability term to each

proposition.

49

Remark 8. If K̂ = K∗, then

K∗+1∑
k=1

‖α̂k −α∗k‖2
2 ≤ c8s

2

√
log p

n
,

with probability at least 1− 2
np
− np exp (−n).

Remark 9.

K̂ ≥ K∗,

with probability at least 1− 2
np
− np exp (−n).

Remark 10.

ε
(
T̂K̂ ||T∗

)
n

≤ c4s
2

√
log p

n
,

with probability at least 1− 2
np
− np exp (−n).

Remark 11. Tisolate does not happen with probability at least 1− 2
np
− np exp (−n).

Remark 12. For i ∈ Υ
(
Imin

10n

)
,

‖α̂i −α∗k(i)‖2
2 ≤ c10s

2

√
log p

n
,

with probability at lest 1− 2
np
− np exp (−n).

These results illustrate how the estimation errors scale with the system parameters p,

n and s.

50

3.3 Generalized Linear Models

In this section, we extend our results obtained in linear models to generalized linear mod-

els (GLM) [8]. In GLM, yt and xt are related through the linear coefficient β∗t as

P (yt|xt,β∗t) ∝ exp

{
yt〈β∗t ,xt〉 − Φ (〈β∗t ,xt〉)

c

}
.

Here c is a fixed and known scale parameter. The link function Φ : R → R is a strictly

convex function. GLM model includes many important models as special cases. For

example, if c = σ2, Φ(h) = h2/2 and yt ∈ R, GLM covers the ordinary linear regression.

If c = 1, Φ(h) = log(1 + exp(h)) and yt ∈ {0, 1}, it covers the logistic regression.

In the existing studies, e.g. in [8], it is assumed that there is no change in the under-

lying model, and hence β∗t is assumed to be a constant for all t. We will focus on GLM

with change-points, i.e., we assume β∗t is not constant anymore. In particular, similar to

Section 3.1, we assume that the parameter β∗t is piece-wise constant with respect to t.

More specifically, let K∗ denote the number of changes in β∗t , then for k ∈ [K∗],

β∗t = α∗k, for t ∈ [t∗k−1, t
∗
k), and α∗k 6= α∗k−1,

where t∗0 := 1 and t∗K∗+1 := n+ 1 by convention. Following the same approach as in the

previous sections, we let θt := βt − βt−1, and let θ∗ ∈ Rnp denote the vector formed by

concatenating each θ∗t , t = 1, · · · , n.

Again, since there are only K∗ change-points among n observations, hence in θ∗ only

K∗ + 1 subvectors are nonzero. Furthermore, as all subvectors are sparse vectors, θ∗

is a 2(K∗ + 1)s-sparse vector indicating that θ∗ has a unique sparse structure: θ∗ has

group-wise sparsity and sparsity within each group.

Using the same linear transformation and follow the same reasoning in Section 2.1,

51

we propose to perform the change-points estimation problem by solving

θ̂ = argmin
θ∈Rnp

1

n

n∑
t=1

(−yt〈θ, x̃t〉+ Φ (〈θ, x̃t〉))︸ ︷︷ ︸
L(θ)

+λn

[
γ

n∑
t=1

‖θt‖2 + (1− γ)‖θ‖1

]
︸ ︷︷ ︸

R(θ)

 ,

(3.16)

in which x̃t is the tth row of X̃ as defined in (2.4).

Similar to the linear model, from the optimal solution θ̂, we can then obtain the es-

timated set of change-points T̂K̂ := {t̂k, k ∈ [K̂]}, the estimated coefficients {α̂k, k ∈

[K̂ + 1]} of each region.

Similar to the previous section, we define

δn :=
64

µlJ2
min

(
µ

72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗) + 6λnR(θ∗)

)
. (3.17)

In all results presented in this subsection, we assume that A1-A2 and B1 hold and we

choose

2R∗ (∇L(θ∗)) ≤ λn ≤
1

6R(θ∗)

(
Imin

2n

µlJ2
min

64
− µ 72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)

)
,(3.18)

which implies that δn < Imin

2n
. Under these assumptions, the following propositions show

that the results obtained for the linear regression case also hold for GLM.

Proposition 13. If K̂ = K∗, then we have

max1≤k≤K∗ |t̂k − t∗k|
n

≤ δn. (3.19)

52

Proposition 14. If K̂ = K∗, then for k ∈ [K∗ + 1],

‖α̂k −α∗k‖2
2 ≤

32n

µl (Imin − 2nδn)

(
µ

72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗) + 6λnR(θ∗)

)
.

(3.20)

Proposition 15.

K̂ ≥ K∗. (3.21)

Proposition 16.

ε
(
T̂K̂ ||T∗

)
n

≤ δn. (3.22)

Proposition 17. Tisolate does not occur.

Proposition 18 (Bounds for long intervals). For i ∈ Υ(Imin/10)

‖α̂i −α∗k(i)‖2
2 ≤

320n

µlImin

(
µ

72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗) + 6λnR(θ∗)

)
. (3.23)

3.4 Numerical Simulation

Our simulation is based on Algorithm in Chapter 2, which has an R implementation in

the package ChangePointCalc [77].

We first test our algorithm on synthesised data for the ordinary linear regression. We

set n = 800, p = 200 and s = 10. In particular, we set the first s coefficients to be

nonzero in each βt. In our simulation, we set γ = 0.927, n = 800, K∗ = 3, and the

real change-points are at 101, 301, 701. For each α∗k, k = 1, · · · , 4, the first s coefficients

are drawn independently from uniform distribution U [−2, 2] and others are set to zero.

53

Each xt,j ∼ N (0, 1), and the noise εt ∼ N (0, 0.01). In Figure 3.2, x-axis represents the

locations from 1 to n, and y-axis represents whether the data point at each location is an

estimated change-point (1 means that it is an estimated change-point, i.e., θ̂t 6= 0, while

0 means θ̂t = 0.).

0

1

1 101 201 301 401 501 601 701 801
Number of Observations

C
ha

ng
e−

po
in

t

Figure 3.2: Change-points locations estimation using SGL for ordinary linear regression,

λn = 0.009125759.

In Figure 3.3, y-axis represents the l2-norm of each θ̂t, t ∈ [n].

54

0

1000

2000

3000

1 101 201 301 401 501 601 701 801
Number of Observations

||θ
i|| 2

Figure 3.3: l2-norm of θ̂t, t ∈ [n] for ordinary linear regression, λn = 0.009125759.

From the simulation results above, we can see that there is at least one estimated

change-point around each true change-point. Furthermore, the change-points form clus-

ters around true change-points. Hence it is easy to identify the number of change-points

and the intervals between change-points from visualization results. These simulation re-

sults are consistent with our theoretic results obtained.

Next, we show our simulation results for logistics regression. The basic setting is

the same as the simulation for the ordinary linear regression case. The only difference

is that n = 1000 and the true change-points are at 401, 701. From Figures 3.4 and 3.5,

we again can observe that there is at least one estimated change-point around each true

change-point, and the change-points form clusters around true change-points. These fig-

ures confirm our conclusion that the proposed SGL based approach is also effective in

estimating multiple change-points for GLM.

55

0

1

1 101 201 301 401 501 601 701 801 901 1001
Number of Observations

C
ha

ng
e−

po
in

t

Figure 3.4: Change-points locations estimation using SGL for logistic regression, λn =

0.002369588.

56

0

30

60

90

120

1 101 201 301 401 501 601 701 801 901 1001
Number of Observations

||θ
i|| 2

Figure 3.5: l2-norm of θ̂t, t ∈ [n] for logistic regression, λn = 0.002369588.

57

Chapter 4

Speeding Up Change-points Inference

In this chapter, we design distributed algorithms to speed up change-point inference. In

Section 4.1, we describe the problem setup, the challenges with existing approach and

our proposed inexact update algorithm. In Section 4.2, we provide several analytical re-

sults. In Section 4.3, we test our algorithms using different datasets with various machine

learning algorithms.

4.1 Algorithm

In Chapter 2 and Chapter 3, we propose to solve the change-points estimation problem us-

ing SGL. However, solving SGL with large volume of data (large n) or high dimensional

data (large p) requires huge computation power. This motivates us to utilize distributed

learning techniques to speed up change-points inference. Notice that the SGL problem

can be written in the form of

min
β∈Rd

ϕ(β) := L(β) +R(β), (4.1)

58

in which L(β) is the loss function that measures how well the parameters β fit the data,

andR(β) is the penalty function that measures model complexity.

Notice that (4.1) represents a wide class of machine learning problems including SGL.

Different forms of L and R lead to different popular machine learning algorithms. The

particular choice of L andR in (3.1) leads to SGL which is used for change-points infer-

ence. Besides the choice of L and R in (3.1), there are other forms of L and R. Other

forms of L andR are summarized in Table 1.1.

The optimization problem (4.1) has been extensively investigated in the centralized

setting where all data is stored in one machine, e.g. in [8,78] and references therein. In this

chapter, to speed up the computation, we consider a distributed setup with m machines,

each of which stores only part of the dataset. We focus on the challenging feature partition

scenario where the whole dataset is partitioned by features. Let [X[1],X[2], · · · ,X[m]] be a

column-wise partition of the dataset. Machine i stores X[i] ∈ Rn×di and hence
∑m

i=1 di =

d. Let [β[1]T ,β[2]T , · · · ,β[m]T]T ∈ Rd be the parameter vector of the corresponding

partition with β[i] ∈ Rdi . Let x[i,j] ∈ Rdi and X[i] := [x[i,1],x[i,2], · · · ,x[i,n]]T . Figure 4.1

illustrates the scenario considered along with notation mentioned above.

· · · · · ·X[1] X[i] X[m]

x[i,n]T

x[i,1]T

d features

n
sa
m
p
le
s

di

Figure 4.1: Feature partitioned data matrix X for m machines with
∑m

i=1 di = d.

To facilitate the analysis, we make following assumptions that are typically made in

59

the literature, for example see [35, 73, 74].

Assumption 1. L is strongly convex andR is convex.

Remark 13. Assumption 1 implies that

L(u) ≥ L(v) + 〈∇L(v),u− v〉+
µL
2
‖u− v‖2, (4.2)

R(u) ≥ R(v) + 〈s(v),u− v〉, (4.3)

where s(v) ∈ ∂R(v) and µL > 0 with ∂R(v) being the subgradient ofR at v.

Assumption 2. The loss function L is differentiable and there exists a positive semidefi-

nite matrix M such that

L(β + h) ≤ L(β) + 〈∇L(β),h〉+
1

2
hTMh. (4.4)

Remark 14. Let the largest eigenvalue of M be upper bounded by L. Then (4.4) implies

L(β + h) ≤ L(β) + 〈∇L(β),h〉+
L

2
‖h‖2. (4.5)

(4.4) and (4.5) are equivalent since (4.5) can be written into form of (4.4) by taking

M = LI. This assumption coupled with Assumption 1 implies that the derivative of the

loss function is Lipschitz continuous [79, Theorem 2.1.5]:

‖∇L(β + h)−∇L(β)‖ ≤ L‖h‖. (4.6)

Remark 15. Combining (4.2) and (4.4), we have µL ≤ L.

60

Assumption 3. The penalty function is separable for each machine

R(β) =
m∑
i=1

Ri(β
[i]), (4.7)

whereRi is a Rdi → R function.

Under these assumptions, in [35], the authors propose a distributed coordinate descent

algorithm to solve problem (4.1). For reader’s convinence, we list the algorithm proposed

[35] in Algorithm 5 below with modified notation. In this algorithm, we use βk to denote

the parameter at kth iteration, βlk to denote the lth element in vector βk, ∇L(βk)l to

denote the lth element of the gradient and Mll to denote the lth element of the diagonal

of M.

Algorithm 5 Distributed Coordinate Descent of [35]
1: Input: Step-size parameter γ > 0; τ to control the number of coordinates to optimize

at each iteration

2: k = 0

3: while a stopping condition is not satisfied do

4: for each machine i in parallel do do

5: Pick a random set of coordinates Ŝi of X[i] with cardinality |Ŝi| = τ

6: for each feature index l in Ŝi do

7: βlk+1 = βlk + argminδ
[
∇L(βk)lδ + Mllγ

2
δ2 +Rl(β

l
k + δ)

]
8: end for

9: end for

10: k = k + 1

11: end while

This algorithm depends on the lth element of the gradient∇L(βk). However, it should

be noted that the gradient at each iteration cannot be computed locally by each machine.

61

For example, if the loss function is residual sum of squares, then the gradient at each

machine actually involves data at all other machines. In particular, in this case, the loss

function is

L(β) =
1

2
‖y −Xβ‖2 =

1

2

∥∥∥∥∥y −
m∑
i=1

X[i]β[i]

∥∥∥∥∥
2

. (4.8)

For machine i∗, its local gradient vector is

∇L(β[i∗]) = −X[i∗]T

(
y −

m∑
i=1

X[i]β[i]

)
. (4.9)

In (4.9), the gradient vector for machine i∗ is related to not only its local dataset X[i∗], but

also datasets at all other machines. If at each iteration, we update βk, then the commu-

nication cost is huge since we need to transfer almost the whole dataset at each iteration

to compute ∇L(β[i∗]). In particular, each machine needs to sends X[i] and β[i] so that

each machine can compute ∇L(β[i]). Another alternative is to update
∑m

i=1 X[i]β[i] as

in [35]. At each iteration, machine i update X[i]β[i] instead of β[i]. Even if we update∑m
i=1 X[i]β[i], the amount of data transmitted at each iteration by each machine is n since

X[i]β[i] is a vector of length n. Hence, the communication cost is too high if we calcu-

late the exact gradient vector at each iteration. Motivated by this observation, we focus

on designing distributed coordinate gradient descent algorithms with low communication

overhead.

To reduce the communication costs associated with the distributed coordinate descent

algorithms, we design Algorithm 6. In Algorithm 6, we try to reduce the communication

cost by only calculating the exact gradient sparsely (we will discuss when to calculate

the exact update in the sequel). In the iterations when exact gradients are not computed,

we will use the most recently calculated gradient to compute next update. As the result,

instead of using the exact gradients ∇L(βk) at each iteration, we will use an approxima-

tion of the gradient∇L(βk) + ek, where ek is the approximation error vector, to compute

62

next update. Our main idea is to carefully select the time instants at which exact gradient

are computed so that the approximation error vectors caused by the sparsely calculated

gradients are well controlled and the algorithm still converges.

Now, we provide more details about Algorithm 6. Lines 3-21 are the main body of the

algorithm and can be split into two parts. Lines 4-10 form the exact update part and lines

11-20 form the inexact update part. The inputs of the algorithm are the initial starting

point β0 and a nonnegative sequence {εk} that will be used as thresholds to determine

whether we should perform exact update or inexact update at iteration k.

Line 4 specifies the conditions when we will enter the exact update part. In particu-

lar, for the first iteration, i.e., k = 0 we perform exact update. For iterations k ≥ 1, we

perform exact updates if the distance between the current parameter vector and the previ-

ous parameter vector is large (exceed the threshold εk). The main intuition is that a large

distance between the current parameter vector and the previous parameter vector implies

that the objective function is changing fast in the neighborhood of the current parameter

vector, and hence we should calculate the exact gradient. Notice in line 4 of Algorithm 6,

we need to compute ‖βk−βk−1‖ to judge whether it exceeds the threshold εk at iteration

k. To compute this, each machine i can compute and transmit a scalar ‖β[i]
k − β

[i]
k−1‖ and

we have ‖βk − βk−1‖ =
∑m

i=1 ‖β
[i]
k − β

[i]
k−1‖. The amount of communication for each

machine is 1 for the step. Furthermore, we should note that the algorithm requires to

memorize the βk−1 ∈ Rd or β[i]
k−1 ∈ Rdi for each machine i to accomplish this step. Line

5 updates the exact gradient vector which requires communication whose amount of data

transferred is n from the example in (4.8) and (4.9). Line 6-10 perform the classic exact

63

update. For an exact iteration

βk
(a)
= argmin

β∈Rd
〈∇L(β),β − βk−1〉+

L

2
‖β − βk−1‖2 +R(β)

= argmin
β∈Rd

1

L
R(β) +

1

2

∥∥∥∥β − (βk−1 −
1

L
∇L(βk−1)

)∥∥∥∥2

(b)
= prox 1

L
R

(
βk−1 −

1

L
∇L(βk−1)

)
,

where (a) is based on
∑m

i=1〈∇L(β[i]),β[i]−β[i]
k−1〉 = 〈∇L(β),β−βk−1〉 and Assumption

3, and in (b) we use the definition of proximity operator proxf (v) = argminw f(w) +

1
2
‖w − v‖2.

As illustrated in Line 11, for k ≥ 1, if ‖βk − βk−1‖ ≤ εk, then we enter the inexact

update part. The main idea is that a small distance between the current parameter vector

and the previous parameter vector implies that the value of the objective function do

not change dramatically in the neighborhood of the current parameter vector, and hence

we can use previously calculated gradient to compute the next update. In line 12, we

take the βfixed = βk−1 to utilize the condition in line 11 that βk is very close to βk−1.

Combining the condition for the while loop in line 13 and the fact that this is the first

step to enter the while loop, we know that (k − 1)th iteration is the exact iteration, which

means∇L(βfixed) is already computed in the exact update part. It should be noticed that

∇L(βfixed) should be stored in machines. To accomplish this, each machine i can store

∇L(β
[i]
k−1) ∈ Rdi . In line 13-18, we continuously use ∇L(βfixed) as the approximation

gradient vector instead of computing the exact one until it can no longer be used. Lines

14-17 perform update as in line 6-10. The only difference here is that the approximated

64

gradient vector∇L(βfixed) is used. In these inexact iterations, we have

βk = prox 1
L
R

(
βk−1 −

1

L
∇L(βfixed)

)
= prox 1

L
R

(
βk−1 −

1

L
∇L(βk−1) + ek−1

)
,

in which ek−1 = 1
L

(
∇L(βk−1)−∇L(βfixed)

)
. So we actually perform a proximal gra-

dient method at each step, the only difference is that we introduce error in inexact itera-

tions.

We will discuss in detail how to select the sequence {εk} in Section 4.2. Informally,

to guarantee the convergence of the algorithm, we choose {εk} to be summable. Further-

more, we should select the sequence {‖εk‖} to be diminishing as well. This selection

ensures that, as we get closer to the optimal solution, the error introduced by the inexact

update also gets smaller. Thus, this selection will prevent injecting a large error into the

gradient vector when we get to the close neighborhood of the optimal solution, as a large

gradient error will lead to large deviation in the result that would make it difficult for the

algorithm to converge.

65

Algorithm 6 Distributed Coordinate Descent Algorithm with Inexact Update
1: input an initial point β0 and a nonnegative sequence {εk}.

2: k = 0.

3: while a stopping condition is not satisfied do

4: if k == 0 or ‖βk − βk−1‖ > εk then . need communication, amount of m

5: compute exact value of∇L(βk) . need communication

6: for each machine i in parallel do do

7: h[i]∗ = argminh[i]∈Rdi 〈∇L(β
[i]
k),h[i]〉+ L

2
‖h[i]‖2 +Ri(β

[i]
k + h[i]). .

update using exact gradient

8: β
[i]
k+1 = β

[i]
k + h[i]∗

9: end for

10: k = k + 1

11: else

12: βfixed = βk−1 . ∇L(βk−1) is known, no communication

13: while stopping condition is not satisfied and ‖βk − βfixed‖ ≤ εk do

14: for each machine i in parallel do do

15: h[i]∗ = argminh[i]∈Rdi 〈∇L(β
[i]
fixed),h

[i]〉 + L
2
‖h[i]‖2 +Ri(β

[i]
k + h[i]).

. update using inexact gradient

16: β
[i]
k+1 = β

[i]
k + h[i]∗

17: end for

18: k = k + 1

19: end while

20: end if

21: end while

66

4.2 Performance Analysis

In this section, we analyze the convergence rate and communication cost of Algorithm 6.

First, we show two propositions about the general setting of threshold sequence {εk}

to perform inexact updates.

Proposition 19. If we update using some approximate gradient ∇L(βfixed) instead of

exact gradient∇L(βk), then we have

1. If ‖βk−βfixed‖‖βk+1−βk‖ ≤
1
2
, we have ϕ(βk+1)− ϕ(βk) ≤ 0;

2. If ‖βk−βfixed‖‖βk+1−βk‖ ≤
µL
5L

, we have

ϕ(βk+1)− ϕ(β∗) +
1

2

(
L− 3

5
µL

)∥∥βk+1 − β∗
∥∥2

≤
(

5L− 4µL
5L− 3µL

)(
1

2

(
L− 3

5
µL

)
‖βk − β∗‖2

)
. (4.10)

Proof. Please see Appendix A.12.

After introducing inexactness in the gradient used to calculate the next update, gen-

erally, there is no guarantee for the convergence of algorithm if the inexactness is not

carefully selected or controlled. Proposition 19 provides metrics that can be used in the

algorithm to guarantee that the value of the objective function converges to the minimum.

In particular, condition 1) of Proposition 19 gives a sufficient condition for the value of the

objective function to be non-increasing for two consecutive iterations. The condition 2) of

Proposition 19 is strict if µL
5L
<< 1. However, it provides an exponential convergence rate

which is much larger than 1) provides. To check the condition for the conditions, we need

to compute the norms ‖βk −βfixed‖ and ‖βk+1−βk‖ which requires communication of

a scalar for each machine and is much less than n for computing exact gradient vector.

Proposition 19 provides a way for us to judge if the current inexact iteration is good or

67

not. If we are more conservative, after each inexact update, we can check whether or not

the conditions in Proposition 19 hold. If none of the conditions holds, we can give up the

results of the current inexact iteration and go back to the exact iteration.

Next, we give an explicit value sequence of {εk} and provide two propositions about

the convergence rate and an upper bound on the number of iterations at which exact update

is carried out. In the following, we analyze the basic version of our algorithm, namely

at each step we do not additionally use conditions in Proposition 1 to check whether the

current inexact update is good enough or not.

Proposition 20. LetD be an upper bound of ‖β0−β∗‖. If we set εk = µ0
L

(
1− µL−µ0

L

)k
D,

where 0 < µ0 < µL, then

‖βk − β∗‖ ≤
(

1− µL − µ0

L

)k
D. (4.11)

Proof. Please see Appendix A.13.

Proposition 20 shows that if we choose {εk} in this way, we can still achieve an ex-

ponential convergence rate even with inexact gradient updates, although the convergence

speed is slower than the algorithm without inexactness. The convergence rate also de-

pends on the estimated upper bound D and we want D to be as close to ‖β0 − β∗‖ as

possible.

Proposition 21. LetN be the number of iterations until convergence for Algorithm 6. The

number of exact update iterations (i.e., the iterations when large communication overhead

is needed) is at most

N
log
(
1− µL−µ0

L

)
log
(
1− µL

L

) .

Proof. Please see Appendix A.14.

68

Proposition 21 provides an upperbound on the number of iterations where exact up-

dates are carried out. If inexact updates are not introduced, the total number of iterations

k to achieve ‖βk −β∗‖ ≤ ε is log ε−log ‖β0−β∗‖
log(1−µL

L)
. If inexact updates are introduced, the cor-

responding number of iterations is log ε−logD

log(1−µL−µ0
L)

. Notice if D is a tight bound and we use

Proposition 21, then we find that the communication iterations are approximately equal.

However, this is a comparison of worst cases of these two methods. In practice, we find

that by introducing inexact updates is more communication efficient on average, which is

shown in the next section.

A natural question would arise: what if we cannot find a upper bound D? To answer

this question, we notice that ‖βk −β∗‖ converges to 0 as k →∞ without inexactness. If

we cannot find a upper bound D, then a lower bound is also fine with this method. Since

we can use exact iterations for first i rounds to make ‖βi − β∗‖ ≤ D. Then we can treat

this βi as the initial point β0.

4.3 Numerical Examples

In this section, we provide numerical examples to illustrate our results using synthesized

data and real data. We will preform our tests for different popular machine learning

algorithms: Lasso, SVM and logistic regression. For SVM, we use the smoothed hinge

loss. Furthermore, for SVM and logistic regression, we choose `1 norm as the penalty

function. Hence, throughout this section, the penalty function is R(β) = λ‖β‖1 with

λ = 0.001.

We compare our algorithm with the case in which the exact update is calculated at

every iteration, which is equivalent to set εk = 0 for all k in Algorithm 6. For each of

Lasso, SVM and logistic regression, we test Algorithm 6 using both synthesized data and

real data respectively.

69

For synthesized data simulation, we use the error sequence {εk} stated in Proposition

20. The data matrix X is generated randomly with fixed known maximal and minimal

eigenvalues of XTX. The vector y is generated by linear regression for Lasso, and y con-

sists of class labels ({+1,−1}) for SVM and logistic regression. For Lasso and SVM with

the smoothed hinge loss, (4.4) holds for their loss functions with M = XTX. For logistic

regression, (4.4) holds with M = 1
4
XTX. Let λmax(·) and λmin(·) denote the maximal and

minimal eigenvalue of M respectively. So for Lasso and SVM with smoothed hinge loss,

L = 2λmax(XTX) and µL = 2λmin(XTX). For logistic regression, L = 1
2
λmax(XTX)

and µL = 1
2
λmin(XTX). We set L = 20000 and µL = 2, and we generate X with corre-

sponding fixed λmax(XTX) and λmin(XTX). For synthesized data, we set the number of

samples n = 2000 and the number of features d from 10 to 400 with increments being 10.

For simulations with real datasets, we use various datasets that are publicly available.

Since the eigenvalues of XTX are unknown and hard to compute for real datasets, the

error sequence in Proposition 20 can no longer be used. For practical concerns, we simply

set εk = (1 − α)τD, where τ is the number of inexact iterations so far. Here we set L

to be an easily computable value L
2

= ‖X‖2
F ≥ ‖XTX‖F ≥ λmax(XTX), where ‖ · ‖F

denotes the Frobenius norm of a matrix. We run simulations for different values of α to

show the performance of this error sequence in practice.

We run simulations in pseudo-distributed environment. In our simulations, we care

about the inexact communication iterations, which do not depend on the number of ma-

chines and the ways to partition the features of the dataset. Noticing that no matter how

many machines we have, the inexact communication iterations are the same; therefore we

run Algorithm 6 in one machine to simulate the case in a distributed cluster of machines.

70

4.3.1 Lasso

We first conduct our algorithm to solve Lasso, where L(β) = 1
2
‖y −Xβ‖2 andR(β) =

λ‖β‖1 with y ∈ Rn, X ∈ Rn×d and β ∈ Rd.

Synthesized data

0

2000

4000

6000

0 100 200 300 400
d

N
um

be
r

of
 E

xa
ct

 It
er

at
io

ns
 to

 C
on

ve
rg

e

Algorithm

All Exact Updates

With Inexact Updates

Synthesized Data n = 2000

Figure 4.2: Number of exact communication iterations for Lasso.

In our simulation, we compare Algorithm 6 with that of Algorithm 6 without inex-

actness (Algorithm 6 without Lines 11 - 18). Comparing Figure 4.2 and Figure 4.3, we

find that the values of the objective function after minimization by two methods are very

close. However, the proposed scheme reduces nearly half of the total communications.

Real data

Next, we test our algorithm on real dataset: Communities and Crime Unnormalized Data

Set [3]. The dataset contains statistics related to crime and social economics from 1990

US Census, 1990 US LEMAS survey and 1995 FBI UCR. The features contain statistics

71

0

200

400

600

0 1000 2000 3000
Number of Iterations

V
al

ue
 o

f o
bj

ec
tiv

e
fu

nc
tio

n

Algorithm

All Exact Updates

With Inexact Updates

Synthesized Data n = 2000

Figure 4.3: Values of the objective function versus the number of iterations for Lasso
d = 400.

such as community population, per capita income, police operating budget and violent

crime rate etc.

In this example, we study the murder rate (per 100K people) and try to build a sparse

linear regression model between the murder rate and all other numeric variable in the

dataset. Here we have n = 2215 and d = 103 (we omit the data features with missing

data).

The results computed by the algorithm without inexactness (with {εk = 0}) is listed

in Table 4.1. The results with inexactness are summarized in Table 4.2.

Table 4.1: Basic algorithm for crime data

Iterations Value of objective function

15300 681.4654

72

Table 4.2: Algorithm with inexact iterations for crime data

D α Total iterations Inexact iterations Value of objective function

1 10−1 15299 95 681.4653

1 10−2 15287 992 681.4674

1 10−3 13735 9965 681.6371

Table 4.2 shows that our scheme does not work well for α = 10−1 and works well for

α = 10−3. Although this thesis does not provide theoretical results for the cases where µL

is unknown or µL = 0, Table 4.2 shows that our scheme works for these case in practice.

It would be interesting to extend to these two cases in the theoretical analysis.

4.3.2 SVM

Next, we study a classification task and perform SVM. Here we use smoothed hinge loss

so that the loss function is differentiable as required in Assumption 2:

L(β) =
1

2

n∑
j=1

max{0, 1− yjxTj β}2.

Let ∇Lj(β) := max{0, 1− yjxTj β}2. We have

∇Lj(β) =

0, 1− yjxTj β ≤ 0

−2yj(1− yjxTj β)xj, 1− yjxTj β > 0

.

So

∇L(β) =
1

2

n∑
j=1

∇Lj(β).

We setR(β) = λ‖β‖1.

73

Synthesized Data

The data matrix X is generated as described in Section 4.3.1. We randomly generate a

coefficient vector β. We label yj as +1 if βTxj > 0 and−1 otherwise. These components

form the label vector y = [y1, . . . , yn].

2500

5000

7500

10000

0 100 200 300 400
d

N
um

be
r

of
 E

xa
ct

 It
er

at
io

ns
 to

 C
on

ve
rg

e

Algorithm

All Exact Updates

With Inexact Updates

Synthesized Data n = 2000

Figure 4.4: Number of exact communication iterations for SVM.

74

0

10

20

30

0 100 200 300 400
d

V
al

ue
 o

f o
bj

ec
tiv

e
fu

nc
tio

n
af

te
r

m
in

im
iz

at
io

n

Algorithm

All Exact Updates

With Inexact Updates

Synthesized Data n = 2000

Figure 4.5: Objective function value after minimization for SVM.

25

50

75

100

125

0 500 1000 1500 2000 2500
Number of Iterations

V
al

ue
 o

f o
bj

ec
tiv

e
fu

nc
tio

n

Algorithm

All Exact Updates

With Inexact Updates

Synthesized Data n = 2000

Figure 4.6: Value of the objective function with the number of dimension d = 200 for

SVM.

Figure 4.4 and Figure 4.5 show that the algorithm with inexactness outperforms the

75

benchmark. For Figure 4.6, the objective function is recorded every 100 iterations. The

exact method needs 2500 exact iterations while the inexact method needs 1270 exact it-

erations. It is worth mentioning that in some other simulations we run, we notice the

objective function value is increasing for some iterations. This is due to εk is large hence

the error introduced is too large for these iterations. Since εk is strictly decreasing, af-

ter enough number of iterations, the value of objective function jumps back abruptly to

normal. In total, it outperforms the benchmark.

Real data

The dataset we use here is a9a [2]. This dataset is also known as “Census Income”

dataset. It contains information of whether income exceeds 50K/year based on census

data. Features in the dataset include each person’s age, work type, education and capital-

gain etc. The dataset has n = 22696 samples and its dimension is d = 123. Our task here

is to classify data points with income greater than and less than 50K/year.

Table 4.3: Basic algorithm for a9a

Iterations Value of objective function

8773 6880.909

Table 4.4: Algorithm with inexact iterations for a9a

D α Total iterations Inexact iterations Value of objective function

1 10−1 8762 95 6880.902

1 10−2 8232 992 6880.685

1 10−3 22915 9960 6876.830

Different from the results obtained in the Communities and Crime Data Set example,

this comparison implies that α does not have a direct linear relationship with the actual

76

performance.

10000

11000

12000

13000

14000

0.01 0.10 1.00
α

E
xa

ct
 It

er
at

io
n

S
te

ps

Algorithm

All Exact Updates

With Inexact Updates

Exact Iteration Steps for different α

Figure 4.7: Number of iterations comparison for different values of α

Figure 4.7 further illustrates the impact of different α and it shows the best perfor-

mance is obtained when α is around 10−2. Figure 4.7 further shows that we would rather

choose a larger value for α. If α is large, then the error threshold decrease more quickly,

so it at least can guarantee its performance similar algorithm without inexactness. If α is

too small, the errors introduced would be too large. In practice, a large number of exact

iterations to correct those errors are needed before the stopping condition is met.

It is worth mentioning that the number of exact iterations near α = 10−3 of algorithm

with inexactness is large does not contradict Proposition 20 and Proposition 21 since here

we use a different sequence {εk} for practical concerns as described at the beginning of

this section.

77

4.3.3 Logistic Regression

Next, we use logistic regression to accomplish a classification task.

L(β) =
n∑
j=1

log(1 + exp(−yjβTxj)).

We have

∇L(β) =
n∑
j=1

− yj

1 + exp(yjβ
Txj)

xj.

Synthesized Data

Here we generate the data the same way as described in Section 4.3.2. Here we try to

build logistic regression between the data matrix X and the labels y.

4000

8000

12000

16000

0 100 200 300 400
d

N
um

be
r

of
 E

xa
ct

 It
er

at
io

ns
 to

 C
on

ve
rg

e

Algorithm

All Exact Updates

With Inexact Updates

Synthesized Data n = 2000

Figure 4.8: Number of exact communication iterations.

78

10

20

30

40

0 100 200 300 400
d

V
al

ue
 o

f o
bj

ec
tiv

e
fu

nc
tio

n
af

te
r

m
in

im
iz

at
io

n

Algorithm

All Exact Updates

With Inexact Updates

Synthesized Data n = 2000

Figure 4.9: Objective function value after minimization.

1195.0

1197.5

1200.0

1202.5

1205.0

100 200 300 400 500
Number of Iterations

V
al

ue
 o

f o
bj

ec
tiv

e
fu

nc
tio

n

Algorithm

All Exact Updates

With Inexact Updates

Synthesized Data n = 2000

Figure 4.10: Value of the objective function with the number of dimension d = 200.

Figure 4.8 and Figure 4.9 show that the algorithm with inexactness outperforms the

benchmark. For Figure 4.10, the objective function is recorded every 10 iterations. The

79

exact method needs 560 exact iterations while the inexact method needs 150 exact itera-

tions.

Real Data

Here we use the news20.binary dataset [2] with n = 19996 and d = 1355191. It is a

two-class dataset which consists of news from 20 groups. Each data sample corresponds

to one message taken from the news groups. Each data sample is a vector with binary

term frequency and then normalized to unit length. The positive class consists of the 10

news groups, and the negative class consists of the other 10 news groups. Here we try to

build logistic regression with `1 penalty for this dataset.

50000

55000

60000

65000

0.01 1.00
α

E
xa

ct
 It

er
at

io
n

S
te

ps

Algorithm

All Exact Updates

With Inexact Updates

Exact Iteration Steps for Different α

Figure 4.11: Number of exact communication iterations.

80

700

750

800

850

900

0.01 1.00
α

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

Algorithm

All Exact Updates

With Inexact Updates

Objective Function Value After Minimization

Figure 4.12: Objective function value after minimization.

Figure 4.11 shows the number of exact iterations for different values of α. Figure 4.12

shows the values of objective function at termination.

81

Chapter 5

Conclusion

This thesis has addressed the need for statistical inference in heterogeneous models. The

main contributions are transforming change-points estimation problem into an SGL prob-

lem, providing analytical results and designing efficient algorithm empowered by dis-

tributed learning.

The method presented and analyzed in Chapter 2 is for low dimensional models. We

have shown how to transform the high dimensional multiple change-points problem into a

SGL based problem. We have extended our results to high dimensional models in Chapter

3. In Chapter 3, we have also shown that our method can be extended to GLM, which

reveals our approach is applicable for a wide range of machine learning algorithms. In

both low dimensional and high dimensional settings, we have provided analytical results

to show our estimator is consistent. In both cases, we have provided numerical examples

to illustrate the analytical results obtained.

To further speed up change-points estimation using SGL, we have proposed a general

communication efficient scheme for distributed learning problem of feature partitioned

data, which can be used for SGL or other similar tasks. We have proposed an explicit

algorithm using inexact updates. We have shown analytical results of the algorithm which

82

reveals its desirable properties under mild assumptions. We further make worst case

comparisons. We have shown the efficiency of our proposed algorithm using numerical

simulation results.

83

Appendix A

Proof Details

A.1 Supporting Lemmas

In this section, we provide several supporting lemmas that will be repeatedly used in the

proof.

A.1.1 Lemma 4

First we state a lemma that will be used repeatedly in the proofs.

Lemma 4. Let {θ̂t, t = 1, 2, ..., n} be the solution of the problem (2.7), then

1

n

∥∥∥∥∥
n∑
i=t

xi(yi − xTi

i∑
j=1

θ̂j)

∥∥∥∥∥
2

≤ λn
2

(γ + (1− γ)
√
p) , ∀t. (A.1)

Proof. We use KKT condition to prove Lemma 4. To use this condition, we first compute

84

the gradient of f(θ) , −1
2
‖Y −XÃθ‖2

2 with respect to θ and obtain

∇f(θ) = ÃTXT (Y −XÃθ)

=

x1 x2 · · · xn

x2 · · · xn

· · · xn

xn

y1 − xT1
∑1

j=1 θj

y2 − xT2
∑2

j=1 θj

· · ·

yn − xTn
∑n

j=1 θj

=

∑n
i=1 xi(yi − xTi

∑i
j=1 θj)∑n

i=2 xi(yi − xTi
∑i

j=1 θj)

· · ·∑n
i=n xi(yi − xTi

∑i
j=1 θj)

.

Since θ =
(
θT1 , · · · ,θTt , · · · ,θTn

)T
, we can also write

∇f(θ) =

((
∂f

∂θ1

)T
, · · · ,

(
∂f

∂θt

)T
, · · · ,

(
∂f

∂θn

)T)T

As the result, we have
∂f

∂θt
=

n∑
i=t

xi(yi − xTi

i∑
j=1

θj). (A.2)

Let {θ̂t, t = 1, 2, · · · , n} be the solution of the problem (2.7). Using KKT conditions

and (A.2), we have for each t = 1, · · · , n

− 2

n

n∑
i=t

xi

(
yi − xTi

i∑
j=1

θ̂j

)
+ γλnut + (1− γ)λnvt = 0p×1, (A.3)

where ut and vt are subdifferentials of
∑n

i=1 ‖θ̂i‖2 and
∑n

i=1 ‖θ̂i‖1 at θ̂t respectively.

Note that we use subdifferentials here since ‖x‖1 and ‖x‖2 do not have derivatives at

x = 0p×1. The optimal condition is that zero vector belongs to the subdifferentials.

85

For ut we have,

ut =
θ̂t

‖θ̂t‖2

, for ‖θ̂t‖2 6= 0,

‖ut‖2 ≤ 1, for ‖θ̂t‖2 = 0.

For vt we have,

vt,m = sign(θ̂t,m), for 1 ≤ m ≤ p and θ̂t,m 6= 0,

|vt,m| ≤ 1, for 1 ≤ m ≤ p and θ̂t,m = 0,

where vt,m is the mth element of vt and θ̂t,m is the mth element of θ̂t.

From (A.3), we have

1

n

∥∥∥∥∥
n∑
i=t

xi

(
yi − xTi

i∑
j=1

θ̂j

)∥∥∥∥∥
2

=
λn
2
‖γut + (1− γ)vt‖2

≤ λn
2

(γ + (1− γ)
√
p) . (A.4)

Remark 16. As
∑i

j=1 θ̂j = β̂i, Lemma 4 can be rewritten as the following equivalent

form:

1

n

∥∥∥∥∥
n∑
i=t

xi

(
yi − xTi β̂i

)∥∥∥∥∥
2

≤ λn
2

(γ + (1− γ)
√
p) , ∀t. (A.5)

86

A.1.2 Lemma 5

Lemma 5. If A3 holds, then

max
1≤r<s≤n+1
s−r≥nδn

∥∥∥∥∥ 1

s− r
s−1∑
t=r

xtεt

∥∥∥∥∥
2

= oP (Jmin). (A.6)

Proof. For a given constant c > 0,

P

 max
1≤r<s≤n+1
s−r≥nδn

∥∥∥∥∥ 1

s− r
s−1∑
t=r

xtεt

∥∥∥∥∥
2

≥ cJmin

≤

∑
1≤r<s≤n+1
s−r≥nδn

P

(∥∥∥∥∥ 1

s− r
s−1∑
t=r

xtεt

∥∥∥∥∥
2

≥ cJmin

)

≤
∑

1≤r<s≤n+1
s−r≥nδn

P

(∥∥∥∥∥ 1

s− r
s−1∑
t=r

xtεt

∥∥∥∥∥
1

≥ cJmin

)
.

Define Qm = 1
s−r
∑s−1

t=r xt,mεi for 1 ≤ m ≤ p, so Qm ∼ N
(

0, σ2

(s−r)2
∑s−1

t=r x
2
t,m

)
.

∑
1≤r<s≤n+1
s−r≥nδn

P

(
p∑

m=1

|Qm| ≥ cJmin

)

≤
∑

1≤r<s≤n+1
s−r≥nδn

P

(
max

1≤m≤p
|Qm| ≥

cJmin
p

)

≤
∑

1≤r<s≤n+1
s−r≥nδn

p∑
m=1

P

(
|Qm| ≥

cJmin
p

)

≤
∑

1≤r<s≤n+1
s−r≥nδn

p∑
m=1

exp

(
− (cJmin/p)

2

2σ2

(s−r)2
∑s−1

t=r x
2
t,m

)
→ 0,

in which the last step holds as we have n2p terms in the summation and A3.

So max1≤r<s≤n+1
s−r≥nδn

∥∥ 1
s−r
∑r−1

t=s xtεt
∥∥

2
= oP (Jmin).

87

Lemma 5 implies that, under A3, the interference of noise is negligible compared with

Jmin as n→∞.

A.2 Proof of Proposition 1

The proof follows closely from the proof of Theorem 3.1(i) in [40] and the proof of

Proposition 3 in [39].

Since P (max1≤k≤K∗ |t̂k − t∗k| > nδn)≤ ∑K∗

k=1 P (|t̂k − t∗k| > nδn), it suffices to

show P
(
|t̂k − t∗k| > nδn

)
→ 0 for each k. Define An,k =

{
|t̂k − t∗k| ≥ nδn

}
, Cn ={

max0≤k≤K∗ |t̂k − t∗k| < Imin/2
}

, it suffices to show that P (An,k ∩ Cn) → 0 and that

P (An,k ∩ C̄n)→ 0. This can be proved by repeatedly using Lemma 4 and Lemma 5.

A.2.1 Prove: P (An,k ∩ Cn)→ 0.

Define A+
n,k = {t∗k − t̂k ≥ nδn}, A−n,k = {t̂k − t∗k ≥ nδn}, it suffices to prove P (A+

n,k ∩

Cn)→ 0 and P (A−n,k ∩ Cn)→ 0.

Let us first prove P (A+
n,k ∩ Cn) → 0. On the event A+

n,k ∩ Cn, we have t∗k−1 < t̂k <

t∗k+1, for all k ∈ {1, 2, ..., K∗}.

Let λ̃n denote λn
(
γ + (1− γ)

√
p
)
. Applying (A.1), with t = t∗k and t = t̂k respec-

tively, gives 1
n
‖∑n

t=t∗k
xt(yt − xTt β̂t)‖2 ≤ λ̃n

2
and 1

n
‖∑n

t=t̂k
xt(yt − xTt β̂t)‖2 ≤ λ̃n

2
.

Using triangle inequality, we have

λ̃n ≥
1

n

∥∥∥∥∥∥
t∗k−1∑
t=t̂k

xt

(
yt − xTt β̂t

)∥∥∥∥∥∥
2

≥

∥∥∥∥∥∥ 1

n

t∗k−1∑
t=t̂k

xtx
T
t

(
α∗k+1 −α∗k

)∥∥∥∥∥∥
2

−

∥∥∥∥∥∥ 1

n

t∗k−1∑
t=t̂k

xtx
T
t

(
α̂k+1 −α∗k+1

)∥∥∥∥∥∥
2

−

∥∥∥∥∥∥ 1

n

t∗k−1∑
t=t̂k

xtεt

∥∥∥∥∥∥
2

≡ Rn,1 −Rn,2 −Rn,3.

88

Then we apply a technique that we will use frequently in the later part of proof,

P (A+
n,k ∩ Cn)

= P

(
A+
n,k ∩ Cn ∩

{
λ̃n ≥

1

3
Rn,1

})
+ P

(
A+
n,k ∩ Cn ∩

{
λ̃n <

1

3
Rn,1

})
≤ P

(
A+
n,k ∩ Cn ∩

{
λ̃n ≥

1

3
Rn,1

})
+ P

(
A+
n,k ∩ Cn ∩

{
2

3
Rn,1 < Rn,2 +Rn,3

})
≤ P

(
A+
n,k ∩ Cn ∩

{
λ̃n ≥

1

3
Rn,1

})
+P

(
A+
n,k ∩ Cn ∩

{
2

3
Rn,1 < Rn,2 +Rn,3

}
∩
{
Rn,2 ≥

1

3
Rn,1

})
+P

(
A+
n,k ∩ Cn ∩

{
2

3
Rn,1 < Rn,2 +Rn,3

}
∩
{
Rn,2 <

1

3
Rn,1

})
≤ P

(
A+
n,k ∩ Cn ∩

{
λ̃n ≥

1

3
Rn,1

})
+ P

(
A+
n,k ∩ Cn ∩

{
Rn,2 ≥

1

3
Rn,1

})
+P

(
A+
n,k ∩ Cn ∩

{
Rn,3 ≥

1

3
Rn,1

})
.

For the first term,

P

(
A+
n,k ∩ Cn ∩

{
λ̃n ≥

1

3
Rn,1

})
≤ P

(
A+
n,k ∩

{
λ̃n ≥

1

3
Rn,1

})

= P

{t∗k − t̂k ≥ nδn
}
∩

 3nλ̃n

t∗k − t̂k
≥

∥∥∥∥∥∥ 1

t∗k − t̂k

t∗k−1∑
t=t̂k

xtx
T
t (α∗k+1 −α∗k)

∥∥∥∥∥∥
2

≤ P

({
t∗k − t̂k ≥ nδn

}
∩
{

3λ̃n
Jminδn

≥ µ
1n,k

})
,

where the last step is due to the fact that ‖AB‖2 ≥ µmin(A)‖B‖2 for symmetric positive

semidefinite matrix A. And µ
1n,k

= µmin

(
1

t∗k−t̂k
∑t∗k−1

t=t̂k
xtx

T
t

)
. From Assumption 1 we

know that µ
1n,k

is lower bounded by l > 0 as n → ∞, and we choose λn such that

λn
Jminδn

→ 0, as n→∞, we have that P
(
A+
n,k ∩ Cn ∩

{
λ̃n ≥ 1

3
Rn,1

})
→ 0 as n→∞.

89

For the second term,

P

(
A+
n,k ∩ Cn ∩

{
Rn,2 ≥

1

3
Rn,1

})
≤ P

(
A+
n,k ∩ Cn ∩

{
µ̄1n,k‖α̂k+1 −α∗k+1‖2 ≥

1

3
µ

1n,k
‖α∗k+1 −α∗k‖2

})
,

where µ̄1n,k = µmax

(
1

t∗k−t̂k
∑t∗k−1

t=t̂k
xtx

T
t

)
. Note that in the time interval t ∈ [t∗k, (t

∗
k +

t∗k+1)/2− 1], β̂t = α̂k+1 and β∗t = α∗k+1. Using Lemma 4, we have

λ̃n ≥

∥∥∥∥∥∥ 1

n

(t∗k+t∗k+1)/2−1∑
t=t∗k

xtx
T
t (α̂k+1 −α∗k+1)

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥ 1

n

(t∗k+t∗k+1)/2−1∑
t=t∗k

xtεt

∥∥∥∥∥∥
2

.

Since t∗k+1 − t∗k ≥ Imin, so we have

nλ̃n
(t∗k+1 − t∗k)/2

+

∥∥∥∥∥∥ 2

t∗k+1 − t∗k

(t∗k+t∗k+1)/2−1∑
t=t∗k

xtεt

∥∥∥∥∥∥
2

≥

∥∥∥∥∥∥ 2

t∗k+1 − t∗k

(t∗k+t∗k+1)/2−1∑
t=t∗k

xtx
T
t (α̂k+1 −α∗k+1)

∥∥∥∥∥∥
2

≥ µ
2n,k
‖α̂k+1 −α∗k+1‖2,

so ‖α̂k+1−α∗k+1‖2 ≤ µ−1
2n,k

[
2nλ̃n
Imin

+
∥∥∥ 2
t∗k+1−t∗k

∑(t∗k+t∗k+1)/2−1

t=t∗k
xtεt

∥∥∥
2

]
. Then we can bound

the second term by

P

(
Cn ∩

{
µ̄1n,k‖α̂k+1 −α∗k+1‖2 ≥

1

3
µ

1n,k
‖α∗k+1 −α∗k‖2

})
≤ P

(
2nλ̃n
Imin

≥ µ̄−1
1n,kµ1n,k

µ
2n,k

∥∥α∗k+1 −α∗k
∥∥

2
/6

)

+P

∥∥∥∥∥∥ 2

t∗k+1 − t∗k

(t∗k+t∗k+1)/2−1∑
t=t∗k

xtεt

∥∥∥∥∥∥
2

≥ µ̄−1
1n,kµ1n,k

µ
2n,k

∥∥α∗k+1 −α∗k
∥∥

2
/6

 .

90

From A2 and the way we choose λn, nλn
IminJmin

→ 0. From Lemma 5, and Imin/(nδn) →

∞, we have
∥∥∥ 2
t∗k+1−t∗k

∑(t∗k+t∗k+1)/2−1

t=t∗k
xtεt

∥∥∥
2

= oP (Jmin). So P
(
A+
n,k ∩ Cn ∩

{
Rn,2 ≥ 1

3
Rn,1

})
→

0.

For the third term,

P

(
A+
n,k ∩ Cn ∩

{
Rn,3 ≥

1

3
Rn,1

})

≤ P

A+
n,k ∩

∥∥∥∥∥∥ 1

t∗k − t̂k

t∗k−1∑
t=t̂k

xtεt

∥∥∥∥∥∥
2

≥ 1

3

∥∥∥∥∥∥ 1

t∗k − t̂k

t∗k−1∑
t=t̂k

xtx
T
t (α∗k+1 −α∗k)

∥∥∥∥∥∥
2

≤ P

A+
n,k ∩

∥∥∥∥∥∥ 1

t∗k − t̂k

t∗k−1∑
t=t̂k

xtεt

∥∥∥∥∥∥
2

≥ 1

3
µ

1n,k
Jmin

→ 0,

since µ
1n,k

Jmin ≥ l > 0 and ‖ 1
t∗k−t̂k

∑t∗k−1

t=t̂k
xtεt‖2 = oP (Jmin) in A+

n,k.

The proof for P (A−n,k ∩ Cn) → 0 follows from similar steps. Thus we prove that

P (An,k ∩ Cn)→ 0 as n goes to infinity.

A.2.2 Prove: P (An,k ∩ C̄n)→ 0.

It suffices to prove that P (A+
n,k ∩ C̄n) → 0 and P (A−n,k ∩ C̄n) → 0. We first prove

P (A+
n,k ∩ C̄n)→ 0 and the other case can be proved similarly.

Define

D(l)
n = {∃k ∈ {1, ..., K∗}, t̂k ≤ t∗k−1} ∩ C̄n,

D(m)
n = {∀k ∈ {1, ..., K∗}, t∗k−1 < t̂k < t∗k+1} ∩ C̄n,

D(l)
n = {∃k ∈ {1, ..., K∗}, t̂k ≥ t∗k+1} ∩ C̄n,

then P (A+
n,k ∩ C̄n) = P (A+

n,k ∩D
(l)
n) + P (A+

n,k ∩D
(m)
n) + P (A+

n,k ∩D
(r)
n).

91

Here we only consider the case P (A+
n,k ∩ D

(m)
n), and the proof for other two cases

follows similarly.

P (A+
n,k ∩D(m)

n)

= P (A+
n,k ∩ {t̂k+1 − t∗k ≥ Imin/2} ∩D(m)

n)

+P (A+
n,k ∩ {t̂k+1 − t∗k < Imin/2} ∩D(m)

n)

≤ P (A+
n,k ∩ {t̂k+1 − t∗k ≥ Imin/2} ∩D(m)

n)

+P (A+
n,k ∩ {t∗k+1 − t̂k+1 ≥ Imin/2} ∩D(m)

n),

where the last step is from t∗k+1 − t̂k+1 = (t∗k+1 − t∗k) − (t̂k+1 − t∗k) ≥ Imin − Imin/2 =

Imin/2. Notice that

{
A+
n,k ∩

{
t∗k+1 − t̂k+1 ≥ Imin/2

}
∩D(m)

n

}
⊂ ∪K∗−1

i=k+1

({
t∗i − t̂i ≥ Imin/2

}
∩
{
t̂i+1 − t∗i ≥ Imin/2

}
∩D(m)

n

)
,

we have

P (A+
n,k ∩D(m)

n)

≤ P (A+
n,k ∩ {t̂k+1 − t∗k ≥ Imin/2} ∩D(m)

n)

+
K∗−1∑
i=k+1

P
({
t∗i − t̂i ≥ Imin/2

}
∩
{
t̂i+1 − t∗i ≥ Imin/2

}
∩D(m)

n

)
. (A.7)

To bound the first term in (A.7), we apply Lemma 4 with t = t̂k and t = t∗k respectively,

so 1
n

∥∥∥∑n
i=t̂k

xi(yi − xi
T β̂i)

∥∥∥
2
≤ λ̃n

2
and 1

n

∥∥∥∑n
i=t∗k

xi(yi − xi
T β̂i)

∥∥∥
2
≤ λ̃n

2
. Using trian-

gle inequality, we have λ̃n
t∗k−t̂k

≥ 1
t∗k−t̂k
‖ −∑t∗k−1

i=t̂k
xixi

T (α̂k+1 − α∗
k) +

∑t∗k−1

i=t̂k
xiεi‖2 ≥

92

µ
1n,k
‖α̂k+1 −α∗

k‖2 − ‖ 1
t∗k−t̂k

∑t∗k−1

i=t̂k
xiεi‖2. So we have

‖α̂k+1 −α∗
k‖2

≤ µ−1

1n,k

 nλ̃n

t∗k − t̂k
+

∥∥∥∥∥∥ 1

t∗k − t̂k

t∗k−1∑
i=t̂k

xiεi

∥∥∥∥∥∥
2

 . (A.8)

Following the same procedure, we apply Lemma 4 with t = t̂k+1 and t = t∗k respec-

tively, we have

‖α̂k+1 −α∗
k+1‖2

≤ µ−1

3n,k

 nλ̃n

t̂k+1 − t∗k
+

∥∥∥∥∥∥ 1

t̂k+1 − t∗k

t̂k+1−1∑
i=t∗k

xiεi

∥∥∥∥∥∥
2

 , (A.9)

where µ−1
3n,k

= µmin

(
1

t̂k+1−t∗k

∑t̂k+1−1
i=t∗k

xixi
T
)

. After combining (A.8) and (A.9), we con-

clude that the event

En,k =
{
‖α∗

k+1 −α∗
k‖2

≤ nλ̃n

(
µ−1

1n,k

1

t∗k − t̂k
+ µ−1

3n,k

1

t̂k+1 − t∗k

)

+µ−1

1n,k

∥∥∥∥∥∥ 1

t∗k − t̂k

t∗k−1∑
i=t̂k

xiεi

∥∥∥∥∥∥
2

+µ−1

3n,k

∥∥∥∥∥∥ 1

t̂k+1 − t∗k

t̂k+1−1∑
i=t∗k

xiεi

∥∥∥∥∥∥
2

occurs with probability one. So for the first term in (A.7), using the same technique as

93

above, we have

P
(
A+
n,k ∩

{
t̂k+1 − t∗k ≥ Imin/2

}
∩D(m)

n

)
= P

(
En,k ∩ A+

n,k ∩ {t̂k+1 − t∗k ≥ Imin/2} ∩D(m)
n

)
≤ P

(
En,k ∩

{
t∗k − t̂k ≥ nδn

}
∩
{
t̂k+1 − t∗k ≥ Imin/2

})
≤ P

(
(γ + (1− γ)

√
p)

(
nλnδ

−1
n µ−1

1n,k
+

2nλn
Imin

µ−1

3n,k

)
≥
∥∥α∗

k+1 −α∗
k

∥∥
2
/3

)

+P

µ−1

1n,k

∥∥∥∥∥∥ 1

t∗k − t̂k

t∗k−1∑
i=t̂k

xiεi

∥∥∥∥∥∥
2

≥
∥∥α∗

k+1 −α∗
k

∥∥
2
/3

 ∩ {t∗k − t̂k ≥ nδn
}

+P

µ−1

3n,k

∥∥∥∥∥∥ 1

t̂k+1 − t∗k

t̂k+1−1∑
i=t∗k

xiεi

∥∥∥∥∥∥
2

≥
∥∥α∗

k+1 −α∗
k

∥∥
2
/3

 ∩ {t̂k+1 − t∗k ≥ Imin/2
}

→ 0.

In the the last step above, the first term tends to zero since λn
Jminδn

→ 0 as n→∞ and

nλn
IminJmin

→ 0 from A1 and A3, the second tends to zero since
∥∥∥ 1
t∗k−t̂k

∑t∗k−1

i=t̂k
xiεi

∥∥∥
2

=

oP (Jmin) from Lemma 4, the third term tends to zero since Imin
nδn

→ ∞ and hence∥∥∥ 1
t̂k+1−t∗k

∑t̂k+1−1
i=t∗k

xiεi

∥∥∥
2

= oP (Jmin) from Lemma 5.

Using similar procedure, we can show that other terms in (A.7) go to zero.

Combining results in Appendix A.2.1 and Appendix A.2.2, we complete the proof.

A.3 Proof of Proposition 2

We prove this proposition by dividing the problem into four cases: 1) t̂k−1 < t∗k−1 and

t̂k < t∗k, 2) t∗k−1 ≤ t̂k−1 and t̂k < t∗k, 3)t̂k−1 < t∗k−1 and t∗k ≤ t̂k, 4) t∗k−1 ≤ t̂k−1 and

t∗k ≤ t̂k. We then prove each case by using Lemma 1 repeatedly. Here we only give the

proof for case 1) and other cases follow similarly.

94

t̂k−1

t∗k−1 t̂k

t∗k

Figure A.1: Case 1): t̂k−1 < t∗k−1 and t̂k < t∗k

Using Lemma 4 by setting t = t∗k−1 and t = t̂k respectively, we have

λ̃n ≥

∥∥∥∥∥∥ 1

n

t̂k−1∑
t=t∗k−1

xt(yt − xTt α̂k)

∥∥∥∥∥∥
2

≥ t̂k − t∗k−1

n

∥∥∥∥∥∥ 1

t̂k − t∗k−1

t̂k−1∑
t=t∗k−1

xtx
T
t (α∗k − α̂k)

∥∥∥∥∥∥
2

− t̂k − t
∗
k−1

n

∥∥∥∥∥∥ 1

t̂k − t∗k−1

t̂k−1∑
t=t∗k−1

xtεt

∥∥∥∥∥∥
2

.

By Proposition 1, we have t̂k − t∗k−1 ≥ (t∗k − t∗k−1) − nδn ≥ Imin − nδn, and by A2,

t̂k − t∗k−1 > nδn as n → ∞. Then using A1, Lemma 5, and the fact that Ik − nδn ≤

t̂k−t∗k−1 ≤ Ik, where Ik is defined as t∗k−t∗k−1 and ‖AB‖2 ≥ µmin(A)‖B‖2 for symmetric

positive semidefinite matrix A, we have

λ̃n ≥
t̂k − t∗k−1

n
l ‖α∗k − α̂k‖2 −

t̂k − t∗k−1

n
oP (Jmin)

≥ Ik − nδn
n

l ‖α∗k − α̂k‖2 −
Ik
n
oP (Jmin).

So we have

‖α∗k − α̂k‖2 ≤
nλ̃n + IkoP (Jmin)

(Ik − nδn)l
≤ nλ̃n + IminoP (Jmin)

(Imin − nδn)l
,

in which the last step is due to the fact that Imin ≤ Ik.

95

After studying for all four cases, we compare and pick the largest one, and thus com-

plete our proof.

A.4 Proof of Proposition 3

The proof follows closely from the proof of Theorem 3.2 in [40] and the proof of Propo-

sition 4 in [39]. Due to space limitation, we provide only an outline of the proof.

It suffices to show that P (ε(T̂K̂ ||T ∗) > nδn} ∩ {K∗ < K̂ ≤ Kmax})→ 0 as n→∞.

P ({ε(T̂K̂ ||T ∗) > nδn} ∩ {K∗ < K̂ ≤ Kmax})

≤
Kmax∑

m=K∗+1

P (ε(T̂m||T ∗) > nδn)

≤
Kmax∑

m=K∗+1

K∗∑
k=1

P (∀l, 1 ≤ l ≤ m, |t̂l − t∗k| > nδn)

=
Kmax∑

m=K∗+1

K∗∑
k=1

[P (Fm,k,1) + P (Fm,k,2) + P (Fm,k,3)],

where Fm,k,1 = {∀l, 1 ≤ l ≤ m, |t̂l − t∗k| > nδn, t̂l < t∗k}, Fm,k,2 = {∀l, 1 ≤ l ≤

m, |t̂l − t∗k| > nδn, t̂l > t∗k}, Fm,k,3 = {∃l, 1 ≤ l ≤ m, |t̂l − t∗k| > nδn, |t̂l+1 − t∗k| >

nδn, t̂l < t∗k < t̂l+1}.

It suffices to prove P (Fm,k,1) → 0, P (Fm,k,2) → 0 and P (Fm,k,3) → 0. This can be

proved by repeatedly using Lemma 4 and Lemma 5.

A.5 Proof of Proposition 4

The proof follows closely from the proof of Theorem 3.3 in [40] and the proof of Propo-

sition 4 in [39].

We can prove this proposition by contradiction. Let Ǩ be the estimated number of

96

points and Ǩ < K∗. Let ŤǨ = {ť1, ť2, · · · , ťǨ} be the set of all Ǩ locations of estimated

change-points. Let α̌ = {α̌1, α̌1, · · · , α̌Ǩ} be the estimated coefficients. Let β̌t be the

estimated coefficients at time t. Ǩ, ŤǨ and α̌ achieve the minimum of Problem (2.7).

It suffices to prove that there exists some other set of change-points T̂K̂ = {t̂1, t̂2, · · · , t̂K̂}

and coefficients α̂ = {α̂1, α̂1, · · · , α̂K̂} that can achieve a smaller value. Let β̂t be the

corresponding coefficients at time t.

Define ∆(ŤǨ ; T̂K̂) = 1
n

∑Ǩ+1
j=1

∑ťj−1

t=ťj−1

(
yt − α̌jTxt

)2− 1
n

∑K̂+1
j=1

∑t̂j−1

t=t̂j−1

(
yt − α̂jTxt

)2
+

λn(γ
∑Ǩ

j=1 ‖α̌j+1− α̌j‖2− γ
∑K̂

j=1 ‖α̂j+1− α̂j‖2 + (1− γ)
∑Ǩ

j=1 ‖α̌j+1− α̌j‖1− (1−

γ)
∑K̂

j=1 ‖α̂j+1 − α̂j‖1).

From simple analysis, we know that if Ǩ < K∗, then there exist some t∗k such that

there is no estimated change-points falling into the neighborhood of range Imin/2. That

is ε(ŤǨ ||{t∗k}) ≥ Imin/2 for some k.

Then we prove that Ǩ such that Ǩ < K∗ cannot be an optimal solution. We prove

this by dividing the problem into four cases: 1) ťl−1 ≤ t∗k−1 and ťl ≥ t∗k+1, 2) ťl−1 > t∗k−1

and ťl < t∗k+1, 3) ťl−1 ≤ t∗k−1 and ťl < t∗k+1, 4) ťl−1 > t∗k−1 and ťl ≥ t∗k+1, where ťl−1 and

ťl are the change-points in ŤǨ nearest to t∗k on left side and right side respectively.

Here, we prove only case 1), as other cases are similar.

There exist t̂t = ťt, for t ≤ l − 1, t̂l+1 = t∗k, t̂l+2 = t∗k+1, and t̂t = ťt−3, for t ≥ l + 3.

Furthermore, there exist α̂t = α̌t, for t ≤ l, α̂l+1 = α∗k, α̂l+2 = α∗k+1, and α̂t = α̌t−3,

for t ≥ l + 3.

ťl−1

t∗k−1 t∗k t∗k+1

ťl

t̂l−1

t̂l t̂l+1 t̂l+2

t̂l+3

Figure A.2: Illustration of case 1)

So we have ∆(ŤǨ ; T̂K̂) ≥ 1
n

∑t∗k+1−1

t=t∗k−1
[(yt− α̌Tl−1xt)

2− ε2t]− λ̃n(
∑l+2

j=l ‖α̂j+1− α̂j‖2).

Define A = 1
n

∑t∗k+1−1

t=t∗k−1

[
(yt − α̌Tl−1xt)

2 − ε2t
]
. Define Ii = t∗i − t∗i−1, Iall = t∗k+1 −

97

t∗k−1, dji = α∗i − α∗j , Q = 1
t∗k+1−t∗k−1

∑t∗k+1−1

t=t∗k−1
xtx

T
t , Qi = 1

t∗i−t∗i−1

∑t∗i−1

t=t∗i−1
xtx

T
t , S =

1
t∗k+1−t∗k−1

∑t∗k+1−1

t=t∗k−1
xtεt and Si = 1

t∗i−t∗i−1

∑t∗i−1

t=t∗i−1
xtεt. Notice that Q and Qi are asymptot-

ically nonsingular, and are positive definite.

Notice

l+2∑
j=l

‖α̂j+1 − α̂j‖2 = ‖α̌l −α∗k‖2

+‖α̌l −α∗k+1‖2 + ‖α∗k+1 −α∗k‖2. (A.10)

Now, we consider different cases of (A.10).

1) ‖α̌l − α∗k‖2 < ∞ and ‖α̌l − α∗k+1‖2 < ∞ as n → ∞. Since λ̃n, we have

∆(ŤǨ ; T̂K̂) ≥ A + oP (1). Then our goal becomes to find the minimum value of A. The

value of α̌l that can achieve minimum value of A is

α̌l =

t∗k+1−1∑
t=t∗k−1

xtx
T
t

−1 t∗k+1−1∑
t=t∗k−1

xtyt

= Q−1S +Q−1

k∑
i=k−1

Ii+1

Iall
Qi+1α

∗
i+1,

and α̌l −α∗j+1 = Q−1S +Q−1
∑k

i=k−1
Ii+1

Iall
Qi+1d

j+1
i+1 . Then we have

A =
1

n

k∑
j=k−1

(α∗j+1 − α̌l)T
t∗j+1−1∑

t=t∗j

xtx
T
t

 (α∗j+1 − α̌l)

+2(α∗j+1 − α̌l)T
t∗j+1−1∑
t=t∗j

xtεt

 .
≡ 1

n

k∑
j=k−1

(Aj,1 + Aj,2).

98

For j = k − 1, we have

1

n
Ak−1,1 =

Ik
n

(
STQ−1QkQ

−1S
)

+
2Ik
n

(
Ik+1

Iall
dkk+1

T
Qk+1Q

−1QkQ
−1S

)
+
Ik
I2
all

(
I2
k+1

n
dkk+1

T
Qk+1Q

−1QkQ
−1Qk+1d

k
k+1

)
.

Notice thatQ andQi have only positive eigenvalues, and the eigenvalues are bounded. So

we have n
IminJ2

min

∣∣ Ik
n

(
STQ−1QkQ

−1S
)∣∣ = |oP (1)|, where c1 is a positive constant, and

n
IminJ2

min

∣∣∣2Ikn (Ik+1

Iall
dkk+1

T
Qk+1Q

−1QkQ
−1S

)∣∣∣ = |oP (1)|, where c2 is a positive constant.

So we have 1
n
Ak−1,1 =

IminJ
2
min

n
oP (1) + Ik

I2all
(
I2k+1

n
dkk+1

T
Qk+1Q

−1QkQ
−1Qk+1d

k
k+1)

and 1
n
Ak,1 =

IminJ
2
min

n
oP (1) + Ik+1

I2all
(
I2k
n
dk+1
k

T
QkQ

−1Qk+1Q
−1Qkd

k+1
k).

Notice that Ik
I2all

(
I2k+1

n
dkk+1

T
Qk+1Q

−1QkQ
−1Qk+1d

k
k+1)+ Ik+1

I2all
(
I2k
n
dk+1
k

T
QkQ

−1Qk+1Q
−1Qkd

k+1
k) ≥

c3
IminJ

2
min

n
, where c3 is some positive constant. Similarly, we can show 1

n
Ak−1,2 =

IminJ
2
min

n
oP (1) and 1

n
Ak,2 =

IminJ
2
min

n
oP (1). As the result, we have

A =
IminJ

2
min

n
(c3 + oP (1)) ,

and c3 is some positive constant. So K̂, T̂K̂ and α̂ can achieve a smaller value, which

means Ǩ cannot be an optimal solution.

2) ‖α̌l −α∗k‖2 →∞ or ‖α̌l −α∗k+1‖2 →∞ as n→∞.

If ‖α̌l −α∗k‖2 →∞ as n→∞, since Jmax = O(1), then

‖α̌l −α∗k‖2 − Jmax ≤ ‖α̌l −α∗k+1‖2,

‖α̌l −α∗k+1‖2 →∞. We also prove if ‖α̌l −α∗k+1‖2 →∞, then ‖α̌l −α∗k‖2 →∞.

99

If ‖α̌l −α∗k‖2 →∞ and ‖α̌l −α∗k+1‖2 →∞, then

∆(ŤǨ ; T̂K̂) ≥ Ik
n

(α̌l −α∗k)Qk(α̌l −α∗k)T

+
Ik+1

n
(α̌l −α∗k+1)Qk+1(α̌l −α∗k+1)T

−λ̃n‖α̌l −α∗k‖2 − λ̃n‖α̌l −α∗k+1‖2

−λ̃n‖α∗k+1 −α∗k‖2.

Since Θ(n) = Imin ≤ Ik ≤ n, so Ik
n

and Ik+1

n
are bounded below. So we have

∆(ŤǨ ; T̂K̂) ≥ c4‖α̌l −α∗k‖2
2 + c5‖α̌l −α∗k+1‖2

2

−λ̃n‖α̌l −α∗k‖2 − λ̃n‖α̌l −α∗k+1‖2

−λ̃n‖α∗k+1 −α∗k‖2,

where c4 and c5 are some positive constants. So ∆(ŤǨ ; T̂K̂) is dominated by the quadratic

term, hence ∆(ŤǨ ; T̂K̂)→∞, which is obviously not optimal and Ǩ < K∗ cannot be an

optimal solution.

A.6 Proof of Proposition 5

We first prove several supporting lemmas that are useful for the proof of Proposition 5.

Lemma 6.

s+l−1∑
t=s

(
ε2t − E

(
ε2t
))

= OP (
√
nδn lnn), (A.11)

where 1 ≤ l ≤ nδn.

100

Proof. Note E (ε2t − E (ε2t)) = 0 and εt 1 ≤ t ≤ n are i.i.d. ,

P

(∣∣∣∣∣
s+l−1∑
t=s

(
ε2t − E

(
ε2t
))∣∣∣∣∣ ≥√nδn lnn

)

≤ 1

nδn lnn
V ar

(
s+l−1∑
t=s

ε2t

)

=
1

nδn lnn

s+l−1∑
t=s

2σ4 ≤ 2σ4

lnn
→ 0,

as n→∞.

Remark 17. Since lnn
nδn
→ 0 as n→∞, so 1

n

∑s+l−1
t=s ε2t = OP (δn) for 1 ≤ l ≤ nδn.

Lemma 7. If A1-A4 hold, then

max
1≤r<s≤n+1
s−r≥nδn

∥∥∥∥∥ 1√
s− r

s−1∑
t=r

xtεt

∥∥∥∥∥
2

= oP (
√
nδnJmin), (A.12)

Proof. For a given constant c > 0,

P

 max
1≤r<s≤n+1
s−r≥nδn

∥∥∥∥∥ 1√
s− r

s−1∑
t=r

xtεt

∥∥∥∥∥
2

≥ c
√
nδnJmin

≤

∑
1≤r<s≤n+1
s−r≥nδn

P

(∥∥∥∥∥ 1√
s− r

s−1∑
t=r

xtεt

∥∥∥∥∥
2

≥ c
√
nδnJmin

)

≤
∑

1≤r<s≤n+1
s−r≥nδn

P

(∥∥∥∥∥ 1√
s− r

s−1∑
t=r

xtεt

∥∥∥∥∥
1

≥ c
√
nδnJmin

)
.

101

Define Qm = 1√
s−r
∑s−1

t=r xt,mεt for 1 ≤ m ≤ p, so Qm ∼ N
(

0, σ2

s−r
∑s−1

t=r x
2
t,m

)
.

∑
1≤r<s≤n+1
s−r≥nδn

P

(
p∑

m=1

|Qm| ≥ c
√
nδnJmin

)

≤
∑

1≤r<s≤n+1
s−r≥nδn

P

(
max

1≤m≤p
|Qm| ≥

c
√
nδnJmin
p

)

≤
∑

1≤r<s≤n+1
s−r≥nδn

p∑
m=1

P

(
|Qm| ≥

c
√
nδnJmin
p

)

≤
∑

1≤r<s≤n+1
s−r≥nδn

p∑
m=1

exp

(
−(cJmin

√
nδn/p)

2

2σ2

s−r
∑s−1

t=r x
2
t,m

)
.

When A1 is satisfied, then

1

r − s
r−1∑
t=s

x2
t,m = tr

(
1

r − s
r−1∑
t=s

xtx
T
t

)

≤ pµmax

(
1

r − s
r−1∑
t=s

xtx
T
t

)
≤ pL,

for 1 ≤ r < s ≤ n+ 1, s− r ≥ nδn. From A4 we know Jmin is lower and upper bounded

by some constants. So we have

∑
1≤r<s≤n+1
s−r≥nδn

p∑
m=1

exp

(
−(cJmin

√
nδn/p)

2

2σ2

s−r
∑s−1

t=r x
2
t,m

)

≤
∑

1≤r<s≤n+1
s−r≥nδn

p∑
m=1

exp
(
−c2c0nδn

)
= p exp

(
2 lnn− c2c0nδn

)
→ 0,

where c0 is some constant, and the last step is due to lnn
nδn
→ 0 as n→ 0.

102

Lemma 8. Under A1-A4, If K̂ < K∗, then for any T̂K̂ = {t̂1, t̂2, · · · , t̂K̂},

1

n

K̂+1∑
k=1

t̂k−1∑
t=t̂k−1

(yt − α̂Tk xt)
2 − 1

n

n∑
t=1

ε2t > c, (A.13)

as n→∞, where c is some positive constant.

Proof. We have B(T̂K̂)−B(T ∗K∗) = 1
n

∑K̂+1
k=1

∑t̂k−1

t=t̂k−1
(yt − α̂Tk xt)

2 − 1
n

∑n
t=1 ε

2
t .

Notice that α̂k’s that minimize B(T̂K̂)−B(T ∗K∗) are the ordinary least squares (OLS)

estimators t̂k−1∑
t=t̂k−1

xtx
T
t

 α̂k =

t̂k−1∑
t=t̂k−1

xtyt.

B(T̂K̂)−B(T ∗K∗)

=
1

n

K̂+1∑
k=1

t̂k−1∑
t=t̂k−1

[
(βt − α̂k)Txtx

T
t (βt − α̂k)

+2(βt − α̂k)Txtεt
]
≡ 1

n

K̂+1∑
k=1

Fk

Then we show the growth order of Fk in different cases. For simplicity, we show the

whole proof for the case t̂k − t̂k−1 < nδn and [t̂k−1, t̂k − 1] does not contain any true

change-point, as other cases are similar.

103

A.6.1 If t̂k − t̂k−1 < nδn

[t̂k−1, t̂k − 1] does not contain any true change-point, say it is in some true interval

[t∗l−1, t
∗
l − 1]

We have

1

n
Fk =

1

n

t̂k−1∑
t=t̂k−1

(yt − α̂Tk xt)
2 − 1

n

t̂k−1∑
t=t̂k−1

ε2t

≤ 1

n

t̂k−1∑
t=t̂k−1

(yt −α∗l Txt)
2 − 1

n

t̂k−1∑
t=t̂k−1

ε2t

= 0,

and

1

n
Fk =

1

n

t̂k−1∑
t=t̂k−1

(yt − α̂Tk xt)
2 − 1

n

t̂k−1∑
t=t̂k−1

ε2t

≥ − 1

n

t̂k−1∑
t=t̂k−1

ε2t = Op(δn).

So 1
n
Fk = Op(δn).

If [t̂k−1, t̂k − 1] contains some true change-points

1
n
Fk = OP (δn).

A.6.2 If t̂k − t̂k−1 ≥ nδn

If [t̂k−1, t̂k − 1] does not contain true change-points, say it is in some true interval

[t∗l−1, t
∗
l − 1]

1
n
Fk = OP (δn).

104

If [t̂k−1, t̂k − 1] contains one true change-point, say t∗l

t∗l − t̂k−1 < nδn and t̂k − t∗l < nδn
1
n
Fk = OP (δn).

t∗l − t̂k−1 ≥ nδn and t̂k − t∗l < nδn
1
n
Fk = OP (δn).

t∗l − t̂k−1 < nδn and t̂k − t∗l ≥ nδn
1
n
Fk = OP (δn).

t∗l − t̂k−1 ≥ nδn and t̂k− t∗l ≥ nδn If Il = Θ(n) and Il+1 = Θ(n), then 1
n
Fk > c, where

c is some positive constant, otherwise, 1
n
Fk = oP (1), where Il = t∗l − t̂k−1, Il+1 = t̂k− t∗l .

If [t̂k−1, t̂k − 1] contains two true change-points, say it contains true change-points,

say t∗l and t∗l+1

t∗l − t̂k−1 < nδn and t̂k − t∗l+1 < nδn
1
n
Fk = OP (δn).

t∗l − t̂k−1 ≥ nδn and t̂k − t∗l+1 ≥ nδn Define Il+2 = t̂k − t∗l+1, Il+1 = t∗l+1 − t∗l and

Il = t∗l − t̂k−1.

If Il = o(n) and Il+2 = o(n), then Fk = oP (1).

If Il = Θ(n) and Il+2 = Θ(n), then Fk ≥ c+oP (1), where c is some positive constant.

If Il = Θ(n) and Il+2 = o(n), Fk ≥ c+ oP (1), where c is some positive constant.

If Il = o(n) and Il+2 = Θ(n), then Fk ≥ c+oP (1), where c is some positive constant.

t∗l − t̂k−1 ≥ nδn and t̂k − t∗l+1 < nδn If Il = o(n), 1
n
Fk = oP (1).

If Il = Θ(n), then 1
n
Fk > c.

t∗l − t̂k−1 < nδn and t̂k − t∗l+1 ≥ nδn If Il = o(n), then 1
n
Fk = oP (1).

If Il = Θ(n), then 1
n
Fk ≥ c+ oP (1), where c is some positive constant.

105

If [t̂k−1, t̂k − 1] contains more than two true change-points, say it contains true

change- points, say t∗l , · · · , t∗l+m, m ∈ {2, 3, · · · , K∗ − l}

1
n
Fk ≥ cJmax + oP (1), where c is some positive constant.

Then we can discuss for the case K̂ < K∗, since there is no estimate change-points

in the range Imin
2

of some true change-point, then from the combination of all the cases

above, we conclude that 1
n

∑K̂+1
k=1

∑t̂k−1

t=t̂k−1
(yt− α̂Tk xt)

2− 1
n

∑n
t=1 ε

2
t > c, where c is some

positive constant.

Lemma 9. Under A1-A4, for K̂ > K∗,

B(T̂K̂)−B(T̂K∗) = OP (δn).

Proof. NoticeB(T ∗K∗) = 1
n

∑n
t=1 ε

2
t .We have |B(T̂K̂)−B(T̂K∗)| ≤ |B(T̂K̂)−B(T ∗K∗)|+

|B(T̂K∗) − B(T ∗K∗)|. Since K̂ > K∗, from Proposition 3, we have P (ε(T̂K̂ ||T ∗) ≤

nδn)→ 1, as n→∞, from the proof of Lemma 8, we have |B(T̂K̂)−B(T ∗K∗)| = OP (δn).

From Proposition 1 and the proof of Lemma 8 , we have |B(T̂K∗)− B(T ∗K∗)| = OP (δn).

So B(T̂K̂)−B(T̂K∗) = OP (δn).

Using the above lemmas, the proof for Proposition 5 follows the same approach of

Theorem 3.4 in [40]. We also notice that B(T ∗K∗) = 1
n

∑n
t=1 ε

2
t
P−→ σ2.

1) λn ∈ Ω−

For K̂ < K∗, B(T̂K∗) = B(T ∗K∗)+OP (δn)
P−→ σ2 +OP (δn), andB(T̂K̂)−B(T ∗K∗) >

c, where c is some constant,

P (C(λ) > C(λK∗))

= P

(
ln
B(T̂K̂)

B(T̂K∗)
+ ρnp(K̂ −K∗) > 0

)

= P

(
ln
B(T̂K̂)

B(T̂K∗)
+ oP (1) > 0

)
→ 1,

106

as n→∞.

2) λn ∈ Ω+

For K̂ > K∗, since ln(1 + x) = x+O(x2), we have

δ−1
n (C(λ)− C(λK∗))

= B(T̂K∗)
−1δ−1

n

(
B(T̂K̂)−B(T̂K∗)

)
+δ−1

n ρnp(K̂ −K∗) + oP (1).

Note that δ−1
n

(
B(T̂K̂)−B(T̂K∗)

)
= OP (1) by Lemma 9, B(T̂K∗) = σ2 + oP (1), and

ρn
δn
→∞ by Assumption 5, so we have, as n→∞,

P (C(λ) > C(λK∗))

= P

(
δ−1
n

(
ln
B(T̂K̂)

B(T̂K∗)
+ ρnp(K̂ −K∗)

)
> 0

)
→ 1.

A.7 Proof of Proposition 6

A.7.1 Inner loop

It can be seen from Algorithm 2 and Procedure 3 in [31] that the complexity of inner loop

is O(n).

A.7.2 Outer loop

Since the solution of the inner loop is exact and the outer loop is randomized, SSLS

is a randomized block-coordinate descent method for minimizing a composite function,

whose complexity has been recently analyzed in Theorem 5 of [74]. For any given initial

value θ0, the complexity is related to φ(θ0) and R2(θ0) = maxθ{‖θ − θ̂‖2 : φ(θ) ≤

107

φ(θ0)},which is a measure of the size of the level set of φ given by θ0. In SSLS, we have

θ0 = 0. In the following, we provides some upper bounds on these two quantities, and

then apply the results in [74] to provide a bound on the complexity of SSLS.

Firstly, we bound φ(θ0). We have

φ(θ0) =
K∗+1∑
k=1

t∗k − t∗k−1

n
α∗Tk

 1

t∗k − t∗k−1

t∗k−1∑
t=t∗k−1

xtx
T
t

α∗k
+

K∗+1∑
k=1

t∗i − t∗k−1

n
α∗Ti

 1

t∗k − t∗k−1

t∗k−1∑
t=t∗k−1

xtεt

+
1

n

n∑
t=1

ε2t

≤
K∗+1∑
k=1

t∗k − t∗k−1

n
L‖α∗k‖2

2 +
K∗+1∑
k=1

‖α∗k‖2oP (Jmin)

+OP (1) + σ2 ≤M,

with probability goes to 1 when n→∞, where M is a constant independent of n.

Secondly, we bound R2(θ0). For those θs with φ(θ) ≤ φ(θ0), we can show

λn

n∑
t=1

‖θt‖2 ≤
1

n
‖Y‖2

2, ‖θ‖2 ≤
M

λn
,

with probability goes to 1 when n → ∞. Hence,
∥∥∥θ − θ̂∥∥∥

2
≤ 2M

λn
, which implies

R2(θ0) ≤ 2M
λn

. Let φ∗ denote the optimal value of function φ, and φ∗ < φ(θ∗)
P−→ σ2, as

n→∞.

For any given confidence level 0 < ρ < 1 and error tolerance ε > 0, we then plug

bounds obtained above into Theorem 5 in [74] to complete the proof.

108

A.8 Proof of Supporting Lemmas in Section 3.2.2

A.8.1 Proof of Lemma 1

Since θ̂ is the optimal solution to the optimization problem (3.1), we have

L(θ̂) + λnR(θ̂) ≤ L(θ∗) + λnR(θ∗),

which implies

L(θ̂)− L(θ∗) + λnR(θ̂) ≤ λnR(θ∗). (A.14)

For the L(θ̂)− L(θ∗) term, we have

L(θ̂)− L(θ∗)

=
1

n
‖y − X̃(θ∗ + ∆θ)‖2

2 −
1

n
‖y − X̃θ∗‖2

2

=
1

n
∆T
θ X̃T X̃∆θ −

2

n
eT X̃∆θ

=
1

n
∆T
θ X̃T X̃∆θ + 〈∇L(θ∗),∆θ〉. (A.15)

In (A.15), the first term is related to the data and estimation error, the second term is also

related to the noise vector e. For the second term, if we choose λn ≥ 2R∗ (∇L(θ∗)), we

have

|〈∇L(θ∗),∆θ〉|
(a)

≤ R∗(∇L(θ∗))R(∆θ)

(b)

≤ λn
2
R(∆θ), (A.16)

in which (a) holds due to the definition of the dual norm, and (b) is true due to the fact

that we choose λn ≥ 2R∗ (∇L(θ∗)).

109

Plugging (A.16) in (A.15), we have

1

n
∆T
θ X̃T X̃∆θ −

λn
2
R(∆θ) ≤ L(θ̂)− L(θ∗) ≤ 1

n
∆T
θ X̃T X̃∆θ +

λn
2
R(∆θ). (A.17)

Using (A.17), we have

L(θ̂)− L(θ∗) ≥ 1

n
∆T
θ X̃T X̃∆θ −

λn
2
R(∆θ) ≥ −

λn
2
R(∆θ). (A.18)

Plugging (A.18) into (A.14), we have

−λn
2
R(∆θ) + λnR(θ∗ + ∆θ) ≤ λnR(θ∗),

which coupled with the triangle inequality leads to

−1

2
R(∆θ) +R(∆θ)−R(θ∗) ≤ R(θ∗).

This is the same as

R(∆θ) ≤ 4R(θ∗).

A.8.2 Proof of Lemma2

If 0 < lU ≤ µmin(ΣU) ≤ µmax(ΣU) ≤ LU <∞, we have

‖Σ
1
2
Uv‖2

2 = vTΣ
1
2
U

T

Σ
1
2
Uv ≥ µmin(ΣU)‖v‖2

2 ≥ lU‖v‖2
2,

and

‖Σ
1
2
Uv‖2

2 = vTΣ
1
2
U

T

Σ
1
2
Uv ≤ µmax(ΣU)‖v‖2 ≤ LU‖v‖2

2,

110

which completes the proof for (3.7).

From [47], for all v ∈ Rm2 we have

1√
m1

‖Uv‖2 ≥
1

4
‖Σ

1
2
Uv‖2 − 9ρ(ΣU)

√
logm2

m1

‖v‖1

with probability at least 1− c′ exp (−cm1).

Then using the inequality (a− b)2 ≥ 1
2
a2 − ab along with (3.7), we obtain (3.8).

A.9 Proof for Consistency Results in Section 3.2.2

Define

F(∆θ) := ϕ(θ∗ + ∆θ)− ϕ(θ∗).

For the optimal solution θ̂ to (3.1), we must have F(∆θ) ≤ 0. The main idea of our proof

is to analyze F(∆θ) to identify those ∆θ’s such that F(∆θ) > 0. In particular, we show

that if the conclusions in the propositions do not hold, we will have F(∆θ) > 0. In other

words, for θ̂ to be the optimal solution to (3.1), the conclusions in the propositions must

hold.

111

A.9.1 Proof for Proposition 7

We have

F(∆θ) = L(θ̂)− L(θ∗) + λn

(
R(θ̂)−R(θ∗)

)
(a)

≥ 1

n

∥∥∥X̃∆θ

∥∥∥2

2
− 1

2
λnR(∆θ) + λn

(
R(θ̂)−R(θ∗)

)
≥ 1

n

∥∥∥X̃∆θ

∥∥∥2

2
− λnR(∆θ) + λn

(
R(θ̂)−R(θ∗)

)
(b)

≥ 1

n
‖X∆β‖2

2 − 2λnR(θ∗), (A.19)

in which (a) comes from (A.17), and (b) is due to (3.5) and the triangle inequality.

Define events

An,j :=
{
|t̂j − t∗j | > nδn

}
,

Cn :=

{
max

1≤k≤K∗
|t̂k − t∗k| < Imin/2

}
.

Then we have

P
{

max
1≤k≤K∗

|t̂k − t∗k| ≤ nδn

}
≥ 1−

K∗∑
j=1

P {An,j}

= 1−
K∗∑
j=1

P {An,j ∩ Cn} −
K∗∑
j=1

P {An,j ∩ Cc
n} .

To prove Proposition 7, it suffices to find upper bounds of the two probabilities P {An,j ∩ Cn}

and P {An,j ∩ Cc
n} for each j.

112

Bounding P {An,j ∩ Cn}

Define

A+
n,j := {t∗j − t̂j > nδn},

A−n,j := {t̂j − t∗j > nδn}.

It suffices to prove our results under An,j ∩Cn by showing under the cases A+
n,j ∩Cn and

A−n,j ∩ Cn.

We first prove under the case A+
n,j ∩ Cn and the other case follows similarly. On

A+
n,j ∩Cn, we have t∗k−1 < t̂k < t∗k+1 for all k = 1, · · · , K∗. For j we have, t∗j − t̂j > nδn

and n > t̂j+1 − t∗j > Imin

2
. Here we prove the case t̂j+1 ≤ t∗j+1 and the other case follows

similarly. Now we turn to bound P
{
A+
n,j ∩ Cn ∩ {t̂j+1 ≤ t∗j+1}

}
. The case under study

is illustrated in Figure A.3.

t̂j t∗j t̂j+1

t∗j+1

× ×

≥ nδn ≥ Imin/2

Figure A.3: Illustration of the case t∗j − t̂j > nδn, n > t̂j+1 − t∗j > Imin

2
and t̂j+1 ≤ t∗j+1.

Here we use a proof technique that will be used repeatedly in later analysis. In this

technique, we focus on one properly chosen interval for detailed analysis. In this case, we

113

focus on the interval [t̂j, t̂j+1 − 1]. Continuing from (A.19), we have

F(∆θ) ≥
1

n
‖X∆β‖2

2 − 2λnR(θ∗)

≥ 1

n

t̂j+1−1∑
t=t̂j

(xTt (β̂t − β∗t))2 − 2λnR(θ∗)

=
1

n

∥∥∥∥∥∥∥∥∥∥

xT
t̂j

· · ·

xTt∗j−1

 (α∗j − α̂j+1)

∥∥∥∥∥∥∥∥∥∥

2

2

+
1

n

∥∥∥∥∥∥∥∥∥∥

xTt∗j

· · ·

xT
t̂j+1−1

 (α∗j+1 − α̂j+1)

∥∥∥∥∥∥∥∥∥∥

2

2

− 2λnR(θ∗). (A.20)

Using Lemma 2, we have

1

n

∥∥∥∥∥∥∥∥∥∥

xT
t̂j

· · ·

xTt∗j−1

 (α∗j − α̂j+1)

∥∥∥∥∥∥∥∥∥∥

2

2

(a)

≥ t∗j − t̂j
n

(
l

32
‖α∗j − α̂j+1‖2

2 −
9

4

√
Lρ(Σ)

√
log p

t∗j − t̂j
‖α∗j − α̂j+1‖1‖α∗j − α̂j+1‖2

)
(b)
>

l

32
δn‖α∗j − α̂j+1‖2

2 −
9

4

√
Lρ(Σ)

√
t∗j − t̂j
n

√
log p

n
‖α∗j − α̂j+1‖1‖α∗j − α̂j+1‖2

≥ l

32
δn‖α∗j − α̂j+1‖2

2 −
9

4

√
Lρ(Σ)

√
log p

n
‖α∗j − α̂j+1‖1‖α∗j − α̂j+1‖2, (A.21)

with probability at least 1 − c′ exp (−cnδn) and this probability is from (a), in which we

uses Lemma 2. Step (b) uses the fact that t∗j − t̂j ≥ nδn.

Similar results also hold for the second quadratic term in (A.20). In particular, as

114

n > t̂j+1 − t∗j > Imin

2
, following similar steps as in (A.21), we have

1

n

∥∥∥∥∥∥∥∥∥∥

xTt∗j

· · ·

xT
t̂j+1−1

 (α∗j+1 − α̂j+1)

∥∥∥∥∥∥∥∥∥∥

2

2

>
l

32

Imin

2n
‖α∗j+1 − α̂j+1‖2

2

−9

4

√
Lρ(Σ)

√
log p

n
‖α∗j+1 − α̂j+1‖1‖α∗j+1 − α̂j+1‖2. (A.22)

with probability at least 1− c′ exp (−cImin/2).

From the definition ofR(∆θ), we have

1

1− γR(∆θ) ≥ ‖∆θ‖1, (A.23)

≥
t̂j∑
t=1

‖θ̂t − θ∗t‖1

=

t̂j∑
t=1

‖β̂t − β̂t−1 − β∗t + β∗t−1‖1

≥
t̂j∑
t=1

‖β̂t − β∗t‖1 −
t̂j∑
t=1

‖β̂t−1 − β∗t−1‖1

= ‖α̂j+1 −α∗j‖1. (A.24)

Combining this with (3.6), we have

‖α̂j+1 −α∗j‖1 ≤
4

1− γR(θ∗). (A.25)

Using the same technique, we also have

‖α̂j+1 −α∗j+1‖1 ≤
4

1− γR(θ∗). (A.26)

115

We can obtain similar bounds for the `2-norm terms.

Plugging (A.21), (A.22), (A.25), (A.26) and corresponding equations for `2-norm

into (A.20), we obtain

F(∆θ) >
l

32

(
δn‖α∗j − α̂j+1‖2

2 +
Imin

2n
‖α∗j+1 − α̂j+1‖2

2

)
− 72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)− 2λnR(θ∗).

Since δn ≤ Imin

2n
, we can view δn‖α∗j − α̂j+1‖2

2 + Imin

2n
‖α∗j+1 − α̂j+1‖2

2 as a function

of α̂j+1. Furthermore, this function is convex and we can easily find its minimum to be

δn
2
‖α∗j+1 −α∗j‖2

2. As the result, we have

F(∆θ) >
l

64
δn‖α∗j+1 −α∗j‖2

2 −
72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)− 2λnR(θ∗)

= 0, (A.27)

with probability at least 1−c′ exp (−cnδn)−c′ exp (−cImin/2), where the last step is due

to the definition of δn. Hence,

P
{
F(∆θ) > 0

∣∣ A+
n,j ∩ Cn ∩ {t̂j+1 ≤ t∗j+1}

}
≥ 1− c′ exp (−cnδn)− c′ exp (−cImin/2).

Since F(∆θ) > 0 cannot happen, hence if 1− c′ exp (−cnδn)− c′ exp (−cImin/2) > 0,

then

P
{
A+
n,j ∩ Cn ∩ {t̂j+1 ≤ t∗j+1}

}
= 0.

For P
{
A+
n,j ∩ Cn ∩ {t̂j+1 > t∗j+1}

}
, by focusing on the interval [t̂j, t

∗
j+1 − 1], we use

the same technique as above and show

P
{
F(∆θ) > 0

∣∣ A+
n,j ∩ Cn ∩ {t̂j+1 > t∗j+1}

}
≥ 1− c′ exp (−cnδn)− c′ exp (−cImin).

116

Hence P
{
A+
n,j ∩ Cn ∩ {t̂j+1 > t∗j+1}

}
= 0 if 1− c′ exp (−cnδn)− c′ exp (−cImin) > 0.

For the case A−n,j , we turn to study the position of t̂j−1 and split this case into either

t̂j−1 ≥ t∗j−1 or t̂j−1 < t∗j−1, and we have the same result as A+
n,j due to symmetry. Hence

if 1− c′ exp (−cnδn)− c′ exp (−cImin/2) > 0,

P {An,j ∩ Cn} = 0. (A.28)

Bounding P {An,j ∩ Cc
n}

Here we prove under the case A+
n,j since the other case follow similarly due to symmetry.

Define

D
(l)
T :=

{
∃j ∈ {1, · · · , K∗}, t̂j ≤ t∗j−1

}
∩ Cc

n,

D
(m)
T :=

{
∀j ∈ {1, · · · , K∗}, t∗j−1 < t̂j < t∗j+1

}
∩ Cc

n,

D
(r)
T :=

{
∃j ∈ {1, · · · , K∗}, t̂j ≥ t∗j+1

}
∩ Cc

n.

Then we have A+
n,j ∩ Cc

n ⊆
(
A+
n,j ∩D(l)

T

)
∪
(
A+
n,j ∩D(m)

T

)
∪
(
A+
n,j ∩D(r)

T

)
. First we

study the case A+
n,j ∩D(m)

T .

A+
n,j ∩D(m)

T

=
(
A+
n,j ∩

{
t̂j+1 − t∗j ≥ Imin/2

}
∩D(m)

T

)
∪
(
A+
n,j ∩

{
t̂j+1 − t∗j < Imin/2

}
∩D(m)

T

)
⊆

(
A+
n,j ∩

{
t̂j+1 − t∗j ≥ Imin/2

}
∩D(m)

T

)
∪
(
A+
n,j ∩

{
t∗j+1 − t̂j+1 ≥ Imin/2

}
∩D(m)

T

)
.

Since

{
A+
n,j ∩

{
t∗j+1 − t̂j+1 ≥ Imin/2

}
∩D(m)

T

}
⊆ ∪K∗k=j+1

(
{t∗k − t̂k ≥ Imin/2} ∩ {t̂k+1 − t∗k ≥ Imin/2} ∩D(m)

T

)
,

117

we have

P
{
A+
n,j ∩D(m)

T

}
≤ P

{
A+
n,j ∩ {t̂j+1 − t∗j ≥ Imin/2} ∩D(m)

T

}
+

K∗∑
k=j+1

P
{
{t∗k − t̂k ≥ Imin/2} ∩ {t̂k+1 − t∗k ≥ Imin/2} ∩D(m)

T

}
. (A.29)

We first study P
{
A+
n,j ∩ {t̂j+1 − t∗j ≥ Imin/2} ∩D(m)

T

}
since other terms follow simi-

larly.

Noticing that the upper bound of each term in (A.29) can be found using the same

technique in Appendix A.9.1, we have that

P
{
A+
n,j ∩ {t̂j+1 − t∗j ≥ Imin/2} ∩D(m)

T

}
= 0,

if 1−
(
c
′
exp (−cnδn) + c

′
exp (−cImin/2)

)
> 0, and have

P
{
{t∗K∗ − t̂K∗ ≥ Imin/2} ∩ {t̂K∗+1 − t∗K∗ ≥ Imin/2} ∩D(m)

T

}
= 0,

if 1− 2c
′
exp (−cImin/2) > 0.

Combing them together we have

P
{
A+
n,j ∩D(m)

T

}
= 0, if 1−

(
c
′
exp (−cnδn) + c

′
exp (−cImin/2)

)
> 0. (A.30)

118

Similarly, for the case A−n,j , due to symmetry, we have

P
{
A−n,j ∩D(m)

T

}
≤ P

{
A−n,j ∩ {t∗j − t̂j−1 ≥ Imin/2} ∩D(m)

T

}
+

j−1∑
k=1

P
{
{t̂k − t∗k ≥ Imin/2} ∩ {t∗k − t̂k−1 ≥ Imin/2} ∩D(m)

T

}
= 0, (A.31)

if 1−
(
c
′
exp (−cnδn) + c

′
exp (−cImin/2)

)
> 0.

Combining (A.30) and (A.31), we have

P
{
An,j ∩D(m)

T

}
= 0, if 1−

(
c
′
exp (−cnδn) + c

′
exp (−cImin/2)

)
> 0. (A.32)

Then we turn to find upper bound of P
{
A+
n,j ∩D(l)

T

}
and P

{
A+
n,j ∩D(r)

T

}
. The method

to find upper bounds of them is the same due to symmetry. Since

P
{
A+
n,j ∩D(l)

T

}
≤ P

{
D

(l)
T

}
≤

K∗∑
j=1

2j−1 P
{

max{1 ≤ l ≤ K∗|t̂l ≤ t∗j−1} = j}
}
,

and

{
max{1 ≤ l ≤ K∗|t̂l ≤ t∗j−1} = j

}
⊆ ∪K∗−1

k=j

(
{t∗k − t̂k ≥ Imin/2} ∩ {t̂k+1 − t∗k ≥ Imin/2}

)
,

then we have

P
{
A+
n,j ∩D(l)

T

}
≤

K∗−1∑
j=1

2j−1

K∗−1∑
k=j

P
{
{t∗k − t̂k ≥ Imin/2} ∩ {t̂k+1 − t∗k ≥ Imin/2}

}
+2K

∗−1 P
{
t∗K∗ − t̂K∗ ≥ Imin/2

}
.

119

Following the same reasoning in Subsection A.9.1, we have

P
{
A+
n,j ∩D(l)

T

}
= 0, if 1−

(
2c
′
exp (−cImin/2)

)
> 0.

Similarly, we have

P
{
A−n,j ∩D(l)

T

}
= 0, if 1−

(
2c
′
exp (−cImin/2)

)
> 0.

Combining them together and since nδn < Imin/2, we have

P
{
An,j ∩D(l)

T

}
= 0, if 1−

(
c
′
exp (−cnδn) + c

′
exp (−cImin/2)

)
> 0

and

P
{
An,j ∩D(r)

T

}
= 0, if 1−

(
c
′
exp (−cnδn) + c

′
exp (−cImin/2)

)
> 0.

Thus we find an upper bound for P {An,j ∩ Cc
n},

P {An,j ∩ Cc
n} = 0, if 1−

(
c
′
exp (−cnδn) + c

′
exp (−cImin/2)

)
> 0. (A.33)

Combing (A.28) and (A.33), we obtained an upper bound of P {An,j},

P {An,j} = 0, if 1−
(
c
′
exp (−cnδn) + c

′
exp (−cImin/2)

)
> 0.

120

Due to the definition of An,k, we have

P
{
∃k ∈ [K∗] such that |t̂k − t∗k| > nδn

}
= P

{
∪K∗k=1An,k

}
≤

K∗∑
k=1

P {An,k}

= 0,

if 1−
(
c
′
exp (−cnδn) + c

′
exp (−cImin/2)

)
> 0.

And from Assumption B1 we know that

1−
(
c
′
exp (−cnδn) + c

′
exp (−cImin/2)

)
> 1− 2c

′
exp (−cnδn) > 0.

So we have

max
1≤k≤K∗

|t̂k − t∗k| ≤ nδn.

121

A.9.2 Proof for Proposition 8

Since Proposition 7 holds, we have |t̂k − t∗k| ≤ nδn for each k = 1, · · · , K∗. Then if

‖α̂k −α∗k‖2
2 >

32n
(Imin−2nδn)l

(
36

(1−γ)2

√
Lρ(Σ)

√
log p
n
R2(θ∗) + 2λnR(θ∗)

)
, we have

F(∆θ)

(a)

≥ 1

n
‖X∆β‖2

2 − 2λnR(θ∗)

≥ 1

n

t∗k∑
t=t∗k−1−1

(
xTt

(
β̂t −α∗k

))2

− 2λnR(θ∗)

≥ 1

n

t∗k−nδn∑
t=t∗k−1−1+nδn

(
xTt (α̂k −α∗k)

)2 − 2λnR(θ∗)

(b)

≥ mk

n

(
l

32
‖α̂k −α∗k‖2

2 −
9

4

√
Lρ(Σ)

√
log p

mk

‖α̂k −α∗k‖1‖α̂k −α∗k‖2

)
−2λnR(θ∗) (A.34)

≥ mk

n

l

32
‖α̂k −α∗k‖2

2 −
9

4

√
Lρ(Σ)

√
log p

n
‖α̂k −α∗k‖1‖α̂k −α∗k‖2

−2λnR(θ∗) (A.35)
(c)

≥ Imin − 2nδn
n

l

32
‖α̂k −α∗k‖2

2 −
36

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)

−2λnR(θ∗), (A.36)

> 0.

in which (a) is due to (A.19), (b) is due to Lemma 2 withmk = t∗k−t∗k−1−2nδn and holds

with probability at least 1− c′ exp (−c (Imin − 2nδn)), and (c) is due to the definition of

Imin, (A.23) combined with Lemma 1. Hence we have

P

{
F(∆θ) > 0

∣∣∣∣∣ ‖α̂k −α∗k‖2
2 >

32n

(Imin − 2nδn)l

(
36

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗) + 2λnR(θ∗)

)}
≥ 1− c′ exp (−c (Imin − 2nδn)) > 0,

122

where the last step is due to Assumption B1. Hence we have

‖α̂k −α∗k‖2
2 ≤

32n

(Imin − 2nδn)l

(
36

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗) + 2λnR(θ∗)

)
.

A.9.3 Proof for Proposition 9

Suppose K̂ < K∗, then there exists at least one true change-point t∗k such that there is no

estimated change-points in the range of Imin/2 around it. This scenario is illustrated in

Figure A.4. Following the same proof as Appendix A.9.1, we have

t̂l t∗k t̂l+1

× ×

≥ Imin/2 ≥ Imin/2

Figure A.4: Illustration of the case with t̂l+1 − t∗k ≥ Imin/2 and t∗k − t̂l ≥ Imin/2.

F(∆θ) ≥
1

n
‖X∆β‖2

2 − 2λnR(θ∗)

≥ 1

n

t∗k−1∑
t=t̂l

(
xTt
(
α̂l −α∗k−1

))2
+

1

n

t̂l+1−1∑
t=t∗k

(
xTt (α̂l −α∗k)

)2 − 2λnR(θ∗)

> 0,

where the proof of the last step follows the derivations in Appendix A.9.1 (in particular for

the derivation of (A.27)), and it holds with probability at least 1−2c
′
exp (−cImin/2). Fol-

lowing the same reasoning in previous sections, K̂ ≥ K∗ if 1− 2c
′
exp (−cImin/2) > 0.

And from Assumption B1, we have that 1−2c
′
exp (−cImin/2) > 1−2c

′
exp (−cnδn) >

0.

123

A.9.4 Proof for Proposition 10

Suppose there is a true change-point t∗k such that |t∗k − t̂i| > nδn for some i = 1, · · · , K̂

i.e. ε
(
T̂K̂ || {t∗k}

)
> nδn. Suppose the nearest estimated change-points are t̂l and t̂l+1.

Hence t∗k < t̂l+1 and t∗k > t̂l and t̂l+1 − t∗k > nδn and t∗k − t̂l > nδn. Then following

the same technique in Appendix A.9.1, F(∆θ) will be larger than 0 with a probability at

least 1− 2c
′
exp (−cnδn). So we have

P
{
F(∆θ) > 0

∣∣∣ ε(T̂K̂ || {t∗k}) > nδn

}
≥ 1− 2c

′
exp (−cnδn) > 0, (A.37)

where the last step is due to Assumption B1. So we have

ε
(
T̂K̂ ||T∗

)
≤ nδn.

A.9.5 Proof for Proposition 11

In this proof, we focus on the case illustrated in Fig. 3.1 and other cases follow similarly.

Suppose Tisolate happens, i.e., there exists some isolated estimated change-points t̂j with

124

t̂j+1− t̂j ≥ nδn, t̂j+1 ≤ t∗k+1, t̂j − t̂j−1 ≥ nδn, t̂j−1 ≥ t∗k, ‖α̂j+1− α̂j‖2 > Jmin, we have

F(∆θ)

=
1

n
‖X∆β‖2

2 − 2λnR(θ∗)

≥ 1

n

t̂j−1∑
t=t̂j−1

(
xTt
(
α̂j −α∗k+1

))2
+

1

n

t̂j+1−1∑
t=t̂j

(
xTt
(
α̂j+1 −α∗k+1

))2 − 2λnR(θ∗)

(a)

≥ δn
l

32

(
‖α̂j −α∗k+1‖2

2 + ‖α̂j+1 −α∗k+1‖2
2

)
− 72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)− 2λnR(θ∗)

≥ δn
l

32

1

2
‖α̂j+1 − α̂j‖2

2 −
72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)− 2λnR(θ∗)

>
l

64
δnJ

2
min −

72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)− 2λnR(θ∗)

= 0.

where step (a) follows (A.34), (A.35) and (A.36) and the last step follows the definition

of δn, and this result holds with probability 1− 2c
′
exp (−cnδn). So we have

P {F(∆θ) > 0 | Tisolate} ≥ 1− 2c
′
exp (−cnδn) > 0, (A.38)

where the last step is due to Assumption B1. As F(∆θ) must be less or equal than 0, we

have that the event Tisolate does not occur.

125

A.9.6 Proof for Proposition 12

Following the proof in Appendix A.9.1, for i ∈ Υ
(
Imin

10n

)
, we have

F(∆θ)

≥ 1

n
‖X∆β‖2

2 − 2λnR(θ∗)

≥ 1

n

t̂i−1∑
t=t̂i−1

(
xt
(
α̂i −α∗k(i)

))2 − 2λnR(θ∗) (A.39)

≥
(
t̂i − t̂i−1

n

l

32
‖α̂i −α∗k(i)‖2

2 −
36

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)

)
−2λnR(θ∗) (A.40)

>
Imin

10n

l

32
‖α̂i −α∗k(i)‖2

2 −
36

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)

−2λnR(θ∗). (A.41)

The probability that (A.40) holds is at least 1−c′ exp (−cImin/10) > 0 due to Assumption

B1 leading to the fact that Imin → ∞ as n → ∞. (A.41) uses the fact that i ∈ Υ
(
Imin

10n

)
hence t̂i − t̂i−1 >

Imin

10n
. Following similar steps in Appendix A.9.2, for i ∈ Υ

(
Imin

10n

)
, we

have

‖α̂i −α∗k(i)‖2
2 ≤

320n

Iminl

(
36

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗) + 2λnR(θ∗)

)
.

126

A.10 Proof for Simplied Results in Section 3.2.3

A.10.1 Proof of the first and second item in Lemma 3

We first find an upper bound of δn. Under the additional assumption A3 and we choose

λn = 8σ
√

5ρc
1−γ

√
lognp
n

, using the definition of δn in (3.10), we have that

δn
(a)

≤ c3

(
s2

√
log p

n
+ s

√
log np

n

)
,

(b)

≤ c4s
2

√
log p

n
, (A.42)

where (a) is due to Jmin = Ω(1) and R(θ∗) = O(s) in A3 and (b) is due to the fact that

p/n9 0 as n increases.

Then we find a lower bound of δn. Note that in Assumption B1, we require nδn to

increase, so we need to give a lower bound of δn. SinceR(θ∗)/Jmin ≥ 1,

δn ≥
64

l

(
72

(1− γ)2

√
Lρ(Σ)

√
log p

n

(R(θ∗)

Jmin

)2
)
≥ c5

√
log p

n
. (A.43)

For the third item in Lemma 3, following the same reasoning for finding bounds for

δn, we can show that the right hand side of (3.13) can be upper bounded by

c8s
2

√
log p

n
. (A.44)

Thus we complete the proof for the first and second item in Lemma 3.

A.10.2 Proof of the third item in Lemma 3

In the following lemma, we first list several useful properties of the dual norm, whose

proof can be found in [80, 81].

127

Lemma 10. 1. Dual norm of
∑n

t=1 ‖θt‖2 is max1≤t≤n ‖θt‖2.

2. Dual norm of `1 is `∞.

3. Let Ξ1 and Ξ2 be two norms, if Ξ = Ξ1 + Ξ2, then

Ξ∗(θ) = min
z

max{Ξ1(θ − z),Ξ2(z)}. (A.45)

4. Let α ∈ R+ be a constant, then

Ξ∗(αθ) = Ξ∗(θ)/α. (A.46)

Next, we compute an upper bound of the dual norm R∗ of our penalty norm function

R, which will be used in later proof.

Lemma 11.

R∗(θ) ≤ ‖θ‖∞/(1− γ). (A.47)

Proof. Applying (A.45) and (A.46), we have

R∗(θ) = min
z∈Rnp

{
max

{
max
1≤t≤n

‖(θ − z)t‖2/γ, ‖z‖∞/(1− γ)

}}
≤ ‖θ‖∞/(1− γ).

Now, we state a lemma showing that by choosing λn = 8σ
√

5ρc
1−γ

√
lognp
n

we can satisfy

the left side of (3.11) with a high probability.

Lemma 12. If A1 and A2 hold, and we choose λn ≥ 8σ
√

5ρc
1−γ

√
lognp
n

, then

λn ≥ 2R∗(∇L(θ∗)). (A.48)

128

with probability at least 1− 2
np
− np exp (−n).

Proof. First, we have

∇L(θ∗) = − 2

n
X̃Te. (A.49)

Using Lemma 11 we have,

2R∗(∇L(θ∗)) ≤ 4

n(1− γ)
‖X̃Te‖∞. (A.50)

To bound ‖X̃Te‖∞, we first study the first p columns in X̃ and other column follows.

For 1 ≤ j ≤ p, we have

P
{∣∣∣∣ 1n (X̃·,j

)T
e

∣∣∣∣ ≥ c

}
≤ P

{∣∣∣∣ 1n (X̃·,j
)T

e

∣∣∣∣ ≥ c,
‖X̃·,j‖2√

n
≤
√

5Σj,j

}
+ P

{∣∣∣∣ 1n (X̃·,j
)T

e

∣∣∣∣ ≥ c,
‖X̃·,j‖2√

n
>
√

5Σj,j

}
.

Noticing that each element in X̃·,j is a realization, we have

P

{∣∣∣∣ 1n (X̃·,j
)T

e

∣∣∣∣ ≥ c,
‖X̃·,j‖2√

n
≤
√

5Σj,j

}
≤ 2 exp

(
− nc2

10σ2Σj,j

)
, (A.51)

which follows from the Gaussian tail bound. In addition, we have

P

{∣∣∣∣ 1n (X̃·,j
)T

e

∣∣∣∣ ≥ c,
‖X̃·,j‖2√

n
>
√

5Σj,j

}

≤ P

{
‖X̃·,j‖2√

n
>
√

5Σj,j

}

= P

{
‖X̃·,j‖2

2

Σj,j

> 5n

}
≤ exp (−n),

129

where the last step is due to the chi-square tail bound. Combining these two, we have

P
{∣∣∣∣ 1n (X̃·,j

)T
e

∣∣∣∣ ≥ c

}
≤ 2 exp

(
− nc2

10σ2Σj,j

)
+ exp (−n).

As the result, we obtain

P
{∥∥∥∥ 1

n
X̃Te

∥∥∥∥
∞
≥ c

}
≤ np

(
2 exp

(
− nc2

10σ2Σj,j

)
+ exp (−n)

)
= 2 exp

(
− nc2

10σ2Σj,j

+ log np

)
+ exp (−n+ log np),

which leads to

P
{∥∥∥∥4/(1− γ)

n
X̃Te

∥∥∥∥
∞
≥ c

}
≤ 2 exp

(
− nc2

160σ2Σj,j/(1− γ)2
+ log np

)
+ exp (−n+ log np).

Setting c2 = 320/(1−γ)2σ2ρc lognp
n

and λn ≥ 8σ
√

5ρc
1−γ

√
lognp
n

, we obtain P
{∥∥∥4/(1−γ)

n
X̃Te

∥∥∥
∞
< λn

}
≥

1− 2
np
− np exp (−n).

Now, we show our choice of λn satisfies the right side of (3.11). Since s2
√

log p
n
→ 0

in A3, then using (A.42), we know that δn → 0. Combining this with the assumption

Imin = Θ(n) in A3, we have

Imin

2n
≥ c6 > δn → 0 as n→∞,

and
Imin

2n
− δn ≥ c7. (A.52)

This means we can satisfy the condition Imin

2n
> δn, i.e.,

λn ≤
1

2R(θ∗)

(
Imin

2n

lJ2
min

64
− 72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)

)
, (A.53)

130

which is the upper bound in (3.11).

Combing the result of Lemma 12 and (A.53), we have finished the proof for the third

item in Lemma 3.

A.11 Proof for results on GLM in Section 3.3

Here we follow the same proof outline as the Appendix A.9, and only show the key steps.

A.11.1 Supporting Results

We first provide several supporting results that will be used throughout the proof.

First, as we choose

λn ≥ 2R∗(∇L(θ∗)), (A.54)

then following similar steps as those in the proof of Lemma 1, we can prove

R(∆θ) ≤ 4R(θ∗). (A.55)

Second, motivated the proofs in Section 3.2.2 in which the main idea is to analyze

two carefully chosen adjacent intervals, we show a property related two adjacent intervals

that will be repeatedly used in the remainder of the proof. Again we have T̂K̂ and T∗

whose definitions are the same as those in Section 3.2.2. Let
∣∣∣T∗ ∪ T̂K̂

∣∣∣ = K̃ and T∗ ∪

T̂K̂ = {t̃i}K̃i=1. In the following, we first show a property related to two adjacent intervals

[t̃j−1, t̃j) ∪ [t̃j, t̃j+1) = [t̃j−1, t̃j+1).

131

We have

δL(∆θ,θ
∗) : = L(θ∗ + ∆θ)− L(θ∗)− 〈∇L(θ∗),∆θ〉

=
1

n

n∑
t=1

(−yt〈∆θ, x̃t〉+ Φ (〈θ∗ + ∆θ, x̃t〉)− Φ (〈θ∗, x̃t〉))

−
〈

1

n

n∑
t=1

(
−ytx̃t + x̃tΦ

′
(〈θ∗, x̃t〉)

)
,∆θ

〉

=
1

n

n∑
t=1

Φ (〈θ∗ + ∆θ, x̃t〉)−
1

n

n∑
t=1

Φ (〈θ∗, x̃t〉)−
1

n

n∑
t=1

〈x̃tΦ
′
(〈θ∗, x̃t〉) ,∆θ〉.

If Φ is a strictly convex function, then Φ
′′
> 0. Using Taylor expansion, we know that

there exists ξt ∈ Rnp such that

δL(∆θ,θ
∗) = ∆T

θ

(
1

n

n∑
t=1

x̃tx̃
T
t Φ

′′
(〈ξt, x̃t〉)

)
∆θ

≥ µ

n
‖X̃∆θ‖2

2

=
µ

n
‖X∆β‖2

2,

where µ = min1≤t≤n{Φ′′(〈ξt, x̃t〉)} > 0 and its value depends on the function Φ, data

matrix X and true parameter θ∗.

Now, we focus on two adjacent intervals [t̃j−1, t̃j) ∪ [t̃j, t̃j+1) = [t̃j−1, t̃j+1). Since

(∆β)t is the same for t ∈ [t̃j−1, t̃j) for j ∈ [K̃+ 1], then let (∆̃β)j denote the coefficients

132

difference vector of the interval t ∈ [t̃j−1, t̃j):

µ

n
‖X∆β‖2

2

≥
j+1∑
i=j

µ

n

∥∥∥∥∥∥∥∥∥∥

xt̃i−1

· · ·

xt̃i−1

 (∆̃β)i

∥∥∥∥∥∥∥∥∥∥

2

2

(a)

≥
j+1∑
i=j

µ
t̃i − t̃i−1

n

(
l

32
‖(∆̃β)i‖2

2 −
9

4

√
Lρ(Σ)

√
log p

t̃i − t̃i−1

‖(∆̃β)i‖2‖(∆̃β)i‖1

)
(b)

≥ µl

32

(
t̃j − t̃j−1

n
‖(∆̃β)j‖2

2 +
t̃j+1 − t̃j

n
‖(∆̃β)j+1‖2

2

)
− µ9

4

√
Lρ(Σ)

√
log p

n

j+1∑
i=j

‖(∆̃β)i‖2‖(∆̃β)i‖1

(c)

≥ µl

32

(
t̃j − t̃j−1

n
‖(∆̃β)j‖2

2 +
t̃j+1 − t̃j

n
‖(∆̃β)j+1‖2

2

)
− µ9

2

√
Lρ(Σ)

√
log p

n
‖∆θ‖2

1,

(d)

≥ µl

32

(
t̃j − t̃j−1

n
‖(∆̃β)j‖2

2 +
t̃j+1 − t̃j

n
‖(∆̃β)j+1‖2

2

)
− µ 72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗), (A.56)

where (a) uses Lemma 2, in (b) we use the fact t̃j − t̃j−1 ≤ n, (c) uses the fact that

‖(∆̃β)i‖2 ≤ ‖(∆̃β)i‖1 ≤ ‖∆θ‖1, (d) uses ‖∆θ‖1 ≤ 1
1−γR(∆θ) ≤ 4

1−γR(θ∗), as shown

in (A.55).

Next, we will use property (A.56) to study F(∆θ).

F(∆θ) = L(θ̂)− L(θ∗) + λn

(
R(θ̂)−R(θ∗)

)
= δL(∆θ,θ

∗) + 〈∇L(θ∗),∆θ〉+ +λn

(
R(θ̂)−R(θ∗)

)
(a)

≥ δL(∆θ,θ
∗)− λn

2
R(∆θ)− λnR(∆θ)

(b)

≥ δL(∆θ,θ
∗)− 6λnR(θ∗)

(c)

≥ µl

32

(
t̃j − t̃j−1

n
‖(∆̃β)j‖2

2 +
t̃j+1 − t̃j

n
‖(∆̃β)j+1‖2

2

)
−µ 72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)− 6λnR(θ∗). (A.57)

133

where (a) uses the fact that we choose λn ≥ 2R∗(∇L(θ∗)) and triangle inequality, (b)

usesR(∆θ) ≤ 4R(θ∗) from (A.55) and (c) uses (A.56).

In the following proof, we will use (A.57) repeatedly. In the following, we only

provide the outline of the proofs as other details involving probabilities are similar to

those in Appendix A.9.

A.11.2 Proof for Proposition 13

The core of the proof is similar to Appendix A.9.1. Here, we focus on only one case as

all other cases are similar.

Suppose t∗j − t̂j > nδn, n > t̂j+1 − t∗j > Imin

2
and t̂j+1 ≤ t∗j+1, we have

F(∆θ) ≥
µl

32

(
t∗j − t̃j
n
‖α∗j − α̂j+1‖2

2 +
t̂j+1 − t∗j

n
‖α∗j+1 − α̂j+1‖2

2

)

−µ 72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)− 6λnR(θ∗)

>
µl

32

(
δn‖α∗j − α̂j+1‖2

2 +
Imin

2n
‖α∗j+1 − α̂j+1‖2

2

)
−µ 72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)− 6λnR(θ∗)

≥ µl

64
δn‖α∗j −α∗j+1‖2

2 − µ
72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)− 6λnR(θ∗)

≥ µl

64
δnJ

2
min − µ

72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)− 6λnR(θ∗)

= 0, (A.58)

which is an contradiction. Hence the conclusion in Proposition 13 holds.

134

A.11.3 Proof for Proposition 14

Since Proposition 13 holds, we have |t̂k − t∗k| ≤ nδn for each k = 1, · · · , K∗. For each

k ∈ [K∗], we have

F(∆θ) ≥
µl

32

Imin − 2nδn
n

‖α̂k −α∗k‖2
2 − µ

72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)− 6λnR(θ∗).

Hence, for F(∆θ) ≤ 0 to hold, we have

‖α̂k −α∗k‖2
2 ≤

32n

µl(Imin − 2nδn)

(
µ

72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗) + 6λnR(θ∗)

)
.

(A.59)

A.11.4 Proof for Proposition 15

Suppose K̂ < K∗, then there exists at least one true change-point t∗k such that there is

no estimated change-points in the range of Imin/2 around it, which is illustrated in Figure

A.4. We have

F(∆θ) ≥
µl

32

(
t∗k − t̂l
n
‖α̂l −α∗k−1‖2

2 +
t̂l+1 − t∗k

n
‖α̂l −α∗k‖2

2

)
−µ 72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)− 6λnR(θ∗)

≥ µl

64

Imin

2n
J2

min − µ
72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)− 6λnR(θ∗)

> 0,

which is a contradiction. Hence K̂ ≥ K∗.

135

A.11.5 Proof for Proposition 16

Suppose there is some true change-point t∗k such that |t∗k − t̂i| > nδn for i = 1, · · · , K̂.

Suppose the nearest estimated change-points are t̂l and t̂l+1. Hence t∗k < t̂l+1 and t∗k > t̂l

and t̂l+1 − t∗k > nδn and t∗k − t̂l > nδn. Then following the same technique in Appendix

A.11.2 we can find that

F(∆θ) > 0,

which is a contradiction. Hence
ε(T̂K̂ ||T∗)

n
≤ δn.

A.11.6 Proof for Proposition 17

In this proof, we focus on the case illustrated in Figure 3.1 and other cases follow simi-

larly. Suppose there exists some isolated estimated change-points t̂j with t̂j+1− t̂j ≥ nδn,

t̂j+1 ≤ t∗k+1, t̂j − t̂j−1 ≥ nδn, t̂j−1 ≥ t∗k, ‖α̂j+1 − α̂j‖2 > Jmin, we have

F(∆θ) ≥
µl

32

(
t̂j+1 − t̂j

n
‖α̂j+1 −α∗k+1‖2

2 +
t̂j − t̂j−1

n
‖α̂j −α∗k+1‖2

2

)
−µ 72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)− 6λnR(θ∗)

>
µl

64
δnJ

2
min − µ

72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)− 6λnR(θ∗)

= 0.

This means that the event Tisolate cannot happen.

A.11.7 Proof for Proposition 18

Following the steps in previous appendices, we have

F(θ) ≥ µl

32

Imin

10n
‖α̂i −α∗k(i)‖2

2 − µ
72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗)− 6λnR(θ∗).

136

Hence for F(θ) ≤ 0 to be true, we must have

‖α̂i −α∗k(i)‖2
2 ≤

320n

µlImin

(
µ

72

(1− γ)2

√
Lρ(Σ)

√
log p

n
R2(θ∗) + 6λnR(θ∗)

)
.

A.12 Proof of Proposition 19

For the first item in the proposition,

ϕ(βk+1) = L(βk+1) +R(βk+1)

≤ L(βk) + 〈∇L(βk),βk+1 − βk〉+
L

2
‖βk+1 − βk‖2

2 +R(βk+1)

(a)

≤ L(βk) + 〈∇L(βk),βk+1 − βk〉+
L

2
‖βk+1 − βk‖2

2

+R(βk) + 〈s(βk+1),βk+1 − βk〉

= ϕ(βk) + 〈∇L(βk) + s(βk+1),βk+1 − βk〉+
L

2
‖βk+1 − βk‖2

2

(b)
= ϕ(βk) + 〈∇L(βk)−∇L(βfixed),βk+1 − βk〉 −

L

2
‖βk+1 − βk‖2

2

≤ ϕ(βk) + L‖βk − βfixed‖2‖βk+1 − βk‖2 −
L

2
‖βk+1 − βk‖2

2

≤ ϕ(βk). (A.60)

where (a) uses (4.3), (b) uses∇L(βfixed) + L(βk+1 − βk) + s(βk+1) = 0.

137

Then we prove the second item.

ϕ(βk+1) = L(βk+1) +R(βk+1)

≤ L(βk) + 〈∇L(βk),βk+1 − βk〉+
L

2
‖βk+1 − βk‖2

2 +R(βk+1)

(c)

≤ L(β∗) + 〈∇L(βk),βk − β∗〉 −
µL
2
‖βk − β∗‖2

2

+〈∇L(βk),βk+1 − βk〉+
L

2
‖βk+1 − βk‖2

2

+R(β∗) + 〈s(βk+1),βk+1 − β∗〉

= ϕ(β∗) + 〈∇L(βk) + s(βk+1),βk+1 − β∗〉

+
L

2
‖βk+1 − βk‖2

2 −
µL
2
‖βk − β∗‖2

2

(d)
= ϕ(β∗) + 〈∇L(βk)−∇L(βfixed),βk+1 − β∗〉+ 〈−L(βk+1 − βk),βk − β∗〉

−L
2
‖βk+1 − βk‖2

2 −
µL
2
‖βk − β∗‖2

2. (A.61)

where (c) uses Equation (4.2) and (4.3), (d) uses∇L(βfixed)+L(βk+1−βk)+s(βk+1) =

0.

Using the inequality above, we have

L

2
‖βk+1 − β∗‖2

=
L

2
‖βk − β∗‖2 + 〈L(βk+1 − βk),βk − β∗〉+

L

2
‖βk+1 − βk‖2

(A.61)
≤ L

2
‖βk − β∗‖2 + ϕ(β∗)− ϕ(βk+1) + 〈∇L(βk)−∇L(βfixed),βk+1 − β∗〉

−µL
2
‖βk − β∗‖2

2

138

Let c = µL
5

, we have

ϕ(βk+1) +
L

2
‖βk+1 − β∗‖2 ≤ ϕ(β∗) +

L− µL
2
‖βk − β∗‖2 + 〈∇L(βk)−∇L(βfixed),βk+1 − β∗〉

≤ ϕ(β∗) +
L− µL

2
‖βk − β∗‖2 + L‖βk − βfixed‖‖βk+1 − β∗‖

≤ ϕ(β∗) +
L− µL

2
‖βk − β∗‖2 + c‖βk+1 − βk‖‖βk+1 − β∗‖

≤ ϕ(β∗) +
L− µL

2
‖βk − β∗‖2 +

c

2
‖βk − β∗‖2 +

3c

2
‖βk+1 − β∗‖2.

By rearranging the terms, we have

ϕ(βk+1)− ϕ(β∗) +
1

2

(
L− 3

5
µL

)∥∥βk+1 − β∗
∥∥2

≤
(

5L− 4µL
5L− 3µL

)(
1

2

(
L− 3

5
µL

)
‖βk − β∗‖2

)
.

A.13 Proof of Proposition 20

Proof. We prove this proposition by induction.

For k = 0, the proposition holds trivially.

Now we assume (4.11) holds for k − 1.

If we do exact update, from [60, Proposition 4], we have

‖βk − β∗‖ ≤
(

1− µL
L

)
‖βk−1 − β∗‖ ≤

(
1− µL

L

)(
1− µL − µ0

L

)k−1

D ≤
(

1− µL − µ0

L

)k
D.

139

If we do inexact update,

‖βk − β∗‖ ≤
(

1− µL
L

)
‖βk−1 − β∗‖+

‖ek−1‖
L

=
(

1− µL
L

)
‖βk−1 − β∗‖+

‖∇L(βk−1)−∇L(βfixed)‖
L

≤
(

1− µL
L

)
‖βk−1 − β∗‖+ ‖βk−1 − βfixed‖

≤
(

1− µL
L

)(
1− µL − µ0

L

)k−1

D +
µ0

L

(
1− µL − µ0

L

)k−1

D

=

(
1− µL − µ0

L

)k
D.

A.14 Proof of Proposition 21

First, we show convergence rates of exact iterations.

Lemma 13. If we use exact update,

‖βk+1 − βk‖2 ≤
(

1− µL
L

)
‖βk − βk−1‖2,

‖βk+1 − β∗‖2 ≤
(

1− µL
L

)
‖βk − β∗‖2.

140

Proof.

‖βk+1 − βk‖2
2 =

∥∥∥∥prox 1
L
R

(
βk −

1

L
∇L(βk)

)
− prox 1

L
R

(
βk−1 −

1

L
∇L(βk−1)

)∥∥∥∥2

2

(a)

≤ ‖βk −
1

L
∇L(βk)− βk−1 +

1

L
∇L(βk−1)‖2

2

= ‖βk − βk−1‖2
2 +

1

L2
‖∇L(βk)−∇L(βk−1)‖2

2

− 2

L
〈∇L(βk)−∇L(βk−1),βk − βk−1〉

(b)

≤ ‖βk − βk−1‖2
2 +

1

L2
‖∇L(βk)−∇L(βk−1)‖2

2

− 2

L

(
1

L+ µL
‖∇L(βk)−∇L(βk−1)‖2

2 +
LµL
L+ µL

‖βk − βk−1‖2
2

)
=

L− µL
L+ µL

‖βk − βk−1‖2
2 −

1

L2

L− µL
L+ µL

‖∇L(βk)−∇L(βk−1)‖2
2

(c)

≤ L− µL
L+ µL

‖βk − βk−1‖2
2 −

µ2
L
L2

L− µL
L+ µL

‖βk − βk−1‖2
2

=
(

1− µL
L

)2

‖βk − βk−1‖2
2.

where (a) uses non-expansiveness of proximal operator, (b) uses Theorem 2.1.12 of [79],

(c) uses stronly convexity of L. The second inequality can be proved similarly.

In order to count the number of rounds of communications in the optimization process,

we should count the number of iterations needed between inexact updates. Suppose kth

iteration we are out of inexact updates loop. Suppose βfixed = βk−(p+1). We use t

to denote the steps needed to satisfy the constraint in Proposition 20. We have ‖βk −

βk−1‖ ≤ ‖βk−1 − βk−2‖ ≤ · · · ≤ ‖βk−p − βfixed‖ ≤ µ0
L

(
1− µL−µ0

L

)k−p
D. Let

q := 1−µL/L
1−(µL−µ0)/L

. The number of steps of t to enter the next inexact update phase is the t

141

such that it at least satisfies

(
1− µL

L

)t µ0

L

(
1− µL − µ0

L

)k−p
D ≤ µ0

L

(
1− µL − µ0

L

)k+t

D,

qt ≤
(

1− µL − µ0

L

)p
,

t ≥ p
log
(
1− µL−µ0

L

)
log q

.

So for inexact phase of p steps, we need an following exact phase of p
log(1−µL−µ0

L)
log q

steps

to reenter the inexact phase. Hence we total number of communication round is

N
p

log(1−µL−µ0
L)

log q

p+ p
log(1−µL−µ0

L)
log q

= N
log
(
1− µL−µ0

L

)
log
(
1− µL

L

) .

142

Bibliography

[1] “Uci machine learning repository.” https://archive.ics.uci.edu/ml/
datasets/Arcene.

[2] “Libsvm data: Classification (binary class).” https://www.csie.ntu.edu.
tw/˜cjlin/libsvmtools/datasets/binary.html.

[3] “Communities and crime data set.” https://archive.ics.uci.edu/ml/
datasets/Communities+and+Crime+Unnormalized.

[4] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” Journal of the
Royal Statistical Society, vol. 1, pp. 267–288, Jan. 1996.

[5] S.-I. Lee, H. Lee, P. Abbeel, and A. Y. Ng, “Efficient `1 regularized logistic regres-
sion,” in The Twenty-First National Conference on Artificial Intelligence and the
Eighteenth Innovative Applications of Artificial Intelligence Conference, (Boston,
MA), Jan. 2006.

[6] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” Annals
of Statistics, vol. 32, pp. 407–451, Apr. 2004.

[7] P. Zhao and B. Yu, “On model selection consistency of Lasso,” Journal of Machine
Learning Research, vol. 7, pp. 2541–2563, Dec. 2006.

[8] S. N. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu, “A unified frame-
work for high-dimensional analysis of M-estimators with decomposable regulariz-
ers,” Statistical Science, vol. 27, pp. 538–557, Nov. 2012.

[9] P. Perron, Dealing with strucutral breaks, vol. 1 of Palgrave Handbook of Econo-
metrics. New York: Palgrave Macmillan, 2006.

[10] N. Zhang and D. Siegmund, “A modified Bayes information criterion with appli-
cations to the analysis of comparative genomic hybridization data,” Biometrics,
vol. 63, pp. 22–32, Mar. 2007.

[11] A. J. Gibberd and J. D. B. Nelson, “High dimensional changepoint detection with
a dynamic graphical Lasso,” in Proc. IEEE Intl. Conf. on Acoustics, Speech, and
Signal Processing, (Florence, Italy), pp. 2703–2707, May. 2014.

143

https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized
https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized

[12] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes - Theory and Appli-
cation. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[13] H. V. Poor and O. Hadjiliadis, Quickest Detection. Cambridge, UK: Cambridge
University Press, 2008.

[14] E. C. Hall and R. M. Willett, “Online optimization in dynamic environments,” 2013.
Submitted, available at http://arxiv.org/abs/1307.5944.

[15] V. V. Veeravalli and T. Banerjee, “Quickest change detection.” Elsevier: E-reference
Signal Processing, 2013. available at [arXiv:1210.5552].

[16] Y. Xie, J. Huang, and R. Willett, “Change-point detection for high-dimensional time
series with missing data,” IEEE Journal of Selected Topics in Signal Processing,
vol. 7, pp. 12–27, Feb. 2013.

[17] E. Page, “Estimating the point of change in a continuous process,” Biometrika,
vol. 44, pp. 248–252, 1957.

[18] P. K. Bhattacharya, “Some aspects of change-point analysis,” Institute of Mathemat-
ical Statistics Lecture Notes - Monograph Series, vol. 23, p. 2854, 1994.

[19] R. Bellman and R. Roth, “Curve fitting by segmented straight lines,” Journal of the
American Statistical Association, vol. 64, pp. 1079–1084, 1969.

[20] J. Bai, “Estimation of a change point in multiple regression models,” The Review of
Economics and Statistics, vol. LXXIX, pp. 551–563, 1997.

[21] J. Bai and P. Perron, “Estimating and testing linear models with multiple structural
changes,” Econometrica, vol. 66, pp. 47–78, 1998.

[22] J. Bai, “Likelihood ratio tests for multiple structural changes,” Journal of Econo-
metrics, vol. 91, pp. 299–323, 1999.

[23] F. Picard, S. Robin, M. Lavielle, C. Vaisse, and J.-J. Daudin, “A statistical approach
for array CGH data analysis,” Bioinformatics, vol. 6, no. 27, pp. 1–14, 2005.

[24] S. Li and R. Lund, “Multiple changepoint detection via genetic algorithms,” Journal
of Climate, vol. 25, no. 2, pp. 674–686, 2012.

[25] J. Bai and P. Perron, “Computation and analysis of multiple structural change mod-
els,” Journal of Applied Econometrics, pp. 1–22, Feb. 2003.

[26] M. Lavielle, “Using penalized contrasts for the change-point problem,” Institut Na-
tional de Recherche en Informatique et en Automatique N◦ 5339, Oct. 2004.

144

[27] Y. Guédon, “Explorating the segmentation space for the assessment of multiple
change-points models,” Institut National de Recherche en Informatique et en Au-
tomatique N◦ 6619, Oct. 2008.

[28] G. Rigaill, “Pruned dynamic programming for optimal multiple change-point detec-
tion,” arXiv:1004.0887v1, Apr. 2010.

[29] J. Friedman, T. Hastie, and R. Tibshirani, “A note on the group Lasso and a sparse
group Lasso,” arXiv:1001.0736v1, Jan. 2010.

[30] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-group Lasso,” Jour-
nal of Computational and Graphical Statistics, vol. 22, pp. 231–245, May 2013.

[31] R. Foygel and M. Drton, “Exact block-wise optimization in group Lasso and sparse
group Lasso for linear regression,” arXiv:1010.3320v2, Nov. 2010.

[32] J. Fan, J. Lv, and L. Qi, “Sparse high dimensional models in economics,” Annu Rev
Econom., vol. 3, pp. 291 – 317, Sep. 2011.

[33] “Managing the deluge of ‘big data’ from space.” http://www.jpl.nasa.
gov/news/news.php?release=2013-299, 2013.

[34] “Industrial network anomaly detection.” http://global.ofweek.com/
news/Industrial-network-anomaly-detection-23614, 2015.

[35] P. Richtárik and M. Takác̆, “Distributed coordinate descent method for learning with
big data,” Journal of Machine Learning Research, Feb. 2016.

[36] Y. Zhang and L. Xiao, “Communication-efficient distributed optimization of self-
concordant empirical loss,” arXiv:1510.00263v1, Jan. 2015.

[37] C. Ma and M. Takác̆, “Partitioning data on features or samples in communication-
efficient distributed optimization?,” arXiv:1510.06688v1, Oct. 2015.

[38] P. Richtárik and M. Takác̆, “Parallel coordinate descent methods for big data opti-
mization,” Mathematical Programming, vol. 156, p. 433484, Dec. 2016.

[39] Z. Harchaoui and C. Ĺevy Leduc, “Multiple change-point estimation with a to-
tal variation penalty,” Journal of the American Statistical Association, vol. 105,
pp. 1480–1493, Dec. 2010.

[40] J. Qian and L. Su, “Shrinkage estimation of regression models with multiple struc-
tural changes.” http://jhqian.org/structure_change20130629.
pdf, Jun. 2013.

[41] D. Angelosante and G. Giannakis, “Group Lassoing change-points in piecewise-
constant AR processes,” EURASIP Journal on Advances in Signal Processing,
vol. 2012, p. 70, Mar. 2012.

145

http://www.jpl.nasa.gov/news/news.php?release=2013-299
http://www.jpl.nasa.gov/news/news.php?release=2013-299
http://global.ofweek.com/news/Industrial-network-anomaly-detection-23614
http://global.ofweek.com/news/Industrial-network-anomaly-detection-23614
http://jhqian.org/structure_change20130629.pdf
http://jhqian.org/structure_change20130629.pdf

[42] S. Oymak, A. Jalali, M. Fazel, Y. C. Eldar, , and B. Hassibi, “Simultaneously struc-
tured models with application to sparse and low-rank matrices,” arXiv:1212.3753v3,
Jul. 2014.

[43] R. H. Loschi, J. G. Pontel, and F. R. B. Cruz, “Multiple change-point analysis for
linear regression models,” Chilean Journal of Statistics, vol. 1, pp. 93–112, Sep.
2010.

[44] D. Barry and J. A. Hartigan, “A Bayesian analysis for change point problems,” Jour-
nal of the American Statistical Association, vol. 88, pp. 309–319, Mar. 1993.

[45] J. Hartigan, “Partition models,” Communications in Statistics - Theory and Methods,
vol. 19, pp. 2745–2756, Jun. 1989.

[46] M. Levorato and U. Mitra, “Fast anomaly detection in SmartGrids via sparse ap-
proximation theory,” in Proceedings of IEEE 7th Sensor and Multichannel Signal
Processing Workshop, (Hokoben, NJ), pp. 5–8, Jun. 2012.

[47] G. Raskutti, M. J. Wainwright, and B. Yu, “Restricted eigenvalue properties for
correlated Gaussian designs,” Journal of Machine Learning Research, vol. 11,
pp. 2241–2259, Aug. 2010.

[48] G. Raskutti, M. J. Wainwright, and B. Yu, “Minimax rates of estimation for high-
dimensional linear regression over `q-balls,” IEEE Trans. Inform. Theory, vol. 57,
pp. 6976–6994, Oct. 2011.

[49] Y. S. Soh and V. Chandrasekaran, “High-dimensional change-point estimation:
Combining filtering with convex optimization,” in Proc. IEEE Intl. Symposium on
Inform. Theory, (Hong Kong, China), pp. 151 – 155, Jun. 2015.

[50] Y. Chi and Y. Wu, “Change-point estimation of high-dimensional streaming data via
sketching,” in Proc. Asilomar Conf. on Signals, Systems and Computers, (Pacific
Grove, CA), pp. 102–106, Nov. 2015.

[51] G. K. Atia, “Change detection with compressive measurements,” IEEE Signal Pro-
cessing Letters, vol. 22, pp. 182–186, Feb. 2015.

[52] M. Jaggi, V. Smith, M. Takác̆, J. Terhorst, S. Krishnan, T. Hofmann, and M. I.
Jordan, “Communication-efficient distributed dual coordinate ascent,” in NIPS’14
Proceedings of the 27th International Conference on Neural Information Processing
Systems, (Montreal, Canada), pp. 3068–3076, Dec. 2014.

[53] C. Ma, V. Smith, , M. Jaggi, M. I. Jordan, P. Richtárik, and M. Takác̆, “Adding
vs. averaging in distributed primal-dual optimization,” in Proceedings of the 32th
International Conference on Machine Learning, vol. 37, (Lille, France), pp. 3068–
3076, Dec. 2015.

146

[54] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient distributed optimiza-
tion using an approximate newton-type method,” in Proceedings of the 31 st Inter-
national Conference on Machine Learning, (Beijing, China), July 2014.

[55] F. Niu, B. Recht, C. Ré, and S. J. Wright, “Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent,” in NIPS’11 Proceedings of the 24th Inter-
national Conference on Neural Information Processing Systems, (Granada, Spain),
Dec. 2011.

[56] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar, “An asynchronous parallel
stochastic coordinate descent algorithm,” in Proceedings of the 31st International
Conference on Machine Learning, vol. 32, (Beijing, China), June 2014.

[57] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive
variance reduction,” in NIPS’13 Proceedings of the 26th International Conference
on Neural Information Processing Systems, (Stateline, NV), Dec. 2013.

[58] J. C. Duchi, M. I. Jordan, and H. B. McMaha, “Estimation, optimization, and par-
allelism when data is sparse,” in NIPS’13 Proceedings of the 26th International
Conference on Neural Information Processing Systems, (Stateline, NV), Dec. 2013.

[59] M. Schmidt, N. L. Roux, and F. Bach, “A stochastic gradient method with an ex-
ponential convergence rate for finite training sets,” in NIPS’12 Proceedings of the
25th International Conference on Neural Information Processing Systems, (State-
line, NV), Dec. 2012.

[60] M. Schmidt, N. L. Roux, and F. Bach, “Convergence rates of inexact proximal-
gradient methods for convex optimization,” arXiv:1109.2415v2, Dec. 2011.

[61] P. Machart, S. Anthoine, and L. Baldassarre, “Optimal computational trade-off of
inexact proximal methods,” arXiv:1210.5034, Oct. 2012.

[62] C. N. J. Ye Pu and M. N. Zeilinger, “Inexact alternating minimization algorithm for
distributed optimization with an application to distributed mpc,” arXiv:1608.00413,
Aug. 2016.

[63] R. Tappenden, P. Richtárik, and J. Gondzio, “Inexact coordinate descent: Complex-
ity and preconditioning,” Journal of Optimization Theory and Applications, vol. 170,
pp. 144–176, July 2016.

[64] B. Zhang, J. Geng, and L. Lai, “Multiple change-points estimation in linear re-
gression models via sparse group Lasso,” IEEE Trans. Signal Processing, vol. 63,
pp. 2209 – 2224, May 2015.

[65] B. Zhang, J. Geng, and L. Lai, “Change-point estimation in high dimensional re-
gression models,” IEEE Trans. Inform. Theory, 2016. Submitted, available at
users.wpi.edu/∼bzhang.

147

[66] B. Zhang, J. Geng, W. Xu, and L. Lai, “Communication efficient distributed learning
with feature partitioned data,” IEEE Trans. on Signal and Information Processing
over Networks, 2017. Submitted, available at users.wpi.edu/∼bzhang.

[67] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms. The MIT Press, third ed., Jul. 2009.

[68] K. R. Davidson and A. P. Donsig, Real Analysis and Applications-Theory in Prac-
tice. New York: Springer, 2009.

[69] H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Auto-
matic Control, vol. 19, no. 6, pp. 716–723, 1974.

[70] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal
algorithms,” Physica D, vol. 60, no. 1-4, pp. 259–268, 1992.

[71] D. M. Strong and T. F. Chan, “Exact solutions to total variation regularization prob-
lems,” tech. rep., UCLA, 1996.

[72] S. Yang, J. Wang, W. Fan, X. Zhang, P. Wonka, and J. Ye, “An efficient admm
algorithm for multidimensional anisotropic total variation regularization problems,”
in SIGKDD, (Chicago, USA), Aug. 2013.

[73] Z. Lu and L. Xiao, “On the complexity analysis of randomized block-coordinate
descent methods,” arXiv:1305.4723v1, May 2013.

[74] P. Richtárik and M. Takáč, “Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function,” Mathematical Program-
ming, vol. 144, pp. 1–38, Apr. 2014.

[75] “NCEP/NCAR Reanalysis 1: Surface.” http://www.esrl.noaa.gov/psd/
data/gridded/data.ncep.reanalysis.surface.html, 2014.

[76] R. F. Adler, G. J. Huffman, A. Chang, R. Ferraro, P.-P. Xie, J. Janowiak, B. Rudolf,
U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin, and E. Nelkin,
“The version-2 global precipitation climatology project (GPCP) monthly precipi-
tation analysis,” Journal of Hydrometeorology Advanced Search, vol. 4, pp. 1147–
1167, Dec. 2003.

[77] B. Zhang, “R package ChangePointCalc.” http://users.wpi.edu/

˜bzhang/coding.html. (R implementation of SGL for change-points
estimation).

[78] Y. Nesterov, “Gradient methods for minimizing composite objective function,” Cen-
ter for Operations Research and Econometrics Discussion Paper, Sep. 2007.

[79] Y. Nesterov, Introductory lectures on convex optimization: a basic course. New
York: Springer Science+Business Media, LLC, 2004.

148

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html
http://users.wpi.edu/~bzhang/coding.html
http://users.wpi.edu/~bzhang/coding.html

[80] R. T. Rockafellar, Convex Analysis. Princeton, New Jersey: Princeton Univerisity
Press, 1970.

[81] Y.-L. Yu, “Arithmetic duality for norms.” http://webdocs.cs.ualberta.
ca/˜yaoliang/mynotes/normduality.pdf, 2012.

149

http://webdocs.cs.ualberta.ca/~yaoliang/mynotes/normduality.pdf
http://webdocs.cs.ualberta.ca/~yaoliang/mynotes/normduality.pdf

	Introduction
	Background and Motivation
	Statistical Learning in Homogeneous Models
	Change-points Inference in Heterogeneous Models

	Related Efforts
	Contributions
	Notation
	Roadmap

	Low Dimensional Change-points Inference
	Model
	Proposed SGL Based Approach
	Consistency
	Complexity
	Numerical Results

	High Dimensional Change-points Inference
	Model
	Problem Formulation
	Assumptions on Data

	Consistency
	Preliminary
	Results for General Models
	Simplified Results with Knowledge of Model Details

	Generalized Linear Models
	Numerical Simulation

	Speeding Up Change-points Inference
	Algorithm
	Performance Analysis
	Numerical Examples
	Lasso
	SVM
	Logistic Regression

	Conclusion
	Proof Details
	Supporting Lemmas
	Lemma 4
	Lemma 5

	Proof of Proposition 1
	Prove: P(An,kCn)0.
	Prove: P(An,kn)0.

	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	If k-k-1<nn
	If k-k-1nn

	Proof of Proposition 6
	Inner loop
	Outer loop

	Proof of Supporting Lemmas in Section 3.2.2
	Proof of Lemma 1
	Proof of Lemma2

	Proof for Consistency Results in Section 3.2.2
	Proof for Proposition 7
	Proof for Proposition 8
	Proof for Proposition 9
	Proof for Proposition 10
	Proof for Proposition 11
	Proof for Proposition 12

	Proof for Simplied Results in Section 3.2.3
	Proof of the first and second item in Lemma 3
	Proof of the third item in Lemma 3

	Proof for results on GLM in Section 3.3
	Supporting Results
	Proof for Proposition 13
	Proof for Proposition 14
	Proof for Proposition 15
	Proof for Proposition 16
	Proof for Proposition 17
	Proof for Proposition 18

	Proof of Proposition 19
	Proof of Proposition 20
	Proof of Proposition 21

