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Abstract

Information Theoretic Approaches for Security and Privacy

Information theoretic security and privacy is an emerging field in information theory that

aims to secure future generations of communication systems by exploiting physical layer

properties of communication channels or sources. The notion “information theoretic” means

that the security and privacy of the system does not depend on the computational power of

the adversary, i.e., it cannot be compromised even when the adversary has an unlimited com-

putational power. In this dissertation, we examine several information theoretic security and

privacy issues, including Simulatability condition, Secret key sharing, Message authentica-

tion and Function computation.

Utilizing a common secret key for communication is a basic approach to protect secrecy

and privacy. In the first part of this dissertation, we investigate the problem of checking sim-

ulatability condition, a fundamental concept in studying key generation in the presence of

an active adversary. This condition determines whether there exist communication protocols

so that the legitimate parties are able to share secret keys in certain important scenarios. In

this problem, we provide an efficient algorithm to check whether the simulatability condition

holds or not. Furthermore, we provide an efficient algorithm for finding the attack strategy

that the adversary can use to attack the key generation process. We also show that simulata-

bility condition is not sensitive on the knowledge about the adversary’s observations.

We then investigate the problem of simultaneously generating multiple keys in a joint

source-channel model in Chapter 3. In this problem, we first study a special case where Eve

has no side information and provide a full characterization on the secret-key capacity region.
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The obtained result shows that there exists a trade-off between individual secret-key rates.

Then we generalize the result into the general case where Eve has side information, and fully

characterize the corresponding secret-key capacity region as well.

In Chapter 4, we consider the problem of keyless message authentication over noisy

channels. We study how to exploit the channel properties to guarantee that the receiver is able

to determine the authenticity of received messages. We characterize both the authentication

exponent (the speed at which the optimal successful attack probability can be driven to zero)

and the authenticated capacity (the largest message rate at which the optimal successful

attack probability can be made arbitrarily small).

The goal of secure function computation is to design methods for communication parties

to compute a function over their inputs while keeping those inputs private. We investigate

both secrecy and privacy issues in the problem of function computation. We allow distortion

in the computed function and study the relationship of the message rates, the rate distortion,

the private information leakage of the transmitters’ sources to the receiver, and the secrecy

of those sources at the eavesdropper. We fully characterize the achievable region of these

parameters in a special case. We further provide both inner and outer bounds for the general

case. These inner and outer bounds are tight for certain scenarios.
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Chapter 1

Introduction

Security and privacy are two of the most important issues in communications. Security issues

arising in communication networks include, but not limited to, confidentiality, authentication

and privacy: 1) Confidentiality is a property that information is kept confidential from unau-

thorized parties; 2) Authentication guarantees that the legitimate recipients have the ability

to identify the transmitter of the received information; and 3) Privacy is a practice to help

individuals selectively express themselves and keep their inputs private.

There have been many existing studies on security and privacy issues from a variety of

perspectives [5,12,29,71,102]. The adversaries can be divided into two classes: eavesdrop-

pers (or passive attackers) and active attackers. An eavesdropper is a listener, who does not

interfere with the legitimate communication while an active attacker could not only listen,

but also intercept, modify and even falsify signals to interfere with the legitimate communi-

cation. Information theoretic security and privacy is an emerging field in information theory

that aims to secure future generations of communication systems by exploiting physical layer

properties of communication channels or sources. The notion of “information theoretic”

means that the security does not depend on the computational power of the adversary, i.e., it

cannot be compromised even when the adversary has an unlimited computational power.
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Plaintext

Transmitter

Public Key Private Key

Encrypt Decrypt

Ciphertext Plaintext

Receiver

Figure 1.1: Public-key cryptosystem.

1.1 Computational Security vs Information Theoretic Se-

curity

There are two popular security notions: computational security and information theoretic

security. Roughly speaking, the computational security is based on the assumptions that the

adversary is computationally limited and certain mathematical problems are difficult to solve

within given time, while the information theoretic security makes no such assumptions. In

cryptography, a cryptosystem is said to be computationally secure or conditionally secure,

if the cost and the time to break the cipher exceeds the value and the useful lifetime of

the encrypted information. A cryptosystem is said to be information theoretically secure or

unconditionally secure if the generated ciphertext does not leak any information about the

corresponding plaintext even when the adversary has unlimited computational power. Thus,

such cryptosystems are typically considered to be cryptanalytically unbreakable.

As illustrated in Fig.1.1, an example of the computational security cryptosystem is public-

key encryption system, which is also referred as asymmetric key cryptosystem since the en-

cryption and decryption use different keys [76]. The well known public-key cryptosystem,

RSA, is a classic computational security system. The RSA algorithm consists of four stages:
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Figure 1.2: Shannon’s cryptosystem.

key generation, key distribution, encryption and decryption. In the key generation stage, the

RSA receiver randomly chooses two large prime numbers, based on which it creates one

public key and one private key. Then the public key is released to the public including the

transmitter during the key distribution stage. After receiving the public key, the transmitter

uses it to encrypt the transmitted information and sends it to the receiver. Finally, the receiver

decrypts the received message using its private key. It has been proved that, using the private

key, the message decrypted from the ciphertext encrypted with the public key is the same

with the original message. The secrecy of the transmitted message in the RSA cryptosys-

tem relies on the computational hardness assumptions of two mathematical problems: the

RSA problem and the problem of factoring large numbers [1, 13, 76, 108]. That is, given the

public key generated in the key generation stage, it is practically difficult to determine the

corresponding private key, and given the ciphertext, it is also difficult to infer the encrypted

message with only public key. Similarly, there exists a variety of cryptographic hardness

assumptions that are widely used in various computational security systems. However, one

common challenge is that the hardness of these underlying problems is unproven. In addi-

tion, the security of the computationally secure system is compromised once the adversary

has sufficiently large computational power. Thus, many researchers seek to create certain

systems that are unconditionally secure.

The information theoretic approaches for security and privacy open new directions in

3



achieving unconditionally secure communication systems. Shannon initiated the informa-

tion theoretic analysis of security for secret-key communication system. In his classic model

of the communication system as illustrated in Fig.1.2, the source would like to confidentially

transmit a message M to the decipherer over a public noiseless channel, to which the ad-

versary has full access [81]. The encipherer and the decipherer are assumed to have access

to a key source (i.e., they pre-share a secret key K) that is unknown to the adversary). As

the adversary will receive an identical copy of the ciphertext transmitted over the channel,

the message source encrypts M with K into ciphertext E := TKM , where TK denotes the

K-th transformation of encryption, and transmits it over the channel. On the other end of

the channel, the decipherer will use K to decrypt the received ciphertext E into the mes-

sage via doing the reverse transformation: M = T−1
K E. A cipher system is considered to

be perfectly secure if the ciphertext E contains no information of the plaintext message M ,

i.e., I(M ;E) = 0, where I(·; ·) denotes the mutual information of its arguments. Shannon

showed that perfect secrecy can be achieved only if the length of the secret key is larger than

or equal to the length of the plaintext, i.e., H(K) ≥ H(M), where H(·) denotes the entropy

of its argument. A well known information theoretically secure scheme is the one-time pad

scheme, which requires one-time use of the pre-shared key [37]. Besides the fact that it

can be made perfectly secure, the secret key cryptosystem is also computationally efficient.

However, to achieve perfect secrecy, the requirement on secret key is extremely high, as

every time when we need to send a distinct message we need a new key.

From the discussion above, both computational security and information theoretic secu-

rity have advantages and disadvantages. Computational security based systems are practi-

cally useful and have been widely adopted, but their security is based on unproved assump-

tions. Systems based on information theoretic security, on the other hand, can offer provable

security, but they have stringent requirements. The fact that many challenges remain makes

the information theoretic approaches not practically useful yet, e.g., how to enable commu-

nication parties to share high rate of secret keys. In this dissertation, we focus on designing

4



information theoretically secure schemes:

• Secret key sharing: from the discussion above, we see that the secret key plays a

significant role in protecting the confidentiality of the transmitted information. We

will first design efficient algorithms to check simulatability condition, a condition that

determines whether it is possible to generate secret keys when the attacker is active.

Then, we will exploit our understanding in secret key sharing to study scenarios where

multiply secret keys are required to be generated in the presence of an eavesdropper.

• Keyless message authentication: authentication is an important security primitive,

which guarantees that the receiver can determine whether a message is truly from

the claimed transmitter or it has been modified or even falsified by other users. We

will design schemes to achieve this property without any pre-shared key.

• Secure function computation: the goal of secure function computation is to design

protocols for communication parties to compute a function of their inputs and keep

those inputs private. We investigate privacy issue in the secure function computation

problem. In this problem, we will take both the secrecy and the privacy issues into

consideration, and characterize the relationship of the message rates, the rate distor-

tion, the private information leakage of the transmitters’ sources to the receiver, and

the secrecy of those sources at the eavesdropper.

In the following, we briefly introduce the problem setups that we will discuss in the

following chapters, and review existing related results.

1.2 Introduction to Secret Key Sharing

As discussed above, enabling communication parties to share a common secret key is fun-

damental in cryptography. There are two main classes of existing key generation models:

source models and channel models [2,3,9,15,17,19–21,33,47,55,59,60,69,86,104,105,109].
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Figure 1.3: Basic setup in source.

Under the source model, the legitimate users have access to correlated random sources, from

which they aim to generate secret keys by exchanging messages over a public noiseless chan-

nel [3,19,20,55]. Under the channel model, the legitimate users typically have no correlated

randomness in advance, but they can utilize the channel properties to obtain correlated se-

quences, from which the users can establish a secret key [21, 47, 69].

1.2.1 Key Generation under Source Model

As illustrated in Fig.1.3, in the basic setup of key generation via public discussion under

the source model [3, 55], two legitimate users Alice and Bob, along with an eavesdropper

Eve, have access to one component of three correlated sequences (Xn, Y n, Zn) respectively,

which are i.i.d. generated according to a given joint PMF PXY Z :

PXnY nZn(xn, yn, zn) =
n∏
i=1

PXY Z(xi, yi, zi).

Alice and Bob are connected via a public noiseless channel, to which Eve has full access. In

order to agree on a common secret key, Alice and Bob are allowed to communicate with each

other using the public noiseless channel. In particular, at the beginning of public discussion,

Alice and Bob can generate two local randomnesses F1 and F2, which are independent of

(Xn, Y n, Zn). Then, for each round use of the public channel, Alice transmits a message Ψi

as a deterministic function of (F1, X
n,Φi−1), and Bob transmits a message Φi as a determin-

istic function of (F2, Y
n,Ψi−1), i = 1, 2, · · · . In the end, afterm rounds of public discussion,

6



Alice and Bob can compute the key value by K , K(F1, X
n,Ψm) and L , L(F2, Y

n,Φm),

respectively.

Definition 1.1. A key rate R is said to be achievable if ∀ε > 0, there exists a key generation

protocol when n is sufficiently large, such that

Pr{K 6= L} ≤ ε, (1.1)

1

n
I(K;Zn,Φm,Ψm) ≤ ε, (1.2)

1

n
H(K) ≥ 1

n
log |K| − ε, (1.3)

1

n
H(K) ≥ R− ε., (1.4)

whereK is the alphabet ofK. We further define the maximal value ofR as the corresponding

key capacity C.

Here, (1.1) requires that the keys generated by Alice and Bob should be the same with

high probability; (1.2) measures the information Eve has about the generated key and it

should be negligible; (1.3) implies that the generated key should be uniformly distributed

over the key value alphabet; and (1.4) measures the rate of the generated key.

Characterizing the key capacity in the basic setup is still an open problem. For the sim-

plified case where Z = ∅, we have the following result.

Theorem 1.1 ([3, 55]). If Z = ∅, the secret-key capacity is

C = I(X;Y ). (1.5)

To achieve a key with rate defined in (1.5), we can apply the Slepian-Wolf coding

[16] to let Alice send partial information of Xn at the rate of H(X|Y ) (H(·|·) denotes

the conditional entropy of its arguments), to Bob via the public channel such that Bob

can decode Xn correctly with high probability. And the unreleased information of rate

H(X) − H(X|Y ) = I(X;Y ) can be transformed as the final key. In particular, Alice

7



will randomly and independently assign each typical Xn sequence into 2nH(X|Y ) bins using

a uniform distribution, with each bin having around 2nI(X;Y ) Xn sequences. Upon observing

a sequence Xn, Alice transmits the index of the bin in which Xn is, to the public channel.

Then, with the observed Y n as well as the received bin index, Bob can recover Xn correctly

with high probability. Both Alice and Bob will set the sub-bin index within the bin of Xn

as the key value. It can be shown that Eve has negligible information about the generated

key, as the sub-bin index and bin index can be shown to be nearly independent. Thus, the

generated key is secure from Eve.

For the general case when Z 6= ∅, active investigation is still undergoing. A well known

lower bound and upper bound are listed as follows.

Theorem 1.2 ([3]). Given PXY Z , the secret-key capacity C of X and Y with respect to Z is

lower bounded by

C ≥ max
V→U→X→(Y,Z)

I(U ;Y |V )− I(U ;Z|V ), (1.6)

in which V and U are two auxiliary random variables and V . Furthermore, the secret-key

capacity is upper bounded by

C ≤ I(X;Y |Z). (1.7)

Here, I(·; ·|·) denotes the conditional mutual information; V → U → X → (Y, Z)

means that (V, U,X, Y, Z) form a Markov chain in that order, and other similar relationships

throughout the dissertation are defined in a similar manner. To achieve the lower bound de-

fined in (1.6), we can i.i.d. generate 2nI(X;V ) sequences V n, and for each generated V n, i.i.d.

generate 2nI(X;U |V ) sequences Un according to PU |V . Then we randomly and independently

assign each sequence Un that is generated by V n into 2n(I(U ;X|V )−I(U ;Y |V )) bins, within each

bin, uniformly assign each Un into 2nI(U ;Z|V ) sub-bins, and set the index within each sub-

bin as the key value. Within each bin, there are around 2n(I(U ;Y |V )−I(U ;Z|V )) Un sequences.

Then, upon observing Xn, Alice finds a sequence V n which is jointly typical with Xn, then

Alice finds a Un among those Un sequences generated by V n, which is jointly typical with

8
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Figure 1.4: Wiretap channel.

(V n, Xn). Finally, Alice sends V n along with the bin index of Un to Bob. Thus, the total

information Alice needs to send is I(U ;X) − I(U ;Y ). With the received messages along

with the observed sequence Y n, Bob can correctly recovers (Un, V n) with high probability.

Besides, with high probability, there exists at least one Un within each sub-bin, which is

jointly typical with (V n, Zn), thus there is no preference for Eve to decide which sub-bin Un

lies in. Thus, we can show the generated key is secure from Eve. For more details, one may

refer to [3].

1.2.2 Key Generation under Channel Model

The basic key generation problem under the channel model is considered in [17, 113]. As

illustrated in Fig.1.4, in the wiretap channel introduced by [113], two terminals Alice and

Bob would like to share a secret key that is secure from the eavesdropper Eve. Alice is

connected to Bob and Eve via noisy channels. Different from the source model, Alice, Bob

and Eve observe no correlated sequences in advance. Instead, Alice is allowed to transmit a

sequence Xn into the channel, and Bob and Eve will receive two output sequences Y n and

Zn according to
n∏
i=1

PY Z|X(yizi|xi), respectively. Other than the sequence Xn transmitted

through the wiretap channel, no further public discussion between Alice and Bob is allowed.

After transmittingXn, Alice and Bob can compute the key value, via functionsK , K(Xn)

and L , L(Y n), respectively.

Definition 1.2. A key rate R is said to be achievable if ∀ε > 0, there exists a key generation

protocol when n is sufficiently large, such that

Pr{K 6= L} ≤ ε, (1.8)
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1

n
I(K;Zn) ≤ ε, (1.9)

1

n
H(K) ≥ 1

n
log |K| − ε, (1.10)

1

n
H(K) ≥ R− ε., (1.11)

where K is the alphabet of K. In addition, the secrecy capacity C is defined as the maximal

value of R.

We have the following result on C.

Theorem 1.3 ([17]). Given channel PY Z|X , the secrecy capacity is given by

C = max
PSX

I(S;Y )− I(S;Z). (1.12)

The random variable S in Theorem 1.3 is subject to the Markov chain S → X →

(Y, Z). To achieve the key rate defined by the right-hand side of (1.12), we randomly and

independently generate 2nI(S;Y ) sequences Sn according to
n∏
i=1

PS(si), and assign each Sn

into 2n(I(S;Y )−I(S;Z)) bins, using a uniform distribution. And we set the bin indices as the key

value alphabet. Then, Alice randomly selects a sequence Sn and transmits it to Bob via the

channel PX|SPY Z|X . After receiving the channel output sequence Y n, Bob is able to recover

the transmitted sequence Sn. On the other side, since there are 2nI(S;Z) sequences Sn on

average in each bin, there are at least one sequence in each bin that is of the same statistical

property with Sn from Eve’s perspective, thus it has no preference for it to decide in which

bin Sn is. Thus, the generated key is secure from Zn.

1.3 Introduction to Message Authentication

In this section, we briefly introduce the message authentication problem. Message authen-

tication is a fundamental concept in cryptography in the presence of an active attacker. It

has been investigated intensively from different perspectives [32, 36, 41, 45, 49, 58, 61–63,
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83, 84, 103, 110]. Most of existing works on authentication rely on a pre-shared secret (in

the form of a shared key or shared randomness) between the transmitter and the legitimate

receiver. The receiver uses this pre-shared secret to determine whether the received message

is authentic or not. Under this shared key assumption, the authentication problem has been

studied under both noiseless and noisy channel models.

1.3.1 Message Authentication over Noiseless Channel

The authentication model over a noiseless channel was developed by Simmons [83]. In this

model, the communication channel is assumed to be noiseless, and the transmitter Alice and

the receiver Bob share a secret key K. In order to send a message M to Bob, instead of

transmitting M directly, Alice transmits a codeword E = f(M,K) into the channel with f

being the encoding function used by Alice. Upon receiving a codeword Ê (Ê = E if there

is no attack; Otherwise, Ê is determined by the adversary), Bob first needs to check whether

Ê is sent by Alice or not, based on the pre-shared key K. In [83], two types of attacks

are considered. The first one is impersonation attack, in which the adversary Eve sends the

fake codeword before Alice transmits anything. The impersonation attack is successful if

the fake codeword is accepted by Bob. The successful attack probability of this attack is

denoted by PI . The second one is substitution attack, in which Eve initiates an attack after

she observes the codeword sent by Alice. In particular, Eve intercepts the codeword sent by

Alice (hence Bob does not receive this codeword), and replaces the intercepted codeword

with her own attack codeword. The substitution attack is successful if the codeword from

Eve is accepted by Bob and decoded into a message different from the message intended

by Alice. The successful attack probability of the substitution attack is denoted as PS . [83]

establishes lower bounds for PI and PS .

Theorem 1.4 ([83]).

PI ≥ 2−I(K;E) and PS ≥ 2−H(K|E).
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Figure 1.5: Message authentication over noisy channels.

It is clear that there exists a tradeoff between making PI and PS smaller. To make PI

smaller, E should contain more information about the shared key K, that is I(K;E) should

be larger. However, this makes the substitution attack easier (i.e.,H(K|E) becomes smaller),

as E will be overheard by Eve perfectly over the noiseless channel.

1.3.2 Message Authentication over Noisy Channels

To overcome the tradeoff faced by the noiseless model in [83], as a natural extension, [45]

extends Simmons’s model to a noisy channel model. As illustrated in Fig.1.5, Alice connects

to Bob via a wiretap channel PY Z|X in the presence of Eve, and the link between Eve and

Bob is assumed to be noiseless. The wiretap channel is assumed to be discrete memoryless,

i.e.,

PXnY n|Zn(xn, yn|zn) =
n∏
i=1

PXY |Z(xi, yi|zi).

Eve can intercept the output Y n from Alice and fake a sequence Y ′n to deceive Bob. More

specifically, to transmit a messageM to Bob, Alice encodes it along with a pre-shared keyK,

into a codeword Xn and send it into the wiretap channel. On the other side, after receiving

the output sequence Ỹ n (it can be from Alice or from Eve), Bob uses a decoder function to

decode it into (M̂, K̂). Bob will accept M̂ if K̂ = K; otherwise, he rejects it.

Both impersonation attack and substitution attack are considered in this model, and de-

note PD to be the maxima of PI and PS . In the case when Ỹ n = Y n, we require that the

decoding error probability is arbitrarily small, i.e., for any ε > 0, there exits a positive integer
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n0 such that for all n ≥ n0, we have

Pr{M̂ 6= M |Ỹ n = Y n} ≤ ε.

Then, we have the following result.

Theorem 1.5 ([45]). Given wiretap channel PY Z|X , if the secrecy capacity is nonzero, then

there exists constants c > 0 and β > 0 so that

2−H(K) ≤ PD ≤ 2−H(K) + c · e−nβ

when n is sufficiently large.

Note that when n goes to infinity, PD = max{PI , PS} = 2−H(K). The lower bound is

trivial, as Eve can randomly guess the value ofK with a probability 2−H(K). Once Eve knows

the value of K, it can invoke any attack and this attack will be successful. Furthermore, [45]

proposes a scheme such that we can achieve the upper bound. The main idea is that the

noisy channel between Alice and Eve may prevent Eve from learning information about K

contained in E. In this way, we can embed more information about K in E to make the

impersonation attack more difficult, while not making the substitution attack easier as the

noisy channel between Alice and Eve may prevent Eve from learning information about K.

1.4 Introduction to Function Computation

In this section, we briefly discuss the function computation problem. The goal of the function

computation problem is to create communication protocols to enable communication parties

to compute a function over their inputs [6,8,25,43,44,68,80,97–99,122]. The main process

for function computation is to do public discussion first, so that the function computing par-

ties are able to decode certain desired sequences, and then use the decoded sequences along

with the sequence observed in local to compute the function value. One straightforward

13



Alice Bob

𝑋" 𝑌"

𝐟(𝑋" , 𝑌" )

Figure 1.6: Basic function computation model.

scheme for function computation is to ask each information source to send enough informa-

tion (for example, using schemes in distributed source coding [4, 112, 114, 116, 117]) so that

the function computing parties can first recover all sources and then compute functions of in-

terest using the recovered sources. However, as shown in many of existing works, full source

recovery is not necessary in many scenarios [52–54, 70, 78, 79]. As the result, information

transmitting parties can reduce their transmitted message rates while still enabling the func-

tion computing parties to compute functions of interest. This can significantly reduce the

resource (in terms of energy, spectrum etc.) requirements and hence is very appealing for

resource-constrained applications such as IoT where the goal of communication is decision

making (hence requires function computing) but not full source recovery [50, 64, 106].

1.4.1 Basic Function Computation Model

As illustrated in Fig.1.6, in the basic function computation setup considered in [70], two

terminals Alice and Bob observe two correlated sources Xn and Y n, respectively. Bob

would like to reliably compute the value of a given function f(Xn, Y n), which is assumed to

be component-wise, i.e., f(Xn, Y n) := {f(Xi, Yi)}ni=1. The variables X and Y have a joint

probability mass function PXY , and the sequences Xn and Y n are generated according to

Pr{Xn, Y n} =
n∏
i=1

PXY (Xi, Yi).

Alice is allowed to transmit a message M , to Bob via a noiseless channel, and Bob needs to

compute the function f solely based on (M,Y n). [70] investigates what the minimal mes-

sage rate is so that the function can be computed with a negligibly small error probability.
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It provides an efficient method, by introducing conditional characteristic graph, to charac-

terize the optimal message rate R. The characteristic graph G of X, Y and f is defined

over the support set of X , and distinct vertices x, x′ are connected if there is a Y such that

f(x, Y ) = f(x′, Y ) with PX(x) · PX(x′) > 0. The graph G is said to be independent if no

two vertices are connected to each other. Define Γ(G) the collection of independent sets of

G, then we have the following result.

Theorem 1.6 ([70]). The minimal message rate R, is given by

R = min
W→X→Y

X∈W∈Γ(G)

I(W ;X|Y ). (1.13)

Note that the realization value of W in (1.13) is a set of X . We use an example in [70] to

illustrate the main idea of Theorem 1.6.

Example 1.1. Assume X, Y ∈ {1, 2, 3}, and define

PXY (x, y) ,

 1/6, if x 6= y;

0, if x = y,
(1.14)

and

f(x, y) ,

 1, if x > y;

0, if x < y.
(1.15)

According to (1.14) and (1.15), G contains only one single edge 1↔ 3. Thus, we can set the

support set of W be {{1, 2}, {2, 3}}. Obviously, the value of f(X, Y ) is uniquely determined

by (W,Y ). Thus, after observing a sequence Xn, Alice only need to send a message to Bob

so that Bob can recover W n. By setting Pr{W = {1, 2}|X = 2} = Pr{W = {2, 3}|X =

2} = 1
2
, we can easily calculate that the minimal rate of the message is I(W ;X|Y ) =

H(W |Y ) − H(W |X, Y ) = 1
3

+ 2
3
h(1

4
) − 1

3
, where h(p) , p log2 p + (1 − p) log2(1 − p).
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And this is the minimal message rate of all possible choices so that Bob is able to compute

the value of f(Xn, Y n).

1.4.2 Recent works on Function Computation

The basic model is further extended to more complex scenarios in many interesting recent

papers [52–54, 78, 79]. In particular, [52] studies the problem of a two-terminal interactive

distributed source coding for function computation at both terminals. In this model, these two

terminals are allowed to exchange t (a finite nonnegative integer) coded messages, and each

of them would like to compute a function within a certain distortion level respectively. [52]

provides a single-letter characterization on the corresponding message rate region. Properties

of the limit of the sum-rate-distortion function (i.e., the minimal value of the sum of message

rates) when t goes to infinity are further investigated in [53]. Furthermore, [78] studies the

message rate region of function computation in a different setup. This model consists of three

terminals, two of them (transmitters) are allowed to send messages to the third terminal who

needs to compute a function, but there is no interaction between the two transmitters. This

model is further discussed in [79] by allowing an additional one-way discussion between

the two transmitters. [80] further generalizes this model to a more sophisticated scenario

that consists of more terminals over a rooted multi-level directed tree. In this scenario, each

terminal is allowed to transmit a message to its parent terminal and the function is computed

at the root. [80] provides both outer and inner bounds on the message rate region, which

recover capacity regions of many function computing setups.

1.5 Introduction to Our Work

In this section, we briefly introduce the contributions of this dissertation.

• Simulatability condition: as discussed above, most of existing works on key generation

assume that the adversary is an eavesdropper, while the work on an active attacker
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is limited. When the attacker is active, the key generation problem is much more

challenging as the attacker can disrupt the key generation process. It is important to

understand whether it is possible or not to generate keys when the attacker is active. In

Chapter 2, we consider a model similar to the basic key generation setup as described

in Section 1.2. The only difference is that the adversary Eve, in our model, is an

active attacker. This problem is much more challenging as the attacker can arbitrarily

modify the messages exchanged to disrupt the key generation process. We will discuss

a fundamental concept named simulatability condition introduced by Maurer and Wolf

[57,61–63]. This condition determines whether it is possible or not to generate a secret

key when the attacker is active. However, until our work, it is unclear how to check this

condition efficiently. In our work, we propose a polynomial complexity algorithm to

check this important condition. We further investigate the sensitivity of this condition

on the our knowledge about the attacker’s observation model. Part of this work has

been published in [89].

• Multiple key generations: we then investigate the problem of simultaneously generat-

ing multiple keys in a restricted communication structure in Chapter 3. One important

assumption in the existing works is that the public discussion is directly available to all

legitimate users. While it is important to assume that the public discussion is available

to Eve (so that the generated key is secure in the worst case), there are some practical

scenarios in which the public discussion is directly received only by a subset of the

legitimate users. For example, in key generation over wireless networks [119], public

discussion messages are transmitted over wireless channels. Hence, it is reasonable

to assume that public discussion messages are directly received only by neighboring

legitimate users. In the considered model, Alice is connected to Bob via a public

noiseless channel, and Bob connects Carol and Eve via noisy channels. Alice and Bob

would like to share individual secret keys with Carol, but there is no direct link be-

tween Alice and Carol. We study the relationship between individual secret-key rates,
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and provide a full characterization on the secret-key capacity region. The obtained

results show that there exists a trade-off. Part of the work stated in this chapter has

been published in [87, 88].

• Message authentication: as stated previously, most existing message authentication

works focus on creating protocols using a pre-shared secret key while little attention

has been paid to the keyless case. In Chapter 4, we discuss the keyless message au-

thentication problem. In this model, there are two legitimate terminals, Alice and Bob,

and an active attacker Eve. Alice would like to transmit a message to Bob. However,

the output of the channel connecting Alice to Bob is under control of Eve: it can be in-

tercepted and replaced by the output of the channel connecting Eve to Bob. Thus, after

receiving an output sequence, Bob first needs to determine whether it is from Alice or

not. If it is, then Bob will decode it into a corresponding message. Different from the

models considered in [83] and [45], we assume that terminals Alice, Bob and Eve are

connected by all noisy channels, and there is no pre-shared secret keys between Alice

and Bob. Both impersonation and substitution attacks are considered in this chapter.

By interpreting the message authentication as a hypothesis testing problem, we inves-

tigate the authentication exponent and the authenticated channel capacity of the noisy

channel. We first show that the impersonation and the substitution attacks have the

same performance in authentication exponent, which is in contrast to that in the pre-

shared authentication problems, as the substitution attack is typically more powerful

than the impersonation attack. Thus, the channel connecting Alice to Eve has no ef-

fect in increasing the successful attack probability and we only need to consider the

impersonation attack. In the authentication exponent problem, we fully characterize

the authentication exponent for the case where a zero-rate message is required to be

transmitted to Bob, and we provide both an upper bound and a lower bound on the

exponent in this case. These lower and upper bounds match when a certain convex

condition regarding the channel statistics holds. In the authenticated capacity prob-
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lem, we introduce simulatability condition to channel statistics. We establish an all

or nothing result: we show that the authenticated channel capacity is the same as the

classic channel capacity if simulatability condition is not satisfied, while the authenti-

cated capacity will be zero if this condition holds. Furthermore, similar as the analysis

in Chapter 2, we provide efficient algorithms to check this condition. We further show

that our results are robust to modeling uncertainties about the eavesdropper’s channels.

The work investigated in this chapter has been published in [90, 93].

• Secure function computation: most of the existing works on function computation do

not take both secrecy and privacy of the sources into consideration [52–54,70,78,79].

In Chapter 5, we discuss the secure function computation problem with both secrecy

and privacy constraints. In this model, Alice and Bob are connected to a fusion center

via public noiseless channels in the presence of an eavesdropper Eve. These four termi-

nals observe correlated sources and the fusion center is required to compute a function

of legitimate input sequences. We allow a prefixed distortion level on the value of the

computed function. To facilitate the computation, Alice and Bob need to send mes-

sages to the fusion center. Different from the existing setups in function computing,

we assume that there are both secrecy and privacy constraints on the sources at Alice

and Bob: we use equivocation of sources at Eve to measure the secrecy constraint and

we introduce a quantity to precisely measure the privacy information leakage to the fu-

sion center. Under this model, we study the relationship among message rates, private

information leakage, equivocation and distortion. To facilitate understanding, we first

consider a special scenario involving only one transmitter, i.e., the source observed

by Bob is empty, and we provide a single-letter characterization on the corresponding

parameter region. Then, we consider the more general case and provide both inner

and outer bounds on the corresponding parameter region. These bounds do not match

in general, but when a certain Markov chain condition holds, these bounds match,

in which sense we fully characterize it. The work studied in this chapter has been
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published in [91, 92, 94].
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Chapter 2

Simulatability Condition in Key

Generation

Simulatability condition is a fundamental concept in studying key generation over a non-

authenticated public channel, in which Eve is active and can intercept, modify and falsify

messages exchanged over the non-authenticated public channel. Using this condition, Mau-

rer and Wolf showed a remarkable “all or nothing” result: if simulatability condition does

not hold, the key capacity over the non-authenticated public channel will be the same as that

of the case with a passive Eve, while the key capacity over the non-authenticated channel

will be zero if simulatability condition holds. However, several questions remain open so

far: 1) For a given joint probability mass function (PMF), are there polynomial complexity

algorithms for checking whether simulatability condition holds or not?; 2) If simulatability

condition holds, are there efficient algorithms for finding the corresponding attack strategy?

and 3) How sensitive is this condition on the knowledge about Eve’s observations? In this

chapter, we fully answer these open questions. In particular, for a given joint PMF, we con-

struct a linear programming (LP) problem and show that simulatability condition holds if

and only if the optimal value obtained from the constructed LP is zero. In addition, we

construct another LP and show that the minimizer of the newly constructed LP is a valid
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attack strategy. Both LPs can be solved with a polynomial complexity. We further show that

simulatability condition is not sensitive on the knowledge about Eve’s observations.

2.1 Motivation

The problem of secret key generation via public discussion under both source and channel

models has attracted significant research interests [2, 3, 10, 15, 19, 33, 39, 56, 61–63, 86, 104,

105, 109, 118, 119, 125]. Under the source model, it is common to assume that the public

discussion will be overheard by Eve, and the public channel can either be authenticated or

non-authenticated. An authenticated public channel implies that Eve is a passive listener

[2, 3, 105]. On the other hand, a non-authenticated public channel implies that Eve is active

and can intercept, modify or falsify any message exchanged through the public channel[48,

57, 73, 124]. Most of existing works focus on the passive Eve case, while the work on

active Eve case is limited. However, the case of active Eve is more practical, and is more

challenging.

Under the source model, users observe correlated sources generated from a certain joint

probability mass function (PMF), and can discuss with each other via a noiseless public

channel. Clearly, the secret key rate that can be generated using the non-authenticated public

channel is no larger than that can be generated using the authenticated pulic channel. In

[57, 61–63], Maurer and Wolf introduced a concept of simulatability condition (this condi-

tion will be defined precisely in the sequel) and established a remarkable “all or nothing”

result. In particular, they showed that for the secret key generation via a non-authenticated

public channel with two legitimate terminals in the presence of an active adversary: 1) if

simulatability condition holds, the two legitimate terminals will not be able to establish a

secret key, and hence the key capacity is 0; and 2) if simulatability condition does not hold,

the two legitimate terminals can establish a secret key and furthermore the key capacity will

be the same as that of the case when Eve is passive. Intuitively speaking, if simulatability
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condition holds, from its own source observations, Eve can generate fake messages that are

indistinguishable from messages generated from legitimate users. On the other hand, if sim-

ulatability condition does not hold, the legitimate users will be able to detect modifications

made by Eve.

It is clear that simulatability condition is a fundamental concept for the key generation via

a non-authenticated public channel, and hence it is important to design efficient algorithms to

check whether simulatability condition holds or not. Using ideas from mechanical models,

[63] made significant progress in designing efficient algorithms. In particular, [63] proposed

to represent PMFs as mass constellations in a coordinate, and showed that simulatability

condition holds if and only if one mass constellation can be transformed into another mass

constellation using a finite number of basic mass operations. Furthermore, [63] introduced

another notion of one mass constellation being “more centered” than another constellation

and designed a low-complexity algorithm to check this “more centered” condition. For some

important special cases, which will be described precisely in Section 2.2, [63] showed that

the “more centered” condition is necessary and sufficient for the mass constellation transfor-

mation problem (and hence is necessary and sufficient condition for simulatability condition

for these special cases). However, in the general case, the “more centered” condition is a nec-

essary but not sufficient condition for the mass constellation transformation problem. Hence,

whether there exists efficient algorithms for the mass constellation transformation problem

(and hence simulatability condition) in the general case is still an open question.

As the result, despite the significant progress, [63] left the following questions regarding

simulatability condition for the general case as open questions:

(1) For a given joint PMF, are there efficient algorithms (polynomial complexity algo-

rithms) for checking whether simulatability condition holds or not?

(2) If simulatability condition holds, are there efficient algorithms for finding the corre-

sponding Eve’s attack strategy?
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(3) Suppose the PMF is not exactly known, how sensitive is the condition on the modeling

uncertainty?

In this chapter, we fully answer these open questions.

To answer the first open question, we construct a linear programming (LP) problem and

show that simulatability condition holds if and only if the optimal value obtained from this

LP is zero. We establish our result in three main steps. We first show that, after some

basic transformations, checking whether simulatability condition holds or not is equivalent

to checking whether there exists a nonnegative solution to a specially constructed system of

linear equations. We then use a basic result from linear algebra to show that whether there

exists a nonnegative solution to the constructed system of linear equations is equivalent to

whether there is a solution (not necessarily nonnegative) to a related system of inequalities or

not. Finally, we use Farkas’ lemma [77] to show that whether the system of inequalities has a

solution or not is equivalent to whether the optimal value of a specially constructed LP is zero

or not. Since there exists polynomial complexity algorithms for solving LP problems[11,28,

38], we thus find a polynomial complexity algorithm for checking simulatability condition

for a general PMF.

To answer the second open question, we construct another LP and show that the min-

imizer of this LP is a valid attack strategy. The proposed approach is very flexible in the

sense that one can simply modify the cost function of the constructed LP to obtain different

attack strategies. Furthermore, the cost function can be modified to satisfy various design

criteria. For example, a simple cost function can be constructed to minimize the amount of

modifications Eve needs to perform during the attack. All these optimization problems with

different cost functions can be solved with a polynomial complexity.

To answer the third open question, we show that if simulatability condition does not hold

for a given PMF, then simulatability condition does not hold if the PMF related to Eve’s

observation is changed up to a certain threshold. We fully characterize this threshold.
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2.2 Preliminaries and Problem Setup

Let X = {1, · · · , |X |}, Y = {1, · · · , |Y|} and Z = {1, · · · , |Z|} be three finite sets.

Consider three correlated random variables (X, Y, Z), taking values from X × Y × Z , with

joint PMF PXY Z , simulatability condition is defined as follows.

Definition 2.1. ([57]) For a given PXY Z , we say X is simulatable by Z with respect to Y ,

denoted by SimY (Z → X), if there exists a conditional PMF PX̄|Z such that PY X̄ = PY X ,

with

PY X̄(y, x) =
∑
z∈Z

PY Z(y, z) · PX̄|Z(x|z), (2.1)

in which PY X and PY Z are the joint PMFs of (Y,X) and (Y, Z) under PXY Z respectively.

One can also define SimX(Z → Y ) in the same manner. This concept of simulatability,

first defined in [57], is a fundamental concept in the problem of secret key generation over a

non-authenticated public channel [61–63], in which two terminals Alice and Bob would like

to establish a secret key in the presence of an adversary Eve. These three terminals observe

sequences XN , Y N and ZN generated according to

PXNY NZN (xN , yN , zN) =
N∏
i=1

PXY Z(xi, yi, zi). (2.2)

Alice and Bob can discuss with each other via a public non-authenticated noiseless channel,

which means that Eve not only has full access to the channel but can also interrupt, modify

and falsify messages exchanged over this public channel. The largest key rate that Alice

and Bob1 can generate with the presence of the active attacker is denoted as S∗(X;Y ||Z).

Let S(X;Y ||Z) denote the largest key rate that Alice and Bob can generate when Eve is

passive, i.e., when the public channel is authenticated. Clearly, S(X;Y ||Z) ≥ S∗(X;Y ||Z).

Although a full characterization of S(X;Y ||Z) is unknown in general, [62] established the

1Please see [61–63] for precise definitions.
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following remarkable “all or nothing” result:

Theorem 2.1. ([62]) If SimY (Z → X) or SimX(Z → Y ), then S∗(X;Y ||Z) = 0. Other-

wise, S∗(X;Y ||Z) = S(X;Y ||Z).

This significant result implies that, if simulatability condition does not hold, one can

generate a key with the same rate as if Eve were passive. On the other hand, if simulatability

condition holds, the key rate will be zero. When SimY (Z → X) and SimX(Z → Y )

don’t hold, [62] introduces one protocol to modify any existing key generation scheme with

passive Eve into a scheme against active Eve such that the generated key rate is almost the

same as that generated when Eve is passive. This protocol contains three phases: The first

phase is to generate a short key with each single message bit authenticated by a sequence

of source observations. Then in the second phase, one can use the generated short key to

authenticate messages with hash functions to generated a longer key. Finally, the protocol

ends with transmitting a message of a block of realizations to verify the success of the last

exchanged message. See [62] for more details. While on the other hand, if SimY (Z → X)

holds, then after observing ZN , Eve can generate X̄N by passing ZN through a channel

defined by PX̄|Z . Then (X̄N , Y N) has the same statistics as (XN , Y N). Hence by knowing

only Y N , Bob cannot distinguish X̄N and XN , and hence cannot distinguish Alice or Eve.

As mentioned in the introduction, [63] has made important progress in developing low-

complexity algorithms for checking whether SimY (Z → X) (or SimX(Z → Y )) holds or

not. In particular, [63] developed an efficient algorithm to check a related condition called

“more centered” condition. When |Y| = 2, that is when Y is a binary random variable,

this “more centered” condition is shown to be necessary and sufficient for SimY (Z → X).

Hence, [63] has found an efficient algorithm to check SimY (Z → X) for the special case

of Y being binary (the algorithm is also effective in checking SimX(Z → Y ) when X is

binary). However, when Y is not binary, the “more centered” condition is only a necessary

condition for SimY (Z → X). Hence, the following questions remain open:
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(1) For a general given PXY Z , are there efficient algorithms (polynomial complexity algo-

rithms) for checking whether SimY (Z → X) (or SimX(Z → Y )) holds or not?

(2) If SimY (Z → X) (or SimX(Z → Y )) holds, are there efficient algorithms for finding

the corresponding PX̄|Z (or PȲ |Z)?

(3) Suppose PXY Z is not precisely known, especially with regards to the random variable

Z, how sensitive is SC with regards to this modeling uncertainty?

In this chapter, we solve these open questions.

Notation: Throughout this chapter, we use boldface uppercase letters to denote matrices,

boldface lowercase letters to denote vectors. We also use 1, 0 and I, unless stated otherwise,

to denote all ones column vector, all zeros column vector and the identity matrix, respec-

tively. In addition, we denote the vectorization of a matrix by Vec(·). Specifically, for an

m× n matrix A, Vec(A) is an mn× 1 column vector:

Vec(A) = [a11, · · · , am1, · · · , a1n, · · · , amn]T , (2.3)

in which [·]T is the transpose of the matrix. And vice versa can be done by A = Reshape(Vec

(A), [m,n]). We use A⊗B to denote the Kronecker product of matrices A and B. Specifi-

cally, assume A is an m× n matrix, then

A⊗B =


a11B · · · a1nB

... . . . ...

am1B · · · amnB

 . (2.4)

All matrices and vectors in this chapter are real.
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2.3 Main Results

In this chapter, we focus on SimY (Z → X). The developed algorithm can be easily modified

to check SimX(Z → Y ). We rewrite (2.1) in the following matrix form

C = AQ, (2.5)

in which C = [cij] is a |Y| × |X | matrix with cij = PY X(i, j), A = [aik] is a |Y| × |Z|

matrix with aik = PY Z(i, k), and Q = [qkj] is a |Z| × |X | matrix with qkj = PX̄|Z(j|k) if

such PX̄|Z exists.

Checking whether SimY (Z → X) holds or not is equivalent to checking whether there

exists a transition matrix Q such that (2.5) holds. As Q is a transition matrix, its entries qkjs

must satisfy

qkj ≥ 0, ∀k ∈ [1 : |Z|], j ∈ [1 : |X |], (2.6)
|X |∑
j=1

qkj = 1, ∀k ∈ [1 : |Z|]. (2.7)

We note that if qkjs satisfy (2.6) and (2.7), they will automatically satisfy qkj ≤ 1. Hence,

we don’t need to state this requirement here.

If there exists at least one transition matrix Q satisfying (2.5), (2.6) and (2.7) simultane-

ously, we can conclude that simulatability condition SimY (Z → X) holds.

(2.7) can be written in the matrix form

1|Z|×1 = Q1|X |×1, (2.8)
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Then, (2.5) and (2.8) can be written in the following compact form:

 Vec(CT )

1|Z|×1

 =



a11I a12I · · · a1|Z|I

...
... . . . ...

a|Y|1I a|Y|2I · · · a|Y||Z|I

1 0 · · · 0

0 1
. . . ...

... . . . . . . ...

0 · · · 0 1



Vec(QT )

=

 A⊗ I

I|Z| ⊗ 1

Vec(QT ), (2.9)

in which the sizes for I, 1 and 0 are |X | × |X |, 1× |X | and 1× |X |, respectively.

For notational convenience, we define

c ,

 Vec(CT )

1|Z|×1

 , (2.10)

A ,

 A⊗ I

I|Z| ⊗ 1

 , (2.11)

q , Vec(QT ). (2.12)

From (2.9), it is clear that c is an m × 1 vector, A is an m × n matrix, and q is an n × 1

vector, in which

m = |Y||X |+ |Z|, (2.13)

n = |Z||X |. (2.14)

With these notation and combining (2.9) with (2.6), the original problem of checking
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whether SimY (Z → X) holds or not is equivalent to checking whether there exists nonneg-

ative solutions q for the system

Aq = c. (2.15)

In the following, we check whether there exists at least a nonnegative solution for the

system defined by (2.15). There are two main steps: 1) whether the system is consistent or

not; 2) if it is consistent, whether there exists a nonnegative solution or not. Checking the

consistency of (2.15) is straightforward: a necessary and sufficient condition for a system of

non-homogenous linear equations to be consistent is

Rank(A) = Rank((A|c)), (2.16)

where (A|c) is the augmented matrix of A. If (2.16) is not satisfied, it can be concluded that

SimY (Z → X) does not hold. If (2.16) is satisfied, we need to further check whether there

exists a nonnegative solution to (2.15) or not.

To proceed further, we need the following definition of generalized inverse (g-inverse) of

a matrix G.

Definition 2.2. ([75]) For a given m× n real matrix G, an n×m real matrix Gg is called a

g-inverse of G if

GGgG = G.

The g-inverse Gg is generally not unique (If n = m and G is full rank, then Gg is unique

and equal to the inverse matrix G−1). A particular choice of g-inverse is called the Moore-

Penrose pseudoinverse G+, which can be computed using multiple different approaches.

One approach is to use the singular value decomposition (SVD): by SVD, for a given G and
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its SVD decomposition

G = UΣVT , (2.17)

then, G+ can be obtained as

G+ = VΣ+UT , (2.18)

in which Σ+ is obtained by taking the reciprocal of each non-zero element on the diagonal

of the diagonal matrix Σ, leaving the zeros in place. One can easily check that the Moore-

Penrose pseudoinverse G+ obtained by SVD satisfies the g-inverse matrix definition and

hence is a valid g-inverse.

With the concept of g-inverse, we are ready to state our main result regarding the first

open question.

Theorem 2.2. Let Ag be any given g-inverse of A (e.g., it can be chosen as the Moore-

Penrose pseudoinverse A+), and h∗ be obtained by the following LP

h∗ = min
t
{tTAgc}, (2.19)

s. t. t � 0,

(I− AgA)T t = 0.

Then SimY (Z → X) holds, if and only if h∗ = 0 and (2.16) holds.

Proof. If (2.16) does not hold, then there is no solution to (2.15), and hence SimY (Z → X)

does not hold.

In the remainder of the proof, we assume that (2.16) holds. If (2.16) holds, the general

solution to (2.15) can be written in the following form (see, e.g., Theorem 2 a.(d) of [74])

q = Agc + (AgA− I)p, (2.20)
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in which Ag can be any given g-inverse of A, and p is an arbitrary length-n vector.

As the result, the problem of whether there exists a nonnegative solution to (2.15) (i.e.,

q � 0) is equivalent to the problem of whether there exists a solution p for the following

system defined by

(I− AgA)p � Agc. (2.21)

To check whether the system defined by (2.21) has a solution, we use Farkas’ lemma, a fun-

damental lemma in linear programming and related area in optimization. For completeness,

we state the form of Farkas’ lemma as follows.

Lemma 2.3. (Farkas’ Lemma [77]) Let B be a matrix, and b be a vector, then the system

specified by Bp � b, has a solution p, if and only if tTb ≥ 0 for each column vector t � 0

with BT t = 0.

To use Farkas’ lemma, we first write a LP related to the system defined in (2.21)

h∗ = min
t
{tTAgc},

s.t. t � 0,

(I− AgA)T t = 0.

The above LP is always feasible since t = 0 is a vector that satisfies the constraints,

which results in tTAgc = 0. Hence the optimal value h∗ ≤ 0. Using Farkas’ lemma,

we have that (2.21) has a solution if and if h∗ = 0. More specifically, if h∗ = 0, then

there exists at least a solution p for (2.21), which further implies that there is a nonnegative

solution to (2.15), and hence SimY (Z → X) holds. On the other hand, if h∗ < 0, then

there is no solution p for (2.21), which further implies that there is no nonnegative solution

to (2.15), and hence SimY (Z → X) does not hold.

As mentioned above, if Rank(A) = m = n holds, then Ag = A−1 is unique. For other
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cases, Ag might not be unique. One may wonder whether different choices of Ag will affect

the result in Theorem 2.2 or not. The following proposition answers this question.

Proposition 2.1. Different choices of Ag will not affect the result on whether h∗ equals 0 or

not.

Proof. Let Ag
1 and Ag

2 be two different g-inverses of A, and let h∗1 and h∗2 be the values

obtained using Ag
1 and Ag

2 in (2.19) respectively. It suffices to show that if h∗1 = 0, then

h∗2 = 0.

Assuming that h∗1 = 0, then there exists a vector p1 satisfying (I − Ag
1A)p1 � Ag

1c, we

will show that there exists a vector p2 satisfying (I − Ag
2A)p2 � Ag

2c, which then implies

h∗2 = 0.

First, we know that Ag
1c and Ag

2c are two solutions to the system Aq = c, which can be

easily verified by setting Ag as Ag
1 and Ag

2 in (2.20) respectively and setting p = 0. This

implies that

A(Ag
2c− Ag

1c) = 0, (2.22)

and hence Ag
2c− Ag

1c is a solution to the system Aq = 0.

Second, we know that any solution to the system Aq = 0 can be written in the form

(I− AgA)p [74]. As Ag
2c− Ag

1c is a solution to system Aq = 0, there must exist a p0 such

that

(I− Ag
2A)p0 = Ag

2c− Ag
1c. (2.23)

In addition, it is easy to check that (I − Ag
1A)p1 + (I − Ag

2A)p0 is also a solution to the

system Aq = 0. Thus, there exists a p2 such that

(I− Ag
2A)p2 = (I− Ag

1A)p1 + (I− Ag
2A)p0. (2.24)
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Plugging (2.23) into (2.24), we have

(I− Ag
2A)p2 = (I− Ag

1A)p1 + (I− Ag
2A)p0

= (I− Ag
1A)p1 + Ag

2c− Ag
1c (2.25)

� Ag
2c, (2.26)

in which the last inequality comes from the assumption that (I−Ag
1A)p1 � Ag

1c. Hence, we

have found a p2, such that (I− Ag
2A)p2 � Ag

2c. This implies that h∗2 = 0.

Remark 2.4. The proposed algorithm for checking whether SimY (Z → X) holds or not

has a polynomial complexity. Among all operations required, computing the g-inverse and

solving the LP defined by (2.19) require most computations. The complexity to obtain Ag is

of orderO(n3) [65]. Furthermore, there exists polynomial complexity algorithms to solve the

LP defined by (2.19). For example, [28] provided an algorithm to solve LP using O(n3L)

operations, where L is number of binary bits needed to store input data of the problem

(one can refer to Chapter 8 in [11] for more details about the complexity of algorithms for

solving LP). Hence, the total operations of our algorithm for checking SimY (Z → X) is of

order O(n3L). In addition, we note that we can terminate the LP algorithm earlier once the

algorithm finds a t such that tAgc < 0, as this indicates that h∗ < 0. This can potentially

further reduce the computational complexity.

Thus, we can conclude that the proposed algorithm can check whether SimY (Z → X)

holds or not with a polynomial complexity. Algorithm 2.1 summarizes the main steps

involved in our algorithm. In the following algorithm, we use Res = 0 to denote that

SimY (Z → X) does not hold and Res = 1 to denote that SimY (Z → X) holds.

In the following, we provide our answer to the second open question, i.e., if SimY (Z →

X) holds, how to find PX̄|Z efficiently.

Theorem 2.5. Let e be any n × 1 vector with e � 0, and q∗ be the obtained from the
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Algorithm 2.1 Checking SimY (Z → X)

1: Input: PMF PXY Z ;

2: Initiate:
3: a. Calculate matrices A and C;
4: b. Construct c and A using (2.10) and (2.11) respectively;
5: c. Set Res = 0;

6: if (Rank(A) 6= Rank(A|c)) then
7: break;
8: else
9: d. Find a Ag, and calculate Agc, I− AgA;

10: e. Solve LP (2.19) and obtain h∗;
11: if (h∗ == 0) then
12: Res = 1;
13: else
14: break;
15: end if
16: end if

17: Output: Res.

following LP:

min
q
f(q) = eTq, (2.27)

s.t. q � 0,

Aq = c.

If SimY (Z → X) holds, then Q∗ = Reshape(q∗, [|X |, |Z|])T is a valid choice for PX̄|Z .

Proof. By assumption, SimY (Z → X) holds, which implies that the system defined by

(2.15) is consistent and it has nonnegative solutions. Hence, the following LP is feasible

min
q
f(q) = eTq, (2.28)

s.t. q � 0,

Aq = c,
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where e � 0. Hence, the minimizer q∗ is nonnegative and satisfies Aq∗ = c. We can then

reshape q∗ into matrix Q∗ (see (2.12)). Q∗ is a valid choice for PX̄|Z .

Remark 2.6. Since finding a suitable PX̄|Z using our approach is equivalent to solving a LP,

the complexity is of polynomial order.

Remark 2.7. For a given distribution PXY Z , there may be more than one possible PX̄|Z such

that (2.1) holds. Different choices of e in (2.27) give different values for PX̄|Z .

Remark 2.8. The objective function f(q) can be further modified to satisfy various design

criteria of Eve. For example, let

q̃ = Vec(Q̃[q̃kj]
T )

with q̃kj = PX|Z(k|j), then setting

f(q) = ||q− q̃||22

will minimize the amount of changes in the conditional PMF in the l2 norm sense. This is a

quadratic programming, which can still be solved efficiently.

2.4 Complexity Reduction

In Proposition 2.1, we show that different choices of Ag will not affect the result on whether

h∗ equals zero or not. However, different choices of Ag may affect the amount of computa-

tion needed. Primal-dual path-following method is one of the best methods for solving LP

of the following form [11]:

min
t

tTb

s.t. t � 0,
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Bt = d,

in which B is a matrix of size m × n. The complexity is related to the size of B. In

particular, in terms of m and n, the complexity is O((nm2 +n1.5m)L) [66,67]. In LP (2.19)

constructed in the proof of Theorem 2.2, B = (I − AgA)T , which is an n × n matrix, and

hence the complexity is O(n3L) as mentioned in Section 2.3.

In the following, we show that if we choose the g-inverse of A to be A+, the Moore-

Penrose inverse, the problem size can be reduced by some further transformations. Let the

SVD of A be UΣVT . Then A+ = VΣ+UT . Suppose rank(Σm×n) = r and set s = n−r.We

have

A+A = VΣ+UTUΣVT

= V

 Ir 0r×s

0s×r 0s×s

VT . (2.29)

As discussed in the proof of Theorem 2.2, checking SimY (Z → X) holds or not is

equivalent to checking whether

(I− A+A)p � A+c (2.30)

has a solution or not. We now perform some transformations on (2.30). First we have

I− A+A = V

 Ir 0r×s

0s×r Is

VT −V

 Ir 0r×s

0s×r0s×s

VT

= V

 0r×r 0r×s

0s×r Is

VT . (2.31)
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Hence, (2.30) is equivalent to

V

 0r×r 0r×s

0s×r Is

VTp � A+c. (2.32)

V can be split into four blocks as

V =

 Vr×r Vr×s

Vs×r Vs×s

 . (2.33)

We use w to denote the n× 1 column vector VTp, i.e.,

w = VTp. (2.34)

Note that p↔ w is a reversible bijection, since VT is a full rank matrix.

Then (2.32) is equivalent to

 0r×r Vr×s

0s×r Vs×s


 wr×1

ws×1

 � A+c, (2.35)

which is equivalent to

 Vr×s

Vs×s

[ ws×1

]
� A+c. (2.36)

Hence, checking whether (2.30) has a solution or not is equivalent to checking whether (2.36)

has a solution or not. To check whether (2.36) has a solution or not, we can construct a new

LP for (2.36) in the same way as in the proof in Theorem 2.2. However, the size of the newly

constructed LP will be smaller than that of (2.19) constructed in the proof of Theorem 2.2.

The complexity for the newly constructed LP will be O((ns2 + n1.5s)L). Since s is always
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less than or equal to n (sometimes, s can be much less than n, e.g. s = O(
√
n)) and that L

doesn’t change, compared with the LP (2.19), the computational complexity for this new LP

will be reduced.

2.5 Sentitivity Analysis

Simulatability condition SimY (Z → X) requires the precise information about the joint

PMFs PY X and PY Z . In practice, it’s reasonable to assume that PY X is precisely known.

However, in certain scenarios, we may not know PY Z perfectly, as Z is the random variable

observed at the adversary. In this section, we investigate the sensitivity of simulatability con-

dition SimY (Z → X) with regards to the modeling uncertainty about PY Z . The techniques

can be applied to analyze SimX(Z → Y ).

In particular, we assume that PY X is perfectly known but PY Z is known only to a certain

precision. To be more precise, we assume that the true joint PMF of Bob and Eve is PY Z̃ , but

the legitimate users know only an estimate PY Z to a certain precision in the following sense:

|∆ai,k| ≤ δ, ∀i ∈ [1 : |Y|], k ∈ [1 : |Z|], (2.37)

in which

∆ai,k , PY Z̃(i, k)− PY Z(i, k). (2.38)

As PY X is perfectly known, which implies PY is perfectly known, we have

PY (i) =

|Z|∑
k=1

PY Z̃(i, k) =

|Z|∑
k=1

PY Z(i, k). (2.39)

Similar to (2.5), we use A to denote PY Z , and Ã = A+ ∆A to denote PY Z̃ . Using these
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notation, we can rewrite (2.37) and (2.39) as

|∆aik| ≤ δ, ∀i = 1, · · · , |Y|, k = 1, · · · , |Z|, (2.40)

and
|Z|∑
k=1

∆aik = 0, ∀i = 1, · · · , |Y|. (2.41)

Suppose SimY (Z → X) does not hold with regards to PXY Z (the perceived model by

the legitimate users), we would like to know whether SimY (Z → X) holds or not regarding

PXY Z̃ (the true underlying model).

From the discussion in Section 2.3, we know that checking SimY (Z → X) is equiva-

lent in checking whether there exists a Q satisfying (2.5), (2.6) and (2.7). In Section 2.3, to

facilitate the analysis of the algorithm complexity, we convert these equations to an LP prob-

lem. In this section, to facilitate the sensitivity analysis, we construct another optimization

problem:

min
q
||Aq− c||1 (2.42)

s.t. q � 0, (2.43)

[I|Z| ⊗ 11×|X |]q = 1|Z|, (2.44)

where || · ||1 is the `1 norm, c , Vec(CT ), A , [A ⊗ I|X |] and q , Vec(QT ). Here,

(2.42) corresponds to (2.5), (2.43) corresponds to (2.6), and (2.44) corresponds to (2.7),

respectively. It is clear that simulatability condition holds iff the optimal value for (2.42)

equals 0.

Now, suppose SimY (Z → X) does not hold with regards to PXY Z , that is the optimal

value of (2.42) is ε0 > 0, we have the following theorem.

Theorem 2.9. Suppose SimY (Z → X) does not hold with regards to PXY Z , then for any

δ < ε0
|Y||Z| , SimY (Z → X) does not hold with regards to PXY Z̃ neither .

Proof. To prove simulatability condition doesn’t hold for PXY Z̃ is equivalent to show the
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optimal value for the following convex optimization problem is lager than 0. We have

min
q
||Ãq− c||1 (2.45)

s.t. q � 0,

[I|Z| ⊗ 11×|X |]q = 1|Z|,

in which Ã , [Ã⊗ I]. We have

min
q
||Ãq− c||1 = min

q
||[(A + ∆A)⊗ I]q− c||1

= min
q
||Aq + ∆Aq− c||1

≥ min
q
{||Aq− c||1 − ||∆Aq||1}

≥ min
q
||Aq− c||1 −max

q
||∆Aq||1

= min
q
||Aq− c||1 −max

Q
||Vec(∆AQ)||1

(a)

≥ ε0 − |Y||Z|δ

> 0,

if δ < ε0
|Y||Z| . In the above derivation, step (a) holds, because the summation of each row of

Q equals to 1. This completes the proof.

The bound obtained in Theorem 2.9 is sharp. In particular, there are examples in which

once δ = ε0
|Y||Z| , we can find PXY Z̃ such that simulatability condition holds although the

condition does not hold for PXY Z . In the following, we give such an example.

Assume

A =

 1/4 1/4

1/4 1/4

 , C =

 1/3 1/6

1/6 1/3

 . (2.46)
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Then, by setting Q =

 λ1 1− λ1

λ2 1− λ2

, we have

ε0 := min
q
||Aq− c||1 (2.47)

= min
Q
||Vec(AQ−C)||1 (2.48)

= min
λ1,λ2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣Vec


 λ1+λ2

4
− 1

3
1
3
− λ1+λ2

4

λ1+λ2
4
− 1

6
1
6
− λ1+λ2

4



∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1

(2.49)

= 2 min
λ1,λ2

{∣∣∣∣λ1 + λ2

4
− 1

3

∣∣∣∣+

∣∣∣∣λ1 + λ2

4
− 1

6

∣∣∣∣} (2.50)

= 2 ·
∣∣∣∣13 − 1

6

∣∣∣∣ (2.51)

= 1/3, (2.52)

which implies that SimY (Z → X) does not hold for the given PXY Z .

Now if

δ =
ε0

|Y||Z|
=

1

2 · 2
ε0 =

1

12
,

then Ã can be

Ã =

 1/4 + 1/12 1/4− 1/12

1/4− 1/12 1/4 + 1/12

 (2.53)

=

 1/3 1/6

1/6 1/3

 . (2.54)

This is exactly the same as C, which obviously indicates that simulatability condition holds

for the perturbed PMF PXY Z̃ .
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2.6 Numerical Examples

In this section, we provide several examples to illustrate the proposed algorithm. We also

use some of the examples used in [63] to compare our proposed algorithm with the method

in [63].

Example 1: Let PXY Z with ranges X = {x1, x2}, Y = {y1, y2} and Z = {z1, z2, z3}

be:

PXY Z(x1, y1, z1) = 6/100,

PXY Z(x2, y1, z1) = 4/100,

PXY Z(x1, y1, z2) = 9/100,

PXY Z(x2, y1, z2) = 6/100,

PXY Z(x1, y1, z3) = 15/100,

PXY Z(x2, y1, z3) = 10/100,

PXY Z(x1, y2, z1) = 36/100,

PXY Z(x2, y2, z1) = 4/100,

PXY Z(x1, y2, z2) = 9/100,

PXY Z(x2, y2, z2) = 1/100,

PXY Z(x1, y2, z3) = 0,

PXY Z(x2, y2, z3) = 0.

To use our algorithm, we have the following steps:

Step 1: Compute PY Z and PY X , and write them in the matrix form A and C:

A =

 0.1 0.15 0.25

0.4 0.1 0

 ,C =

 0.3 0.2

0.45 0.05

 . (2.55)
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Step 2: Construct A and c using (2.10) and (2.11) respectively:

A =



0.1 0 0.15 0 0.25 0

0 0.1 0 0.15 0 0.25

0.4 0 0.1 0 0 0

0 0.4 0 0.1 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1



, (2.56)

c = [0.3, 0.2, 0.45, 0.05, 1, 1, 1]T . (2.57)

Step 3: Check the ranks of A and (A|c):

We get

Rank(A) = Rank((A|c)) = 5. (2.58)

Step 4: Choose the g-inverse to be the Moore-Penrose pseudoinverse A+ and calculate A+c

and I− A+A:

A+c =



0.9762

0.0238

0.5952

0.4048

0.4524

0.5476


, (2.59)
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I− A+A =



0.0238 −0.0238 −0.0952 0.0952 0.0476 −0.0476

−0.0238 0.0238 0.0952 −0.0952 −0.0476 0.0476

−0.0952 0.0952 0.3810 −0.3810 −0.1905 0.1905

0.0952 −0.0952 −0.3810 0.3810 0.1905 −0.1905

0.0476 −0.0476 −0.1905 −0.1905 0.0952 −0.0952

−0.0476 0.0476 0.1905 −0.1905 −0.0952 0.0952


. (2.60)

Step 5: Solve LP (2.19). Using the above data, we obtain h∗ = 0, which implies that

SimY (Z → X) holds.

Step 6: Obtain a possible PX̄|Z . We construct the LP defined in (2.27) with e = [2, 2, 2, 1, 1, 1]T ,

and get

q∗ = [1, 0, 1/2, 1/2, 1/2, 1/2]T .

Thus the simulatability channel is

PX̄|Z =


1 0

1/2 1/2

1/2 1/2

 , (2.61)

which is consistent with the result obtained from the criterion proposed in [63]. If we set

e = [1, 1, 1, 1, 1, 1]T , we get

q∗ = [0.9762, 0.0238, 0.5952, 0.4048, 0.4524, 0.5476]T ,

which implies that another valid choice is

PX̄|Z =


0.9762 0.0238

0.5962 0.4048

0.4524 0.5476

 . (2.62)

Example 2: In this example, we consider a case in which Y is not binary. To represent

45



the joint PMF concisely, we follow the same approach in [63] and use

MUV = (PU(u), (PV |U=u(v1), · · · , PV |U=u(v|V|−1)))u∈U

to represent the joint PMF PUV . For this example, we set

MZY = (0.3, (0, 0)), (0.3, (0.5, 0)),

(0.3, (0.25,
√

3/4)), (0.1, (0.25,
√

3/12)),

MXY = (0.3, (0.25, 0)), (0.3, (0.375,
√

3/8)),

(0.3, (0.125,
√

3/8))(0.05, (0.24,
√

3/12))

(0.05, (0.26,
√

3/12)). (2.63)

In step 1, we write PY Z and PY X in the matrix form A and C:

A =


0 0.1500 0.0750 0.0250

0 0 0.1299 0.0144

0.3000 0.1500 0.0951 0.0606

 ,

C =


0.0750 0.1125 0.0375 0.0120 0.0130

0 0.0650 0.0650 0.0072 0.0072

0.2250 0.1225 0.1975 0.0308 0.0298

 .

To make the presentation concise, we do not list the values of A, c and following steps

in details. Steps 2, 3, 4 are similar to those in Example 1. But in Step 5, we obtain that

h∗ < 0, which indicates that SimY (Z → X) does not hold. This result is also consistent

with the conclusion in [63], which is obtained by an analysis that exploits the special mass

constellation structure of the data. We note that the mechanical model based “more centered”

criterion in [63] does not work for this example, as Y is not binary anymore, although the

mass constellation representation of PMFs can still be used to exploit the special structure
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that this set of data has.

Next, we provide an example for which the mass constellation presentation does not work

while our algorithm can easily obtain the answers.

Example 3: In this example, we consider X, Y, Z with larger dimensions, in particular,

we set |X | = 4, |Y| = 4, and |Z| = 6. Again to represent the joint PMF concisely, we

use the same method as that used in Example 2 to represent PXY Z . For this example, we

randomly set

MZY = (0.1604, (0.1966, 0.1054, 0.4198)), (0.1654, (0.1230, 0.4709, 0.3355)),

(0.1613, (0.0350, 0.6219, 0.0823)), (0.1504, (0.4585, 0.2504, 0.2343)),

(0.1207, (0.2443, 0.4704, 0.0701)), (0.2419, (0.2979, 0.1151, 0.4601));

MXY = (0.2603, (0.1784, 0.3822, 0.2056)), (0.2181, (0.1538, 0.4409, 0.2255)),

(0.2356, (0.2129, 0.2684, 0.3913)), (0.2861, (0.3422, 0.2044, 0.3363)).

We denote the above PMF with following two matrices

A =



0.0315 0.0203 0.0056 0.0690 0.0295 0.0720

0.0169 0.0779 0.1003 0.0377 0.0568 0.0278

0.0673 0.0555 0.0133 0.0352 0.0085 0.1113

0.0446 0.0117 0.0421 0.0085 0.0260 0.0307


,

C =



0.0464 0.0335 0.0502 0.0979

0.0995 0.0962 0.0632 0.0585

0.0535 0.0492 0.0922 0.0962

0.0609 0.0392 0.0300 0.0335


. (2.64)

Following the same steps as those in Example 1, we obtain that h∗ = 0, which means

SimY (Z → X) holds. Furthermore, by setting e = 124×1 in (2.27), we obtain one possible
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PX̄|Z , denoted by matrix Q∗:

Q∗ =



0.4979 0.1504 0.2038 0.1479

0.0148 0.3751 0.5618 0.0483

0.5210 0.4391 0.0254 0.0144

0.1302 0.0917 0.0301 0.7481

0.5638 0.2674 0.0161 0.1527

0.0261 0.0622 0.4110 0.5006


. (2.65)

One can easily check that AQ∗ = C holds. We note that, because of the lack of special

data structure and the high dimensions, it is difficult to use the mass constellation structure

of [63] to check whether SimY (Z → X) holds or not in this example.

Example 4: In this example, we consider the following PMF PXY :

PXY (x, y) =


1−α

2
, if x = y;

α
2
, if x 6= y,

and Z is generated by [X, Y ] via an erasure channel with erasure probability 1 − γ, i.e.,

Z = (X, Y ) with a probability γ and Z = φ with probability 1 − γ. It was shown in [63]

that simY (Z → X) and simX(Z → Y ) hold if and only if γ ≥ 1− 2α. In the following, we

use our algorithm to verify the obtained result.

As above, in step 1, we compute PY Z and write PY Z and PY X in matrix form A and C:

A =

 (1−α)γ
2

αγ
2

0 0 1−γ
2

0 0 αγ
2

(1−α)γ
2

1−γ
2

 ,C =

 1−α
2

α
2

α
2

1−α
2

 . (2.66)
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In step 2, we calculate matrices A and c:

A =



(1−α)γ
2

0 αγ
2

0 0 0 0 0 1−γ
2

0

0 (1−α)γ
2

0 αγ
2

0 0 0 0 0 1−γ
2

0 0 0 0 αγ
2

0 (1−α)γ
2

0 1−γ
2

0

0 0 0 0 0 αγ
2

0 (1−α)γ
2

0 1−γ
2

1 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1



,

c = [1− α, α, α, 1− α, 1, 1, 1, 1, 1]T .

The following steps are similar to those in Examples 1 and 2. Using our algorithm, we

can find that, for any given values α and γ, as long as γ ≥ 1−2α, h∗ = 0, and simulatability

condition holds. We can also obtain a possible simulatability channel PX̄|Z that Eve may

use, following the same steps as in Example 1. On the other side, if γ < 1−2α, we obtained

h∗ < 0, and hence simulatability condition does not hold.

From the above examples, we can see our proposed algorithm works for general given

PXY Z , and it’s more powerful than the algorithm proposed in [63].

2.7 Concluding Remarks

In this chapter, we have studied an fundamental concept simulatability condition in the pres-

ence of an active attacker. We have proposed an efficient algorithm to check simulatability

condition, an important condition in the problems of secret key generation using a non-

authenticated public channel. We have also proposed a simple and flexible method to cal-

culate a possible simulatability channel if simulatability condition holds. The proposed al-
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gorithms have polynomial complexities. We have shown that simulatability condition is not

sensitive to modelling uncertainty. Finally, we have proposed an approach to further reduce

the computational complexity, and used several numerical example to illustrate the efficiency

of our propose algorithm.
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Chapter 3

Generation of Multiple Keys

In this chapter, the problem of simultaneously generating multiple keys over a cascade of

a noiseless channel and a wiretap channel is considered. The problem consists of three

legitimate parties (i.e., Alice, Bob, and Carol), where Alice and Bob wish to agree with

Carol on independent secret keys. Alice and Bob are connected via a noiseless channel,

and Bob is connected with Carol via a wiretap channel, while there is no direct connection

between Alice and Carol. To Alice and Carol, Bob acts as a relay. Under this model, we

first provide a full characterization of the secret-key capacity region for the case when Eve

has no side information. The result shows that there exists a trade-off between the individual

secret-key rates. Then we generalize the obtained result into the case when Eve has side

information, and fully characterize the corresponding secret-key capacity region.

3.1 Motivation

To gain some understanding of scenarios with limited direct access to the public discus-

sion by certain legitimate users, we consider an extension of the joint source-channel model

of [40]. In our model, there are three legitimate users: Alice, Bob, and Carol. Alice and Bob

are connected by a noiseless public channel (Eve can observe this noiseless channel), and

Bob is connected with Carol via a noisy channel (Eve can also eavesdrop on this channel).
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However, Alice has no direct connection with Carol and therefore Carol does not have direct

access to the public discussion messages sent by Alice. This network setting captures many

relevant scenarios such as the scenario where Alice is a server who connects with the base

station Bob over an optical fiber, which can be viewed as noiseless, and Carol is a wireless

user. Furthermore, we assume that Alice and Carol have access to correlated random sources.

Under this network topology, we consider the problem of simultaneously generating two

secret keys: One between Alice and Carol, and one between Bob and Carol. The problem of

simultaneously generating multiple keys is well motivated in applications in which multiple

keys are needed for different communication sessions [46, 118, 120, 121, 123]. In our setup,

we require that the key generated by Alice and Carol is secure from Bob and Eve, while the

key generated by Bob and Carol is secure from Alice and Eve. We first consider a case where

Eve has no side information, and fully characterize the secret-key capacity region. Then, we

generalize the considered model to the case when Eve has side information, and obtain a full

characterization of the corresponding capacity region as well. It turns out that if we only

care about the key between Alice and Carol, the considered model can be simplified to the

source model with one-way limited-rate public discussion as studied in [19], and we show

that our result recovers the result in [19]. On the other hand, if we only care about the key

between Bob and Carol, the model can be viewed as a wiretap channel [17] and our result

recovers that of the wiretap channel. Furthermore, there is a trade-off between the two cases

so that Alice and Bob cannot attain their maximal secret-key rates simultaneously.

In addition to the work mentioned above, our work is related to recent papers on si-

multaneously generating multiple keys in networks consisting of trusted and untrusted par-

ties [46, 118, 120, 121, 123]. The main differences between our model and models in these

papers are: 1) we consider a joint source-channel model; and 2) we assume that the public

discussion is not directly available to all users.
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Figure 3.1: System model.

3.2 System Model and Problem Statement

As illustrated in Fig. 3.1, we consider a scenario in which Alice and Carol wish to agree on

a secret key K1 taking values from K1, while Bob wishes to agree with Carol on a secret key

K2 taking values from K2. Under this model, K1 is required to be kept confidential from

Bob and Eve, while K2 is required to be kept confidential from Alice and Eve.

Unlike Bob who can communicate with Carol over a noisy channel eavesdropped by

Eve, Alice has no direct connection with Carol and therefore she needs assistance from Bob.

The link between Bob and Carol is modeled as a wiretap channel (X , PY Z|X ,Y ,Z), where

X ,Y ,Z denote finite channel input and output alphabets. Thus, Xn, a sequence encoded

by Bob, is the input of the wiretap channel while Y n and Zn are the corresponding outputs,

where n is the sequence length. Alice and Bob can communicate through a noiseless link.

However, any message exchanged over this noiseless link will also be perfectly overheard

by Eve.

Alice, Carol and Eve are assumed to have access to three correlated random sequences

UN , V N and WN , N ∈ IN , which are generated i.i.d. according to PUVW . And U, V and W

take values from the finite alphabets U , V andW , respectively. Here and hereafter, N is the

length of the source sequences, which can be different from n.

Definition 3.1. An (N, n) key-agreement protocol for the joint source-channel model is as

follows.

• Step 0). Alice generates a random variable (RV) F0, and Bob generates another RV
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F ′0. F0 and F ′0 are mutually independent, and are independent with all other RVs in the

model.

• Step 1). Alice and Bob exchange messages f1 and f ′1, where f1 , f1(F0, U
N) and

f ′1 , f ′1(F ′0), over the noiseless channel.

• Step i). Alice and Bob exchange messages fi(F0, U
N , f ′i−1) and f ′i(F

′
0, f

i−1), in which

f i−1 , (f1, · · · , fi−1) and f ′i−1 is defined in a similar manner.

• Step k). (After Alice and Bob finish their discussion) Denote F , (fk−1, f ′k−1).

Bob generates another independent RV Fb and transmits Xn(F, Fb) into the wiretap

channel.

• Final step). Alice computes a key via a functionK1 , K1(UN ,F, F0); Bob computes

a key via a function K2 , K2(F, F ′0, Fb); Carol computes two keys via functions

K ′1 , K ′1(Y n, V N), K ′2 , K ′2(Y n, V N).

Here, the use of RVs F0 and F ′0 enables the messages exchanged over the public noiseless

channel to be random functions of UN , while Fb ensures that Bob can use stochastic coding

to generate his own key with Carol.

Definition 3.2. A secret-key rate pair (R1, R2) is said to be achievable if ∀ε > 0 there exists

an n(ε) ∈ IN and a sequence of (N, n) codes such that ∀n ≥ n(ε), we have

Pr{Ki 6= K ′i} ≤ ε, i = 1, 2, (3.1)

1

n
I(K1; F, F ′0, Fb) ≤ ε, (3.2)

1

n
I(K2; F, F0, U

N) ≤ ε, (3.3)

1

n
I(K1, K2; F, Zn,WN) ≤ ε, (3.4)

1

n
H(Ki) ≥

1

n
log |Ki| − ε, i = 1, 2, (3.5)

1

n
H(K1) ≥ R1 − ε,

1

n
H(K2) ≥ R2 − ε. (3.6)
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Here, (3.1) indicates that the keys generated at the key generating parties should be the

same with high probability, (3.2) means that K1 is required to be secure from Bob, (3.3)

means that K2 should be secure from Alice, (3.4) implies that (K1, K2) should be jointly se-

cure from Eve, (3.5) indicates that the generated keys should be nearly uniformly distributed,

and (3.6) indicates that R1 and R2 are the key rates of K1 and K2, respectively.

Definition 3.3. The secret-key capacity region C is defined as:

C ,
{

(R1, R2) ∈ IR2
+ | (R1, R2) is achievable

}
.

Furthermore, we use C1 to denote the maximal value of R1 (i.e., the key capacity of K1),

C2 to denote the maximal value of R2 (i.e., the key capacity of K2) and Csum to denote the

maximal value of R1 +R2 (i.e., the sum capacity of (K1, K2)).

3.3 Main Results

In this section, to facilitate the presentation and understanding of our scheme, we first con-

sider the special case when Eve has no side information, i.e., the case where W = ∅, and

denote the corresponding secret-key capacity region by C0. For this case, we fully charac-

terize C0. Then, we extend the obtained result to the general model with side information at

Eve.

3.3.1 Capacity Region with No Side Information at Eve

For auxiliary RVs S1, S2 and T2 satisfying Markov chain conditions S1 → U → V and

T2 → S2 → X → (Y, Z), define

R(PS1|U , PT2S2PX|S2) , {(R1, R2) : R1 ≤
1

β
I(S1;V ),

R2 ≤
[
I(S2;Y |T2)− I(S2;Z|T2)

]+
, (3.7)
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Figure 3.2: Codebook construction: SN1 sequences are generated i.i.d. according to PS1;
T n2 sequences are generated i.i.d. according to PT2 and for each T n2 , generate certain Sn2
sequences according to PS2|T2 .

s.t. I(S1;U)− I(S1;V ) ≤ βI(T2;Y ).} (3.8)

Here, [x]+ , max{0, x} and β = n/N . To make the problem nontrivial, β is assumed to

be a positive constant. Furthermore, the notation S1 → U → V means that RVs (S1, U, V )

form a Markov chain in that order, and other similar relationships throughout the chapter are

defined in a similar manner.

We have the following result.

Theorem 3.1. The secret-key capacity region for the case with no side information at Eve is

C0 =
⋃

PS1|U ,PT2S2
PX|S2

R(PS1|U , PT2S2PX|S2). (3.9)

Proof. The proof contains two parts: converse and achievability. In the converse proof pre-

sented in Appendix A.1.1, we show that C0 defined by (3.9) is an outer bound. In the achiev-

ability part, we show that for any given (PS1|UPUV , PT2S2PX|S2), rate pair (R1, R2) with

R1 =
1

β
I(S1;V )− ε, R2 =

[
I(S2;Y |T2)− I(S2;Z|T2)

]+− ε
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s.t. I(S1;U)− I(S1;V ) ≤ βI(T2;Y ), (3.10)

is achievable, and hence the region specified in (3.9) is achievable. A detailed proof of the

achievability part is provided in Appendix A.1.2. Here, we provide a high level idea of how

the achievability scheme works. As illustrated in Fig. 3.2, the codebook construction is a

combination of source coding techniques and channel coding techniques. We first generate

SN1 sequences according to PS1 . Then, we generate T n2 sequences according to PT2 and for

each generated sequence T n2 , we generate Sn2 sequences according to PS2|T2 . From Alice and

Carol’s perspective, the noisy channel PY |X acts as a noiseless channel with rate I(T2;Y ).

This guarantees that, if messages sent by Alice have a rate less than I(T2;Y ), they can be

correctly decoded with high probability by Carol using Y n. As a result, the key generation

model between Alice, Carol and Eve can be viewed as a source model (with no side informa-

tion at Eve) using one way public discussion with rate constraint, and the rate 1
β
I(S1;V )− ε

is achievable using techniques for this model. In particular, to generate K1, we generate

2N(I(S1;U)+ε) sequences SN1 , and randomly assign them into 2N(I(S1;U)−I(S1;V )+2ε) bins (we

choose the number of bins to guarantee that its rate is less than I(T2;Y )). Alice then sends

the bin index to Carol through Bob. With this bin index along with its source observation

V N , Carol will be able to decode SN1 . We will obtain a key at the rate of 1
β
I(S1;V ) − ε

by setting the sub-bin index of the decoded SN1 as the key value of K1. At Bob’s side,

Bob chooses T n2 to convey the received message to Carol, while using Sn2 generated by

the selected T n2 to generate his own key with Carol: We generate 2n(I(T2;Y )−ε) sequences

T n2 . For each T n2 we generate 2n(I(S2;Y |T2)−ε) sequences Sn2 and randomly assign them into

2n(I(S2;Y |T2)−I(S2;Z|T2)−2ε) bins. We set the bin index of Sn2 as the key value of K2.

Note that the role of T n2 is to convey the message received from Alice, i.e., the bin index

of SN1 , to Carol. Since Eve has access to the public channel between Alice and Bob, it is not

necessary to keep T n2 secure from Eve. That’s why we have only one term βI(T2;Y ) on the

right-side of (3.8).
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3.3.2 Capacity Region with Side Information at Eve

In this subsection, we show that the result of Section 3.3.1 can be generalized to the case

when Eve has access to side information, i.e. W 6= ∅. Under this model, we fully character-

ize the corresponding secret-key capacity region as well.

For auxiliary RVs S1, S2, T1 and T2 satisfying Markov chain conditions T1 → S1 →

U → (V,W ) and T2 → S2 → X → (Y, Z), we define

R(PS1|UPT1|S1 , PT2S2PX|S2) , {(R1, R2) : R1 ≤
1

β

[
I(S1;V |T1)− I(S1;W |T1)

]+
,

R2 ≤
[
I(S2;Y |T2)− I(S2;Z|T2)

]+
, (3.11)

s.t. I(S1;U)− I(S1;V ) ≤ βI(T2;Y ).} (3.12)

Then, we have the following result.

Theorem 3.2. In the joint source-channel model with side information at Eve, the secret-key

capacity region is

C =
⋃

PS1|UPT1|S1
,PT2S2

PX|S2

R(PS1|UPT1|S1 , PT2S2PX|S2). (3.13)

Proof. Similar to the proof of Theorem 3.1, this proof also contains two parts: converse and

achievability. The converse proof is provided in Appendix A.3.

In the following, for the achievability, we outline the encoding/decoding and key gener-

ation process while omitting detailed analyses of key rates, error and information leakage as

these follow similar lines as those in the proof of Theorem 3.1.

It suffices to show that the pair (R1, R2) with

R1 =
1

β
I(S1;V |T1)− I(S1;W |T1)− ε, (3.14)

R2 = I(S2;Y |T2)− I(S2;Z|T2)− ε, (3.15)

s.t. I(S1;U)− I(S1;V ) < βI(T2;Y ), (3.16)
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is achievable.

Given (PS1|UPT1|S1 , PT2S2PX|S2), without loss of generality, we assume I(S1;V |T1) −

I(S1;W |T1) > 0 and I(S2;Y |T2)− I(S2;Z|T2) > 0.

Codebook Construction:

CA at Alice. Given PT1 , randomly and independently generate 2NR10 sequences TN1 ac-

cording to
N∏
i=1

PT1(T1i), and assign each TN1 uniformly at random into 2NR11 bins indexed by

f1(TN1 ) with f1 ∈ [1 : 2NR11 ]. We denote the corresponding bin by B0(f1).

For each TN1 , randomly and independently generate 2NR12 sequences SN1 according to
N∏
i=1

PS1|T1(S1i|T1i). Assign each SN1 uniformly at random into 2NR13 bins indexed by f2(SN1 )

with f2 ∈ [1 : 2NR13 ]. We denote the corresponding bin by B1(f2). Within each bin B1(f2),

assign each SN1 uniformly at random into 2NR14 sub-bins indexed by φ(SN1 ) with φ ∈ [1 :

2NR14 ].

CB at Bob. Given PT2 , randomly and independently generate 2nR20 sequences T n2 ac-

cording to
n∏
i=1

PT2(T2i), indexed by (f1, f2, ϕ). For each T n2 (f1, f2, ϕ), randomly and inde-

pendently generate 2nR21 sequences Sn2 according to
n∏
i=1

PS2|T2(S2i|T2i), and assign each Sn2

uniformly at random into 2nR22 bins indexed by ψ(Sn2 ) with ψ ∈ [1 : 2nR22 ]. Here, we set

R10 = I(T1;U) + ε, R11 = I(T1;U)− I(T1;V ) + 2ε,

R12 = I(S1;U |T1) + ε, R13 = I(S1;U |T1)− I(S1;V |T1) + 2ε,

R14 = I(S1;V |T1)− I(S1;W |T1)− 2ε, R20 = I(T2;Y )− ε,

R21 = I(S2;Y |T2)− ε, R22 = I(S2;Y |T2)− I(S2;Z|T2)− 2ε.

Encoding: With the observed sequence UN , Alice looks into CA, in order to find a TN1

that is jointly typical with UN according to PT1U . If there are more than one such sequence,

she randomly selects one (suppose TN1 = tN1 is selected); If Alice can’t find it, she declares

an error. Then, Alice looks into the set of SN1 sequences generated by TN1 , in order to find
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one SN1 that is jointly typical with (TN1 , U
N) according to PT1S1U . If there are more than one

such sequence, she randomly selects one (suppose SN1 = sN1 is selected); If there exists no

such sequence, she declares an error. Finally, Alice sends (f1(TN1 ), f2(SN1 )) to Bob.

Upon receiving (f1, f2), Bob first randomly generates a value forϕ and selects a sequence

T n2 (f1, f2), ϕ) in CB. Then Bob randomly selects one Sn2 = sn2 from those Sn2 sequences that

are generated by T n2 (f1, f2), ϕ), and transmits it to Carol via the channel PX|S2PY Z|X .

Decoding: Upon receiving Y n, Carol first tries to decode (T̂ n2 , Ŝ
n
2 ) using the same

method as described in the proof of Theorem 3.1.

After decoding T̂ n2 Carol will obtain corresponding values for (f1, f2). Then Carol refers

to CA, looking for a unique T̂N1 in B0(f1) that is jointly typical with V N . If Carol cannot

find at least one such sequence, she randomly selects one T̂N1 . Then, Carol turns to those

SN1 sequences that are generated by T̂N1 , in order to find a unique sequence ŜN1 that is jointly

typical with (T̂N1 , V
N) according to PT1S1V . If Carol does not find such sequence, she selects

one at random.

Key Generation: Alice sets K1 = φ(SN1 ); Bob sets K2 = ψ(Sn2 ); Carol sets K̂1 =

φ(ŜN1 ) and K̂2 = ψ(Ŝn2 ).

Finally, following similar arguments as those in the proof of Theorem 3.1, we can con-

clude that there exists at least one scheme such that (R1, R2) specified in (3.14) and (3.15)

are achievable, and henceR(PS1|UPT1|S1 , PT2S2PX|S2) is achievable.

3.3.3 Discussion

In this part, we discuss the implications of the results developed in this chapter. Except

stated otherwise, we focus on the case with no side information at Eve, since the case with

side information at Eve follows in a similar manner.

According to Theorem 3.1, the following rate is achievable for K1:
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R1 ≤
1

β
I(S1;V ),

s.t. I(S1;U)− I(S1;V ) ≤ βI(T2;Y ). (3.17)

Due to the Markov chain condition T2 → X → Y , we have that (3.17) is contained in the

set

{R1 ∈ IR+ : R1 ≤
1

β
I(S1;V ),

s.t. I(S1;U)− I(S1;V ) ≤ βI(X;Y )}, (3.18)

which is achievable by setting T2 = X . Hence, we can conclude via maximizing (3.18) that

the secret-key capacity of K1 for the case with no side information at Eve is

C1 = max
S1−U−V

1

β
I(S1;V ),

s.t. I(S1;U)− I(S1;V ) ≤ max
PX

βI(X;Y ). (3.19)

Equation (3.19) shows that if one cares only about the keyK1, the channel between Alice

and Carol can be viewed as a noiseless channel with rate constraint R = max
PX

βI(X;Y ) and

our problem is equivalent to the problem of generating a single key with one-way public

discussion subject to a rate constraint as studied in [19, Sec. II. Case 6]. Our result is

consistent with [19, Thm. 2.4].

Remark 3.3. Following a similar reasoning, we can also conclude that the secret-key capac-

ity of K1 for the case with side information at Eve is

C1 = max
T1−S1−U−(V,W )

1

β

[
I(S1;V |T1)−I(S1;W |T1)

]
,

s.t. I(S1;U)− I(S1;V ) ≤ max
PX

βI(X;Y ). (3.20)
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We would like to emphasize that, in general, the secret-key capacity with side information

at Eve under multiple rounds of public discussion is still unknown [3]. The reason why we

are able to characterize the key capacity of K1 in our model is that, even though we allow

multiple rounds of discussion over the public noiseless channel, the public discussion is

between Alice and Bob, not between Alice and Carol. In our model, Carol is connected to

this noiseless channel via a wiretap channel, which is a one-way link. Since Bob observes

no randomness correlated with (U, V,W ), compared with the case of one-way discussion

between Alice and Bob, the multiple rounds of discussion between Alice and Bob do not

increase the key rate between Alice and Carol. Thus, the link between Alice and Carol can

be viewed as a one-way channel with rate constraint.

Furthermore, we have that the secret-key capacity of K2 for the case with no side infor-

mation at Eve is

C2 = max
PS2X

{I(S2;Y )− I(S2;Z)}, (3.21)

which can simply be derived from Theorem 3.1:

C2 = max
PT2S

PX|S2

{I(S2;Y |T2)− I(S2;Z|T2)}

= max
PT2S2

PX|S2

∑
t2

PT2(t2)
[
I(S2;Y |T2 = t2)− I(S2;Z|T2 = t2)

]
(a)

≤ max
PT2S2

PX|S2

max
t2

[
I(S2;Y |T2 = t2)− I(S2;Z|T2 = t2)

]
= max

PS2X

{I(S2;Y )− I(S2;Z)}, (3.22)

in which the equality in (a) can be obtained by setting T2 to be some constant.

Equation (3.21) shows that if one cares only aboutK2, the key capacity is the same as the

capacity of a discrete memoryless wiretap channel. This implies that the correlated sources

(UN , V N) do not help in increasing R2, as we require K2 to be secure from Alice.

Finally, from Theorem 3.1 we can easily obtain that the sum capacity of (K1, K2) for the
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Figure 3.3: Secret-key capacity region C , R1 ∪R2 ∪R3.

case with no side information at Eve is

Csum = max
S1−U−V

T2−S2−X−(Y,Z)

{I(S2;Y |T2)− I(S2;Z|T2) +
1

β
I(S1;V )},

s.t. I(S1;U)− I(S1;V ) ≤ βI(T2;Y ). (3.23)

The plot of C0 is shown in Fig. 3.3, where C0 = R1

⋃
R2

⋃
R3. R1 is the region

where there exists a PT ∗2 such that βI(T ∗2 ;Y ) ≥ H(U |V ) = max{I(S1;U) − I(S1;V )}

(R1 vanishes if H(U |V ) ≥ max
PX

βI(X;Y )). One does not need to sacrifice R1 in order to

obtain a larger R2 at least when R2 ≤ max
PS2|T∗2

PS2|X
{I(S2;Y |T ∗2 ) − I(S2;Z|T ∗2 )}. R3 is the

region obtained when PT2 = arg max
PT2

max
PS2|T2PX|S2

{I(S2;Y |T2)−I(S2;Z|T2)} and I(S1;U)−

I(S1;V ) ≤ βI(T2;Y ) (R3 vanishes if T2 is a constant). And in R3, one doesn’t need to

sacrifice R2 in order to obtain a larger R1. Obviously, in R2, there exists a tradeoff between

R1 and R2, and Csum is obtained in this region.

Note that our model is related to the setup in [40], especially when one cares only about

Csum. The major difference is that we consider an achievable rate region while [40] equiv-

alently focuses only on the sum capacity. In addition, in our model Alice and Bob are con-

nected by a noiseless channel while the setup in [40] can be viewed this situation in which

Alice and Bob are combined into one terminal. Furthermore, we require thatK1 is concealed

from Bob and K2 is concealed from Alice while these requirements do not exist in [40].
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3.4 Concluding Remarks

In this chapter, we have introduced the problem of simultaneously generating multiple se-

cret keys under a cascade model of a noiseless channel and a wiretap channel, using joint

correlated sources and channels, to gain some understanding of key generation models with

limited access to the public discussion channel. We have fully characterized the secret-key

capacity region of the corresponding generated keys under the case when Eve has no side

information, and generalized the result to the more general case when Eve has side informa-

tion.
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Chapter 4

Keyless Authentication

In this chapter, we consider the problem of keyless message authentication over noisy chan-

nels in the presence of an active adversary. Different from the existing models, in our model,

the legitimate users do not have any pre-shared key for authentication. Instead, we use the

noisy channel connecting the legitimate users for authentication. The main idea is to utilize

the noisy channel connecting the legitimate users to generate an output at the receiver that is

difficult for the adversary to replicate through its noisy channel, to distinguish a legitimate

message from a fake message. By interpreting the message authentication as a hypothesis

testing problem, we investigate the authentication exponent and the authenticated channel

capacity of the noisy channel. In the authentication exponent problem, for a given message

rate, we investigate the speed at which the optimal successful attack probability can be driven

to zero. We fully characterize the authentication exponent for the zero-rate message case and

provide both an upper bound and a lower bound on the exponent for the non-zero message

rate case. In the authenticated capacity problem, we study the largest data transmission rate

under which the attacker’s optimal successful attack probability can still be made arbitrarily

small. We establish an all or nothing result. In particular, we show that the authenticated

channel capacity is the same as the classic channel capacity if a simulatability condition is

not satisfied, while the authenticated capacity will be zero if this condition is satisfied. We
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also provide efficient algorithms to check this condition. We further show that our results are

robust to modeling uncertainties about the eavesdropper’s channels.

4.1 Motivation

From the previous discussion, using secret keys is an straightforward method to protect se-

curity in communication networks. However, there exist many scenarios in which certain

concerned security issues can be achieved [35, 42]. In this chapter, we consider the authen-

tication issue in security. We study a similar model as that in [30]: Alice, Bob and Eve are

all connected with one another by noisy channels. Here we assume that Alice and Bob do

not share any secret key. We will mainly rely on the channel W (Y |X) connecting Alice and

Bob for authentication. In particular, for any input PMF PX generated by Alice, we produce

an output distribution at Bob PY = W (Y |X)PX . The main idea is to properly choose PX so

that the produced PY is difficult (precise meaning will be made clear in the sequel) for Eve to

replicate through her noisy channel to Bob. In this way, after receiving a sequence Y n, Bob

can perform a hypothesis testing to check whether this sequence is generated from PY or not,

which in return provides Bob evidences of whether the message is authentic or not. How-

ever, this hypothesis testing problem is more challenging than the classic hypothesis testing

problems [72], in which each element of Y n is typically assumed to be independently and

identically generated from a certain PMF under each hypothesis. In our case, each element

is not necessarily independent nor identically distributed. More importantly, the distribution

under the alternative hypothesis, in which there is an attack, is totally controlled by the at-

tacker (via the selection of the attack sequence) and can be arbitrary. Despite this challenge,

we study and solve two closely related questions using this problem formulation.

In the first question, we focus on characterizing the optimal authentication exponent. In

particular, for a given message rate, we investigate how to design the system so that the

successful attack probability under Eve’s optimal attack strategy is as small as possible.
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The speed at which the successful attack probability goes to zero is called the authentication

exponent. We derive an upper bound as well as a lower bound on the authentication exponent.

We show that the upper bound and lower bound match in the zero-rate case. In the nonzero-

rate scenario, we also identify some cases in which the upper and lower bound match. Hence

the optimal authentication exponent is fully characterized in these cases.

In the second question, we focus on characterizing the authenticated capacity. In particu-

lar, we study what the largest data transmission rate is such that we can still design schemes

to make Eve’s successful attack probability arbitrarily small. We call such largest rate as the

authenticated capacity. Compared with the classic definition of channel capacity, the authen-

ticated capacity has an additional requirement that the decoded messages are guaranteed to

come from the legitimate transmitter. We show an “all or nothing” result on the authenticated

capacity. In particular, we show that if a “simulatability condition” is satisfied, the authenti-

cated capacity is zero. On the other hand, if this condition is not satisfied, the authenticated

capacity is the same as the classic notion of capacity. We also design efficient algorithms to

check simulatability condition for any given channels. We further extend our study to the

authenticated secrecy capacity and show a similar “all or nothing” result.

We would like to mention that the case without any shared key is also briefly dis-

cussed in [30]. In addition, Our work is related to recent papers on authentication ex-

ploiting the channel intrinsic randomness as well as the properties of channel reciprocality

[34, 95, 107, 111, 115]. These papers also studied the authentication problem without using

any pre-shared key, and proposed various novel authentication schemes to exploit the differ-

ent channel statistics associated with different channels for authentication. Compared with

these interesting papers, we characterize the fundamental limits of such systems by providing

a more detailed and refined analysis.

Notation: We useXn, Y n and Zn to denote the sequences generated or observed at Alice,

Bob and Eve, respectively. Matrix W (Y |X) is reserved as the channel statistics from Alice

to Bob. U(F |X) and V (Y |Z) are defined in a similar manner. Furthermore, for any given
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Figure 4.1: System model.

sequence Xn ∈ X n, the relative frequencies
(
n1

n
, · · · , n|X|

n

)
where ni,∀i ∈ X is the total

number of indices j ∈ [1 : n] at which Xj = i, is called the type of Xn and is denoted

by tp(Xn). We use P or Q to denote the PMF of a certain random variable, TY to denote

the set of types of all sequences Y n, and T nY (PY ) to denote the set of sequences Y n with

tp(Y n) = PY . In addition, we denote Qn(A) , Pr{Y n : Y n ∈ A|Y iid
v Q}, in which

Y
iid
v Qmeans that each component of Y n is independently and identically distributed (i.i.d.)

according to Q. Here, if A = T nY (PY ), we write it as Qn(PY ) in short.

4.2 Preliminaries and Problem Setup

The model considered here is illustrated in Fig.4.1. Two terminals, Alice and Bob, would like

to communicate with each other in the presence of an active adversary Eve. Alice and Bob

do not share any secret key. Let X =: {1, · · · , |X |}, Y =: {1, · · · , |Y|}, Z =: {1, · · · , |Z|},

and F =: {1, · · · , |F|} be four finite discrete sets, which represent the input alphabet set of

Alice, the output alphabet set of Bob, the input alphabet set and the output alphabet set of

Eve, respectively. These three users are connected with one another by three noisy discrete

memoryless channels W (Y |X), U(F |X) and V (Y |Z), which connect Alice and Bob, Alice

and Eve, as well as Eve and Bob respectively. Here, W (Y |X) is an |Y| × |X | matrix, with

each column i, denoted by W (Y |i), representing the output distribution at Bob when the

input X = i. Other channel matrices are defined in a similar manner.
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In this part, we assume that W (Y |X) is perfectly known. As will be clear in the sequel,

most of our schemes are universal with respect to Eve’s channels U(F |X) and V (Y |Z).

More specifically, with the exception of a particular scheme in Section 4.5, most of our

schemes do not depend on any knowledge about U(F |X) and V (Y |Z). Furthermore, we

will show that the particular scheme in Section 4.5 is robust against the uncertainty of the

knowledge of V (Y |Z). Hence, even for that particular scheme, we do not need perfect

knowledge of V (Y |Z).

Alice would like to send a message M ∈ [1 : |M |] to Bob. She will use an encoder φ

to convert M to a certain codeword Xn and transmit it via the channel W (Y |X). However,

Eve is an active attacker, and is assumed to be able to intercept the transmission of Xn such

that Bob does not receive Y n from the channel W (Y |X) if Eve initiates the attack. This is a

typical assumption in the authentication literature [32,36,41,45,49,58,61–63,83,84,103,110]

and represents the worst case scenario from legitimate users’ perspective. Furthermore, Eve

can falsify messages and send them to Bob via the channel V (Y |Z), based on her optimal

strategy, to cheat Bob (details of the attacks considered will be made precisely in the sequel).

Thus, after observing a sequence Y n, Bob first needs to check the identity of Y n: whether it

is transmitted from Alice or faked by Eve. In particular, Bob will use a tester ψ to determine

which of the following hypothesis is true:

H0 : Y n comes from Alice, no attack occurs, (4.1)

H1 : Y n comes from Eve, an attack occurs. (4.2)

If Bob determines that H0 is true, he will then use a decoder ϕ to decode Y n and obtain a

decoded message M̂ = ϕ(Y n).

In summary, the system consists of the following components:

Encoder φ : M → Xn, (4.3)
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Tester ψ : Y n → H0 or H1, (4.4)

Decoder ϕ (if Bob determines H0) : Y n → M̂. (4.5)

For a given ψ, the acceptance region is defined by

An = {yn ∈ Yn : ψ(yn) = H0}.

Following the existing works on authentication [32, 41, 45, 58, 61–63, 83, 84], two types of

attacks are considered:

• Impersonation attack gI : This attack occurs before Alice sends anything. In particular,

Eve uses an attack strategy gI to select a sequence Zn and sends it into the channel

V (Y |Z) to cheat Bob. We use PV(Zn) to denote the output at Bob when Eve sends

Zn. The impersonation attack is said to be successful if Bob decides H0. We use PI

to denote the success probability of the impersonation attack, i.e., PI = Pr(PV(Zn) ∈

An).

• Substitution attack gS: This attack occurs after Alice sends a codeword Xn = φ(M).

In this attack, Eve intercepts the communication between Alice and Bob such that

Bob receives no sequence from the channel W (Y |X). Then Eve sends a sequence

Zn = gS(F n) to Bob via the channel V (Y |Z) based on the observations F n obtained

from the channel U(F |X) connecting Alice and Eve. The attack is successful if Bob

decides H0 and the decoded message is different from the message sent by Alice.

We use PS to denote the success probability of the substitution attack, i.e., PS =

Pr(PV(Zn) ∈ An and M̂ 6= M).

The goal of the attacker is to design the attack strategies gI and gS to maximize its

successful attack probability

PSA , max{PI , PS}. (4.6)
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If there is no attack (i.e., when H0 is true), two classes of errors could occur at Bob.

The first class is the false rejection error, in which Bob falsely determines that an attack

has occurred. This error probability is denoted by Pr(H1|H0). The second class is that Bob

correctly determines that there is no attack but incorrectly decodes the message. This error

probability can be written as Pr{M̂ 6= M,H0|H0}.

Definition 4.1. A protocol (φ, ψ, ϕ) is called (ε, σ)-robust, if

max
M

{
Pr{M̂ 6= M,H0|H0}+ Pr(H1|H0)

}
≤ ε, (4.7)

max
gI ,gS

PSA ≤ σ. (4.8)

Furthermore, Rm is said to be achievable using an (ε, σ)-robust protocol, if

1

n
log |M | ≥ Rm − ε. (4.9)

Here, (4.7) implies that, if there is no attack, the maximum error probability over all

messages is required to be smaller than ε. At the same time, (4.8) implies that, if there is an

attack, the success probability of Eve’s optimal attack strategy is less than σ. In other words,

if there is an attack, Bob should detect the presence of the attack with a probability larger

than 1− σ. With these definitions, two related problems are considered in this chapter:

• Authentication Exponent: for given Rm and ε, how fast can we make PSA go to zero?

• Authenticated Capacity: what is the largest message rateRm that a robust protocol can

achieve?

4.2.1 Authentication Exponent

Define

βn(Rm, ε) = min
φ,ψ,ϕ

max
gI ,gS

PSA,
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where φ, ψ and ϕ range over all possible functions satisfying (4.7) and (4.9). Furthermore,

we define

θ(Rm, ε) = lim inf
n→∞

− 1

n
log βn(Rm, ε). (4.10)

Here, θ(Rm, ε) is the exponent (rate) at which the successful attack probability goes to zero

as the block-length n increases.

Similarly, we can define

βI(Rm, ε) = min
φ,ψ,ϕ

max
gI

PI , (4.11)

θI(Rm, ε) = lim inf
n→∞

− 1

n
log βI(Rm, ε), (4.12)

for the impersonation attack, and

βS(Rm, ε) = min
φ,ψ,ϕ

max
gS

PS, (4.13)

θS(Rm, ε) = lim inf
n→∞

− 1

n
log βS(Rm, ε), (4.14)

for the substitution attack.

In this problem, our goal is to characterize θ(Rm, ε).

4.2.2 Authenticated (Secrecy) Capacity

In the authenticated capacity problem, we would like to characterize the authenticated ca-

pacity of the channel W (Y |X):

C∗ = sup
φ,ψ,ϕ

Rm,

in which the sup is taken over all φ, ψ, ϕ that satisfy (4.7) and (4.8) for arbitrarily small

ε, σ. Compared with the classic definition of channel capacity C, the authenticated capacity
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has an additional requirement that the decoded messages are guaranteed to come from the

legitimate transmitter. Clearly, we have C∗ ≤ C.

In addition, we would also like to characterize the authenticated secrecy capacity C∗S ,

which is defined as the largest achievable rate such that (4.7) and (4.8) are satisfied and

1

n
I(M ;F n) ≤ ε.

Again, compared with the classic definition of secrecy capacity CS [113], our definition of

authenticated secrecy capacity has the additional requirement that the accepted messages are

guaranteed to come from the legitimate transmitter. Hence, we also have C∗S ≤ CS .

4.3 Impersonation Attack vs Substitution Attack

In this section, we first analyze the relationship between the success probabilities of the

impersonation attack and the substitution attack. This analysis illustrates that we can focus

only on the impersonation attack, which can greatly simplify the presentation.

Theorem 4.1. If |M | > 1, we have

θ(Rm, ε) = θI(Rm, ε) = θS(Rm, ε). (4.15)

Proof. We first prove the second equality. For the substitution attack, suppose a sequence

Xn is transmitted by Alice, and Eve observes a corresponding sequence F n, then we have

βS(Rm, ε) = min
φ,ψ,ϕ

max
gS(Fn)

PS

= min
φ,ψ,ϕ

max
gS(Fn)

Pr(PV(Zn) ∈ An, M̂ 6= M)

≤ min
φ,ψ,ϕ

max
gS(Fn)

Pr(PV(Zn) ∈ An)

≤ min
φ,ψ,ϕ

max
gS(Xn)

Pr(PV(Zn) ∈ An)
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≤ min
φ,ψ,ϕ

max
Xn

max
gS(Xn)

Pr(PV(Zn) ∈ An)

(a)

≤ min
φ,ψ,ϕ

max
gI

PI

= βI(Rm, ε). (4.16)

Here, step (a) can be justified as follows. First, we note that the difference between the

impersonation attack and the substitution attack lies in whether or not Eve observes the

sequence F n from the channel U(F |X) before selecting the optimal attack sequence Zn.

Based on this observation, then for any given φ, ψ, ϕ and substitution attack strategy, we

can construct a corresponding impersonation attack strategy as follows. Eve assumes that a

codeword X̃n was transmitted by Alice and then generates F̃ n using U(F |X). With this F̃ n,

Eve then makes the corresponding substitution attack. As Alice does not share a key with

Bob in our model, Eve can generate X̃n in the same manner as Alice generates Xn (in the

model with key considered in the existing work, Eve cannot do this as she does not know the

key value shared by Alice and Bob), F̃ n will have the same statistics as F n. Since this is a

particular impersonation attack strategy, we have

max
X̃n

max
gS(X̃n)

Pr(PV(Zn) ∈ An) ≤ max
gI

Pr(PV(Zn) ∈ An),

which indicates

min
φ,ψ,ϕ

max
Xn

max
gS(Xn)

Pr(PV(Zn) ∈ An) ≤ min
φ,ψ,ϕ

max
gI

Pr(PV(Zn) ∈ An)

= min
φ,ψ,ϕ

max
gI

PI .

Thus, we have

θS(Rm, ε) ≥ θI(Rm, ε). (4.17)

Now, we show the other direction. The following is a valid substitution attack strategy:

74



Given φ, ψ and ϕ, no matter what F n Eve observes from U(F |X), she simply ignores F n,

and uses the corresponding optimal impersonation attack strategy to pick the attack sequence

Zn. We use P ∗S to denote the success probability of this particular substitution attack strategy,

and we have

P ∗S =

(
1− 1

|M |

)
max
gI

PI ,

with given φ, ψ and ϕ. Thus,

βS(Rm, ε) = min
φ,ψ,ϕ

max
gS

PS

≥ min
φ,ψ,ϕ

P ∗S

=

(
1− 1

|M |

)
min
φ,ψ,ϕ

max
gI

PI

=

(
1− 1

|M |

)
βI(Rm, ε), (4.18)

which implies

θS(Rm, ε) ≤ θI(Rm, ε). (4.19)

Combining (4.17) with (4.19), we have

θS(Rm, ε) = θI(Rm, ε).

To show the first equality of (4.15), we have

βn(Rm, ε) = min
φ,ψ,ϕ

max
gI ,gS

PSA

= min
φ,ψ,ϕ

max
gI ,gS

max{PI , PS}

= min
φ,ψ,ϕ

max{max
gI ,gS

PI ,max
gI ,gS

PS}
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= min
φ,ψ,ϕ

max{max
gI

PI ,max
gS

PS}

(a)
= min

φ,ψ,ϕ
max
gI

PI

= βI(Rm, ε),

where step (a) is true due to (4.16). Thus,

θ(Rm, ε) = θI(Rm, ε).

Remark 4.2. This result shows that we can focus on analyzing the successful attack proba-

bility as well as its exponent based on the impersonation attack, as θ(Rm, ε) = θI(Rm, ε) =

θS(Rm, ε) and

|βI(Rm, ε)− βS(Rm, ε)| ≤
1

|M |
βI(Rm, ε), (4.20)

which is true due to (4.16) and (4.18). The difference in (4.20) is a relatively small num-

ber, which has no influence on the authentication exponent analyzed in Section 4.4 even

when |M | is finite. In addition, this difference will not affect the capacity result analyzed in

Section 4.5, since in that case βI(Rm, ε) is an arbitrarily small value.

Remark 4.3. Here, we would like to compare this result with the result in the classic au-

thentication setup [83], in which there exists a tradeoff between PI and PS as mentioned

in the introduction: PI ≥ 2−I(K;E), PS ≥ 2−H(K|E). As discussed above, in the classic

authentication setup, the authentication is based on the pre-shared key information. In the

case with a shared key, the codeword E sent by Alice will contain information of K, which

will be useful for Eve to carry out the substitution attack. In fact, the information about K

contained in E is the main reason for the existence of a tradeoff between PI and PS in the

classic setup. If E contains more information about K, the impersonation attack will be
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more difficult (PI ↓) but the substitution attack will be easier (PS ↑). Similarly, if E contains

less information about K, PI ↑ while PS ↓. In our setup, there is no shared key, hence the

codewordXn sent by Alice does not carry any identification information and Eve can simply

generate it by herself. In particular, when Alice sends nothing (thus the corresponding attack

is an impersonation attack), Eve can construct an impersonation attack strategy by assuming

a sequence X̃n was sent by Alice and using the corresponding substitution attack toward this

X̃n.

We note that, when M = 1, there is no substitution attack as there is no any other

message for the attacker to substitute with. In this case, βS(Rm, ε) = 0 and the corresponding

θS(Rm, ε) is not defined while βI(Rm, ε) can still be positive with well defined θI(Rm, ε).

This case will be analyzed in Theorem 4.4 below. Furthermore, we can easily conclude that

θ(Rm, ε) = θI(Rm, ε) still holds.

4.4 Authentication Exponent

In this section, for a given Rm and ε, we focus on characterizing the authentication exponent

θ(Rm, ε). We will first focus on the zero-rate case, in which Rm = 0, and then focus on the

positive rate case.

4.4.1 Authentication of Zero-Rate Messages

To illustrate the main proof ideas, we first study the case of authentication for zero-rate

messages: |M | is finite, or infinite but

Rm =
1

n
log |M | → 0,

as n→∞. As discussed in Remark 4.2, it is sufficient to characterize θI(0, ε).

Before deriving θI(0, ε), we first analyze a special case: the case of single message, i.e.,
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|M | = 1. In the single message case, the decoding step ϕ is not needed, hence the term

Pr{M̂ 6= M,H0|H0} vanishes and (4.11) becomes

βI(01, ε) = min
φ,ψ

max
gI

PI ,

with 01 denoting the fact that |M | = 1. We also use θI(01, ε) to denote the corresponding

exponent.

We have the following three elements:

• From Alice’s perspective, it needs to design φ. In this case, it is equivalent to deciding

which Xn to use as the codeword.

• From Bob’s perspective, it needs to design ψ for the following hypothesis testing prob-

lem:

H0 : Y n ∼ PW (Xn),

H1 : Y n ∼ PV (Zn),

in which PW(Xn) denote the output at Bob when Alice sends Xn. However, it is

more challenging than the classic hypothesis testing problem [72], in which Yi, i =

1, · · · , n are typically assumed to be independently and identically generated from a

certain PMF under each hypothesis. In our case, Yi is not necessarily independent nor

identically distributed for different i. More importantly, the distribution under H1 is

totally controlled by the attacker (via the selection of the attack sequence Zn) and can

be arbitrary.

• From Eve’s perspective, its goal is to design gI and the corresponding attack sequence

Zn to maximize the error probability.

Taking the above three elements into consideration, we have the following result.
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Theorem 4.4.

θI(01, ε) = max
i∈X

min
PZ,i∈PZ

D(PY,i||QY,i), (4.21)

in which

PY,i = W (Y |i), (4.22)

QY,i =
∑
j∈Z

V (Y |j)PZ,i(j), (4.23)

PZ,i is some distribution of Z for each i ∈ X , and D(·||·) is the Kullback-Leibler (KL)

distance between its arguments.

Proof. Please see Appendix B.1.

Remark 4.5. According to Theorem 2.7.2 of [16], D(PY,i||QY,i) is convex in the pair (PY,i,

QY,i). Thus, for a fixed PY,i, we know that D(PY,i||QY,i) is convex in QY,i. In addition, QY,i

is linear in PZ,i according to (4.23), we can conclude that D(PY,i||QY,i) is convex in PZ,i

(See Chapter 2 in [14]). Hence, min
PZ,i

D(PY,i||QY,i) with constraints (4.22) and (4.23) is a

convex optimization problem, which can be solved efficiently.

Having obtained θI(01, ε) of the single message case, we can easily generalize it to the

case of multiple messages with zero-rate.

Theorem 4.6.

θI(0, ε) = max
i∈X

min
PZ,i

D(PY,i||QY,i),

where PY,i and QY,i are defined by (4.22) and (4.23).

Proof. First, we show

θI(0, ε) ≤ θI(01, ε) = max
i∈X

min
PZ,i

D(PY,i||QY,i).

79



For the multiple messages case, we again require Pr(H1|H0) ≤ ε. Meanwhile,

Pr(H1|H0) =

|M |∑
i=1

P (M = i)Pr(H1|H0,M = i).

As the result, there must exist at least one m ∈ [1 : |M |], such that Pr(H1|H0,M = m) ≤ ε.

If we focus on the messageM = m, it has the same requirements as the single message case.

Thus, we can conclude that

θI(0, ε) ≤ max
i∈X

min
PZ,i

D(PY,i||QY,i).

In the following, we show that we can construct a scheme to achieve max
i∈X

min
PZ,i

D(PY,i||QY,i).

Let k = arg max
i∈X
{min
PZ,i

D(PY,i||QY,i)}. Since 1
n

log |M | n→∞−→ 0, there exist arbitrary small

numbers {εi}i∈X\{k}, when n is sufficiently large, such that 2nI(X
∗;Y ) > |M |, where the

distribution of X∗ is given by

P ∗X , [ε1, · · · , εk−1, 1− ε0, εk+1, · · · , ε|X |]T , ε0 =
∑
i 6=k

εi. (4.24)

Now, we use P ∗X defined above to do channel coding as that in [16, Chapter 7]: Generate

|M | sequences as codewords, and set the acceptance region be An := T nε (Y ), in which the

typical set is defined with respect to PY =
∑
i∈X

P ∗X(i)W (Y |i). Thus, we can easily verify that

(4.7) is satisfied. Following similar steps as the derivation of (B.12) (details about this step

are provided in Appendix B.4), we have

2−nθI(0,ε) ≤ 2
−n(min

PZ
D(PY ||QY )−ε′)

(4.25)

, 2−n(D(PY ||Q∗Y )−ε′)

(a)

≤ 2−n(D(PY,k||Q∗Y )−δ(ε′))

≤ 2
−n(min

PZ
D(PY,k||QY )−δ(ε′))

= 2
−n( min

PZ,k

D(PY,k||QY,k)−δ(ε′))
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= 2
−n(max

i∈X
min
PZ,i

D(PY,i||QY,i)−δ(ε′))
,

where QY =
∑
j∈Z

PZ(j)V (Y |j), Q∗Y = arg min
QY

D(PY ||QY ), and (a) is true due to Lemma

B.2 in Appendix B.3, since D(PY ||PY,k) ≤ δ(ε0) because of (4.24). Thus, we have

θI(0, ε) ≥ max
i∈X

min
PZ,i

D(PY,i||QY,i)− δ(ε′).

Hence, we conclude that

θI(0, ε) = max
i∈X

min
PZ,i

D(PY,i||QY,i).

This completes the proof.

4.4.2 Authentication of Nonzero-Rate Messages

In this subsection, we deal with the case with Rm > 0, which is a much more complicated

scenario compared to the single message case. We first provide an upper bound and a lower

bound on the exponent of the successful attack probability. We then provide conditions under

which the upper and lower bounds match with each other.

Theorem 4.7. Let PY =
∑
i∈X

PX(i)W (Y |i) and QY =
∑
j∈Z

PZ(j)V (Y |j), we have

θI(Rm, ε) ≤ min
PZ

max
PX∈PR

D(PY ||QY ), (4.26)

θI(Rm, ε) ≥ max
PX∈PR

min
PZ

D(PY ||QY ), (4.27)

in which

PR := {PX ∈ PX : I(X;Y ) ≥ Rm}.

Proof. Please see Appendix B.2
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In general, (4.26) and (4.27) do not match with each other. However, there do exist sce-

narios where these two bounds match and hence the authentication exponent is fully charac-

terized for these scenarios.

Corollary 4.8. Let f(PX) , min
PZ

D(PY ||QY ), if f(PX) + I(X;Y ) is convex with respect

to PX ∈ PR, then (4.26) and (4.27) match.

Proof. First, from (B.27) and (B.29), we know that the upper bound (4.26) can be equiva-

lently written as

θI(Rm, ε) ≤ max
PX∈PR

[f(PX) + I(X;Y )−Rm] (4.28)

In the following, we will show that if f(PX) + I(X;Y ) is convex with respect to PX ∈ PR,

then the lower bound in (4.27) can be equivalently written as

θI(Rm, ε) ≥ max
PX∈PR

[f(PX) + I(X;Y )−Rm], (4.29)

which implies that the upper bound (4.26) matches with the lower bound (4.27).

Hence, to show this corollary, we only need to show (4.29). Towards that end, let

P̂X = arg max
PX∈PR

[f(PX) + I(X;Y )−Rm],

P̃X = arg max
PX∈PR

f(PX). (4.30)

Since D(PY ||QY ) is convex in (PY , QY ), and (PY , QY ) are affine functions of (PX , PZ),

then D(PY ||QY ) is convex in (PX , PZ). Thus, according to [14], f(PX) is convex in PX .

Since I(X;Y ) is concave in PX , then depending on W (Y |X) and V (Y |Z), the summation

f(PX) + I(X;Y ) can be convex, concave or neither. For the case when f(PX) + I(X;Y )

is convex in PX ∈ PR, then the optimal value of max
PX∈PR

[f(PX) + I(X;Y )−Rm] is obtained
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on the boundary[96], that is I(X̂;Y ) = Rm. Thus, we have

f(P̂X) = f(P̂X) + I(X̂;Y )−Rm

= max
PX∈PR

[f(PX) + I(X;Y )−Rm]

≥ max
PX∈PR

f(PX)

= f(P̃X).

On the other hand, according to the definition of P̃X as in (4.30), we have

f(P̂X) ≤ max
PX∈PR

f(PX) = f(P̃X).

Hence, it follows that

f(P̂X) = f(P̃X).

Finally, if f(PX)+ I(X;Y ) is convex in PX ∈ PR, the optimal value of the optimization

problem (4.29) is same as

max
PX∈PR

f(PX),

which is (4.27). This finishes the proof.

In the following, we provide an example for which the upper bound and lower bound

match.

Example 1: Let

W (Y |X) =

 1/3 1/4

2/3 3/4

 , V (Y |Z) =

 2/5 2/3

3/5 1/3

 ,
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and set PX = [λ1, 1− λ1]T , PZ = [λ2, 1− λ2]T , λ1, λ2 ∈ [0 : 1]. Then, we have

PY = W (Y |X)PX =

[
1

4
+

1

12
λ1,

3

4
− 1

12
λ1

]T
,

QY = V (Y |Z)PZ =

[
2

3
− 4

15
λ2,

1

3
+

4

15
λ2

]T
.

Define λ0 = 1
4

+ 1
12
λ1, then

D(PY ||QY ) = λ0 log
λ0

2
3
− 4

15
λ2

+ (1− λ0) log
1− λ0

1
3

+ 4
15
λ2

.

Following simple calculations, we have

∂D(PY ||QY )

∂λ2

=
4

15(2
3
− 4

15
λ2)
(

1
3

+ 4
15
λ2

)
ln 2

(
4

15
λ2 + λ0 −

2

3

)
.

Since λ0 ∈ [1
4

: 1
3
], we have

∂D(PY ||QY )

∂λ2

< 0, ∀λ0 ∈
[

1

4
:

1

3

]
, λ2 ∈ [0 : 1].

Thus, for any given PY , D(PY ||QY ) is a decreasing function of λ2. Hence,

λ∗2 = arg min
λ2

D(PY ||QY ) = 1, ∀λ0 ∈
[

1

4
:

1

3

]
,

which is equivalent to

Q∗Y = arg min
QY

D(PY ||QY ) =

[
2

5
,
3

5

]T
, ∀PX ∈ PX . (4.31)

Hence,

f(PX) + I(X;Y ) = D(PY ||Q∗Y ) + I(X;Y )
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=
∑
y

PY log
PY
Q∗Y

+H(Y )−H(Y |X)

=
∑
y

PY log
PY
Q∗Y
−
∑
y

PY logPY −
∑
i∈X

PX(i)H(Y |i)

=
∑
y

PY log
1

Q∗Y
−
∑
i∈X

PX(i)H(Y |i).

As H(Y |X = i) are constants for either i = 1 or i = 2 and PY is an affine function of PX ,

from the equation above, we have that f(PX) + I(X;Y ) is linear (and hence convex) in PX .

Hence, for this example, we can conclude that

max
PX∈PR

min
PZ

D(PY ||QY ) = min
PZ

max
PX∈PR

D(PY ||QY ),

and hence the authentication exponent is fully characterized.

4.5 Authenticated (Secrecy) Capacity

In this section, we focus on characterizing the authenticated capacity C∗ and the authenti-

cated secrecy capacity C∗S , defined in Section 4.2.2.

4.5.1 Simulatability Condition and Authenticated (Secrecy) Capacity

We first introduce a concept named simulatability condition that plays an important role in

our study. Simulatability condition was first defined under the source model in [63] for the

study of key generation under unauthenticated public channel problems. Here, we extend

the definition to the channel model. We note that [30] also introduced a similar concept for

the channel model. We will show that our definition will lead to the definition given in [30].

Definition 4.2. For given channels W (Y |X) (the channel connecting Alice and Bob) and

V (Y |Z) (the channel connecting Eve and Bob), if for each PX ∈ PX , there exists some

85



X̃ YṼ (Z|X̃) Z V (Y |Z)

W (Y |X)X Y

Figure 4.2: Construct a virtual channel X̃ → Y that has the same statistics as X → Y .

PZ ∈ PZ such that

∑
j∈Z

V (Y |j) · PZ(j) =
∑
i∈X

W (Y |i) · PX(i), (4.32)

then, we say that the (channel) simulatability condition holds.

Remark 4.9. Simulatability condition here means that no matter what PX Alice uses, Eve

can always find a PZ , such that the received sequences Y n at Bob from both channels have

the same distribution.

We have the following lemmas regarding simulatability condition.

Lemma 4.10. Given channels W (Y |X) and V (Y |Z), if simulatability condition holds, then

Eve can construct a virtual channel Ṽ (Z|X̃), such that

V (Y |Z)Ṽ (Z|X̃) = W (Y |X). (4.33)

Proof. The proof is given in Appendix B.8.

As shown in Fig.4.2, Lemma 4.10 means that if simulatability condition holds, by con-

catenating Ṽ (Z|X̃) to V (Y |Z), Eve can construct a channel from X̃ to Y that has the same

statistics as the legitimate channel from X to Y . The definition of simulatability condition

in [30] has the same interpretation as shown in Fig.4.2.

Using Lemma 4.10, we can greatly simplify simulatability condition as shown in the

following lemma.
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Lemma 4.11. Given W (Y |X) and V (Y |Z), simulatability condition holds if and only if

∀i ∈ X , ∃PZ,i ∈ PZ , s.t.

V (Y |Z)PZ,i = W (Y |i). (4.34)

Proof. The proof is given in Appendix B.8.

This lemma plays a key role in the proof of our main result on the authenticated capacity.

It also facilitates us in the design of efficient algorithms for checking whether simulatability

condition holds or not for any given W (Y |X) and V (Y |Z). The design of efficient algo-

rithms will be discussed in Section 4.5.2.

Now, we state our result on C∗ as follows.

Theorem 4.12. Under the channel model when Eve is active, if the simulatability condition

holds, C∗ = 0; Otherwise, C∗ = C.

Suppose P ?
X = arg max

PX

I(X;Y ) (the corresponding PY , P ?
Y ), then C = I(X?;Y ).

If simulatability condition does not hold and min
PZ

D(P ?
Y ||QY ) > 0, the result C∗ = C =

I(X?;Y ) is obvious, as we can fix PX = P ?
X and use the same scheme as that in the

achievability in Section 4.4.2. Using this scheme, the successful attack probability is up-

per bounded as

βn(Zn
0 ) ≤ 2

−n(min
PZ

D(P ?
Y ||QY )−ε)

≤ ε.

However, If simulatability condition doesn’t hold but min
PZ

D(P ?
Y ||QY ) = 0, the above scheme

does not work. In the following, we present a scheme such that, as long as simulatability con-

dition doesn’t hold, we can guarantee that Alice can reliably transmit a message to Bob at a

rate larger than C − ε, meanwhile Bob can detect the attack by Eve with a probability larger

than 1− σ.
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Proof of Theorem 4.12. The case when simulatability condition holds is trivial: As shown

in Lemma 4.10, if simulatability condition holds, Eve can concatenate a virtual channel

Ṽ (Z|X̃) to the channel V (Y |Z) such that the concatenated channel from X̃ to Y has the

same statistics as the legitimate channel fromX to Y . Now, for any legitimate users’ strategy

φ, ψ, ϕ that satisfy (4.7), Eve can always generate the same codebook as Alice’s codebook.

When Eve conducts an impersonation attack, she only needs to randomly pick a codeword

from the codebook and sends it through the concatenated channel from X̃ to Y . Since this

concatenated channel has the same statistics as that of the channel from X to Y , the success-

ful attack probability equals the probability of that a message sent by Alice is accepted by

Bob. As the latter probability is larger than 1−ε due to (4.7), the successful attack probability

will be larger than 1− ε. Thus, we have

C∗ = 0.

For the case when simulatability condition does not hold, we show that there exists a

scheme such that Alice can reliably transmit the message to Bob at a rate larger than C − ε

when Eve does not attack, meanwhile Bob can detect the attack by Eve with a probability

larger than 1− σ.

According to Lemma 4.11, if simulatability condition doesn’t hold, then there exists

i∗ ∈ X s.t.

V (Y |Z)PZ 6= W (Y |i∗), ∀PZ ∈ PZ . (4.35)

To show that C∗ = C, it suffices to show that for any PX ∈ PX , R = I(X;Y ) − ε is

achievable.

Codebook generation: Fix PX , i.i.d generate 2nRm sequences Xn according to the PMF

PX with Rm = I(X;Y )− ε0. We then construct a sequence i∗
√
n, that is to repeat i∗ for

√
n

times and append i∗
√
n to each generated Xn. We denote the new n +

√
n length sequence
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Codeword: Xn i∗, · · · , i∗

n
√
n

Figure 4.3: Codeword X̂n+
√
n.

as X̂n+
√
n. As will be clear in the sequel, i∗

√
n will be used as an authenticator. We then set

the sequences X̂n+
√
n as the codewords, and each X̂n+

√
n is assigned to one message. We

use X̂n+
√
n(M) to denote the M -th codeword. Fig.4.3 illustrates the codeword X̂n+

√
n.

Encoding: If Alice needs to send a message M to Bob, she transmits X̂n+
√
n(M) into

the channel.

Authentication: Upon receiving a sequence Y n+
√
n, Bob first splits it into two parts:

Y n and Y
n+
√
n

n+1 . Then he declares the signal to be from Alice if Y n+
√
n

n+1 is PY,i∗-typical;

Otherwise, he declares it to be from Eve and rejects it.

Decoding: If Y n+
√
n is authenticated to be from Alice, Bob tries to find a unique se-

quence Xn(M̂) such that (Xn(M̂), Y n) are jointly typical, and decodes the signal to M̂ . If

there are more than one such sequence, he randomly picks one. If there is no such sequence,

he declares an error.

Error analysis: Since the acceptance region is A = Yn×T
√
n

ε (Y, i∗), and all Xn-jointly

typical sequence Y n is included in A , thus we can easily obtain

Pr{M̂ 6= M,H0|H0} ≤
ε

2
,

Pr{H1|H0} ≤
ε

2
.

Using the argument as in the proof of Theorem 7.7.1[16], we obtain that there exists at least

one codebook such that (4.7) is satisfied.

Probability of successful attack: As discussed in Section 4.3 and (4.20) in particular,

we only need to consider the impersonation attack. For this, we only need to focus on

Y
n+
√
n

n+1 . Since Y n+
√
n

n+1 is i.i.d generated according to PY,i∗ = W (Y |i∗) when there is no

attack, according to the achievability proof of Theorem 4.4, i.e. (B.12) to be precise, we
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have

PI ≤ 2−
√
n(D(PY,i∗ ||QY,i∗ )−ε0) ≤ σ,

when n is sufficiently large.

Rate Per Channel Use:

R =
nRm

n+
√
n

=
n

n+
√
n

(I(X;Y )− ε0)

= I(X;Y )−
√
n

n+
√
n
I(X;Y )− n

n+
√
n
ε0

≥ I(X;Y )− ε,

when n is large enough.

Using the same idea of appending an
√
n length sequence as the authentication sequence,

we can easily obtain the following result regarding the authenticated secrecy capacity.

Corollary 4.13. Under the channel model when Eve is active, if simulatability condition

holds, C∗S = 0; Otherwise, C∗S = CS .

Proof. The proof follows similar steps as that of Theorem 4.12 and is omitted for brevity.

Note that the role of simulatability condition in our setup is similar as that of symmetriz-

ability condition for an arbitrarily varying channel (AVC) as defined in [18]. For an AVC,

the state of the channel can be viewed as being controlled by an adversary. If the AVC is

symmetrizable, there exists a state sequence which the adversary can use, such that the de-

coder cannot distinguish the true codeword from a false codeword no matter what scheme

is applied. On the other hand, if the AVC is not symmetrizable, there exists a scheme such

that no matter what state the channel is, the decoder can correctly decode the codeword of

positive rate with high probability. In this respect, simulatability condition is weaker than

symmetrizability condition since the simulatability condition only involves in two separate
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channels and the channel from the encoder to the decoder remains the same while for the

AVC, the channel statistics from the encoder to the decoder is determined by the state se-

quence and it can be arbitrarily changed.

4.5.2 Algorithm

As shown above, simulatability condition plays an important role in our analysis. Hence,

it is crucial to design efficient algorithms to check whether simulatability condition holds

or not for any given W (Y |X) and V (Y |Z). From Lemma 4.11, we know that to check

simulatability condition, we only need to check, for each i ∈ X , whether there exists some

PZ,i ∈ PZ such that (4.34) holds.

It is easy to see that if there exists a PZ,i ∈ PZ such that (4.34) holds, then the optimal

value of the following optimization problem will be 0:

min
PZ,i

||V (Y |Z)PZ,i −W (Y |i)||1 (4.36)

s.t. PZ,i � 0,∑
j∈Z

PZ,i(j) = 1,

in which || · ||1 is the `1 norm. At the same time, if the optimal value obtained from the

optimization problem (4.36) is 0, the corresponding optimizer will satisfy (4.34). Hence, we

conclude that (4.34) holds if and only if the optimal value obtained from (4.36) is 0. It is easy

to check that (4.36) is a convex optimization problem, and hence can be solved efficiently.

In fact, following similar steps as discussed in Chapter 3, the optimization problem (4.36)

can be further simplified to be a linear programming problem.

Finally, using Lemma 4.11, we know that we only need to solve |X | convex optimization

problems as (4.36) to check the simulatability condition (4.32).
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4.5.3 Channel Uncertainty

It is important to note that, although our model involves Eve’s channelsU(F |X) and V (Y |Z),

most of our schemes (with one exception to be discussed below) in both Section 4.4 and Sec-

tion 4.5 are universal with respect to Eve’s channels, in the sense that our schemes do not

rely on the information on Eve’s channels. However, in order to check simulatability condi-

tion, we need to know the exact channel state information of V (Y |Z), which is impractical.

Nonetheless, we show that simulatability condition here is not sensitive to modeling uncer-

tainties, that is V (Y |Z) does not need to be known perfectly.

Assume W (Y |X) is perfectly known but V (Y |Z) is known only to a certain precision.

In particular, let the true channel between Eve and Bob to be V̂ (Y |Z), but the legitimate

users know only an estimate V (Y |Z). Denote ∆V (Y |Z) = V̂ (Y |Z)− V (Y |Z), we assume

|∆V (Y |Z)| is bounded. In particular, we assume

|∆V (j|k)| ≤ δ, ∀j ∈ [1 : |Y|], k ∈ [1 : |Z|].

We clearly have

|Y|∑
j=1

∆V (j|k) = 0, ∀k ∈ [1 : |Z|].

Suppose that based on V (Y |Z), Alice and Bob determine that W (Y |X) is not simulat-

able, i.e., there exists a i∗ such that W (Y |i∗) satisfies

V (Y |Z)PZ 6= W (Y |i∗), ∀PZ ∈ PZ . (4.37)

As discussed in the proof of Theorem 4.12, Alice and Bob will use i∗ to design the authenti-

cator. This is the only part of our scheme that depends on Eve’s channel. Let

ρ = min
PZ,i∗
||V (Y |Z)PZ,i∗ −W (Y |i∗)||1
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s.t. PZ,i∗ � 0,
∑
j∈Z

PZ,i∗(j) = 1. (4.38)

From (4.37), we know ρ > 0.

We have the following result.

Lemma 4.14. Suppose Eve can’t simulate W (Y |i∗) with regards to V (Y |Z), then ∀δ < ρ
|Y| ,

Eve cannot simulate W (Y |i∗) using V̂ (Y |Z) neither.

Proof. The proof is shown in Appendix B.8.

This result means that, although Alice and Bob only have an estimate of Eve’s channel

V (Y |Z), the authenticator i∗,
√
n designed based on the estimated channel still works for the

true channel V̂ (Y |Z) as long as the difference between these two channels measured by δ is

less than ρ/|Y|. Hence, our scheme is robust to the uncertainty in Eve’s channel.

Here, we provide an example to illustrate this result.

Example 2: Let

V (Y |Z) =

 1/2 1/2

1/2 1/2

 ,W (Y |i∗) =

 2/3

1/3

 .
Then, we have

ρ , min
PZ,i∗
||V (Y |Z)PZ,i∗ −W (Y |i∗)||1 = min

PZ,i∗

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


1
2
− 2

3

1
2
− 1

3


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
1

= 1/3.

Now if

δ <
ρ

|Y|
=

1

2
ρ =

1

6
, (4.39)
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set V̂ (Y |Z) =

 1/2 + δ1 1/2 + δ2

1/2− δ1 1/2− δ2

, |δ1| ≤ δ, |δ2| ≤ δ and PZ,i∗ =

 λ1

1− λ1

, then

we have

V̂ PZ,i∗ =

 1/2 + δ1λ1 + δ2(1− λ1)

1/2− δ1λ1 − δ2(1− λ1)

 .
Since the first entry 1/2 + δ1λ1 + δ2(1− λ1) < 1/2 + 1/6λ1 + 1/6(1− λ1) = 2/3, we can

conclude

V̂ PZ,i∗ 6= W (Y |i∗), ∀PZ,i∗ ∈ PZ .

Hence, Eve can’t simulate W (Y |i∗) for any perturbed channel V̂ (Y |Z) with constraint

(4.39).

4.6 Concluding Remarks

In this chapter, we have considered the problem of message authentication without any pre-

shared key, in the presence of an active adversary over noisy channels. We have characterized

the authentication exponent for the zero-rate case and provided both an upper bound and a

lower bound on the exponent for the nonzero-rate case. We have shown an “all or nothing”

result for the authenticated channel capacity, depending on a so called simulatability condi-

tion. We have further provided efficient algorithms to check simulatability condition. We

have also shown that our schemes are robust to modeling uncertainties about Eve’s channels.
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Chapter 5

Secrecy and Privacy Issues in Function

Computation

In this chapter, the problem of function computation with privacy constraints is considered.

The considered model consists of three legitimate nodes (i.e., two transmitters Alice and

Bob, and a fusion center which acts as the receiver), who observes correlated sources and

connected by noiseless public channels, and an eavesdropper Eve, who has full access to

the public channels and also has its own source observations. The fusion center would like

to compute a function of the distributed sources to within a prefixed distortion level under

a certain distortion metric. To facilitate the function computing, Alice and Bob will send

messages to the fusion center. Different from the existing setups in function computing, we

assume that there are privacy constraints on the sources at Alice and Bob. In particular, these

terminals would like to enable the fusion center to compute the function but at same time do

not want the fusion center to learn too much information about the source observations.

We introduce a quantity to precisely measure the privacy information leakage to the fusion

center. In addition to this privacy constraint, we also have secrecy constraint to Eve and use

equivocation of sources to measure this. Under this model, we study the relationship among

message rates, private information leakage, equivocation and distortion. We first consider
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the scenario involving only one transmitter, i.e., the source at Bob is empty, and fully single-

letter characterize the corresponding regions. Then, we consider the more general case and

provide both outer bounds and inner bounds on the corresponding regions.

5.1 Motivation

In this chapter, we consider privacy and secrecy issues arising in the function computing

setup. In the considered model, two terminals, Alice and Bob, are connected to a fusion

center, and they observe correlated source sequences Xn
1 , X

n
2 , Y

n respectively. The fusion

center would like to compute a function ofXn
1 , X

n
2 , Y

n. To facilitate the function computing,

Alice and Bob will send messages M1 and M2 respectively to the fusion center. Different

from the setups in [52–54, 70], we assume that there are privacy constraints on the sources

at Alice and Bob. In particular, these terminals would like to enable the fusion center to

compute the function but at same time do not want the fusion center to learn too much

information about the source observations. We use I(Xn
1 , X

n
2 ;M1,M2|Y n) as our privacy

measure. As this quantity is the same as H(Xn
1 , X

n
2 |Y n)−H(Xn

1 , X
n
2 |M1,M2, Y

n), hence

this quantity measures additional information about the sources (Xn
1 , X

n
2 ) that the fusion

center learns from the transmitted messages. In addition to this privacy constraint, we also

have secrecy constraint. In particular, there is an additional terminal Eve who observes Zn,

which is correlated with the source sequences, and the messages transmitted by Alice and

Bob. We use equivocation of sources to measure the secrecy leakage to Eve.

For the function to be computed, we consider both lossless and lossy cases. In the lossless

case, the fusion center is required to compute the function with a diminishingly small error

probability. In the lossy case, we allow distortion in the computed function to within a certain

distortion level measured by a given distortion metric. We would like to note that the lossless

case in our model is not merely a special case of the lossy case when the distortion is zero.

It will be clear in the sequel, the lossless case in our model has a more stringent constraint
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than setting distortion as zero in the lossy case. Thus, it deserves an independent study. We

study the relationship of message rates, the private information leakage at the fusion center,

the equivocation at Eve and the distortion.

To gain design insights, we first study an important special case where there is only one

transmitter (by setting X2 = ∅). This case recovers the basic the function computation prob-

lem [70] but with additional privacy and secrecy considerations. We fully characterize the

regions of the involved parameters for both the lossless and lossy function computing cases.

The results demonstrate that there exist tradeoffs among these parameters. For example,

given the distortion level, the message rate and privacy leakage can be simultaneously op-

timized but the secrecy level of sources at Eve may not be simultaneously maximized. In

addition, we show that, even though the lossless case has a more stringent constraint than that

of lossy case with distortion being zero, the obtained result for the lossless case is equivalent

to that of the special case of the lossy case.

Using the understanding from the single transmitter case, we then extend the study to the

scenario with two transmitters. We first derive both an outer bound and an inner bound on the

corresponding region for the lossless case. These outer and inner bounds have same form but

with different range for the auxiliary random variables involved. The obtained results recover

many existing results [16, 78]. The obtained results show that there exist tradeoffs among

different parameters involved in the model. Furthermore, the techniques used in the lossless

case are generalized into the lossy case. We also provide both outer and inner bounds on the

corresponding region. Similar to the lossless case, the obtained outer and inner bounds have

the same form but with different range for auxiliary random variables involved.

We now briefly review recent interesting works addressing secrecy issues in function

computing, and discuss the difference between our work and these works. [97] considers

a multi-terminal source model for secure computation. Under this model, each of these

m terminals observes a component of correlated sources, and a subset of these terminals are

required to compute a function via public discussion. Based on the result in [20], it character-
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izes the secure computability of the function, i.e., when the computed value of the function is

secure from the adversary who has full access to the public discussion. The main difference

between this work and our work is that [97] focuses on the secrecy of the computed function

while we care about both the privacy of the sources at the fusion center and the secrecy at

Eve. Furthermore, [97] allows nodes to conduct multiple rounds of interactive communica-

tions, while in our model only one way discussion is allowed. The extension of our model

to the interesting scenario with multiple rounds of discussion is left for future work. The

secure function computation problem is further studied in [26, 27, 98, 99]. Another line of

related work is the class of secure multi-party computation (SMC) [7, 22, 51, 82] problems.

In the paradigm of SMC, researchers focus on creating protocols for communication parties

to jointly compute functions over distributed inputs while keeping the privacy of these in-

puts. Typically, these protocols involve in multiple rounds of discussion and they can work

among untrusted communication parties. Most importantly, the privacy of most protocols

mainly relies on the secrecy of the 1-out-n oblivious transfer schemes [24, 100], which is

computational secure instead of information theoretic secure. In other words, this privacy is

based on an assumption that the computational power in each party is finite. While in our

work, we only allow one-way discussion from the transmitters to the fusion center and do

not make any such assumption on the computational power of each terminal, thus the privacy

and secrecy in our work is information theoretically secure.

5.2 System Model

In this chapter, we consider a problem of function computing with privacy and secrecy con-

straints. As illustrated in Fig.5.1, two legitimate terminals, Alice and Bob, are connected to

the fusion center via two public noiseless channels in the presence of an eavesdropper Eve

who has full access to the public channels. Alice, Bob, the fusion center and Eve observe

n-length correlated source sequences Xn
1 , X

n
2 , Y

n and Zn respectively. These sequences are

98



Fusion
Center

Zn

M1

M2

Y n

Alice

Xn
1

Xn
2

Bob

f̂
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Figure 5.1: System model: the fusion center would like to compute a function f of
(Xn

1 , X
n
2 , Y

n). Alice and Bob are connected to the fusion center via public noiseless chan-
nels, which Eve has full access to.

generated according to a given PMF PX1X2Y Z :

Pr{Xn
1 , X

n
2 , Y

n, Zn} =
n∏
i=1

PX1X2Y Z(X1i, X2i, Yi, Zi), (5.1)

where (X1, X2, Y, Z) take values from finite alphabets (X1,X2,Y ,Z) respectively.

The fusion center would like to compute a function f(Xn
1 , X

n
2 , Y

n) that consists of

component-wise functions of {X1i, X2i, Yi}ni=1, thus f(Xn
1 , X

n
2 , Y

n) can be written as

f(Xn
1 , X

n
2 , Y

n) := {f(X1i, X2i, Yi)}ni=1.

f(Xn
1 , X

n
2 , Y

n) is denoted by f in short and f(X1i, X2i, Yi) is denoted by fi for all i ∈ [1 : n].

Thus, we rewrite f(Xn
1 , X

n
2 , Y

n) as f := fn. To facilitate the computation of f at the fusion

center, Alice and Bob will send messages M1 and M2 to the fusion center via the public

channels respectively. Here M1 is a function (could be stochastic) of the sequence Xn
1 .

Similarly M2 is a function (could be stochastic) of the sequence Xn
2 . After receiving these

messages, the fusion center computes an estimated value f̂ of f as a function of M1,M2 and

Y n:

f̂ := f̂(M1,M2, Y
n).

In the considered model, Alice and Bob have privacy constraints in the sense that they

would like minimize privacy leakage to the fusion center and Eve about their observa-
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tions while still enabling the fusion center to compute the function of interest. We use

I(Xn
1 , X

n
2 ;M1,M2|Y n) to measure additional private information leakage about (Xn

1 , X
n
2 )

to the fusion center. As I(Xn
1 , X

n
2 ;M1,M2|Y n) = H(Xn

1 , X
n
2 |Y n)−H(Xn

1 , X
n
2 |M1,M2, Y

n),

this quantity measures additional information about (Xn
1 , X

n
2 ) that the fusion center learns

from (M1,M2), and hence is the privacy price we pay in order to compute f . We use

H(Xn
1 , X

n
2 |M1,M2, Z

n) to measure the equivocation of (Xn
1 , X

n
2 ) at Eve.

Definition 5.1. Given arbitrary random variable alphabet F and its reconstruction alphabet

F̂ , the distortion measure is a mapping

d : F × F̂ → [0,∞),

and the distortion between given sequences fn and f̂n is measured as

d(fn, f̂n) =
n∑
i=1

d(fi, f̂i).

Definition 5.2. Given a per-letter distortion measure mapping d, a tuple (R1, R2, D,∆1,∆2)

is said to be achievable if ∀ε > 0, there exists an n(ε) ∈ IN and a sequence of (n,R1, R2, D,

∆1,∆2) codes such that

1

n
E[d(f , f̂)] ≤ D + ε, (5.2)

1

n
H(Mi) ≤ Ri + ε, i = 1, 2, (5.3)

1

n
I(Xn

1 , X
n
2 ;M1,M2|Y n) ≤ ∆1 + ε, (5.4)

1

n
H(Xn

1 , X
n
2 |M1,M2, Z

n) ≥ ∆2 − ε, (5.5)

∀n > n(ε).

Note that the expectation in (5.2) is calculated over all Xn
1 ×Xn

2 ×Y n ∈ X n
1 ×X n

2 ×Yn,

and (5.2) requires that the average distortion between the estimated value f̂ and the true value
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f is less than a given positive parameter D, (5.3) measures the transmitted message rates at

Alice and Bob respectively, (5.4) implies that the extra private leakage of (Xn
1 , X

n
2 ) at the

fusion center is less than ∆1, and (5.5) measures the joint equivocation of (Xn
1 , X2) at Eve’s

side.

In Definition 5.2, in the case when D = 0, we replace (5.2) with the following condition:

Pr{f 6= f̂} ≤ ε, (5.6)

while keeping the equations (5.3)-(5.5) unchanged. For this case, we rewrite the tuple

(n,R1, R2, D = 0,∆1,∆2) as (n,R1, R2,∆1,∆2) in short. Obviously, the constraint de-

fined by (5.6) is stricter than that defined by (5.2). We refer the case when D = 0 with

constraints defined by (5.3)-(5.6) as lossless function computing, and the case with con-

straints defined by (5.2)-(5.5) as lossy function computing. The lossless function computing

case can be viewed as a special case of the lossy function computing case, but with a stricter

constraint, thus it deserves an independent investigation.

Definition 5.3. The set of all achievable tuple (R1, R2, D,∆1,∆2) is defined as:

S := {(R1, R2, D,∆1,∆2) ∈ IR5
+ : (R1, R2, D,∆1,∆2) is achievable }.

The goal in this chapter is to single-letter characterize the region S.

5.3 A Special Case with X2 = ∅

In this section, we study a special case when X2 = ∅. In this case, for the convenience of

presentation, we denote X1 by X , and M1 by M . The model is shown in Fig.5.2.
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Figure 5.2: The case with X2 = ∅: the fusion center would like to compute a value as
a function of sequences Xn and Y n. Alice is connected to the fusion center via a public
noiseless channel, which Eve has full access to.

5.3.1 Lossless Function Computing

In this part, we study the lossless function computing problem. As mentioned in Section

5.2, the lossless function computing case has a stricter constraint compared with the normal

special case when D = 0 in the lossy function computing.

Before proceeding to the main results, we introduce the following definition, which is

similar as that introduced in [70], that will simplify the presentation of the theorems in the

sequel.

Definition 5.4. A random variable U is said to be admissible with respect to random vari-

ables X, Y and function f (we may write U is admissible in short), if it satisfies

(1) U → X → Y ;

(2) U and Y determine f , i.e., H(f |U, Y ) = 0.

Furthermore, a sequence Un is said to be an admissible sequence if each component of Un

is admissible.

Here, condition 1) denotes that random variables U,X and Y form a Markov chain in this

order. Condition 2) is equivalent to the condition that there exists a deterministic function g

such that g(U, Y ) = f(X, Y ),∀(X, Y ) with PXY (X, Y ) > 0, according to [16, Chapter 2].

To facilitate understanding, we first assume that Eve has no side information, i.e., Z = ∅,

and we have the following result.
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Theorem 5.1. The achievable tuple set S in the case when Eve has no side information is

given by

S =
{

(R,∆1,∆2) : R ≥ I(X;U)− I(Y ;U), (5.7)

∆1 ≥ I(X;U |Y ), (5.8)

and ∆2 ≤ H(X|U) + I(Y ;U), (5.9)

for someadmissible U w.r.t.X, Y and f.
}
. (5.10)

Proof. Please see Appendix C.1.

Intuitively, to reduce the additional information leakage to the fusion center and to in-

crease the equivocation at Eve, Alice should reduce the information of Xn contained in the

public message M . She first chooses an appropriate sequence Un, and encodes it into a

codeword containing the least information of Xn under the conditions that the fusion center

can decode Un correctly and Un together with Y n can determine fn. We will show that

stochastic encoding does not help in increasing the equivocation at Eve or reducing the pri-

vacy information leakage to the fusion center. Thus, deterministic encoding is sufficient.

Detailed proof is provided in Appendix C.

Obviously, the set of all possible random variables U is not empty: X belongs to this set.

In addition, we can see, from Theorem 5.1, that there is no tradeoff between (R,∆1,∆2) in

this case. In particular, when R achieves it optimal value denoted by R∗, the values of ∆1

and ∆2 can be R∗ and H(X)−R∗ respectively, which are the corresponding optimal values.

In other words, there exists a U that achieves lower bounds on R and ∆1, and the upper

bound for ∆2, simultaneously. Set

U∗ = arg min
U is admissible

I(X;U)− I(Y ;U),
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then the set S in Theorem 5.1 can be rewritten as

S =
{

(R,∆1,∆2) : R ≥ I(X;U∗)− I(Y ;U∗),

∆1 ≥ I(X;U∗|Y ),

and ∆2 ≤ H(X|U∗) + I(Y ;U∗).

However, as shown in the sequel, the situation is different in the case when Z 6= ∅.

In addition, given PMF PXY and function f(X, Y ), the range of U can be written in

an alternative manner by introducing conditional characteristic graph as shown [70]. [70]

focuses on characterizing the least message rate and does not take ∆1 and ∆2 into consider-

ation. As a special case when we only care about R, the result in Theorem 5.1 is consistent

with the result obtained in [70].

For the case when Eve has side information, i.e., Z 6= ∅, Eve can use both Zn and the

public discussion to infer the sequence Xn, thus, the equivocation of Xn at Eve reduces. We

have the following result in this case.

Theorem 5.2. The achievable tuple set S for the case when Eve has side information is given

by

S =
{

(R,∆1,∆2) : R ≥ I(X;U)− I(Y ;U), (5.11)

∆1 ≥ I(X;U |Y ) (5.12)

∆2 ≤ H(X|U,Z) + [I(Y ;U |V )− I(Z;U |V )]+ , (5.13)

for some admissible U and a r.v. V with

V → U → X → (Y, Z).
}

(5.14)

Proof. Please see Appendix C.2.

The existence of side-information Zn provides more information to Eve aboutXn. Thus,

it is necessary to introduce an additional random variable V that serves as stochastic encoding
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to confuse Eve. Compared with the result in Theorem 5.1, there exists a tradeoff among

the tuple (R,∆1,∆2): in general, there does not exist an optimal solution (U∗, V ∗) that

minimizes R and ∆1, and maximizes ∆2 simultaneously.

The result in Theorem 5.2 can be further simplified if the source random variables satisfy

the Markov chain relationship X → Y → Z.

Corollary 5.3. If X → Y → Z holds, the achievable tuple set S is given by

S =
{

(R,∆1,∆2) : R ≥ I(X;U)− I(Y ;U), (5.15)

∆1 ≥ I(X;U |Y ), (5.16)

∆2 ≤ H(X|U,Z) + I(Y ;U)− I(Z;U), (5.17)

for some admissible U.
}

Proof. For the convenience of notation, we rename the region stated in Theorem 5.2 as Ŝ

and the region in the corollary as S̃, under the condition that X → Y → Z holds. On the

one hand, that S̃ ⊆ Ŝ is trivial since we can set V = ∅ to obtain S̃ from Ŝ.

On the other hand, we show that Ŝ ⊆ S̃. It suffices to show thatH(X|U,Z)+[I(Y ;U |V )

−I(Z;U |V )]+ ≤ H(X|U,Z) + I(Y ;U)− I(Z;U), which is equivalent to

I(Y ;U |V )− I(Z;U |V ) ≤ I(Y ;U)− I(Z;U)

⇔ I(Y ;V ) ≥ I(Z;V ).

And that I(Y ;V ) ≥ I(Z;V ) is true due to the Markov chain V → U → X → Y → Z.

Hence, we have Ŝ = S̃, and this completes the proof.

5.3.2 Lossy Function Computing

In this section, we focus on the lossy function computing case, i.e., the case with D > 0. In

this case, the fusion center is not required to recover the value of function f exactly, it only
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needs to compute f to within a prefixed allowed distortion level for a given distortion metric.

This relaxed requirement allows us to reduce the message rate and privacy leakage.

Given a distortion measure mapping d on the alphabets of f and its reconstruction, we

have the following result.

Theorem 5.4. Given distortion measure mapping d, the achievable tuple set S for the coding

of lossy function computation is given by

S =
{

(R,D,∆1,∆2) : R ≥ I(X;U)− I(Y ;U), (5.18)

D ≥ E[d(f(X, Y ), g(U, Y ))], (5.19)

∆1 ≥ I(X;U |Y ), (5.20)

∆2 ≤ H(X|U,Z) + [I(Y ;U |V )− I(Z;U |V )]+ , (5.21)

for some function g and r.v. U, V with

V → U → X → (Y, Z).
}

(5.22)

Proof. Please see Appendix C.3.

Although there is a function g in the description of the region, the form of g is implicitly

determined by the choice of U . In particular, for any PMF PXY ZUV and function f , we can

always find an optimal function g∗ as follows:

g∗(U, Y ) = arg min
g
E[d(f(X, Y ), g(U, Y ))].

Consider the case with hamming distance as an example. Here, we take the function f as a

variable (denoted by F ) and its value as to realization (denoted by f ).

E[d(F, g(U, Y ))] =
∑
f,u,y

PFUY (f, u, y)d(f, g(u, y))

≥ 1−
∑
u,y

PFUY (f̂ , u, y),
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where f̂ := arg max
f

PF |UY (f |u, y). Thus, ∀(u, y) ∈ U × Y , we can obtain the optimal

function g as

g∗(u, y) := arg max
f

PF |UY (f |u, y). (5.23)

When PXY ZUV and function f are given, the PMF PFUY is given and it is straightforward to

find the solution to (5.23).

Note that, unlike the lossless case, the random variable U here is not required to be

admissible w.r.t (X, Y ) and f anymore. As shown in [70] that in the lossless case, there are

many scenarios where the fusion center needs to decode Xn exactly so that it can compute

f . However, when a certain amount of distortion is allowed, there always exists random

variable U other than X , such that the decoder only needs to decode the sequence Un. This

sequence serves as distortion mapping of Xn, which helps in increasing the equivocation of

Xn at Eve and reducing privacy leakage to the fusion center.

Comparing the results in Theorems 5.2 and 5.4, we observe that the region given in

Theorem 5.4, when D = 0, is the same as that in Theorem 5.2, even though the requirement

in the lossless function computing case is stricter than that in the lossy case, i.e., (5.6) is

stricter than setting D = 0 to (5.2). In addition, similar to Corollary 5.3, we have the

following Corollary when X → Y → Z holds in the lossy function computing case.

Corollary 5.5. If X → Y → Z holds, the achievable tuple set S in the lossy function

computing case is given by

S =
{

(R,D,∆1,∆2) : R ≥ I(X;U)− I(Y ;U), (5.24)

D ≥ E[d(f(X, Y ), g(U, Y ))], (5.25)

∆1 ≥ I(X;U |Y ), (5.26)

∆2 ≤ H(X|U,Z) + I(Y ;U)− I(Z;U), (5.27)

for some function g and r.v. U with U → X → Y → Z).
}

(5.28)
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The proof follows similar steps as that in the derivative of Corollary 5.3, thus is omitted

here.

5.4 The Case when X2 6= ∅

In this section, we study the case when X2 6= ∅. Despite being much more complicated than

the case when X2 = ∅, the techniques developed in the previous section can be generalized

to this case.

We first consider the lossless function computing case, for which we have both inner and

outer bounds on the region of achievable tuples as follows.

Theorem 5.6. (Converse) For lossless function computing at the fusion center, if the tu-

ple (R1, R2,∆1,∆2) is achievable, then there exist auxiliary random variables (U1, V1) and

(U2, V2), for which V1 → U1 → X1 → (X2, Y, Z) and V2 → U2 → X2 → (X1, Y, Z) form

Markov chains in the indicated orders, and

R1≥I(V1;X1|Y, V2)+I(U1;X1|Y, U2, V1)−I(V1;V2|Y,X1)−I(U1;U2|X1, Y, V1), (5.29)

R2≥I(V2;X2|Y, V1)+I(U2;X2|Y, U1, V2)−I(V1;V2|Y,X2)−I(U1;U2|X2, Y, V2), (5.30)

R1+R2≥I(V1;X1|Y )+I(V2;X2|Y,V1)+I(U1;X1|Y, V1, V2)+I(U2;X2|Y, U1, V2), (5.31)

∆1≥I(X1, X2;U1, U2|Y ), (5.32)

∆2≤H(X1, X2|U1, U2, Z)+
[
I(U1, U2;Y |V1, V2)− I(U1, U2;Z|V1, V2)

]+
, (5.33)

H(f |U1, U2, Y ) = 0. (5.34)

(Achievability) Furthermore, for random variables (U1, V1) and (U2, V2) satisfying

PU1V1U2V2X1X2Y Z = PX1X2Y ZPU1|X1PV1|U1PU2|X2PV2|U2

and H(f |U1, U2, Y ) = 0, then the tuple (R1, R2,∆1,∆2) subject to (5.29)-(5.33) is achiev-
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able.

Proof. Please see Appendix C.4.

In general, the converse and achievable bounds do not match because the region of U1, V1

and U2, V2 defined by V1 → U1 → X1 → (X2, Y, Z) and V2 → U2 → X2 → (X1, Y, Z) in

the converse bound is larger than that defined by

PU1V1U2V2X1X2Y Z = PX1X2Y ZPU1|X1PV1|U1PU2|X2PV2|U2

in the achievability bound.

Note that, the minus terms on the right-hand sides of (5.29) and (5.30) are zeros if

PU1V1U2V2X1X2Y Z = PX1X2Y ZPU1|X1PV1|U1PU2|X2PV2|U2 , since we have

(V1, U1)→ X1 → (Y, U2, V2),

(V2, U2)→ X2 → (Y, U1, V1),

in this case. By setting V1 = V2 = ∅, we observe that the achievability result of the message

rate region defined by (5.29)-(5.31) and (5.34) recovers the inner bound obtained in [78,

Prop. 1]. In addition, it is consistent with a special case of the result obtained in [80, Theorem

2] when the rooted directed tree involves with only three nodes: one root and two children.

Given PU1V1U2V2X1X2Y Z , the main idea of our achievable scheme is that there exist auxil-

iary sequencesUn
1 , V

n
1 andUn

2 , V
n

2 such that f(Xn
1 , X

n
2 , Y

n) = f̂(Un
1 , U

n
2 , Y

n) if (R1, R2,∆1,

∆2) is achievable. Thus, the function f will be correctly computed at the fusion center as

long as it can correctly decodes (Un
1 , U

n
2 ), and (5.29)-(5.31) define the region of (R1, R2),

such that (Un
1 , U

n
2 ) can be correctly decoded with some scheme. And sequences V n

1 , V n
2 are

used to increase the equivocation of (Xn
1 , X

n
2 ) at Eve.

Under certain scenarios where we need to correctly decode Xn
1 and Xn

2 , i.e., f is a

invertible function with respect to X1 and X2: U1 = X1, U2 = X2 [78], and when we
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only care about the region of (R1, R2), we have the following corollary.

Corollary 5.7. Given PX1X2Y , sequences (Xn
1 , X

n
2 ) can be correctly decoded, if and only if

R1 ≥ H(X1|Y )− I(X1;X2|Y )

R2 ≥ H(X2|Y )− I(X1;X2|Y )

R1 +R2 ≥ H(X1|Y ) +H(X2|Y )− I(X1;X2|Y ).

Corollary 5.7 recovers the result in [78, Rate Region - Invertible Function]. In addition,

it recovers the distributed source coding problem when Y = ∅ as well, and the result is

consistent with the Slepian-Wolf coding theorem [16, Chap. 15].

For the lossy function computing case with a given distortion metric d, we have the

following result regarding the tradeoffs between message rates, information leakage, equiv-

ocation and distortion.

Theorem 5.8. (Achievability) Given a distortion mapping d, the tuple (R1, R2, D,∆1,∆2)

is achievable if

R1≥I(V1;X1|Y, V2)+I(U1;X1|Y, U2, V1)−I(V1;V2|Y,X1)−I(U1;U2|X1, Y, V1), (5.35)

R2≥I(V2;X2|Y, V1)+I(U2;X2|Y, U1, V2)−I(V1;V2|Y,X2)−I(U1;U2|X2, Y, V2), (5.36)

R1+R2≥I(V1;X1|Y )+I(V2;X2|Y,V1)+I(U1;X1|Y,V1,V2)+I(U2;X2|Y,U1,V2), (5.37)

∆1 ≥ I(X1, X2;U1, U2|Y ), (5.38)

∆2≤H(X1, X2|U1, U2, Z)+
[
I(U1, U2;Y |V1, V2)− I(U1, U2;Z|V1, V2)

]+
, (5.39)

D ≥ E [d (f(X1, X2, Y ), g(U1, U2, Y ))] , (5.40)

for some function g and auxiliary random variablesU1, V1 andU2, V2 with PU1V1U2V2X1X2Y Z =

PX1X2Y Z PU1|X1PV1|U1PU2|X2PV2|U2 .

(Converse) If the tuple (R1, R2,∆1,∆2) is achievable, there exist some function g and

auxiliary random variables, U1, V1 and U2, V2, for which V1 → U1 → X1 → (X2, Y, Z)
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and V2 → U2 → X2 → (X1, Y, Z) form Markov chains in the indicated orders, such that

(5.35)-(5.40) hold.

Proof. Please see Appendix C.5.

Similar to the relationship between Theorems 5.2 and 5.4, Theorem 5.8 recovers Theo-

rem 5.6 when D = 0.

5.5 Concluding Remarks

In this chapter, we have considered the problem of function computation with distortion

under privacy constraints. We have first considered the special scenario where X2 = ∅,

and have characterized the corresponding region for both the lossless and the lossy function

computation cases. Then, we have generalized the obtained results into the more general

scenario and provided both outer bounds and inner bounds for the corresponding lossless

and lossy cases.
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Chapter 6

Conclusion and Extension

In this chapter, we summarize the contributions we have made in this dissertation and pro-

pose certain potential directions in the field of information theoretic security and privacy.

6.1 Summary of the Dissertation

The aim of this dissertation is to explore information theoretic approaches to solve several

open problems related to security and privacy issues in communication networks.

In the first part, we have designed efficient algorithms to check simulatability condition.

In particular, we have constructed a LP problem and showed that simulatability condition

holds if and only if the optimal value obtained from the constructed LP is zero, for any given

joint PMF. In addition, we have constructed another LP and showed that the minimizer of the

constructed LP is a valid attack strategy. Finally, we have further showed that simulatability

condition is not sensitive on the knowledge about Eve’s observations.

In Chapter 3, we have investigated the problem of simultaneously generating multiple

secret keys in joint source-channel models. In this problem, we have first studied a simplified

model in which Eve has no side information, and provided a full characterization on the

secret-key capacity region. Then, we generalized it into a more general model where Eve

has side information, and have single-letter characterized secret-key capacity region as well.
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The obtained results summarize many existing works in the field of key generation as special

cases.

In Chapter 4, we have discussed the problem of keyless authentication. Different from

most existing models on authentication, we assumed that the legitimate terminals have no

pre-shared key. Instead, we exploited the statistical properties of the physical channels to an-

alyze the authentication exponent and the authenticated channel capacity of the noisy channel

connecting the legitimate terminals. By interpreting the message authentication as a hypoth-

esis testing problem, we fully characterized the authentication exponent for the zero-rate

message case and provided both an upper bound and a lower bound on the exponent for the

non-zero message rate case. In the authenticated capacity problem, we studied the largest

data transmission rate under which the attacker’s optimal successful attack probability can

still be made arbitrarily small. In addition, we provided efficient algorithms to check sim-

ulatability condition related to the noisy channels and we showed that the obtained results

are robust to modeling uncertainties about the eavesdropper’s channels connecting to the

legitimate terminals.

Finally, we considered both secrecy and privacy issues in Chapter 5. We put both a

secrecy and a privacy constraints in the problem of function computation, and we character-

ized the rate region of those parameters including message rates, private information leakage,

equivocation of source and the computed function distortion. The obtained results showed

that there exists a trade-off among those parameters, which provides a guide for us to select

which criterion we hope to achieve.

6.2 Future Directions

The research presented in this dissertation can be extended in many interesting directions.

Here we point out some of them.

• Simultaneously generating multiple keys in a joint source-channel network with multi-
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ple recipients: the simultaneously generating multiple key problem studied in Chapter

3 can be extended into many interesting models. As we only considered one legiti-

mate recipient (i.e., Carol) at the output of the wiretap channel in Chapter 3, it can be

generalized by including multiple recipients. In this model, Alice and Bob would like

to share different keys with different recipients. For this model, we can first consider

a simple scenario with only two recipients. We can then further enhance the model

by allowing public discussion between these two recipients. Finally, we can study the

model with more than two recipients.

• Sufficient condition on keyless authentication exponent: as discussed in Chapter 4, it is

important to characterize the authentication exponent for the message authentication

problem over noisy channels, and we fully characterized the authentication exponent

for the zero-rate message case and provide both an upper bound and a lower bound on

the authentication exponent for the nonzero-rate case. We realize that it is difficult to

characterize the authentication exponent for the general case, but we clarify a condition

that if f(PX)+I(X;Y ) is convex in PX , as stated in Corollary 4.8, the provided lower

and upper bounds match. However, we did not provide an explicit statement on when it

is convex. As a continued research work, it is interesting to further study the statistical

properties of the channels W (Y |X) and V (Y |Z), and provide precise conditions on

W (Y |X) and V (Y |Z), under which f(PX) + I(X;Y ) is convex in PX .

• Secure function computation with secrecy and privacy constraints: as stated in Chapter

5, [97] considers the problem of secure function computation under a multi-terminal

source model. It characterizes the secure computability of the function, i.e., when the

computed value of the function is secure from the adversary who has full access to the

public discussion. Our work in Chapter 5 focuses on both the privacy of the sources

at the fusion center and the secrecy at Eve. However, to the best of our knowledge, no

work exists to simultaneously consider both the secrecy of the computed function and
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the privacy of sources. It would be interesting to take these issues into consideration

together.
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Appendix A

Chapter 3

A.1 Proof of Theorem 3.1

A.1.1 Converse

Here, we provide the converse proof of Theorem 3.1. Before going further, we first introduce

a lemma from [3], which will be used frequently in the following.

Lemma A.1 (Lemma 4.1 of [3]). For arbitrary RVs U, V and sequences of RVs Y n, Zn we

have

I(U ;Y n|V )− I(U ;Zn|V ) =
n∑
i=1

[
I(U ;Yi|Y i−1Zn

i+1, V )− I(U ;Zi|Y i−1Zn
i+1, V )

]
. (A.1)

Converse of Theorem 3.1. In this part, we will show that any achievable pair (R1, R2) must

be in the union defined by the right hand side of (3.9).

According to the setup, the following Markov relationships are true:

V N → UN → F→ (Y n, Zn), (A.2)

V N → UN → (F, K2)→ (Y n, Zn). (A.3)
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Let ε > 0 be arbitrary, we have

H(K1) = H(K1|Y n, V N) + I(K1;Y n, V N)

≤ I(K1;Y n, V N) + nε

= I(K1;Y n) + I(K1;V N |Y n) + nε

≤ I(K1; F) + I(K1;V N |Y n) + nε

≤
N∑
i=1

I(K1;Vi|Y n, V i−1) + 2nε

≤
N∑
i=1

I(K1, U
n
i+1, V

i−1, Y n;Vi) + 2nε

=
N∑
i=1

I(S1i;Vi) + 2nε

=
N∑
i=1

I(S1Q;VQ|Q = i) + 2nε

= N
N∑
i=1

1

N
I(S1Q;VQ|Q = i) + 2nε

= NI(S1Q;VQ|Q) + 2nε

= NI(S1Q, Q;VQ)−NI(Q;VQ) + 2nε

= NI(S1;V ) + 2nε, (A.4)

in which S1i , (K1, U
n
i+1, V

i−1, Y n), S1 , (S1Q, Q), andQ is an independent RV uniformly

distributed over [1 : N ].

Thus, we have

R1 ≤
1

β
I(S1;V ) + 2ε. (A.5)

Furthermore, S1 → U → V is true as

(U i−1, UN
i+1, V

i−1)→ Ui → Vi
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⇒ (UN , V i−1)→ Ui → Vi

⇒ (K1,F, U
N
i+1, V

i−1)→ Ui → Vi

(a)⇒ (K1, Y
n, UN

i+1, V
i−1)→ Ui → Vi

⇔ S1i → Ui → Vi, (A.6)

in which (a) is true as Y n can be seen as a function of (F, θ) (θ is some RV which is

independent with all variables in (A.6)).

Now, we prove (3.7). We have

H(K2) ≤ H(K2)− I(K2;Zn,F) + 2nε

(a)
= H(K2)− I(K2;Zn,F, V N) + 2nε

= H(K2|Y n,F, V N) + I(K2;Y n,F, V N)− I(K2;Zn,F, V N) + 2nε

≤ I(K2;Y n,F, V N)− I(K2;Zn,F, V N) + 3nε

= I(K2;Y n|F, V N)− I(K2;Zn|F, V N) + 3nε

=
n∑
i=1

[
I(K2;Yi|Y i−1, Zn

i+1,F, V
N)− I(K2;Zi|Y i−1, Zn

i+1,F, V
N)
]

+ 3nε

=
n∑
i=1

[I(S2i;Yi|T2i)− I(S2i;Zi|T2i)] + 3nε

=
n∑
i=1

[
I(S2J ;YJ |T2J , J = i)− I(S2J ;ZJ |T2J , J = i)

]
+ 3nε

= n [I(S2;Y |T2)− I(S2;Y |T2)] + 3nε. (A.7)

Here, S2i , (K2, V
N , Y i−1, Zn

i+1,F), T2i , (V N , Y i−1, Zn
i+1,F), S2 , (S2J , J), T2 ,

(T2J , J), and J is an independent RV uniformly distributed over [1 : n]. (a) is true due to

 V N → F→ K2

V N → (F, K2)→ Zn

⇒ V N → F→ (Zn, K2)
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⇒ V N → (F, Zn)→ K2

⇔ (V N , Zn,F)→ (F, Zn)→ K2. (A.8)

Hence, we have

R2 ≤ I(S2;Y |T2)− I(S2;Y |T2) + 3ε. (A.9)

Furthermore, we can easily show that T2 → S2 → X → (Y, Z).

Now, to prove (3.8), we first have

I(UN ;Y n)− I(V N ;Y n)

≤ I(F;Y n)− I(V N ;Y n)

= I(F, V N ;Y n)− I(V N ;Y n|F)− I(V N ;Y n)

= I(F;Y n|V N)− I(V N ;Y n|F)

= I(F;Y n|V N)

=
n∑
i=1

I(F;Yi|Y i−1, V N)

≤
n∑
i=1

I(F, Y i−1, Zn
i+1, V

N ;Yi)

=
n∑
i=1

I(T2i;Yi)

= nI(T2;Y ). (A.10)

On the other hand, we have

I(UN ;Y n)− I(V N ;Y n)

= I(UN ;Y n, K1)− I(V N ;Y n, K1)− I(UN ;K1|Y n) + I(V N ;K1|Y n)

= I(UN ;Y n, K1)− I(V N ;Y n, K1) +H(K1|Y n, UN)−H(K1|Y n, V N)

≥ I(UN ;Y n, K1)− I(V N ;Y n, K1)− nε
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=
N∑
i=1

(
I(Y n, K1;Ui|UN

i+1, V
i−1)− I(Y n, K1;Vi|UN

i+1, V
i−1)
)
− nε

=
N∑
i=1

(
I(Y n, K1, U

N
i+1, V

i−1;Ui)− I(Y n, K1, U
N
i+1, V

i−1;Vi)
)
− nε

=
N∑
i=1

I(S1i;Ui)− I(S1i;Vi)− nε

= N
(
I(S1;U)− I(S1;V )

)
− nε. (A.11)

Combining (A.10) and (A.11), we have

I(S1;U)− I(S1;V ) ≤ βI(T2;Y ) + βε. (A.12)

A.1.2 Achievability

In this part, we will show that R(PS1|U , PT2S2PX|S2) is an achievable region. It suffices to

show that there exists at least one scheme such that the pair (R1, R2) with

R1 =
1

β
[I(S1;V )− ε], R2 =

[
I(S2;Y |T2)− I(S2;Z|T2)

]+− ε
s.t. I(S1;U)− I(S1;V ) < βI(T2;Y ), (A.13)

is achievable. Without loss of generality, we assume I(S2;Y |T2)− I(S2;Z|T2) > 0.

Codebook Construction:

CA at Alice. Given PS1|UPUV (suppose I(S1;U)−I(S1;V ) < βI(T2;Y )), randomly and

independently generate 2NR0 sequences SN1 according to
N∏
i=1

PS1(S1i). These sequences are

indexed by (f, φ) with f ∈ [1 : 2NR01 ], φ ∈ [1 : 2NR02 ].

CB at Bob. Given PT2S2PX|S2PY Z|X randomly and independently generate 2nR11 se-

quences T n2 according to
n∏
i=1

PT2(T2i). These sequences are indexed by (f, ϕ) with ϕ ∈

[1 : 2nR12 ]. For each T n2 (f, ϕ), randomly and independently generate 2nR13 sequences Sn2
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which are indexed by (γ, ψ) with γ ∈ [1 : 2nR14 ] and ψ ∈ [1 : 2nR15 ], according to
n∏
i=1

PS2|T2(S2i|T2i). Here, we set

R0 = I(S1;U) + ε, R01 = I(S1;U)− I(S1;V ) + 2ε, (A.14)

R02 = I(S1;V )− ε, R11 = I(T2;Y )− ε, (A.15)

R12 = I(T2;Y )− ε− 1

β
(I(S1;U)− I(S1;V ) + 2ε) , R13 = I(S2;Y |T2)− ε, (A.16)

R14 = I(S2;Z|T2) + ε,R15 = I(S2;Y |T2)− I(S2;Z|T2)− 2ε. (A.17)

Encoding: After observing sequence UN , Alice selects a sequence SN1 that is jointly

PS1U typical with UN in CA. If there is more than one of such SN1 s, she randomly select one.

If there is no such sequence, randomly select one from the whole codebook. We denote the

selected sequence by SN1 (f, φ). Alice sends the index f to Bob. Upon receiving f , Bob refers

to CB, randomly generates a value for ϕ, and then looks into the sequences Sn2 generated by

T n2 (f, ϕ), randomly selects one Sn2 (γ, ψ), and finally transmits it to Carol via the channel

PX|S2PY Z|X .

Decoding: Upon receiving sequence Y n, Carol first tries to find a unique T n2 (f̂ , ϕ̂) that is

jointly typical with Y n in CB: If there is more than one of such sequences T n2 , she randomly

selects one. If there exists no such sequence, she declares an error. Then Carol looks into

those Sn2 s generated by T n2 (f̂ , ϕ̂), trying to find a unique Sn2 (γ̂, ψ̂) that is jointly typical with

(T n2 (f̂ , ϕ̂), Y n). If there is more than one of such sequences Sn2 , she randomly picks one. If

there exists no such T n2 , she declares an error. After decoding f̂ , Carol tries to find a unique

SN1 (f̂ , φ̂) that is jointly typical with V N .

Key Generation: Alice sets K1 = φ; Bob sets K2 = ψ; Carol sets K ′1 = φ̂ and K ′2 = ψ̂.

Key Rates Analysis: According to the codebook constructed above, we know that φ and

ψ are uniformly distributed in [1 : 2NR02 ] and [1 : 2nR15 ], respectively. Thus,

R1 =
N

n
R02 =

1

β
[I(S1;V )− ε], (A.18)
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R2 = I(S2;Y |T2)− I(S2;Z|T2)− 2ε. (A.19)

Error Analysis: Denote

ξ , {K1 6= K ′1 or K2 6= K ′2}, (A.20)

ξ1 , {T n2 (f, ϕ) 6= T n2 (f̂ , ϕ̂)}, (A.21)

ξ2 , {Sn2 (γ, ψ) 6= Sn2 (γ̂, ψ̂)}, (A.22)

ξ3 , {SN1 (f, φ) 6= SN1 (f̂ , φ̂)}. (A.23)

Then, we have

Pr{ξ} ≤ Pr{ξ1 ∪ ξ2 ∪ ξ3}

= Pr{ξ1}+ Pr{ξ2|ξc1}+ Pr{ξ3|(ξ2 ∪ ξ1)c}
(a)
= Pr{ξ1}+ Pr{ξ2|ξc1}+ Pr{ξ3|ξc1}, (A.24)

in which (a) is true since ξ2 and ξ3 are independent given ξc1 according to the above encoding

approach. In the following, we bound each term in (A.24) one by one.

In our scheme, each T n2 is randomly and independently generated according to
n∏
i=1

PT2(T2i)

and the total number of T n2 sequences is 2nR11 . Furthermore, Y n is equivalently generated by

T n2 (f, ϕ) according to
n∏
i=1

PY |T2(Yi|T2i), with PY |T2 = PS2|T2PX|S2PY |X . Hence, it’s easy to

show that with high probability, (T n2 (f, ϕ), Y n) is jointly typical and there will be no other

T n2 sequences that are jointly typical with Y n (one may refer to Chapter 7 in[16]). Thus,

Pr{ξ1} ≤ ε/3,

when n is sufficiently large.

Given ξc1, which is equivalent to that T n2 (f, ϕ) is given, there are 2nR13 sequences Sn2 ,
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each randomly and independently generated by T n2 (f, ϕ) according to
n∏
i=1

PS2|T2(S2i|T2i).

In addition, Y n is equivalently generated by Sn2 (γ, ψ) according to
n∏
i=1

PY |S2(Yi|S2i), with

PY |S2 = PX|S2PY |X . We can show that with high probability, T n2 (f, ϕ), (Sn2 (γ, ψ) and Y n)

are jointly typical and there will be no other sequences Sn2 that are jointly typical with Y n

according to the Packing Lemma [23]. Thus, we can conclude

Pr{ξ2|ξc1} ≤ ε/3,

when n is sufficiently large.

Since there are 2NR0 sequences SN1 , which are randomly and independently generated

according to
N∏
i=1

PS1(S1i), we can show that with high probability there exists at least one SN1

that is jointly typical with UN (also jointly typical with V N since S1 → U → V ). Besides,

given T n2 (f, ϕ), which indicates f is given, there are a total of 2NR02 sequences SN1 (f, ·).

Thus, with high probability there will be no other sequences SN1 that are jointly typical with

V N . Then, we have

Pr{ξ2|ξc1} ≤ ε/3,

when N is sufficiently large.

Hence,

Pr{ξ} ≤ ε. (A.25)

Information Leakage Analysis: Since φ and f are independent, and that φ→ f → Zn,

I(K1; f, Zn|CA, CB) = I(φ; f, Zn|CA, CB) = I(φ; f |CA) = 0.

To bound I(K2;UN , f, Zn|CA, CB), we have

I(K2;UN , f, Zn|CA, CB) = I(ψ;UN , f, Zn|CA, CB)
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(a)
= I(ψ; f, Zn|CA, CB)

≤ I(ψ;T n2 , Z
n|CB)

= I(ψ;T n2 |CB) + I(ψ;Zn|T n2 , CB)

= I(ψ;Zn|T n2 , CB), (A.26)

in which (a) is true due to

 UN → f, ψ → Zn,

UN → f → ψ

⇒ UN → f → ψ,Zn

⇒ UN → f, Zn → ψ

⇔ UN , Zn → f, Zn → ψ. (A.27)

Now, we have

I(ψ;Zn|T n2 , CB) = H(Zn|T n2 , CB)−H(Zn|T n2 , ψ, CB)

= H(Zn|T n2 , CB)−H(Sn2 , Z
n|T n2 , ψ, CB) +H(Sn2 |Zn, T n2 , ψ, CB)

= H(Zn|T n2 , CB)−H(Sn2 |T n2 , ψ, CB)

−H(Zn|Sn2 , T n2 , ψ, CB) +H(Sn2 |Zn, T n2 , ψ, CB)

= H(Zn|T n2 , CB)−H(Sn2 |T n2 , ψ, CB)

−H(Zn|Sn2 , CB) +H(Sn2 |Zn, T n2 , ψ, CB). (A.28)

We can easily obtain that

H(Zn|T n2 , CB) ≤ nH(Z|T2) + nε,

H(Zn|Sn2 , CB) ≥ nH(Z|S2)− nε, (A.29)
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and according to Lemma A.2 below, we have

I(ψ;Zn|T n2 , CB)≤n(H(Z|T2)−H(Z|S)+I(S2;Z|T2) + 3ε)

= 3nε. (A.30)

Thus, we have

I(K2;UN , f, Zn|CA, CB) ≤ 3nε.

Lemma A.2. If R15 + I(S2;Z|T2) < 1
n
H(Sn2 |T n2 , CB), then

1

n
H(Sn2 |Zn, T n2, ψ, CB)≤ 1

n
H(Sn2 |T n2 , ψ, CB)− I(S2;Z|T2) + ε.

Proof. See Appendix A.2.

Finally, using standard information theoretic arguments, we can conclude that there ex-

ists a particular code such that (A.13) is achievable and hence R(PS1|U , PT2S2PX|S2) is an

achievable region.

A.2 Proof of Lemma A.2

The proof here follows similar steps as those in the proof of [23, Lemma 22.3].

Given T n2 , denote T nε (S2Z|T n2 ) as the set of pairs (Sn2 , Z
n) which are jointly typical with

T n2 . Define

E1 =

 1, (Sn2 , Z
n) ∈ T nε (S2Z|T n2 );

0, (Sn2 , Z
n) /∈ T nε (S2Z|T n2 ).

Then, according to the Law of Large Numbers, we have

Pr{E1 = 0} n→∞−→ 0, (A.31)
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since T2 → S2 → Z.

Thus, we have

H(Sn2 |Zn, T n2 , ψ, CB) ≤ H(Sn2 , E1|Zn, T n2 , ψ, CB)

= H(E1|Zn, T n2 , ψ, CB) +H(Sn2 |Zn, E1, T
n
2 , ψ, CB)

≤ 1 + Pr{E1 = 0}H(Sn2 |Zn, E1 = 0, T n2 , ψ, CB)

+Pr{E1 = 1}H(Sn2 |Zn, E1 = 1, T n2 , ψ, CB)

≤ 1 + Pr{E1 = 0}H(Sn2 |Zn, E1 = 0, T n2 , ψ, CB)

+
∑
zn,tn2 ,ψ

Pr{zn, tn2 , ψ|E1 = 1}H(Sn2 |zn, E1 = 1, tn2 , ψ, CB)

≤ nε+
∑
zn,tn2 ,ψ

Pr{zn, tn2 , ψ|E1 = 1}H(Sn2 |zn, E1 = 1, tn2 , ψ, CB).

Now, given tn2 , ψ, z
n andE1 = 1, define Num(zn, tn2 ) as the number of Sn2 ∈ Sn2 (·, ψ|tn2 )∩

T nε (S2|zn) (Sn2 (·, ψ|tn2 ) denotes the sequences Sn2 s generated by tn2 , with second index ψ),

we can easily show that

E(Num(zn, tn2 )) = 2−nI(S2;Z|T2)|Sn2 (·, ψ|tn2 )|,

Var(Num(zn, tn2 )) ≤ 2−nI(S2;Z|T2)|Sn2 (·, ψ|tn2 )|, (A.32)

where

log |Sn2 (·, ψ|tn2 )| = H(Sn2 |T n2 , CB)− nR15.

Thus, we have

Pr{Num(zn, tn2 ) ≥ 2E(Num(zn, tn2 ))} ≤ 2−(H(Sn
2 |Tn

2 ,CB)−nR15−nI(S2;Z|T2)). (A.33)

Then, we have

H(Sn2 |zn, E1 = 1, tn2 , ψ, CB) ≤ nε+H(Sn2 |T n2 , CB)− nR15 − nI(S2;Z|T2)
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= nε+H(Sn2 |T n2 , ψ, CB)− nI(S2;Z|T2). (A.34)

Hence, we have

H(Sn2 |Zn, T n2, ψ, CB)≤2nε+H(Sn2 |T n2, ψ, CB)− nI(S2;Z|T2).

A.3 Converse Proof of Theorem 3.2

Similar to the converse proof of Theorem 3.1, we will show that for any achievable pair

(R1, R2), there exists (PS1|UPT1|S1 , PT2S2PX|S2) s.t. (R1, R2) ∈ R(PS1|UPT1|S1 , PT2S2PX|S2).

First, we have

H(K1) = H(K1|Y n, V N) + I(K1;Y n, V N)

≤ I(K1;Y n, V N) + nε

≤ I(K1;Y n, V N)− I(K1;Zn,WN ,F) + 2nε

≤ I(K1;Y n, V N)− I(K1;WN ,F) + 2nε

(a)
= I(K1;Y n, V N)− I(K1;Y n,WN ,F) + 2nε

≤ I(K1;Y n, V N)− I(K1;Y n,WN) + 2nε

≤ I(K1;V N |Y n)− I(K1;WN |Y n) + 2nε

=
N∑
i=1

[
I(K1;Vi|V i−1,WN

i+1, Y
n)− I(K1;Wi|V i−1,WN

i+1, Y
n)
]

+ 2nε

=
N∑
i=1

[
I(S1i;Vi|T1i)− I(S1i;Wi|T1i)

]
+ 2nε

= N
[
I(S1;V |T1)− I(S1;W |T1)

]
+ 2nε, (A.35)

in which S1i , (K1, V
i−1,WN

i+1, Y
n), T1i , (V i−1,WN

i+1, Y
n) and S1 , (S1Q, Q), T1 ,
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(T1Q, Q). (a) is true because of

WN → UN → F→ Y n

⇒ (UN ,WN)→ F→ Y n

⇒ (K1,W
N)→ F→ Y n

⇒ K1 → (WN ,F)→ Y n. (A.36)

Thus, we have

R1 ≤
1

β

[
I(S1;V |T1)− I(S1;W |T1)

]
+ 2ε. (A.37)

Furthermore, similar to (A.6), we can show that T1 → S1 → U → (V,W ).

The derivation of R2 is exactly the same as in (A.9), thus, we have

R2 ≤ I(S2;Y |T2)− I(S2;Y |T2) + 3ε, (A.38)

where S2 , (K2, V
N , Y J−1, Zn

J+1,F, J), and T2 , (V N , Y J−1, Zn
J+1,F, J).

Next, we show (3.12). From (A.11), we conclude

I(UN ;Y n)− I(V N ;Y n) (A.39)

≥
N∑
i=1

[
I(Y n, K1, U

N
i+1, V

i−1;Ui)− I(Y n, K1, U
N
i+1, V

i−1;Vi)
]
− nε. (A.40)

Now, since

WN
i+1 → UN

i+1 → (UN , V i)

⇒ WN
i+1 → UN

i+1 → (K1,F, Ui, V
i)

⇒ WN
i+1 → UN

i+1 → (K1, Y
n, Ui, V

i)

⇒ WN
i+1 → (Y n, K1, U

N
i+1, V

i−1)→ (Ui, Vi)
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⇒

 WN
i+1 → (Y n, K1, U

N
i+1, V

i−1)→ Ui

WN
i+1 → (Y n, K1, U

N
i+1, V

i−1)→ Vi

, (A.41)

and

(UN , V i−1,WN
i+1)→ Ui → Vi

⇒ (K1,F, U
N
i+1, V

i−1,WN
i+1)→ Ui → Vi

⇒ (K1, Y
n, UN

i+1, V
i−1,WN

i+1)→ Ui → Vi

⇒ UN
i+1 → (Y n, K1, V

i−1,WN
i+1, Ui)→ Vi, (A.42)

we have

N∑
i=1

[
I(Y n, K1, U

N
i+1, V

i−1;Ui)− I(Y n, K1, U
N
i+1, V

i−1;Vi)
]

=
N∑
i=1

[
I(Y n, K1, U

N
i+1, V

i−1,WN
i+1;Ui)− I(Y n, K1, U

N
i+1, V

i−1,WN
i+1;Vi)

]
=

N∑
i=1

[
I(Y n, K1, V

i−1,WN
i+1;Ui)− I(Y n, K1, V

i−1,WN
i+1;Vi)

]
+

N∑
i=1

[
I(UN

i+1;Ui|Y n, K1, V
i−1,WN

i+1)− I(UN
i+1;Vi|Y n, K1, V

i−1,WN
i+1)
]

=
N∑
i=1

[
I(Y n, K1, V

i−1,WN
i+1;Ui)− I(Y n, K1, V

i−1,WN
i+1;Vi)

]
+

N∑
i=1

[
I(UN

i+1;Y n, K1, V
i−1,WN

i+1, Ui, Vi)− I(UN
i+1;Y n, K1, V

i−1,WN
i+1, Vi)

]
≥

N∑
i=1

[
I(Y n, K1, V

i−1,WN
i+1;Ui)− I(Y n, K1, V

i−1,WN
i+1;Vi)

]
=

N∑
i=1

[
I(S1i;Ui)− I(S1i;Vi)

]
= N

[
I(S1;U)− I(S1;V )

]
. (A.43)
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Thus, it follows

I(UN ;Y n)− I(V N ;Y n) ≥ N
[
I(S1;U)− I(S1;V )

]
− nε.

On the other hand, same as (A.10), we conclude

I(UN ;Y n)− I(V N ;Y n) ≤ nI(T2;Y ).

Hence,

N
[
I(S1;U)− I(S1;V )

]
− nε ≤ nI(T2;Y )

⇒ I(S1;U)− I(S1;V ) ≤ βI(T2;Y ) + βε. (A.44)

Combining the fact that ε in each term is an arbitrary small number, we can conclude that

there exists such (PS1|UPT1|S1 , PT2S2PX|S2) that (R1, R2) ∈ R(PS1|UPT1|S1 , PT2S2PX|S2).
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Appendix B

Chapter 4

B.1 Proof of Theorem 4.4

To simplify the presentation of the proof of Thereom 4.4, we first introduce a concept from

[31] and its property.

Definition B.1 ([31]). Let X be a random variable with PMF P . For a given r ≥ 0, a

sequence Xn is called a r-divergent sequence for P if

D(tp(Xn)||P ) ≤ r.

We also denote the set of all r-divergent sequences for P as Snr (P ).

Lemma B.1 ([31]). Fix r ≥ 0, then

P n(Snr (P )) ≥ 1− (n+ 1)|X | exp(−nr).

Now, we proceed to our proof of Theorem 4.4.

Proof of Theorem 4.4. The proof has two major steps: 1) Step 1: For any given φ, we char-

acterize the optimal ψ, gI and the corresponding error exponent; 2) Step 2: Characterize the
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Xn: 1 3 2 1 2 · · · 3 1 1 2

1 1 · · · 1 1 2 2 · · ·Xn1: Xn2:
· · · · · ·

Y n: y1 y2 y3 y4 y5 · · · yn−3yn−2yn−1 yn

y1 y4 · · · yn−2yn−1 y3 y5Y n1: Y n2:
· · ·

· · ·
Zn: z1 z2 z3 z4 z5 · · · zn−3zn−2zn−1 zn

z1 z4 · · · zn−2zn−1 z3 z5Zn1: Zn2:
· · ·

· · ·

Figure B.1: An illustration of the 1th segment for a general sequence Xn.

optimal φ.

Step 1: Characterizing optimal ψ and gI for any given φ: In this step, we suppose φ is

fixed (i.e., the codewordXn for the message is given), and assume tp(Xn) = PX . Analyzing

this case involves two phases. In the first phase, we show that we can construct ψ such

that βI(01, ε) goes to zero exponentially with a rate min
{PZ,i}i∈X

∑
i

PX(i) · D(PY,i||QY,i). In

the second phase, we show there is no scheme that can achieve an exponent larger than

min
{PZ,i}i∈X

∑
i

PX(i) ·D(PY,i||QY,i).

Step 1.1: For a given φ, construct a particular ψ and characterize the corresponding

optimal attack strategy gI: Fix a selected codeword Xn with type tp(Xn) = PX . We

need to characterize which attack sequences Zn are optimal to minimize the error exponent.

All our analysis is based on separating Xn in to |X | sub-sequences such that each element

within the same sub-sequence has the same realization. Thus, without any loss of generality,

we assume Xn = 1n12n2 · · · |X |n|X| , in which ni = nPX(i), i ∈ X . In the following, we

denote the positions of ini inXn as the ith segment. For a generalXn, the sequence in the ith

segment is denoted by Xni . And Y ni and Zni are defined in the same manner, see Fig.B.1.

In the ith segment, since Xni = ini and that the channel W (Y |X) is memoryless, Y ni

obtained by passing Xni through the channel W (Y |X) can be seen as generated i.i.d. ac-

cording to PY,i , W (Y |i). Now, we set the acceptance region, which in return determines
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ψ, as

An(Xn) = {Y n1 · · ·Y n|X| : Y ni ∈ Ai, i ∈ X}, (B.1)

in which

Ai , Sni
r (PY,i)

is defined in the ith segment with

r = max
i∈X
− 1

ni
log

ε

|X |
(ni + 1)−|X |. (B.2)

With this r, we have, according to Lemma B.1, that

P ni
Y,i(S

ni
r (PY,i)) ≥ 1− ε

|X |
,∀i ∈ X .

Then, we have

Pr{An(Xn)|Xn} ≥
∏
i∈X

(
1− ε

|X |

)
> 1− ε.

Thus,

Pr(H1|H0) ≤ ε.

Hence using this particular ψ, the constraint (4.7) is satisfied.

In the following, we analyze the successful attack probability and characterize the op-

timal gI (equivalently the optimal choice of the attack sequence Zn) for this particular

ψ. For any sequence Zn
0 selected by Eve, we denote the successful attack probability as
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Pr{An(Xn)|Zn
0 }. We realize that, due to the symmetric construction of An(Xn), we have

Pr{An(Xn)|Zn
0 } =

∏
i∈X

Pr{Ai|Zni
0 }.

Suppose tp(Zni
0 ) = PZ,i, then according to the construction of Ai, all Znis with tp(Zni) =

PZ,i result in the same success probability:

Pr{Ai|Zni} = Pr{Ai|Zni
0 }, ∀Zni : tp(Zni) = PZ,i. (B.3)

Thus, we have

Pr{Ai|Zni
0 } =

∑
Y ni∈Ai

Pr{Y ni |Zni
0 }.

=
∑

Zni∈T ni
Z (PZ,i)

Pr{Zni |PZ,i}
∑

Y ni∈Ai

Pr{Y ni |Zni
0 }

(a)
=

∑
Zni∈T ni

Z (PZ,i)

Pr{Zni |PZ,i}
∑

Y ni∈Ai

Pr{Y ni |Zni}, (B.4)

where Pr{Zni |PZ,i} can be any arbitrary conditional probability distribution of Zni given

tp(Zni) = PZ,i, and (a) holds due to (B.3).

To further analyze Pr{Ai|Zni
0 }, we first investigate the relationship between Pr{Ai|Zni

0 }

and Qni
Y,i(Ai), in which

QY,i =
∑
j∈Z

V (Y |j) · PZ,i(j) (B.5)

with PZ,i = tp(Zni
0 ). Thus, QY,i is equivalent to being the distribution of the corresponding

Y if Eve generates Zni i.i.d. according to PZ,i. We can decompose Qni
Y,i(Ai) as follows

Qni
Y,i(Ai) =

∑
Zni∈Zni

P ni
Z,i(Z

ni) · Pr{Ai|Zni}
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=
∑

Zni∈Zni

P ni
Z,i(Z

ni)
∑

Y ni∈Ai

Pr{Y ni |Zni}

=
∑

P̃Z,i∈TZ

∑
Zni∈T ni

Z (P̃Z,i)

P ni
Z,i(Z

ni |P̃Z,i)P ni
Z,i(T

ni
Z (P̃Z,i)) ·

∑
Y ni∈Ai

Pr{Y ni |Zni}

=
∑

P̃Z,i∈TZ

P ni
Z,i(T

ni
Z (P̃Z,i))

∑
Zni∈T ni

Z (P̃Z,i)

P ni
Z,i(Z

ni |P̃Z,i) ·
∑

Y ni∈Ai

Pr{Y ni |Zni}

≥ P ni
Z,i(T

ni
Z (PZ,i))

∑
Zni∈T ni

Z (PZ,i)

P ni
Z,i(Z

ni |PZ,i) ·
∑

Y ni∈Ai

Pr{Y ni |Zni}.

(a)
= P ni

Z,i(T
ni
Z (PZ,i)) · Pr{Ai|Zni

0 }, (B.6)

where (a) is true because of (B.4). On the other hand, according to [16, Theorem 11.1.4],

we have

P ni
Z,i(T

ni
Z (PZ,i)) ≥

1

(ni + 1)|Z|
· 2−niD(PZ,i||PZ,i)

=
1

(ni + 1)|Z|
.

Thus, we conclude that

Pr{Ai|Zni
0 } ≤ (ni + 1)|Z|Qni

Y,i(Ai). (B.7)

In the following, we bound Qni
Y,i(Ai) from above. First, it follows

Qni
Y,i(Ai) =

∑
tp(Y ni ):T ni

Y (tp(Y ni ))⊆Sni
r (PY,i)

Qni
Y,i(tp(Y ni)), (B.8)

and by Lemma B.2 in Appendix B.3, ∀ tp(Y ni) : T ni
Y (tp(Y ni)) ⊆ Sni

r (PY,i), we have

D(tp(Y ni)||QY,i) ≥ D(PY,i||QY,i)− δ(r), (B.9)
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with δ(r) goes to zero as r decreases. Thus,

Qni
Y,i(tp(Y ni)) ≤ 2−niD(tp(Y ni )||QY,i)

≤ 2−ni(D(PY,i||QY,i)−δ(r)). (B.10)

Combine (B.10) and (B.8), and we have

Qni
Y,i(Ai) ≤

∑
tp(Y ni ):T ni

Y (tp(Y ni ))∈Sni
r (PY,i)

2−ni(D(PY,i||QY,i)−δ(r))

≤ (ni + 1)|Y|2−ni(D(PY,i||QY,i)−δ(r)). (B.11)

Combining (B.11) and (B.7), we obtain

Pr{Ai|Zni
0 } ≤ (ni + 1)|Y|+|Z|2−ni(D(PY,i||QY,i)−δ(r))

≤ n|Y|+|Z|2−ni(D(PY,i||QY,i)−δ(r)). (B.12)

Thus, we have

Pr{An(xn)|Zn
0 } ≤ n|X |(|Y|+|Z|)

∏
i∈X

2−ni(D(PY,i||QY,i)−δ(r))

= n|X |(|Y|+|Z|)2

∑
i
−ni(D(PY,i||QY,i)−δ(r))

= n|X |(|Y|+|Z|)2−n(
∑
PX(i)D(PY,i||QY,i)−δ(r)), (B.13)

which implies

− 1

n
log Pr{An(xn)|Zn

0 } ≥
∑

PX(i)D(PY,i||QY,i)− δ(r)−
|X |(|Y|+ |Z|)

n
log n.(B.14)

Inequality (B.14) implies that for our particular choice of ψ as specified in (B.1), the smallest
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exponent that Eve can hope for is

min
{PZ,i}i∈X

∑
PX(i)D(PY,i||QY,i). (B.15)

Now, we show that Eve can indeed achieve (B.15). Let PZ∗,i be the minimizer for (B.15)

and Q∗Y,i be the corresponding value computed from (4.23). Similarly as (B.9), we also have,

from Lemma B.2 in Appendix B.3, that ∀ tp(Y ni) : T ni
Y (tp(Y ni)) ⊆ Sni

r (PY,i),

D(tp(Y ni)||Q∗Y,i) ≤ D(PY,i||Q∗Y,i) + δ(r),

in which δ(r) goes to zero as r decreases. Thus,

Q∗,ni

Y,i (Ai) ≥ Q∗,ni

Y,i (tp(Y ni))

(a)

≥ 1

(ni + 1)|Y|
2−niD(tp(Y ni )||Q∗Y,i)

≥ 1

(n+ 1)|Y|
2−ni(D(PY,i||Q∗Y,i)+δ(r)), (B.16)

in which (a) is due to Theorem 11.1.4 in [16]. Now, consider a particular attack strategy g∗I ,

in which Eve generates Zni i.i.d. according to PZ∗,i in the ith segment, ∀i ∈ X . With this

particular attack strategy, from (B.16), the success probability is

P ∗I ≥
1

(n+1)|X ||Y|
2
−n(

∑
i∈X

PX(i)D(PY,i||Q∗Y,i)+δ(r))

, (B.17)

which implies that

− 1

n
logP ∗I ≤

∑
i∈X

PX(i)D(PY,i||Q∗Y,i) + δ(r)− |X ||Y|
n

log n. (B.18)

As both δ(r) and− |X ||Y|
n

log n go to zero as n increases, we conclude that g∗I achieves (B.15),

the best Eve can hope for. Hence, for our particular choice of ψ, g∗I is the optimal attack
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strategy.

Step 1.2: Show ψ constructed in Step 1.1 is optimal: Consider any acceptance region An

with Pr{An|Xn} ≥ 1− ε, we will show that the particular attack strategy g∗I discussed above

will achieve an exponent specified in (B.15). Here Pr{An|Xn} ≥ 1− ε is due to the fact that

Pr{An|Xn} = 1−Pr(H1|H0) as well as the requirement defined by (4.7). We denote the set

of the ith segment sequences of Y n ∈ An by Ai, i ∈ X . Then we have

1− ε ≤ Pr{An|Xn}

=
∑

Y n∈An

Pr{Y n|Xn}

=
∑

Y n∈An

∏
i∈X

Pr{Y ni |ini}

=
∑

Y n∈An

∏
i∈X

P ni
Y,i(Y

ni)

=
∑

Y n
k ∈Ak

∑
Y n\nk∈A \Ak

P nk
Y,k(Y

nk)
∏
i∈X\k

P ni
Y,i(Y

ni)

=
∑

Y n
k ∈Ak

P nk
Y,k(Y

nk)
∑

Y n\nk∈A \Ak

∏
i∈X\k

P ni
Y,i(Y

ni)

≤
∑

Y n
k ∈Ak

P nk
Y,k(Y

nk)

= Pr{Ak|(X = k)nk}.

Now, consider the attack strategy g∗I discussed above. Using Lemma B.3 in Appendix B.3,

we have

Qnk
Y,k(Ak) ≥ (1− 2ε)2−nk(D(PY,k||Q∗Y,k)+ε).

Then, it follows

P ∗I ≥
∏
i∈X

(1− 2ε)2−ni(D(PY,i||Q∗Y,i)+ε)

= (1− 2ε)|X |2

∑
i∈X
−ni(D(PY,i||Q∗Y,i)+ε)
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= (1− 2ε)|X |2
−n(

∑
i∈X

PX(i)D(PY,i||Q∗Y,i)+ε)

.

Since P ∗I is obtained by the particular attack strategy g∗I , it must be less or equal to that from

the optimal attack strategy (denote the optimal attack sequence by Z?n)with respect to An,

i.e. Pr{An|Z?n} ≥ P ∗I . Thus, we have

− 1

n
log Pr{An|Z?n} ≤

∑
i∈X

PX(i)D(PY,i||QY,i) + ε− |X |
n

log(1− 2ε). (B.19)

Combining (B.14) and (B.19) with the fact that Eve can always select a Zn with the optimal

types {PZ,i}i∈X in corresponding segments, we conclude that the exponent of the successful

attack probability when Xn is given, denoted by θI(Xn), is

θI(X
n) = min

{PZ,i}i∈X

∑
i

PX(i) ·D(PY,i||QY,i).

Step 2: Characterize the optimal φ: Now, we optimize over φ. We obtain

θI(01, ε) = max
Xn

θI(X
n) = max

PX

θI(X
n)

= max
PX

min
{PZ,i}i∈X

∑
i

PX(i) ·D(PY,i||QY,i)

= max
i∈X

min
PZ,i

D(PY,i||QY,i),

in which the last step is true as
∑
i

PX(i) · D(PY,i||QY,i) is a linear function of PX(i), i =

1, · · · , |X |. This completes the proof.

B.2 Proof of Theorem 4.7

This proof has two main parts: First, we will show that, min
PZ

max
PX∈PR

D(PY ||QY ) is an upper

bound on the authentication exponent of any scheme; Second, we will construct a scheme to

achieve an authentication exponent max
PX∈PR

min
PZ

D(PY ||QY ).
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Upper-bounding the authentication exponent for any scheme by (4.26): Consider an ar-

bitrary triplet (φ, ψ, ϕ) that satisfy the conditions in (4.7) and (4.9). Suppose 2nRm sequences

Xn are selected as the codewords by the encoder φ. Define the acceptance region determined

by ψ as An. As there are at most (n+ 1)|X | different types of sequences Xn, there must exist

at least (n + 1)−|X |2nRm codewords that have the same type. We denote this particular type

as PX and the set of these codewords as CPX
.

For any arbitrary testing function ψ and decoding function ϕ, we define A(Xn) ⊂ Yn as

the set of sequences Y n that are accepted and decoded to Xn with a probability larger than

1
2
. For each Xn, we must have Pr{A(Xn)|Xn} ≥ 1 − 2ε, otherwise, the decoding error for

Xn is larger than ε, which violates the condition (4.7). It is easy to see that

A(Xn) ∩ A(X̃n) = ∅, ∀ Xn, X̃n ∈ CPX
: Xn 6= X̃n. (B.20)

In Appendix B.5, we show that we must have

Rm ≤ I(X;Y ), (B.21)

in which the mutual information I(X;Y ) is computed from this particular PX and PY =∑
i∈X

PX(i)W (Y |i). Meanwhile, we also have

An ⊇
⋃

Xn∈CPX

A(Xn), (B.22)

which follows from the fact that for any Y n /∈ An, Y n will be rejected by Bob, let alone be

decoded to a codeword in CPX
, and thus Y n /∈

⋃
Xn∈CPX

A(Xn).

Now suppose Eve initiates an impersonation attack by generating a sequence Zn with

each component generated i.i.d. according to some PMF PZ , and define

QY =
∑
j∈Z

PZ(j)V (Y |j). (B.23)
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With this particular attack, the success probability is

Pr{An|Zn}
(a)

≥ Pr

 ⋃
Xn∈CPX

A(Xn)|Zn

 (B.24)

(b)
=

∑
Xn∈CPX

Pr{A(Xn)|Zn}, (B.25)

in which (a) follows from (B.22) and (b) is true due to (B.20).

On the other hand, according to the proof in Theorem 4.4 (in particular, the proof of (B.17)),

we have, for each Xn ∈ CPX
, that

Pr{A(Xn)|Zn} ≥ 2
−n(

∑
i∈X

PX(i)D(PY,i||QY,i)+ε)

= 2
−n(

∑
i∈X

PX(i)D(PY,i||QY )+ε)

,

since Pr{A(Xn)|Xn} ≥ 1 − 2ε. And the last step is true due to the fact that ∀ i ∈ X ,

QY,i = QY is fixed under this attack (PY,i and QY,i are defined in Section 4.4.1). Thus, we

have

Pr{An|Zn} ≥
∑

xn∈CPX

2
−n(

∑
i∈X

PX(i)D(PY,i||QY )+ε)

≥ (n+ 1)−|X |2nRm2
−n(

∑
i∈X

PX(i)D(PY,i||QY )+ε)

= (n+ 1)−|X |2
−n(

∑
i∈X

PX(i)D(PY,i||QY )−Rm+ε)

.

Since Pr{An|Zn} is obtained by one specific attack strategy, it must be less than or equal to

the successful attack probability of the optimal attack strategy, Pr{An|Z?n}. Thus, we have

− 1

n
log Pr{An|Z?n} ≤

∑
i∈X

PX(i)D(PY,i||QY )−Rm + ε+
|X |
n

log(n+ 1)

=
∑
i∈X

PX(i)D(PY,i||QY )−Rm + ε′, (B.26)
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where ε′ , ε + |X |
n

log(n + 1). From (B.21) and (B.26), we see that for any given (φ, ϕ, ψ)

(thus PX is given), Eve can select an arbitrary distribution PZ ∈ PZ to initiate an imper-

sonation attack as described above, and the corresponding exponent of the successful attack

probability is upper bounded by the right-hand side of (B.26). Thus, the largest exponent of

the successful attack probability (corresponding to the smallest successful attack probabil-

ity) Alice and Bob can expect in the worst case when Eve selects the optimal distribution PZ

based on the given PX , is given by min
PZ

∑
i∈X

PX(i)D(PY,i||QY ) − Rm. Hence, we conclude

that

θI(Rm, ε) ≤ max
PX∈PR

min
PZ

∑
i∈X

PX(i)D(PY,i||QY )−Rm,

since ε′ is an arbitrary small number as n→∞. And we have

θI(Rm, ε) ≤ max
PX∈PR

min
PZ

∑
i∈X

PX(i)D(PY,i||QY )−Rm

(a)
= min

PZ

max
PX∈PR

∑
i∈X

PX(i)D(PY,i||QY )−Rm. (B.27)

Here, (a) is proved in Appendix B.6.

Given any PZ ∈ PZ (thus,QY is given), we first focus on the maximization sub-problem:

max
PX∈PR

∑
i∈X

PX(i)D(PY,i||QY )−Rm, (B.28)

In Appendix B.7, we show that, for the optimization problem (B.28), an optimizer P ∗X with

I(X∗;Y ) = Rm can always be found. On the other hand, we have

∑
i

PX(i)D(PY,i||QY )−Rm

=
∑
i

PX(i)
∑
Y

PY,i log
PY,i
QY

−Rm
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=
∑
i

PX(i)
∑
Y

W (Y |i) log
W (Y |i)
QY

−Rm

=
∑
i,Y

PX(i)W (Y |i) log
W (Y |i)
QY

PY
PY
−Rm

=
∑
i,Y

PX(i)W (Y |i) log
PY
QY

+
∑
i,Y

PX(i)W (Y |i) log
W (Y |i)
PY

−Rm

=
∑
Y

PY log
PY
QY

+
∑
i,Y

PX(i)W (Y |i) log
PX(i)W (Y |i)

PXPY
−Rm

= D(PY ||QY ) +
∑
i,Y

PXY log
PXY

PX · PY
−Rm

= D(PY ||QY ) + I(X;Y )−Rm.

Thus, (B.27) is equivalent to

θI(Rm, ε) ≤ min
PZ

max
PX∈PR

∑
i∈X

PX(i)D(PY,i||QY )−Rm

(a)
= min

PZ

max
PX∈∂PR

D(PY ||QY )

(b)
= min

PZ

max
PX∈PR

D(PY ||QY ), (B.29)

in which ∂PR := {PX : I(X;Y ) = Rm}. Here step (a) is true because as discussed

above, the optimizer P ∗X satisfies I(X∗;Y ) = Rm. Step (b) is true, because for any given

PZ , D(PY ||QY ) is convex in PY while PY is an affine function of PX , then D(PY ||QY ) is

convex in PX , thus the optimal solution of max
PX∈PR

D(PY ||QY ) is obtained on the boundary

∂PR [96].

Construct a scheme to achieve (4.27): In this part, for any given PX (thus PY is fixed),

we will construct a scheme such that the successful attack probability of any attack strategy

is less than 2
−n(min

PZ
D(PY ||QY )−ε)

.

Codebook construction: Fix PX , generate 2nRm sequences Xn as the codewords, i.i.d.

according to the PMF PX , with Rm ≤ I(X;Y ). And each codeword is assigned to one

message. We use Xn(M) to denote the M -th codeword.

143



Encoder φ: If Alice needs to send a message M to Bob, she transmits Xn(M) into the

channel.

Testing function ψ: Upon receiving a sequence Y n, Bob first determines whether Y n

is from Alice or not. He declares it to be from Alice if Y n is PY -typical, in which PY =∑
i∈X

PX(i)W (Y |i) for the given PX ; Otherwise, Bob declares that the message is from Eve,

and abandons it. Hence, the acceptance region is A = T nε (Y ). It is easy to show that for

any given ε, there exists an r such that

A ⊆ Snr (PY ). (B.30)

Furthermore, r goes to zero as ε decreases.

Decoder ϕ: If Y n is tested to be from Alice, Bob tries to find a unique sequence Xn(M̂)

from the codebook such that (Xn(M̂), yn) are jointly typical according to W (Y |X)PX . If

there are more than one such sequences Xn, he randomly picks one and declares it as the

transmitted message; If there is no such sequence, he declares an error.

Error analysis: Since the acceptance region is A = T nε (Y ), and all Y n sequences that

are jointly typical with Xn are included in A , thus, we can easily show that

Pr{M̂ 6= M,H0|H0} ≤
ε

2
,

Pr{H1|H0} ≤
ε

2
.

Using similar argument as that of the proof of Theorem 7.7.1[16], we can obtain that there

exists at least one codebook such that (4.7) is satisfied.

Authentication exponent analysis: First, for any attack sequence Zn with type PZ chosen

by Eve, we have

Pr{A |Zn} ≤ Pr{Snr (PY )|Zn},
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which is true due to (B.30). Furthermore, following the same derivation as that in Appendix

B.4, we have

Pr{Snr (PY )|Zn} ≤ n|Y|+|Z|2−n(D(PY ||QY )−δ(r))

≤ n|Y|+|Z|2
−n(min

PZ
D(PY ||QY )−δ(r))

.

(B.31)

Thus, we have

Pr{A |Zn} ≤ n|Y|+|Z|2
−n(min

PZ
D(PY ||QY )−δ(r))

,

which indicates that

− 1

n
log Pr{A |Zn} ≥ min

PZ

D(PY ||QY )− δ(r)− |Y|+ |Z|
n

log n.

Finally, we conclude that

θI(Rm, ε) ≥ max
PX∈PR

min
PZ

D(PY ||QY ), (B.32)

and this completes the proof.

B.3 Lemma B.2

Lemma B.2. Let P ∗, P and Q be three distributions on random variable X , and r ≥ 0, then

if D(P ∗||P ) ≤ r and 0 < D(P ||Q) <∞, then

D(P ∗||Q) ≥ D(P ||Q)− δ(r),

D(P ∗||Q) ≤ D(P ||Q) + δ(r).
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in which δ(r) ↓ 0 as r ↓ 0.

In order to prove Lemma B.2, techniques from [16] are utilized.

Lemma B.3 ([16]). 1. (Pinsker’s Inequality) Let P and Q be any two distributions on X ,

then

D(P ||Q) ≥ 1

2 ln 2
||P −Q||21,

in which ||P −Q||1 =
∑
x∈X
|P (x)−Q(x)|.

2. Let Bn be any set of sequences Xn, such that P n(Bn) > 1 − ε. Let Q be any other

distribution such that D(P ||Q) <∞, then

Qn(Bn) > (1− 2ε)2−n(D(P ||Q)+ε).

Proof of Lemma B.2. If Q(i) = 0 for some i ∈ X , then P (i) = 0 and P ∗(i) = 0, since

D(P ||Q) < ∞ and D(P ∗||P ) ≤ r. Thus, the existence of {i ∈ X : Q(i) = 0} has no

influence on the final result. Hence, to facilitate the presentation, we assume that Q(i) >

0,∀i ∈ X .

Since r ≥ D(P ∗||P ) ≥ 1
2 ln 2
||P ∗ − P ||21, then we have

∑
i∈X

|P ∗(i)− P (i)| ≤
√

2 ln 2 · r,

which indicates

|P ∗(i)− P (i)| ≤
√

2 ln 2 · r, ∀i ∈ X .

Define a set A := {i ∈ X : P (i) > Q(i) +
√

2 ln 2 · r}, and Ā := X\A. Then we have

D(P ∗||Q) =
∑
i∈X

P ∗(i) log
P ∗(i)

Q(i)
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=
∑
i∈A

P ∗(i) log
P ∗(i)

Q(i)
+
∑
i∈Ā

P ∗(i) log
P ∗(i)

Q(i)

(a)

≥
∑
i∈A

(P (i)−
√

2r ln 2) log
P (i)−

√
2r ln 2

Q(i)

+
∑
i∈Ā

(P (i) +
√

2r ln 2) log
P (i)−

√
2r ln 2

Q(i)

=
∑
i∈X

P (i) log
P (i)−

√
2r ln 2

Q(i)
−
√

2r ln 2 ·(∑
i∈A

log
P (i)−

√
2r ln 2

Q(i)
−
∑
i∈Ā

log
P (i)−

√
2r ln 2

Q(i)

)
(B.33)

=
∑
i∈X

P (i) log
P (i)−

√
2r ln 2

Q(i)
− δ′(r) (B.34)

=
∑
i∈X

P (i) log
P (i)

Q(i)
+
∑
i∈X

P (i) log
P (i)−

√
2r ln 2

P (i)
− δ′(r)

(b)

≥ D(P ||Q)−
∑
i∈X

P (i)
2
√

2r ln 2

P (i) ln 2
− δ′(r)

= D(P ||Q)− δ1(r),

in which step (a) follows from the facts that log(·) is an increasing function of its argument,

and that

log
P (i)−

√
2r ln 2

Q(i)
> 0, ∀i ∈ A;

log
P (i)−

√
2r ln 2

Q(i)
≤ 0, ∀i ∈ Ā.

In addition, step (b) is true due to the fact that ln(1 − γ) ≥ −2γ when γ (γ ≥ 0) is small

enough. Then, we only need to show δ1(r) vanishes as r → 0, which is equivalent to show

δ′(r) ↓ 0 as r ↓ 0. From (B.33) to (B.34), δ′(r) := ε · (
∑
i∈A

log P (i)−ε
Q(i)

−
∑
i∈Ā

log P (i)−ε
Q(i)

)

by setting ε =
√

2r ln 2. Since the sizes of sets A and Ā are finite, we only need to show

log P (i)−ε
Q(i)

is finite when ε is small enough. And that ∀i ∈ X , log P (i)−ε
Q(i)

is finite is obvious,

because of the assumption that P (i) > 0, Q(i) > 0.
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Following similar steps as above, we can also show that

D(P ∗||Q) ≤ D(P ||Q) + δ2(r).

Finally, by setting δ(r) = max{δ1(r), δ2(r)}, we complete the proof.

B.4 Proof of (4.25)

For any sequenceZn
0 selected by Eve, we denote the successful attack probability as Pr{An|Zn

0 }.

We realize that, for any given value ε > 0, there exists an r, with r vanishing as ε goes to

zero, such that

An ∈ Snr (PY ),

which implies that

Pr{An|Zn
0 } ≤ Pr{Snr (PY )|Zn

0 }.

Denote the type of sequence Zn
0 by PZ , tp(Zn

0 ). Due to the symmetry of Snr (PY ), we have

Pr{Snr (PY )|Zn} = Pr{Snr (PY )|Zn
0 }, ∀Zn : tp(Zn) = PZ .

Furthermore, denote

QY =
∑
j∈Z

V (Y |j) · PZ(j),

and we have

Qn
Y (Snr (PY )) =

∑
Zn∈Zn

P n
Z (Zn) · Pr{Snr (PY )|Zn}

=
∑

Zn∈Zn

P n
Z (Zn)

∑
Y n∈Sn

r (PY )

Pr{Y n|Zn}

148



=
∑
P̃Z∈TZ

∑
Zn∈T n

Z (P̃Z)

P n
Z (Zn|P̃Z)P n

Z (T nZ (P̃Z)) ·
∑

Y n∈Sn
r (PY )

Pr{Y n|Zn}

=
∑
P̃Z∈TZ

P n
Z (T nZ (P̃Z))

∑
Zn∈T n

Z (P̃Z)

P n
Z (Zn|P̃Z) ·

∑
Y n∈Sn

r (PY )

Pr{Y n|Zn}

≥ P n
Z (T nZ (PZ))

∑
Zn∈T n

Z (PZ)

P n
Z (Zn|PZ) ·

∑
Y n∈Sn

r (PY )

Pr{Y n|Zn}.

= P n
Z (T nZ (PZ))

∑
Zn∈T n

Z (PZ)

P n
Z (Zn|PZ) ·

∑
Y n∈Sn

r (PY )

Pr{Y n|Zn
0 }.

= P n
Z (T nZ (PZ)) · Pr{Snr (PY )|Zn

0 }

≥ 1

(n+ 1)|Z|
· Pr{Snr (PY )|Zn

0 }.

Thus, it follows that

Pr{Snr (PY )|Zn
0 } ≤ (n+ 1)|Z|Qn

Y (Snr (PY )).

On the other hand, we have

Qn
Y (Snr (PY )) =

∑
tp(Y n):T n

Y (tp(Y n))⊆Sn
r (PY )

Qn
Y (tp(Y n))

≤
∑

tp(Y n):T n
Y (tp(Y n))⊆Sn

r (PY )

2−nD(tp(Y n)||QY )

≤
∑

tp(Y n):T n
Y (tp(Y n))⊆Sn

r (PY )

2−n(D(PY ||QY )−δ(r))

≤ (n+ 1)|Y|2−n(D(PY ||QY )−δ(r)).

Thus, it follows

Pr{Snr (PY )|Zn
0 } ≤ (n+ 1)|Y|+|Z|2−n(D(PY ||QY )−δ(r)),

which indicates that

2−nθI(0,ε) = lim sup
Zn
0

Pr{Snr (PY )|Zn
0 }
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≤ max
PZ

(n+ 1)|Y|+|Z|2−n(D(PY ||QY )−δ(r))

= 2
−n(min

PZ
D(PY ||QY )−ε′)

,

where ε′ is a small number.

B.5 Proof of (B.21)

According to the conditional typicality property, we have

Pr{Tε(Y n|Xn)|Xn} ≥ 1− ε.

Thus,

Pr{A(Xn) ∩ Tε(Y n|Xn)|Xn} ≥ 1− 3ε.

In addition, for each Y n ∈ Tε(Y n|Xn), we have

2−n(H(Y |X)+ε) ≤ Pr{Y n|Xn} ≤ 2−n(H(Y |X)−ε).

Thus, we have

|A(Xn) ∩ Tε(Y n|Xn)| ≥ (1− 3ε)2n(H(Y |X)−2ε).

Since for each Xn ∈ CPX
, we have Tε(Y n|Xn) ⊆ Tε(Y

n), then,

Tε(Y
n) ⊇

⋃
Xn∈CPX

A(Xn) ∩ Tε(Y n|Xn).
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In addition, from (B.20), ∀ Xn, X̃n ∈ CPX
, Xn 6= X̃n we have

A(Xn) ∩ Tε(Y n|Xn)
⋂

A(X̃n) ∩ Tε(Y n|X̃n) = ∅.

Thus, we have

|Tε(Y n)| ≥
∑

Xn∈CPX

|A(Xn) ∩ Tε(Y n|Xn)|

≥
∑

Xn∈CPX

(1− 3ε)2n(H(Y |X)−2ε)

≥ (n+ 1)−|X |2nRm(1− 3ε)2n(H(Y |X)−2ε).

Since that |Tε(Y n)| ≤ 2n(H(Y )+ε), we have

2n(H(Y )+ε) ≥ (n+ 1)−|X |(1− 3ε)2n(H(Y |X)+Rm−2ε),

thus,

Rm ≤ I(X;Y ) + 4ε+
|X |
n

log n(1− 2ε).

The proof is complete.

B.6 Proof of (B.27)

Define

S := {PX : I(X;Y ) ≥ Rm},

T := {QY : QY =
∑
j∈Z

PZ(j)V (Y |j),∀PZ ∈ PZ}.
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Since QY is an affine function of PZ , we can rewrite the max min problem in (B.27) as

max
PX∈S

min
QY ∈T

F (PX , QY ),

where F (PX , QY ) :=
∑
i∈X

PX(i)D(PY,i||QY )−Rm. Thus, we need to show

max
PX∈S

min
QY ∈T

F (PX , QY ) = min
QY ∈T

max
PX∈S

F (PX , QY ) (B.35)

is true.

Before going further, we need to introduce Sion’s minimax theorem as follows.

Lemma B.4 (Sion’s minimax theorem [85]). LetB be a convex subset of a topological vector

space and D a compact convex subset of a topological vector space. And f is a real-valued

function defined on B ×D with

1. f(b, ·) is lower semicontinuous and quasi-convex on D, ∀b ∈ B, and

2. f(·, d) is upper semicontinuous and quasiconcave on B, ∀d ∈ D.

Then

max
b∈B

min
d∈D

f(b, d) = min
d∈D

max
b∈B

f(b, d).

According to Sion’s minimax theorem, in order to obtain (B.35), we need to prove

a) S and T are convex;

b) Given PX , F (PX , ·) is convex on T ;

c) Given QY , F (·, QY ) is quasiconcave on S.

Now, we provide the proofs one by one.

Proof of a). That T is convex is obvious, since QY is an affine function of PZ , and PZ is

convex.

Then, we show S is convex. Suppose PX1 ∈ S and PX2 ∈ S (denote the corresponding
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mutual information by I(X1;Y ) and I(X2;Y ) respectively), thus we have

I(X1;Y ) ≥ Rm,

I(X2;Y ) ≥ Rm.

Set PX3 = λPX1 + (1 − λ)PX2 for arbitrary λ ∈ [0, 1]. Since the conditional PMF PY |X is

fixed by the channel W (Y |X) and that I(X;Y ) is concave in PX for a fixed PY |X , we have

I(X3;Y ) ≥ λI(X1;Y ) + (1− λ)I(X2;Y )

≥ λRm + (1− λ)Rm

= Rm.

Thus, PX3 ∈ S. Then, we have that S is a convex set.

Proof of b). According to Theorem 2.7.2 of [16], D(PY,i||QY ) is convex in (PY,i, QY ). With

a fixed PY,i, we obtain that D(PY,i||QY ) is convex in QY . Thus, suppose QY 1, QY 2 ∈ T and

QY 3 = λQY 1 + (1− λ)QY 2, and ∀i ∈ X , we have

PX(i)D(PY,i||QY 3) ≤ PX(i)(λD(PY,i||QY 1) + (1− λ)D(PY,i||QY 3)).

Thus

∑
i

PX(i)D(PY,i||QY 3) ≤
∑
i

PX(i)(λD(PY,i||QY 1) + (1− λ)D(PY,i||QY 2))

= λ
∑
i

PX(i)D(PY,i||QY 1) + (1− λ)
∑
i

PX(i)D(PY,i||QY 2).

Then, we have

F (PX , QY 3) ≤ λF (PX , QY 1) + (1− λ)F (PX , QY 2).

153



Thus, F (PX , ·) is convex on T .

Proof of c). Given QY , we know F (·, QY ) is linear in PX , thus, it’s quasiconcave.

B.7 Proof of (B.28)

To assist the presentation, denote

`(PX) ,
∑
i∈X

PX(i)hi −Rm,

in which hi , D(PY,i||QY ). Since for each i ∈ X , hi is a constant, we have that `(PX) is

linear in PX .

Recall that PR = {PX : I(X;Y ) ≥ Rm}. Suppose

P ∗X = arg max
PX∈PR

`(PX), (B.36)

and P ∗X is an interior point of PR, thus,

I(X∗;Y ) > Rm.

Denote

SI , {i ∈ X : P ∗X(i) 6= 0},

î = arg min
i∈SI

hi.

Then, we have

`(P ∗X) =
∑
i∈SI

P ∗X(i)hi −Rm

=
∑
i∈SI \̂i

P ∗X(i)hi + P ∗X (̂i)hî −Rm
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=
∑
i∈SI \̂i

P ∗X(i)hi +

1−
∑
i∈SI \̂i

P ∗X(i)

hî −Rm

=
∑
i∈SI \̂i

P ∗X(i)(hi − hî) + hî −Rm.

Now, construct P̃X as

P̃X(i) = P ∗X(i) + ε, ∀ i ∈ SI \̂i;

P̃X(i) = 0, ∀ i ∈ X\SI ;

P̃X (̂i) = 1−
∑
i∈SI \̂i

P̃X(i).

Due to the continuity of I(X;Y ) in PX , there exists some ε > 0 such that

I(X̃;Y ) ≥ Rm.

However, for this P̃X , we have

`(P̃X) = `(P ∗X) + ε
∑
i∈SI \̂i

(hi − hî) ≥ `(P ∗X), (B.37)

in which the equality holds only when hi = hî,∀i ∈ SI . If the inequality in (B.37) is strict,

then it contradicts the assumption in (B.36) that P ∗X is the maximizer for `(PX). Hence, the

equality in (B.37) holds. In this case, all `(PX)s with PX ∈ {PX : ∀i ∈ X\SI , PX(i) = 0}

have the same value as `(P ∗X). Now, due to the continuity of I(X;Y ) in PX , it’s easy to

conclude that there exists a P̂X ∈ {PX : ∀i ∈ X\SI , PX(i) = 0} such that I(X̂;Y ) = Rm,

as 1) P ∗X ∈ {PX : ∀i ∈ X\SI , PX(i) = 0} and I(X∗;Y ) > Rm from the assumption; and 2)

there exists a P ?
X ∈ {PX : ∀i ∈ X\SI , PX(i) = 0} (e.g. P ?

X is of the form [0, · · · , 1, 0, · · · ])

such that I(X?;Y ) = 0.
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Hence, the optimal value can always be obtained on the boundary defined as

{PX : I(X;Y ) = Rm}.

This completes the proof.

B.8 Proofs of Lemmas

B.8.1 Proof of Lemma 4.10

Denote channels W (Y |X) and V (Y |Z) by matrice W and V in short. Define P 1
X,i =

[0, · · · , 0, 1, 0, · · · , 0]T , i ∈ X , where 1 is on the ith row. Since simulatability condition

holds, there exists PM
Z,i ∈ PZ such that

V PM
Z,i = WP 1

X,i, ∀i ∈ X .

In addition, given an arbitrary PX ∈ PX , we have

PX = [PX(1), · · · , PX(|X |)]T =
∑
i∈X

PX(i)P 1
X,i.

Set a virtual channel ṼZ|X̃ by

ṼZ|X̃ = [PM
Z,1, P

M
Z,2, · · · , PM

Z,|X |],

then, we have

WPX = W
∑
i∈X

PX(i)P 1
X,i (B.38)

=
∑
i∈X

WPX(i)P 1
X,i
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=
∑
i∈X

PX(i)WP 1
X,i

=
∑
i∈X

PX(i)V PM
Z,i

= V
∑
i∈X

PX(i)PM
Z,i

= V ṼZ|X̃PX . (B.39)

Since here PX ∈ PX is arbitrarily given, we have

W = V ṼZ|X̃ . (B.40)

This completes the proof.

B.8.2 Proof of Lemma 4.11

The conclusion that if simulatability condition holds, then the equations defined by (4.34)

hold is obvious, since W (Y |i) = W (Y |X)P 1
X,i, and P 1

X,i ∈ PX (P 1
X,i is defined in the proof

of Lemma 4.10).

On the other hand, as we have shown from (B.38) to (B.39), if (4.34) holds, then ∀PX ∈

PX , PZ =
∑
i∈X

PX(i)PM
Z,i is always a valid choice.

B.8.3 Proof of Lemma 4.14

It suffices to show

min
PZ,i∗
||V̂ (Y |Z)PZ,i∗ −W (Y |i∗)||1 > 0

with constraints defined by (4.38).

min
PZ,i∗
||V̂ (Y |Z)PZ,i∗ −W (Y |i∗)||1 = min

PZ,i∗
||(V (Y |Z) + ∆V (Y |Z))PZ,i∗ −W (Y |X)||1

= min
PZ,i∗
||V (Y |Z)PZ,i∗ −W (Y |X) + ∆V (Y |Z)PZ,i∗ ||1
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≥ min
PZ,i∗
||V (Y |Z)PZ,i∗ −W (Y |X)||1 −max

PZ,i∗
||∆V (Y |Z)PZ,i∗||1

= ρ−max
PZ,i∗
||∆V (Y |Z)PZ,i∗ ||1

(a)

≥ ρ− |Y|δ

> 0,

if δ < ρ
|Y| . (a) is true since the summation of each column of PZ,i∗ equals to 1.
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Appendix C

Chapter 5

In the sequel, we use the term typicality as defined in [23, Chapter 2], i.e. a sequence Xn is

said to be typical if

|π(x|Xn)− PX(x)| ≤ εPX(x),∀x ∈ X ,

where π(x|Xn) := |{i : Xi = x}|/n is the empirical PMF of Xn.

We first have the following lemma that is very useful for the achievability proofs.

Lemma C.1. Given a typical sequence xn and an admissible variable U with joint PMF

PUX , then Un is an admissible sequence if it is jointly typical with xn according to PUX .

Proof. Given X = x, we only need to consider realizations y ∈ Y with pXY (x, y) > 0.

According to Defi. 5.4, we have

Pr{f(x, Y ) = g(U, Y )} = 1, (C.1)

which is equivalent to that

∑
u∈U

PU |X(u|x)Pr{f(x, Y ) = g(u, Y )} = 1,

which means that for all u ∈ U , Pr{f(x, Y ) = g(u, Y )} = 1 if PU |X(u|x) 6= 0. Denote the
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support of the conditional PMF PU |X(U |x) by

SPUX
(x) := {u ∈ U : PU |X(u|x) > 0}.

The typicality of xn and Un guarantees that the probability of Ui /∈ SPUX
(xi) is zero, since

∀Ui /∈ SPUX
(xi),

PUX(Ui, xi) = PX(x)PU |X(Ui|xi) = 0,

and

|π((Ui, xi)|(Un, xn))− PUX(Ui, xi)| ≤ εPU |X(Ui|xi)

⇔ | π((Ui, xi)|(Un, xn))| ≤ 0.

Thus, we can conclude that Un is admissible.

Now, we provide detailed proofs of theorems presented in this chapter.

C.1 Proof of Theorem 5.1

Achievability:

In this part, we will show that for a given PUXY = PXY PU |X , in which U is an admissible

random variable w.r.t. X, Y and f , there exists a function computation scheme such that the

tuple (R,∆1,∆2) with

R = I(X;U)− I(Y ;U) + ε,

∆1 = I(X;U |Y ) + ε,

∆2 = H(X;U) + I(Y ;U)− ε,

is achievable.
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(1) Codebook C construction : Given PXY ZPU |X , randomly and independently generate

2nR0 sequences Un according to
n∏
i=1

PU(ui), and assign each Un into 2nR bins which

are indexed by M , using a uniform distribution. Here, we use b(M) to denote bin M ,

and set

R0 = I(X;U) + ε,

R = I(X;U)− I(Y ;U) + 2ε.

(2) Encoding: Upon observing a sequence Xn, Alice looks into the generated codebook

trying to finding a Un that is joint PUX-typical with Xn. If there are more than one

such Un, she randomly picks up one, and sends the index, M , of the bin where Un is

to the fusion center. Otherwise, she declares an error.

(3) Decoding: After receiving M , the fusion center looks into b(M) trying find a unique

Ûn that is joint PUY -typical with Y n. If there are more than one such sequence or no

such sequence, it randomly selects a Ûn as the decoded sequence.

(4) Function computing: The fusion center computes the estimated value f̂ := {g(Ûi, Yi)}ni=1.

(5) Error analysis: According to Lemma C.1, the fusion center can correctly compute

f as long as Un is jointly typical with Xn and Ûn = Un. Thus, the error is upper

bounded by

Pr{No jointly typical Un is found}+ Pr{Ûn 6= Un}.

Since there are 2n(I(U ;X)+ε) sequences Un generated in the codebook and there are

2n(I(U ;Y )−ε) sequences in each bin, we can easily obtain that

Pr{No jointly typical Un is found} ≤ ε/2,

Pr{Ûn 6= Un} ≤ ε/2,
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following the standard random coding techniques as that in [16]. Thus, we have that

Pr{f 6= f̂} ≤ ε.

(6) Privacy leakage: First, we have

I(Xn;M |C) = H(M |C)−H(M |Xn, C)

≤ H(M)

= I(X;U)− I(Y ;U) + 2ε.

Thus

1

n
H(Xn|M, C) =

1

n
H(Xn|C)− 1

n
I(Xn;M |C)

≥ H(X|U) + I(Y ;U)− 2ε.

Furthermore, it follows that

I(Xn;M |Y n, C) = H(M |Y n, C)−H(M |Xn, Y n, C)

≤ H(M |C)

= I(X;U)− I(Y ;U) + 2ε

= I(X;U |Y ) + 2ε.

In summary, following the standard information theoretic methods, we conclude that the

achievability is complete.

Converse:

It suffices to prove that given any achievable tuple (R,∆1,∆2), there exists some admis-

sible U w.r.t. X, Y and f , such that (5.7), (5.8) and (5.9) hold.
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First of all, we have

nR ≥ H(M)− nε

≥ H(M |Y n)− nε

≥ H(M |Y n)−H(M |Xn)− nε

= I(M ;Xn)− I(M ;Y n)− nε

=
n∑
i=1

I(M ;Xi|X i−1, Y n
i+1)−I(M ;Yi|X i−1, Y n

i+1)−nε

=
n∑
i=1

I(M,X i−1, Y n
i+1;Xi)−I(M,X i−1, Y n

i+1;Yi)−nε

=
n∑
i=1

I(Ui;Xi)− I(Ui;Yi)− nε

= n
n∑
i=1

1

n
[I(Ui;Xi|J = i)− I(Ui;Yi|J = i)]− nε

= n[I(U ;X)− I(U ;Y )]− nε, (C.2)

in which J is a random variable uniformly distributed over [1 : n], Ui := (M,X i−1, Y n
i+1)

and U := (UJ , J). And from (C.2), we also obtain

∆2 ≤
1

n
H(Xn|M) + ε

=
1

n
(H(Xn)− I(Xn;M)) + ε

≤ H(X)− [I(U ;X)− I(U ;Y )] + 2ε

= H(X|U) + I(U ;Y ) + 2ε.

In addition, we can easily verify that (M,XJ−1, Y n
J+1) → XJ → YJ , thus it follows that

U → X → Y .

Furthermore, according to Fano’s Inequality, we have

nε ≥ H(f |f̂)
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≥ H(fn|f̂ ,M, Y n)

= H(fn|M,Y n)

=
n∑
i=1

H(fi|f i−1,M, Y n)

≥
n∑
i=1

H(fi|f i−1,M, Y n, X i−1)

(a)
=

n∑
i=1

H(fi|M,Y n, X i−1)

(b)
=

n∑
i=1

H(fi|Yi,M, Y n
i+1, X

i−1)

=
n∑
i=1

H(fi|Yi, Ui)

=nH(f |Y, U), (C.3)

where step (a) is true since f i−1 is a function of (X i−1, Y i−1), and step (b) follows from the

Markov chain fi → (Yi, Y
n
i+1, X

i−1,M)→ Y i−1, which is indicated by

(Xn, Y n
i )→ X i−1 → Y i−1,

⇒ (M,Xi, Y
n
i )→ X i−1 → Y i−1,

(a)⇒ (Xi, Yi)→ (M,Y n
i+1, X

i−1)→ Y i−1, (C.4)

in which (a) is due to the weak union property of the Markov chain [101]. Eq. (C.3) indicates

that this particular choice of U is admissible w.r.t. X, Y and f .

Finally, we have

n∆1 ≥ I(Xn;M |Y n)− nε

= H(Xn|Y n)−H(Xn|M,Y n)− nε

= nH(X|Y )−H(Xn|M,Y n)− nε

= nH(X|Y )−
n∑
i=1

H(Xi|M,Y n, X i−1)− nε
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(a)
= nH(X|Y )−

n∑
i=1

H(Xi|Yi,M, Y n
i+1, X

i−1)− 2nε

=nH(X|Y )−
n∑
i=1

H(Xi|Yi, Ui)− nε

=nH(X|Y )− nH(X|Y, U)− nε

=nI(X;U |Y )− nε, (C.5)

where step (a) follows from the Markov chain defined in (C.4).

As ε is an arbitrarily small number, we conclude that the converse is complete.

C.2 Proof of Theorem 5.2

Achievability:

Given PMF PXY ZPU |XPV |U withU being admissible, the case when I(Y ;U |V )−I(Z;U |V ) ≤

0 is trivial since we can use the same scheme as stated in the achievability proof of Theorem

5.1, and under this scheme, we can show that ∆2 = I(X;U,Z) + ε is achievable. Thus,

without loss of generality, we assume that I(Y ;U |V ) − I(Z;U |V ) > 0. We will show that

the tuple (R,∆1,∆2) with

R = I(X;U)− I(Y ;U) + 2ε,

∆1 = I(X;U |Y ) + ε,

∆2 = H(X|U,Z) + [I(Y ;U |V )− I(Z;U |V )]− 2ε,

is achievable.

(1) Codebook C construction: Randomly and independently generate 2nR0 sequences

V n according to
∏n

i=1 PV (vi), and assign each V n into 2R1 bins which are indexed by

M ′, using a uniform distribution. We use b(M ′) to denote bin M ′; For each gener-

ated sequence V n, randomly and independently generate 2nR2 sequence Un according
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to
∏n

i=1 PU |V (ui|vi), and assign each Un into 2nR3 bins indexed by M ′′, using a uni-

form distribution. We use bV n(M ′′) to denote the corresponding bin of sequences Un.

Besides, we set

R0 = I(X;V ) + ε,

R1 = I(X;V )− I(Y ;V ) + 2ε,

R2 = I(X;U |V ) + ε;

R3 = I(X;U |V )− I(Y ;U |V ) + 2ε.

(2) Encoding: Upon observing a sequence Xn, Alice looks into the generated codebook

trying to find a V n which is joint PV X-typical with Xn. After selecting V n, Alice

looks into those sequences Un that are generated by V n, trying to find a Un that is joint

PUV X-typical with (V n, Xn). During this process, if there are more than one such V n

or Un, she randomly picks up one such sequence; if there is no such sequence, she

declares an error. If Alice finds, she sends the bin indices, M ′ and M ′′, of V n and Un

to the fusion center.

(3) Decoding: After receiving (M ′,M ′′), the fusion center first looks into b(M ′) trying to

find a unique V̂ n that is joint PV Y -typical with Y n. Then, it looks into bV̂ n(M ′′) trying

to find a unique Ûn that is joint PV UY -typical with (V̂ n, Y n). If there are more than

one or no such sequence V̂ n(Ûn), it randomly selects a Ûn as the decoded sequence.

(4) Function computing: The fusion center computes the estimated value f̂ := {g(Ûi, Yi)}ni=1.

(5) Error analysis: Similar as the analysis in the previous scheme, the error is upper

bounded by

Pr{No jointly typical Un is found}+ Pr{Ûn 6= Un}.
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Following the previous analysis, we can first obtain that there exists a V n that is jointly

typical with Xn and it can be correctly decoded. Then we can easily obtain that there

exists a Un which is generated by V n and it is joinly typical with Xn using the Cover-

ing lemma, since there are 2n(I(X;U |V )+ε) sequences Un. After that, we can also show

that there is no other sequence jointly typical with (V n, Y n) (thus Un is correctly de-

coded) using the Packing lemma, since there are 2n(I(Y ;U |V )−ε) sequences in bV n(M ′′).

(6) Message rate: The transmitted messages are (M ′,M ′′), thus, the rate is I(X;V ) −

I(Y ;V ) + 2ε+ I(X;U |V )− I(Y ;U |V ) + 2ε = I(X;U)− I(Y ;U) + 4ε.

(7) Privacy leakage: Similar to that of the proof of Theorem 5.1, we can obtain

I(Xn;M ′,M ′′|Y n, C) ≤ nI(X;U |Y ) + nε.

Now we bound I(Xn;M ′,M ′′, Zn|C) as follows

I(Xn;M ′,M ′′, Zn|C)

≤ I(Xn;V n,M ′′, Zn|C)

= H(Xn|C)−H(Xn|V n,M ′′, Zn, C)

= nH(X)−H(Xn, Un|V n,M ′′, Zn, C) +H(Un|Xn, V n,M ′′, Zn, C)
(a)

≤ nH(X)−H(Xn, Un|V n,M ′′, Zn, C) + nε

= nH(X)−H(Un|V n, Zn,M ′′, C)−H(Xn|Zn, Un, V n,M ′′, C) + nε

= nH(X)−H(Un|V n, Zn,M ′′, C)−H(Xn|Zn, Un, V n, C) + nε

(c)

≤ nI(X;Z,U)−H(Un|V n, Zn,M ′′, C) + 2nε

= nI(X;Z,U)−H(Un|V n, Zn, C) + I(Un;M ′′|V n, Zn, C) + 2nε,

where step (a) is true due to the fact that given V n and M ′′, there are 2n(I(Y ;U |V )−ε)

sequences Un in bV n(M ′′), and the probability that there exists another Ūn that is
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jointly typical with (Xn, V n) is upper bounded by 2−n(I(X;U |V )−I(Y ;U |V )) < ε, thus, it

is easy to have

H(Un|V n, Zn,M ′′, C) ≤ nε.

And step (c) follows from Lemma C.2 in the Appendix C.6. According to Lemma C.3

in the Appendix C.6, we have

H(Un|V n, Zn, C) ≥ n(I(X;U |V )− I(Z;U |V ))− ε.

On the other hand, we have that

I(Un;M ′′|V n, Zn, C)

= H(M ′′|V n, Zn, C)−H(M ′′|Un, V n, Zn, C)

≤ H(M ′′|C)

= nI(X;U |V )− nI(Y ;U |V ) + 2nε.

Thus, we have that

1

n
I(Xn;M ′,M ′′, Zn|C) ≤ I(X;Z,U)− [I(Y ;U |V )− I(Z;U |V )] + 5ε,

which indicates that 1
n
H(Xn|M ′,M ′′, Zn, C) ≥ H(X;Z,U)+[I(Y ;U |V )−I(Z;U |V )]−

5ε.

Hence, the achievability proof is complete.

Converse:

Similar to the converse proof of Theorem 5.1, we only need to show that any achievable

tuple (R,∆1,∆2) is contained in S, i.e. there exists some admissible U w.r.t. X, Y and f , as

well as a random variable V , such that (5.11), (5.12), (5.13) and (5.14) hold.
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As the first step, we have, according to (C.2), that

nR ≥
n∑
i=1

I(M,X i−1, Y n
i+1;Xi)−I(M,X i−1, Y n

i+1;Yi)−nε.

On the other hand, the following Markov chains are true,

Xi → (M,X i−1, Y n
i+1)→ Zi−1,

Yi → (M,X i−1, Y n
i+1)→ Zi−1,

which are implied by

(Y n
i , X

n)→ X i−1 → Zi−1,

⇒ (M,Xi, Y
n
i )→ X i−1 → Zi−1,

⇒ (Xi, Yi)→ (M,X i−1, Y n
i+1)→ Zi−1. (C.6)

Thus, it follows that

nR ≥
n∑
i=1

I(M,X i−1, Y n
i+1, Z

i−1;Xi)− I(M,X i−1, Y n
i+1, Z

i−1;Yi)− nε

=
n∑
i=1

I(Ui;Xi)− I(Ui;Yi)− nε

= n[I(U ;X)− I(U ;Y )− nε, (C.7)

in which Ui and U are defined by Ui := (M,X i−1, Y n
i+1, Z

i−1) and U := (UJ , J), J is a

independent random variable uniformly distributed over [1 : n]. And we can also verify that

U → X → Y holds.

Furthermore, following similar steps as that in (C.3), we conclude that

nε ≥
n∑
i=1

H(fi|Yi,M, Y n
i+1, X

i−1)
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≥
n∑
i=1

H(fi|Yi,M, Y n
i+1, X

i−1, Zi−1)

=
n∑
i=1

H(fi|Yi, Ui)

=nH(f |Y, U). (C.8)

Thus, we can claim that this constructed random variable U is admissible w.r.t. X, Y and f .

Furthermore, as (C.6) implies that the following Markov chain holds

Xi → (Yi,M,X i−1, Y n
i+1)→ Zi−1,

we have, according to (C.5), that

n∆1 ≥ nH(X|Y )−
n∑
i=1

H(Xi|Yi,M, Y n
i+1, X

i−1)− nε

=nH(X|Y )−
n∑
i=1

H(Xi|Yi,M,Y n
i+1,X

i−1,Zi−1)−nε

=nH(X|Y )− nH(X|Y, U)− nε

=nI(X;U |Y )− nε. (C.9)

As the final step, we now show (5.14). It follows that

I(Xn;M,Zn)

= I(M ;Xn) + I(Xn;Zn|M)

= I(M ;Xn)− I(M ;Y n) + I(M ;Y n)− I(M ;Zn) + I(M ;Zn) + I(Xn;Zn|M)

= I(M ;Xn)− I(M ;Y n) + I(M ;Y n)− I(M ;Zn) + I(M,Xn;Zn)

= I(M ;Xn)− I(M ;Y n) + I(M ;Y n)− I(M ;Zn) + I(Xn;Zn)

= I(M ;Xn)− I(M ;Y n) + I(M ;Y n)− I(M ;Zn) + nI(X;Z). (C.10)
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In the right-hand side of (C.10), we have

I(M ;Xn)− I(M ;Y n) =
n∑
i=1

I(M ;Xi|X i−1, Y n
i+1)−I(M ;Yi|X i−1, Y n

i+1)

=
n∑
i=1

I(M,X i−1, Y n
i+1;Xi)−I(M,X i−1, Y n

i+1;Yi)

=
n∑
i=1

I(M,X i−1, Y n
i+1, Z

i−1;Xi)− I(M,X i−1, Y n
i+1, Z

i−1;Yi)

= n[I(U ;X)− I(U ;Y )], (C.11)

and

I(M ;Y n)− I(M ;Zn) =
n∑
i=1

I(M ;Yi|Zi−1, Y n
i+1)− I(M ;Zi|Zi−1, Y n

i+1)

=
n∑
i=1

I(M,Zi−1, Y n
i+1;Yi)− I(M,Zi−1, Y n

i+1;Zi)

=
n∑
i=1

I(Vi;Yi)− I(Vi;Zi)

= n[I(V ;Y )− I(V ;Z)], (C.12)

in which Vi := (M,Y n
i+1, Z

i−1) and V := (UJ , J), J is a independent random variable

uniformly distributed over [1 : n]. For this construction of V , we can conclude that V →

U → X → (Y, Z) is true. Thus, it follows that

I(Xn;M,Zn) = I(U ;X)− I(U ;Y ) + I(V ;Y )− I(V ;Z) + I(X;Z)

= I(U ;X)− I(U ;Y |V )− I(V ;Z) + I(X;Z)

= I(U ;X)− I(U ;Y |V ) + I(X;Z|V )

= I(U ;X)− I(U ;Y |V ) + I(U,X;Z|V )

= I(U ;X)− I(U ;Y |V ) + I(U ;Z|V ) + I(X;Z|U, V )

= I(U ;X)− I(U ;Y |V ) + I(U ;Z|V ) + I(X;Z|U)
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= I(X;U,Z)− I(U ;Y |V ) + I(U ;Z|V )

≥ I(X;U,Z)− [I(U ;Y |V )− I(U ;Z|V )]+,

which implies that

∆2 ≤
1

n
H(Xn|M,Zn) + ε

=
1

n
(H(Xn)− I(Xn;M,Zn)) + ε

≤H(X)−I(X;U,Z)+[I(U ;Y |V )−I(U ;Z|V )]++ε

= H(X|U,Z) + [I(U ;Y |V )− I(U ;Z|V )]+ + ε. (C.13)

Hence, the converse is complete.

C.3 Proof of Theorem 5.4

Converse:

In this part, we show that any achievable tuple (R,D,∆1,∆2) is contained in the region

defined by (5.18)-(5.22).

First, according to (5.3), we have that

nR ≥ H(M)− ε

≥ I(M ;Xn)− I(M ;Y n)− ε

=
n∑
i=1

[
I(M ;Xi|X i−1, Y n

i+1)− I(M ;Yi|X i−1, Y n
i+1)
]
− ε

=
n∑
i=1

[
I(M,X i−1, Y n

i+1;Xi)− I(M,X i−1, Y n
i+1;Yi)

]
− ε

(a)
=

n∑
i=1

[
I(M,X i−1, Y n

i+1, Y
i−1, Zi−1;Xi)− I(M,X i−1, Y n

i+1, Y
i−1, Zi−1;Yi)

]
− ε
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=
n∑
i=1

[I(Ui;Xi)− I(Ui;Yi)]− ε

= n [I(U ;X)− I(U ;Y )]− ε, (C.14)

where step (a) follows from the following Markov chain

(Xi, Yi)→ (M,X i−1, Y n
i+1)→ (Y i−1, Zi−1), (C.15)

which is implied by the following Markov chain

(Xn, Y n
i )→ (X i−1)→ (Y i−1, Zi−1).

Furthermore, Ui is defined as

Ui := (M,X i−1, Y n
i+1, Y

i−1, Zi−1),

and we have Ui → Xi → (Yi, Zi), which follows from

(Xn, Y i−1, Y n
i+1, Z

i−1)→ Xi → (Yi, Zi)

⇒ (M,X i−1, Y n
i+1, Y

i−1, Zi−1)→ Xi → (Yi, Zi). (C.16)

Second, it follows from (5.2) that

D ≥ 1

n
E
[
d(f(Xn, Y n), f̂(M,Y n))

]
− ε

=
1

n
E

[
n∑
i=1

d(f(Xi, Yi), f̂i(M,Y n))

]
− ε

(a)

≥ 1

n
E

[
n∑
i=1

d(f(Xi, Yi), g(M,Y n, X i−1, Zi−1))

]
− ε

=
1

n
E

[
n∑
i=1

d(f(Xi, Yi), g(Ui, Yi))

]
− ε
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= E

[
n∑
i=1

1

n
d(f(Xi, Yi), g(Ui, Yi))

]
− ε

= E [d(f(X, Y ), g(U, Y ))]− ε,

where step (a) is due to the fact that since f̂i(M,Y n) is a function of M and Y n in gen-

eral, there must exist some function, say g, such that the distortion decreases since more

information is provided for each i ∈ [1 : n].

In addition, we have

n∆1 ≥ I(Xn;M |Y n)− nε

= H(Xn|Y n)−H(Xn|M,Y n)− nε

= nH(X|Y )−
n∑
i=1

H(Xi|M,Y n, X i−1)− nε

(a)
= nH(X|Y )−

n∑
i=1

H(Xi|M,Y n, X i−1, Zi−1)− 2nε

=nH(X|Y )−
n∑
i=1

H(Xi|Yi, Ui)− nε

=nH(X|Y )− nH(X|Y, U)− nε

=nI(X;U |Y )− nε, (C.17)

in which step (a) is true due to the following Markov chain

Xi → (M,Y n, X i−1)→ Zi−1,

which is implied by (C.15) due to the decomposition property of Markov chain [101].

As the final step, the derivation is similar as the procedure from (C.10) to (C.13).

First, we have

I(Xn;M,Zn) = I(M ;Xn)− I(M ;Y n) + I(M ;Y n)− I(M ;Zn) + nI(X;Z). (C.18)
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Furthermore, it follows from (C.14) that

I(M ;Xn)− I(M ;Y n) = n[I(U ;X)− I(U ;Y )], (C.19)

while

I(M ;Y n)− I(M ;Zn) =
n∑
i=1

I(M ;Yi|Zi−1, Y n
i+1)− I(M ;Zi|Zi−1, Y n

i+1)

=
n∑
i=1

I(Vi;Yi)− I(Vi;Zi)

= n[I(V ;Y )− I(V ;Z)], (C.20)

with Vi := (M,Y n
i+1, Z

i−1) and V := (UJ , J), J is a independent random variable uniformly

distributed over [1 : n]. Based on the definition of U and V stated above, it’s not difficult to

obtain this Markov chain: V → U → X → (Y, Z) based on (C.16). Combine (C.18)-(C.20),

and we have

I(Xn;M,Zn) = I(U ;X)− I(U ;Y ) + I(V ;Y )− I(V ;Z) + I(X;Z)

= I(X;U,Z)− I(U ;Y |V ) + I(U ;Z|V )

≥ I(X;U,Z)− [I(U ;Y |V )− I(U ;Z|V )]+.

Finally, we obtain

∆2 ≤
1

n
H(Xn|M,Zn) + ε

=
1

n
(H(Xn)− I(Xn;M,Zn)) + ε

≤H(X)−I(X;U,Z)+[I(U ;Y |V )−I(U ;Z|V )]++ε

= H(X|U,Z) + [I(U ;Y |V )− I(U ;Z|V )]+ + ε. (C.21)
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Hence, the converse proof is complete.

Achievability:

To prove the achievability for Theorem 5.4, we use the same achievability scheme as

stated in the proof for Theorem 5.2. The only difference is the range of PMF PXY ZPU |XPV |U .

In this scheme, PXY ZPU |XPV |U is given, subject to that there exist a function g of (U, Y )

achieving E(d(f(X, Y ), g(U, Y ))) ≤ D+ ε and the function g is fixed for function comput-

ing. Once PXY ZPU |XPV |U and g is fixed, we can follow the same procedures in the proof of

Theorem 5.2 to obtain the desired result.

C.4 Proof of Theorem 5.6

Converse:

In the following, we define

U1i := (M1, X
i−1
1 , Zi−1, Y n

i+1), V1i := (M1, Z
i−1, Y n

i+1),

U2i := (M2, X
i−1
2 , Zi−1, Y n

i+1), V2i := (M2, Z
i−1, Y n

i+1).

Furthermore, define U1 := (U1J , J) with J being a random variable independent with all

other random variables and uniformly distributed over [1 : n]. Define V1, U2 and V2 in the

same manner. We can verify that the Markov chain V1 → U1 → X1 → (X2, Y, Z) holds, as

we have

(Xn
1 , Z

i−1, Y n
i+1)→ X1i → (X2i, Yi, Zi)

⇒ (M1, X
i−1
1 , Zi−1, Y n

i+1)→ X1i → (X2i, Yi, Zi).

Similarly, we can verify that V2 → U2 → X2 → (X1, Y, Z) holds.
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In the following, we show (5.29)-(5.34) one by one. First, we have

nR1 ≥ H(M1)− nε

≥ I(M1;Xn
1 )− I(M1;Y n)− nε

=
n∑
i=1

[I(M1;X1i|X i−1
1 , Y n

i+1)− I(M1;Yi|X i−1
1 , Y n

i+1)]− nε

=
n∑
i=1

[I(M1, X
i−1
1 , Y n

i+1;X1i)− I(M1, X
i−1
1 , Y n

i+1;Yi)]− nε

=
n∑
i=1

[I(M1, X
i−1
1 , Zi−1, Y n

i+1;X1i)− I(M1, X
i−1
1 , Zi−1, Y n

i+1;Yi)]− nε

=
n∑
i=1

[I(U1i;X1i)− I(U1i;Yi)]− nε

= n[I(U1;X1)− I(U1;Y )]− nε

= n[I(U1;X1|Y )− nε

= I(V1;X1|Y ) + I(U1;X1|Y, V1)− nε,

=I(V1;X1,V2|Y )−I(V1;V2|Y,X1) + I(U1;X1,U2|Y,V1)−I(U1;U2|X1,Y,V1)−nε,

≥I(V1;X1|Y,V2)+I(U1;X1|Y,U2,V1)−I(V1;V2|Y,X1)−I(U1;U2|X1,Y,V1)−nε.

Thus, we have

R1≥I(V1;X1|Y,V2)+I(U1;X1|Y,U2,V1)−I(V1;V2|Y,X1)−I(U1;U2|X1,Y,V1)−ε.

Similarly, we have

R1+R2≥I(V1;X1|Y )+I(V2;X2|Y,V1)+I(U1;X1|Y,V1,V2)+I(U2;X2|Y,U1,V2)−ε.

In addition, it follows that

R1 +R2 ≥
1

n
H(M1)− ε+

1

n
H(M2)− ε
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≥ 1

n
H(M1,M2)− 2ε

≥ 1

n
I(M1,M2;Xn

1 , X
n
2 )− 1

n
I(M1,M2;Y n)− 2nε

=
1

n

n∑
i=1

[I(M1,M2;X1i, X2i|X i−1
1 , X i−1

2 , Y n
i+1) + I(M1,M2;Yi|X i−1

1 , X i−1
2 , Y n

i+1)]− 2nε

=
1

n

n∑
i=1

[I(M1,M2, X
i−1
1 , X i−1

2 , Y n
i+1;X1i, X2i) + I(M1,M2, X

i−1
1 , X i−1

2 , Y n
i+1;Yi)]− 2nε

=
1

n

n∑
i=1

[I(M1,M2,X
i−1
1 ,X i−1

2 ,Zi−1,Y n
i+1;X1i,X2i)+I(M1,M2,X

i−1
1 ,X i−1

2 ,Zi−1,Y n
i+1;Yi)]−2nε

= I(U1, U2;X1, X2)− I(U1, U2;Y )− 2ε

= I(U1, U2;X1, X2|Y, V1, V2)− I(V1, V2;X1, X2|Y )− 2ε

=I(V1;X1,X2|Y )+I(V2;X1,X2|Y,V1)+I(U1;X1,X2|Y,V1,V2)+I(U2;X1,X2|Y,U1,V2)−2ε

≥ I(V1;X1|Y ) + I(V2;X2|Y, V1) + I(U1;X1|Y, V1, V2) + I(U2;X2|Y, U1, V2)− 2ε.

Furthermore, we have

n∆1 ≥ I(Xn
1 , X

n
2 ;M1,M2|Y n)− nε

= H(Xn
1 , X

n
2 |Y n)−H(Xn

1 , X
n
2 |M1,M2, Y

n)− nε

= nH(X1, X2|Y )−H(Xn
1 , X

n
2 |M1,M2, Y

n)− nε

= nH(X1, X2|Y )−
n∑
i=1

H
(
X1i, X2i

∣∣M1,M2, Y
n, X i−1

1 , X i−1
2

)
− nε

(a)
= nH(X1, X2|Y )−

n∑
i=1

H
(
X1i, X2i

∣∣M1,M2, Y
n
i+1, Z

i−1, X i−1
1 , X i−1

2

)
− nε

=nH(X1, X2|Y )−
n∑
i=1

H(X1i, X2i

∣∣Yi, U1i, U2i)− nε

=nH(X1, X2|Y )− nH(X1, X2|Y, U1, U2)− nε

=nI(X1, X2;U1, U2|Y )− nε, (C.22)
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in which step (a) is due to the following Markov chain:

(
(X1)i,(X2)i

)
→
(
M1,M2,Y

n
i+1,X

i−1
1 ,X i−1

2

)
→
(
Y i−1,Zi−1

)
.

In addition, following similar step from (C.10) to (C.13) by replacing X with (X1, X2),

U with (U1, U2), V with (V1, V2) and M with (M1,M2), we can obtain

∆2≤H(X1, X2|U1, U2, Z)+
[
I(U1, U2;Y |V1, V2)− I(U1, U2;Z|V1, V2)

]+
+ ε. (C.23)

As the last step, it follows that

nε ≥ H(fn|M1,M2, Y
n)

=
n∑
i=1

H(fi|f i−1,M1,M2, Y
n)

≥
n∑
i=1

H(fi|f i−1,M1,M2, Y
n, X i−1

1 , X i−1
2 , Zi−1)

≥
n∑
i=1

H(fi|M1,M2, Y
n, X i−1

1 , X i−1
2 , Zi−1)

=
n∑
i=1

H(fi|M1,M2, Y
n
i , X

i−1
1 , X i−1

2 , Zi−1)

=
n∑
i=1

H(fi|Yi, U1i, U2i)

=nH(f |Y, U1, U2). (C.24)

Finally, the fact that ε is arbitrarily small number completes the converse proof.

Achievability:

In this part, we show that given any PU1V1U2V2X1X2Y Z = PX1X2Y ZPU1|X1PV1|U1PU2|X2PV2|U2

with H(f |U1, U2, Y ) = 0, any tuple (R1, R2,∆1,∆2) satisfying the conditions from (5.29)

to (5.34) is achievable. Since given PU1V1U2V2X1X2Y Z , the values of the right-hand side of
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Figure C.1: Encoding scheme.

(5.32) and (5.33) are fixed, it suffices to consider the corner point with

R1 = I(V1;X1|Y ) + I(U1;X1|Y, V1, V2),

R2 = I(V2;X2|Y, V1) + I(U2;X2|Y, U1, V2),

and the other corner point with

R1 = I(V1;X1|Y, V2) + I(U1;X1|Y, U2, V1),

R2 = I(V2;X2|Y ) + I(U2;X2|Y, V1, V2),

and at corner point, we need to guarantee that ∆1 ≤ I(X1, X2;U1, U2|Y ) + ε and ∆2 ≥

H(X1, X2|U1, U2, Z)+[I(U1, U2;Y |V1, V2)−I(U1, U2;Z|V1, V2)]+−ε. Due to the symmetry

of the above two corner points, we only consider the former one.

(1) Codebook C construction:

CA at Alice. Given PX1X2Y Z PU1|X1PV1|U1PU2|X2PV2|U2 , randomly and independently

generate 2nR10 sequences V n
1 according to

n∏
i=1

PV1(v1i), and assign each V n
1 into 2nR11

bins (indexed by M11) using a uniform distribution. For each generated sequence V n
1
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generate 2nR12 sequences Un
1 according to

n∏
i=1

PU1|V1(u1i|v1i) and assign each Un
1 into

2nR13 sub-bins indexed by M12, using a similar manner as above. In addition, we use

bA(M11) and bA(M12|V n
1 ) to denote the corresponding bin and sub-bin indexed byM11

and M12 respectively, and set

R10 = I(V1;X1) + ε,

R11 = I(V1;X1)− I(V1;Y ) + 2ε,

R12 = I(U1;X1|V1) + ε,

R13 = I(U1;X1|V1)− I(U1;Y, V2|V1) + 2ε.

CB at Bob. Similar to CA, generate 2nR20 sequences V n
2 according to

n∏
i=1

PV2(v2i), and

assign these sequences into 2nR21 bins indexed by M21; For each V n
2 , generated 2nR22

sequences Un
2 and assign each Un

2 into 2nR23 sub-bins indexed by M22. The bin and

sub-bin are denoted by bB(M21) and bB(M22|V n
2 ), respectively, and set

R20 = I(V2;X2) + ε,

R21 = I(V2;X2)− I(V2;Y V1) + 2ε,

R22 = I(U2;X2|V2) + ε,

R23 = I(U2;X2|V2)− I(U2;Y U1|V2) + 2ε.

(2) Encoding: As shown in Fig.C.1, upon observing a sequence Xn
1 , Alice looks into CA

trying to find a V n
1 that is joint PV1X1-typical with Xn

1 . After find the V n
1 , she looks

into those sequences Un
1 generated by V n

1 , trying to find a Un
1 that is joint PV1U1X1-

typical with (V n
1 , X

n
1 ). In each step, if there are more than one desired sequence, she

randomly picks up one; Otherwise, she declares an error if no desired sequence is

found. Then, Alice sends the bin index M11 of V n
1 and sub-bin index M12 of Un

1 to the

fusion center.
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Similar to the encoding procedures of Alice’s side, Bob looks into CB to find a V n
2 and

a Un
2 , and sends the indices M21 and M22 to the fusion center.

(3) Decoding: After receiving messages M11,M12,M21 and M22, the fusion center first

looks into bin bA(M11), trying to find a unique V̂ n
1 that is joint PV1Y -typical with Y n.

If there are more than one such sequence or no such sequence, Bob randomly selects a

V̂ n
1 as the decoded sequence. Using the same decoding strategy within corresponding

bins/sub-bins, it take turns to decode V̂ n
2 with (Y n, V̂ n

1 ), Ûn
1 with (Y n, V̂ n

1 , V̂
n

2 ) and

Ûn
2 with (Y n, Ûn

1 , V̂
n

2 ).

(4) Function computing: The fusion center computes the estimated value f̂ based on

(Ûn
1 , Û

n
2 , Y

n).

(5) Error analysis: Without much modification to Lemma C.1, we can easily obtain that

the fusion center can correctly compute f provided that Un
1 is jointly typical with Xn

1

and Un
2 is jointly typical with Xn

2 . Thus, the error probability is upper bounded by the

two events: 1). (Un
1 , X

n
1 ) or (Un

2 , X
n
2 ) are not jointly typical; 2). The fusion center

cannot decode (Un
1 , U

n
2 ) correctly.

First of all, based on the parameters provided in this scheme, we can easily verify

that with a high probability, there exists at least one pair (Un
1 , U

n
2 ) such that (Un

1 , X
n
1 )

and (Un
2 , X

n
2 ) are jointly typical respectively. Furthermore, we can easily obtain that

the fusion center can correctly decode (Un
1 , U

n
2 ) with a high probability following the

similar analysis in the achievability part in Theorem 5.2. Thus, the fusion center can

compute f with a high probability.

(6) Message rates: From the above scheme, we have

R1 = R11 +R13

= I(V1;X1)− I(V1;Y ) + I(U1;X1|V1)− I(U1;Y, V2|V1) + 4ε
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= I(V1;X1|Y ) + I(U1, X1|Y, V1, V2) + 4ε,

and

R2 = R21 +R23

= I(V2;X2)− I(V2;Y, V1) + I(U2;X2|V2)− I(U2;Y, U1|V2) + 4ε

= I(V2;X2|Y, V1) + I(U2;X2|Y, U1, V2) + 4ε.

(7) Privacy leakage: At first, it is easy to obtain that

1

n
I(Xn

1 , X
n
2 ;M11,M12,M21,M22|Y n, C)

≤ H(M11,M12,M21,M22|C)

= I(V1;X1|Y ) + I(U1;X1|Y, V1, V2) + I(V2;X2|Y, V1) + I(U2;X2|Y, U1, V2) + 8ε

= I(V1, V2;X1, X2|Y ) + I(U1, U2;X1, X2|Y, V1, V2) + 8ε

= I(X1, X2;U1, U2|Y ) + 8ε.

Furthermore, we have

H(Xn
1 , X

n
2 |M11,M12,M21,M22, Z

n, C)

≥ H(Xn
1 , X

n
2 |V n

1 , V
n

2 ,M21,M22, Z
n, C)

≥ H(Xn
1 , X

n
2 , U

n
1 , U

n
2 |V n

1 , V
n

2 ,M21,M22, Z
n, C)−nε

=H(Un
1,U

n
2 |V n

1 ,V
n

2 ,M21,M22,Z
n,C)+H(Xn

1,X
n
2 |Un

1,U
n
2,V

n
1 ,V

n
2 ,M21,M22,Z

n,C)−nε

= H(Un
1 , U

n
2 |V n

1 , V
n

2 ,M21,M22, Z
n, C) +H(Xn

1 , X
n
2 |Un

1 , U
n
2 , V

n
1 , V

n
2 , Z

n, C)− nε
(a)

≥ H(Un
1 , U

n
2 |V n

1 , V
n

2 ,M21,M22, Z
n, C) + nH(X1, X2|U1, U2, Z)− 2nε

=nH(X1,X2|U1,U2,Z)+H(Un
1,U

n
2 |V n

1 ,V
n

2 ,Z
n,C)−I(Un

1,U
n
2;M21,M22|V n

1 ,V
n

2 ,Z
n,C)−2nε

≥ nH(X1, X2|U1, U2, Z) +H(Un
1 , U

n
2 |V n

1 , V
n

2 , Z
n, C)−H(M21,M22)− 2nε,
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where step (a) can be easily verified following similar arguments that those in the

proof of Lemma C.2.

Now, we bound each term above. First, we have

1

n
H(M21,M22) ≤ R13 +R23

= I(U1;X1|V1)− I(U1;Y, V2|V1) + I(U2;X2|V2)− I(U2;Y, U1|V2) + 4ε

= I(U1;X1|Y, V1, V2) + I(U2;X2|Y, U1, V2) + 4ε

= I(U1, U2;X1, X2|Y, V1, V2) + 4ε.

We bound the termH(Un
1 , U

n
2 |V n

1 , V
n

2 , Z
n, C) as follows. Given V n

1 , there are 2nR12 se-

quencesUn
1 that are generated by V n

1 , and the probability of that eachUn
1 is jointly typi-

cal with (V n
1 , V

n
2 , Z

n) is 2−nI(U1;V2,Z|V1). Thus, there are around 2n(I(U1;X1|V1)−I(U1;V2,Z|V1))

sequences Un
1 that are jointly typical with (V n

1 , V
n

2 , Z
n). Similarly, for each such

Un
1 , there are around 2n(I(U2;X2|V2)−I(U2;U1,Z|V2)+ε) sequences Un

2 that are generated

by V n
2 and jointly typical with (Un

1 , V
n

1 , V
n

2 , Z
n). Hence, given (V n

1 , V
n

2 , Z
n), there

are around 2n(I(U1;X1|V1)−I(U1;V2,Z|V1)+I(U2;X2|V2)−I(U2;U1,Z|V2)+2ε) jointly typical pairs of

(Un
1 , U

n
2 ) in the constructed codebook. Then, we can follow similar steps in Lemma

C.3 to obtain that

1

n
H(Un

1 , U
n
2 |V n

1 , V
n

2 , Z
n, C)

≥ 3ε+ I(U1;X1|V1)− I(U1;V2, Z|V1) + I(U2;X2|V2)− I(U2;U1, Z|V2)

= I(U1, U2;X1, X2|Z, V1, V2) + 3ε.

Thus, it follows that

1

n
H(Xn

1 , X
n
2 |M11,M12,M21,M22, Z

n, C)
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≥ H(X1,X2|U1,U2,Z)+I(U1,U2;X1,X2|Z,V1,V2)−I(U1,U2;X1,X2|Y,V1,V2)−2ε

≥ H(X1, X2|U1, U2, Z) + I(U1, U2;Y |V1, V2)− I(U1, U2;Z|V1, V2)− 2ε.

Similarly, we can obtain another scheme to achieve the other corner point, then we can

use the time-sharing technique to show that the region defined by (5.29)-(5.33) is achievable.

C.5 Proof of Theorem 5.8

Given PMF PX1X2Y PU |X1PV |X2 and a function g s.t. D > E[d(f(X1, X2, Y ), g(U, V, Y ))]+

ε, the achievability scheme is the same as that in the proof of Theorem 5.6, we only need

to further analyze 1
n
E[d(f(Xn

1 , X
n
2 , Y

n),g(Ûn, V̂ n, Y n))], which can be easily shown to be

upper bounded by D with high probability when n is large enough. We now turn to the proof

of the outer bound.

Outer Bound:

Following similar process of extending the proof of Theorem 5.2 to that of Theorem 5.4,

the techniques used in Theorem 5.6 can be modified to prove Theorem 5.8 as follows. In this

part, we set

(U1)i := (M1, (X1)i−1, Zi−1, Y i−1, Y n
i+1), (V1)i := (M1, Z

i−1, Y n
i+1)

(U2)i := (M2, (X2)i−1, Zi−1, , Y i−1, Y n
i+1), (V2)i := (M2, Z

i−1, Y n
i+1),

and the proof of (5.35)-(5.39) is straightforward following the above derivatives. Here, we

only show (5.40) as follows. Give D, we have

D ≥ 1

n
E
[
d(f(Xn

1 , X
n
2 , Y

n), f̂(M1,M2, Y
n))
]
− ε

=
1

n
E

[
n∑
i=1

d(f(X1i, X2i, Yi), f̂i(M1,M2, Y
n))

]
− ε
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(a)

≥ 1

n
E

[
n∑
i=1

d(f(X1i, X2i, Yi), g(M1,M2, Y
n, Zi−1, X i−1

1 , X2
i−1))

]
− ε

=
1

n
E

[
n∑
i=1

d(f(X1i, X2iYi), g((U1)i, (U2)i, Yi))

]
− ε

= E [d(f(X1, X2, Y ), g(U1, U2, Y ))]− ε,

where step (a) follows from that, in general, f̂ is a function of (M1,M2, Y
n) in any achiev-

able scheme, so is f̂i(M1,M2, Y
n), thus there must exist some function, say g, such that the

distortion decreases with more information is provided for each i ∈ [1 : n].

Hence, the converse proof is complete.

C.6 Lemmas

Lemma C.2. Given arbitrary ε > 0, we have

lim inf
n→∞

1

n
H(Xn|Un, V n, Zn, C) ≥ H(X|U,Z)− ε.

Proof. Denote the ε-jointly typical set of sequence pairs (Un, V n, Zn) by T nε (U, V, Z), and

the notation T nε (V, Z) in the sequel, followS in a similar manner. Set θ1 = 0 if (Un, V n, Zn) ∈

T nε (U, V, Z), and θ1 = 1 otherwise. According to the scheme, we have, according to Markov

Lemma [23, Chapter 12], that Pr{θ1 = 0} → 0 as n→∞. Thus, it follows that

H(Xn|Un, V n, Zn, C) ≥ H(Xn|Un, V n, Zn, θ1, C)

= Pr{θ1 = 0}H(Xn|Un, V n, Zn, θ1 = 0, C) + Pr{θ1 = 1}H(Xn|Un, V n, Zn, θ1 = 1, C)

≥ H(Xn|Un, V n, Zn, θ1 = 0, C)− nδ(ε)

=
∑

zn,{vn,un}∈C

Pr{un, vn, zn|θ1 = 0}H(Xn|un, vn, zn)− nδ(ε)

≥
∑

zn,vn,un∈C

Pr{un, zn|θ1 = 0}n(H(X|U, V, Z)−nε)−nδ(ε)

≥ nH(X|U, V, Z)− 2δ(ε)
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= nH(X|U,Z)− 2δ(ε).

Lemma C.3. Given arbitrary ε > 0, we have

lim inf
n→∞

1

n
H(Un|V n, Zn, C) ≥ I(X;U |V )− I(Z;U |V )− ε.

Proof. Set θ2 = 0 if (V n, Zn) ∈ T nε (V, Z), and θ2 = 1 otherwise. Following the proof of

Lemma C.2, we have that

H(Un|V n, Zn, C) ≥
∑

zn,vn∈C

Pr{vn, zn|θ1 = 0}H(Un|vn, zn, C)−nε.

Now, set θ3 = 0 if (Un, vn, zn) ∈ T nε (U, V, Z), and θ3 = 1 otherwise. Again, according to

the Markov lemma, we have Pr{θ3 = 0} ≥ 1− ε when n is sufficiently large. Then we have

H(Un|vn, zn, C) ≥ H(Un|vn, zn, θ3, C)

= Pr{θ3 = 0}H(Un|vn, zn, θ3 = 0, C) + Pr{θ3 = 1}H(Un|vn, zn, θ3 = 1, C)

≥ H(Un|vn, zn, θ3 = 0, C)− nδ(ε).

Denote Num(Un|vn, zn) the number of sequences Un that are generated by vn and

are jointly typical with (vn, zn). It is easy to verify that 1
n
H(Un|vn, zn, θ3 = 0, C) ≥

log Num(Un|vn, zn) − ε, since each jointly typical Un has the same, or close to be pre-

cise, probability to be the desired sequence. For each Un generated by vn, according the

Joint Typicality Lemma [23, Chapter 2], we have

Pr{(Un, vn, zn) ∈ T nε (U, V, Z)} ≥ 2−n(I(U ;Z|V )+ε),

Pr{(Un, vn, zn) ∈ T nε (U, V, Z)} ≤ 2−n(I(U ;Z|V )−ε)
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if (vn, zn) ∈ T nε (V, Z). Thus, it follows that

IE[Num((Un|vn, zn))] ≥ 2n(I(U ;X|V )+ε)2−n(I(U ;Z|V )+ε) = 2n(I(U ;X|V )−I(U ;Z|V )),

and

Var[Num((Un|vn, zn))] ≤ 2n(I(U ;X|V )−I(U ;Z|V )+2ε).

Thus, we have

Pr{Num((Un|vn, zn)) ≤ 1

2
IE[Num((Un|vn, zn))]} ≤ 4 · 2−n(I(U ;X|V )−I(U ;Z|V )−2ε) ≤ δ(ε).

Hence, we have

H(Un|vn, zn, C) ≥ (1− δ(ε))n[I(U ;X|V )− I(U ;Z|V )],

which implies that

1

n
H(Un|V n, Zn, C) ≥ I(X;U |V )− I(Z;U |V )− 2δ(ε).
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