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Abstract

Due to the growth of size and scale of the dataset, data are naturally collected or stored

in multiple terminals in many scenarios. In these cases, each terminal may not have full in-

formation about all the variables involved in learning or inference problems and it may need

to send compressed data due to the limitation of communication channel capacity. Different

from the centralized case where all information is stored in one terminal, we have to utilize

compressed data directly for statistical inference and learning in the distributed case.

In this dissertation, we investigate the distributed statistical inference problems using

information theoretic tools. In particular, we consider problems consisting of L encoders

{Xl}Ll=1, and one decision maker Y , in which terminal Xl has local data related to ran-

dom variable Xl only and terminal Y has data related to random variable Y only. In these

problems, terminals {Xl}Ll=1 send compressed data to terminal Y . Based on the received

data along with its local information, terminal Y makes a decision about the joint proba-

bility mass function (PMF) of (X1, · · · , XL, Y ) from given hypotheses H0 : PX1···XLY and

H1 : QX1···XLY . Using Neyman-Pearson criterion, our goal is to maximize the type 2 error

exponent under the constraints on the type 1 error probability and communication rates.

Three increasingly sophisticated scenarios are considered in this dissertation: 1) Basic

model with non-interactive communications; 2) The scenario with cascaded communica-

tions; and 3) The scenario with model uncertainties. We first characterize the fundamental

limits of using compressed data in the non-interactive case. We provide a lower bound on

the type 2 error exponent for the general PMF case and establish both a lower bound and an

upper bound for the special case of testing against independence. Moreover, we study the

optimal inference performance with a diminishing communication rate (zero rate) and show
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that for certain distributions, the performance is as good as that in the centralized case.

We then extend our study to a more complicated case with cascaded communication

among terminals {Xl}Ll=1. To be specific, we assume that these terminals broadcast their

messages in a sequential order from terminal X1 to terminal XL, and each terminal uses all

previously received messages along with its own observations for encoding. We investigate

both the case with a general PMF and a special case of testing against independence. We

show that for certain PMFs, cascaded communication will help in improving the inference

performance. However, we also prove that cascaded communication does not help in the

case with zero-rate data compression.

Finally, we consider the case with uncertainties in the model. In this case, instead of

knowing exact forms of the PMF in both hypotheses, we only have partial information about

them. One of these problems is called distributed identity testing and it can be transformed

into two composite hypothesis testing problems. We focus on the more complex one and

establish bounds on the type 2 error exponent for both the case with a general PMF and the

special case of testing against independence under constraints on the type 1 error probability

and communication rates. Furthermore, we provide a matching upper and lower bound on

the type 2 error exponent for the zero-rate data compression case.
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Chapter 1

Introduction

1.1 Introduction to Distributed Hypothesis Testing

Nowadays, there is an explosive growth in the size and scale of modern datasets. On the one

hand, a large amount of data bring in opportunities such as that they inspire and facilitate

the development of many deep learning/inference algorithms. On the other hand, they also

bring in significant challenges as inference algorithms on large dataset are computationally

demanding, while data are often redundant. Hence, how to efficiently store, transmit and

utilize this large amount of data is under active investigation [22, 24, 33, 35, 38, 50, 51, 61].

One way to overcome the problem of storage and computation complexity is that instead of

collecting all data in a centralized location, we leave the data at multiple terminals and infer

useful information from these distributed data using the computation power offered by these

distributed machines.

There are two basic ways to distribute the dataset: sample partition and feature partition,

which originate in different scenarios in real life and result in totally different approaches to

transmit and infer useful information from the distributed data.
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1.1.1 Sample Partition and Feature Partition

As shown in Figure 1.1, in sample partition, each terminal has data samples related to all

random variables [35, 50]. In this figure, we use a matrix to represent the available data, and

the columns denote samples related to the corresponding random variables. The data matrix

is partitioned in a row-wise manner and each terminal observes a subset of the samples,

which relates to all random variables (X1, X2, · · · , XL). This scenario is quite common in

real life. For example, there are large quantities of voice and image data stored in personal

smart devices but due to the sensitive nature of the data, we cannot ask all users to send

their voice or photos to a centralized location. Hence, the data are distributed in multiple

locations, and we need to adopt certain learning methods on each device if we want to obtain

a certain learning result like speech recognition. Generally, in this scenario, even though

each terminal has fewer data than that of the centralized setting, in which all data are stored

in one terminal, each terminal can still apply learning methods to its local data. Certainly,

communicating and combining learning results from distributed terminals may improve the

performance.

Figure 1.1: Sample partition

In feature partition, the data stored in each terminal only relate to a subset but not all of

the random variables. Figure 1.2 illustrates the feature partition scenario, in which the data

matrix is partitioned in a column-wise manner and each terminal observes the data related

to a subset of random variables. For example, terminal X1 has all observations related to
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random variable X1. This scenario is also quite common in practice. For example, the

physical information of patients is typically stored in different locations as patients may

go to different departments or different hospitals for different physical tests. In general, this

scenario is more challenging than the sample partition as each terminal in the feature partition

scenario is not able to obtain meaningful information from local data alone. Moreover, due

to the limited communication budget, recovering data first and then conducting inference

from the recovered data is not optimal or necessary. We need to design approaches that can

infer useful information directly from compressed data, which is a much more complicated

and challenging problem compared with the problems in the sample partition scenario.

Figure 1.2: Feature partition

The main difference between the sample partition and the feature partition is that in the

sample partition scenario, local data at each terminal is related to all random variables, while

in the feature partition scenario, local data is only related to a subset of random variables.

This difference results in the following effects. The first one is that in the sample partition

scenario, all existing learning and inference methods can still be applied directly to the local

data, while in the feature partition scenario we need to check each method carefully to see

whether we can apply it to the compressed messages and attain reasonable performance. The

second one is that in the sample partition scenario, each terminal is able to communicate and

exchange local learning results, which typically requires much less communication resources

than exchanging the local raw data. Therefore, in the sample partition scenario, researchers

3



focus on developing optimization approaches to combine the results computed locally for

various learning purposes [22–24, 35, 50]. However, in the feature partition scenario, as ter-

minals cannot perform learning methods on local data alone, they have to exchange the raw

data (or compressed version of the raw data), and hence the requirement on communica-

tion resources is much more demanding. Moreover, research works in the feature partition

scenario are less complete due to the complexity of problems.

1.1.2 Distributed Inference in the Feature Partition Scenario

Now we take a closer look at the problem of how to infer information from the distributed

data in the feature partition scenario. As the general inference problem is quite complex,

we first study a basic inference problem to gain some insights, which is illustrated in Figure

1.3. In this simple network, terminal X observes a sequence Xn and terminal Y observes a

Figure 1.3: A canonical example for distributed inference problems.

sequence Y n. (Xn, Y n) are generated independently and identically (i.i.d.) according to a

certain given joint PMF

{PXY,θ(x, y)}θ∈Φ (1.1)

with an unknown parameter θ ∈ Φ (Φ is an appropriate prescribed set). At first, terminal

X sends a function of its observations, f(Xn) and terminal Y sends a function of its ob-

servation g(Y n) to the decision maker. Then the decision maker infers the value of θ based

on the received message f(Xn) and g(Y n) using a decoding function ψ. Due to the limited

communication budget, there are rate constraints on the transmission link: 1
n

log ||f || ≤ R1

and 1
n

log ||g|| ≤ R2, where || · || denotes the cardinality of possible values of the function.
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The goal is to design encoding functions f , g and a decoding function ψ such that θ̂ is a good

estimate of θ under certain performance metric.

The problem of distributed inference was proposed by Berger [5], and it combines inter-

esting techniques of statistics and information theory. Many existing works on the classic

distributed inference problem focus on the following three branches: distributed hypothe-

sis testing or distributed detection, distributed pattern classification and distributed estima-

tion [1, 13, 15, 16, 20, 25, 31, 34, 39, 56, 57]. In distributed hypothesis testing or distributed

detection problem, Φ consists of only two elements, that is, Φ = {H0, H1}, where H0 and

H1 are called null hypothesis and alternative hypothesis respectively. When Φ consists of

a finite number m (m ≥ 2) of pattern classes, this class of problems is called distributed

pattern classification. When Φ is an open set, we need to design a statistical inference sys-

tem such that the intended norm of the covariance of θ̂ is as small as possible. This class

of problems is called distribution parameter estimation or distributed estimation problems.

Using powerful information theoretic tools, good upper and lower bounds on the inference

performance are derived for the basic model and many special cases. Moreover, some re-

sults are extended to more general cases. However, due to the formidable complexity in this

problem, it rarely allows us to reach the single-letter characterization for all achievable error

exponents. This means that this research field is not yet mature enough and it remains to be

further developed.

1.1.3 Connections and Differences with Distributed Source Coding Prob-

lems

The distributed inference problem is different from the classic distributed source coding

problems [11]. In the source coding problem, which is illustrated in Figure 1.4, the goal

of the decoder is to recover the source sequences after it receives the compressed messages

from terminal X and Y . According to Slepian-Wolf theorem [11], the decoder can recover

the original sequences with diminishing error probability when the encoding rates are larger
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than certain values. Hence, when the encoding rate constraints are loose enough, we can

adopt the source coding method to get the original sequences in our distributed inference

problems. However, in general, the rate constraints are typically too strict for the decision

maker to fully recover Xn in the inference problem. Moreover, in the inference problem,

recovery of source sequences is not its goal and it typically is not necessary. Hence, we will

use the compressed messages directly in the distributed inference problems, which requires

different methods and is more complex.

Figure 1.4: A canonical example for source coding problem.

On the other hand, this inference problem is closely connected to distributed source cod-

ing problems. In particular, the general idea of the existing schemes in distributed inference

problems is to mimic the schemes used in distributed source coding problems. In the existing

studies [1, 3, 13, 15, 16], each terminal Xl compresses its sequence Xn
l into Un

l . Then these

terminals send the auxiliary sequences {Un
l }Ll=1 to the decision maker using source coding

ideas so that the decision maker can obtain {Ûn
l }Ll=1, which has a high probability to be the

same as {Un
l }Ll=1. The compression step is to make sure each terminal sends enough infor-

mation needed for recover Un
l but does not exceed the rate constraint. Finally, the decision

maker will estimate θ using {Ûn
l }Ll=1. Hence, we can see that even though the decision maker

does not need to recover the sequences {Xn
l }Ll=1, it does need to recover {Un

l }Ll=1 from the

compresses messages.
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1.1.4 Differences with Distributed Detection Problems using Scalar Quan-

tizer

There have been a large number of existing works on distributed detection problems, see [6–

8,18,28–30,32,40,42,44–46,49,60] and references therein. Most of the existing works con-

sider the scalar quantizer, in which the quantizer at terminalXl quantizes each component of

Xn
l one by one. This setup fits certain sensor network applications, as the complexity of the

scalar quantizer is low and it incurs minimal decision delay. Under this scalar quantization

setup, it is typically assumed that the observations at different terminals are conditionally

(conditioned on the hypothesis) independent. The problem becomes very challenging once

the assumption of conditional independence is relaxed [40, 46]. Some recent interesting

works have made an important progress for the case with correlated observations [8, 42, 49].

In this dissertation, we focus on distributed detection problems with block encoding, in

other words, vector quantizer, in which the observations are processed in blocks. The use of

vector quantizer allows us to borrow powerful tools from information theory to distributed

detection. As we will show in the dissertation, these tools enable us to make progress in

understanding the general problems without the conditional independence assumptions.

1.1.5 Distributed Hypothesis Testing

In this dissertation, we study a class of distributed hypothesis testing problems from infor-

mation theoretic perspective. In particular, the two hypotheses H0 and H1 are:

H0 : PXY vs H1 : QXY . (1.2)

The decision maker should decide between the two hypotheses after receiving the encoded

massages from terminals X and Y . Typically, the decision maker defines a region as

An = {(xn, yn) ∈ X n × Yn : ψ(f(xn)g(yn)) = H0}, (1.3)
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and it decides H0 is true if the (xn, yn) ∈ An; otherwise it decides H1 is true. An is called

the acceptance region. Two types of error probability are considered for the decision maker’s

behavior:

αn = P n
XY (Acn), (1.4)

βn = Qn
XY (An), (1.5)

where αn means the probability that the decision maker decides H1 to be true while the truth

is the H0 and βn means vice verse. In this dissertation, αn is called type 1 error probability

and βn is called type 2 error probability. The goal is to make the type 2 error probability

as small as possible while the type 1 error probability is constrained. To better understand

the performance of the type 2 error probability, we define the error exponent of type 2 error

probability to be lim infn→∞
(
− 1
n

log (βn)
)
, which is the asymptotic behaviour of the type

2 error probability. We would like to maximize the type 2 error exponent over all possible

encoding functions f and g and the decoding function ψ.

[13] establishes a good lower bound the type 2 error exponent in 1987, while providing

a matching upper bound is still an open problem. Later, for a special case of zero-rate data

compression, which means the compression rate should decay with a certain rate, [15,16,34]

establish a matching upper and lower bound on the type 2 error exponent under different

kinds of constraints on the type 1 error probability.

Another special case, which is illustrated in Figure 1.5, is studied in [3]. In this case,

one can view terminal Y as the decision maker and Y n as any side information available

at this terminal. Furthermore, the decision maker only cares about whether X and Y are

independent or not, which is called testing against independence. [3] provides a matching

upper and lower bound in this case by connecting the distributed hypothesis testing problem

with the distributed source coding with one helper problem. However, when there is more

than one terminal X that sends encoded messages to terminal Y , the problem is still open.
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Figure 1.5: A special case of distributed hypothesis testing.

[21,47,48] extends the testing against independence case in Figure 1.5 by allowing inter-

active communication between terminal X and Y . Here, interactive communication means

that there are multiple rounds of communication between terminal X and Y . When there

is only one round of communication, e.g., the case shown in Figure 1.5, the case is called

non-interactive communication. The distributed interactive hypothesis testing is shown in

Figure 1.6. Intuitively, after multiple rounds of communication, the decision maker will get

more information than that in non-interactive case and hence a better result is expected. [21]

proves that this intuitive idea is true by providing a single-letter characterization of the type

2 error exponent. When there are more than two terminals, the case becomes extremely

complex and thus it is still open.

Figure 1.6: Distributed interactive hypothesis testing.

In this dissertation, we focus on answering the following aspects to further explore the

distributed hypothesis testing problem:

• When there are multiple terminals with non-interactive encoders, i.e. there is more

than one terminal X sending encoded messages to the decision maker Y , this disser-

tation analyzes the fundamental limits of compressing data, evaluates the performance

and compares the performance with that in centralized case.

• Then this dissertation extends the study to a scenario where cascaded communication

is allowed among multiple terminals. Comparisons are made with the non-interactive

9



scenario case by case.

• Finally, if there are uncertainties in the model, this dissertation designs efficient uni-

versal coding schemes and evaluates the performance.

1.2 Distributed Hypothesis Testing with Non-Interactive En-

coders

We first explore a model with non-interactive encoders to obtain the fundamental limits of

compressing data in hypothesis testing problems. In this model, we consider a setup with

L terminals (encoders) {Xl}Ll=1, and a decision making terminal Y , where terminal Xl has

observations related to random variable Xl and terminal Y has data only related to random

variable Y . Terminals {Xl}Ll=1 can send information related to their own data with limited

rates to the decision maker Y . Based on the messages received from these terminals and

its own data, the decision maker Y tries to determine the joint PMF from the following two

given hypotheses:

H0 : PX1···XLY vs H1 : QX1···XLY . (1.6)

This process is as shown in Figure 1.7. As the communication rates between the terminals

and the decision maker are limited, terminal Xl has to compress its observations Xn
l with

n being the number of samples available at terminal Xl. Recall that the goal of distributed

hypothesis testing is to design encoding and decision functions under various resource (e.g.,

communication cost) and performance (e.g., error probabilities) constraints. This model

is related to but different from the basic model introduced in Section 1.1.2. In the basic

model, the random variables (X1, · · · , XL) are all at one terminal X and there is no side

information available at the decision maker. We can view the side information Y n as the fully

recovered sequence by the decision maker when terminal Y in the basic model compresses
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its information with a very large rate.

Figure 1.7: Model with non-interactive encoders

As discussed in Section 1.1.5, the basic model is well-studied in [3,13,15,16,34]. How-

ever, the increase of the number of terminals brings in more new challenges, which will be

discussed in details in Chapter 2.

1.3 Distributed Hypothesis Testing with Cascaded Encoders

Building on the fundamental limits gained in non-interactive communication case, we move

on to the interactive communication case. As discussed in Section 1.1.5, in the interactive

case, multiple rounds of communication are allowed among all terminals. However, the

problem becomes very complex if an arbitrary form of interaction among encoders are al-

lowed, especially when there are more than two terminals. In this dissertation, we study a

special form of interaction among terminals: cascaded communication, which is illustrated

in Figure 1.8. In particular, we assume that terminals broadcast their messages in a sequential

Figure 1.8: Model with interactive encoders
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order from terminal X1 to terminal XL, and each terminal uses all messages received so far

along with its own observations for encoding. More specifically, terminal X1 first broadcasts

the encoded message based on its own observations Xn
1 , and then terminal X2 broadcasts

its encoded message based on both its own observations Xn
2 and the message received from

terminal X1. This process continues until terminal XL broadcasts its message based on its

own observations Xn
L and all previously received messages. Finally, terminal Y performs a

statistical inference based on the messages received from all terminals {Xl}Ll=1 and its own

data related to Y . In this dissertation, we focus on the same inference problem as in the

non-interactive case, in which terminal Y tries to decide the joint PMF of the data from the

two hypotheses in (1.6).

Our goal is to maximize the type 2 error exponent under constraints on the type 1 error

probability and the communication rates. Note that one may consider other forms of interac-

tion among encoders. However, the problem becomes very complicated if an arbitrary form

of interaction among encoders are allowed, and these cases are left for future study.

The problem studied in this dissertation is related to but different from several existing

interesting works on inference with interactive communication [4, 48]. In particular, in [48],

the authors discussed a case in which {Xl}Ll=1 are all at terminalX (and hence (X1, · · · , XL)

can be denoted as one random variable X) and terminal X and terminal Y can communicate

with each other in multiple rounds. [4] considers the same setup with [48] but uses sample-

by-sample processing, i.e. scaler quantization at each stage. Different from these interesting

studies, in our problem, we consider a case in which {Xl}Ll=1 are at different terminals.

Furthermore, cascaded communication among the encoders is allowed.

1.4 Distributed Identity Testing

In Section 1.2 and Section 1.3, we discussed the cases with basic hypotheses as shown in

(1.6). However, in certain scenarios, we do not have complete information about underlying
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distributions. One of these problems is identity testing problem.

We study the identity testing problem in the feature partition scenario with non-interactive

communication of the encoders. Similar to Section 1.2, we consider a setup with L termi-

nals (encoders) {Xl}Ll=1 and a decision making terminal Y . (Xn
1 , · · · , Xn

L, Y
n) are generated

according to some unknown PMF PX1···XLY . Terminals {Xl}Ll=1 can send compressed mes-

sages related to their own data with limited rates to the decision maker, then the decision

maker performs statistical inference based on the messages received from terminals {Xl}Ll=1

and its local data related to Y . In particular, we focus on the problem that the decision

maker tries to decide whether PX1···XLY is the same as a given distribution QX1···XLY , i.e.

PX1···XLY = QX1···XLY or they are λ-far away, i.e., ||PX1···XLY − QX1···XLY ||1 ≥ λ (λ > 0),

and || · ||1 denotes the `1 norm of its argument. This problem can be interpreted as two

hypothesis testing problems:

• Problem 1:

H0 : ||PX1···XLY −QX1···XLY ||1 ≥ λ vs H1 : PX1···XLY = QX1···XLY . (1.7)

• Problem 2:

H0 : PX1···XLY = QX1···XLY vs H1 : ||PX1···XLY −QX1···XLY ||1 ≥ λ. (1.8)

These problems are as shown in Figure 1.11. In both problems, our goal is to characterize

the type 2 error exponents under the constraints on the communication rates and type 1 error

probabilities.

Both problems are well-studied in the centralized case [12, 41, 43, 62], however, the

understanding in the distributed setting is limited. There are several existing interesting

works [1,13,15,16,34] that are related to our work. In particular, [1,13,15,16,34] discuss a

distributed testing problem with simple hypotheses as shown in (1.6). Our distributed iden-
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Problem 1 Problem 2

Figure 1.11: Model for Problem 1 and Problem 2 with Π := {PX1···XLY : ||PX1···XLY −
QX1···XLY ||1 ≥ λ}.

tity testing problem with composite hypotheses, can be viewed as a generalization of those

problems considered in [1, 13, 15, 16]. Between the two possible problems defined in (1.7)

and (1.8), Problem 2 is relatively simple and it can be solved using similar schemes proposed

in [1,13,15,16]. In particular, the encoding schemes and the definition of the acceptance re-

gions at the decision maker in [1,13,15,16] depend only on the form of PMF underH0. Since

the form of PMF underH0 in Problem 2 is known, we can apply the existing coding/decoding

schemes as that in [1, 13, 15, 16] and take the type 2 error probability as the supreme of the

type 2 error probabilities under each PX1···XLY that satisfies ||PX1···XLY −QX1···XLY ||1 ≥ λ.

Furthermore, it can be shown that these schemes are optimal for Problem 2. However, in

Problem 1, as H0 is composite, we need to design universal encoding/decoding schemes so

that our schemes can provide performance guarantee regardless of what the true PMF under

H0 is. In this dissertation, we will only focus on the more challenging Problem 1.

1.5 Summary of Contribution and Organization

Here, we summarize the main contributions of this dissertation.

• First, we study three cases in the distributed hypothesis testing with multiple non-

interactive encoders. In the first case, the testing against independence problem is

studied. Instead of connecting it to the open distributed source coding with multiple

helpers problem, we propose encoding/decoding schemes to provide a lower bound on
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the type 2 error exponent. Furthermore, we establish an upper bound on the type 2

error exponent using any scheme that satisfies the communication rate and type 1 error

probability constraints. Then we study the zero-rate data compression case. We fully

characterize the best achievable type 2 error exponent under a special exponential-

type type 1 error probability constraint. Finally, we extend the work to the general

hypothesis testing case, and compare the result with that in the centralized cases. The

results are published in [54, 56, 57].

• Second, we propose a novel distributed testing with cascaded encoders setting. We

first study the special case of testing against independence case. We provide a scheme

to give a lower bound on the type 2 error exponent, and then show that this scheme

is optimal by properly choosing auxiliary random variables and rigorously justifying

that they satisfy various Markov chain conditions. We then generalize the results to

general cases and compare them with cases with non-interactive encoders. We pro-

vide examples to show that when the decision maker receives more information using

cascaded encoder, it outperforms that using non-interactive encoders. However, we

also find that there is no performance gain in zero-rate data compression case. These

results are published in [53, 55].

• Finally, the novel distributed identity testing model is proposed in this dissertation. A

special case under zero-rate compression is studied first. As H0 is composite in our

case, the decoding scheme in [16,56], which depends on the knowledge of distribution

in H0, is not applicable anymore. By devising a new universal decoding scheme and

providing a matching upper bound, we fully characterize the type 2 error exponent un-

der the zero-rate compression and the exponential-type constraint on the type 1 error

probability. Then the results are generalized to different cases in the distributed iden-

tity testing model: testing against independence and general hypothesis testing under

different kinds of constraints on the type 1 error probability. Part of this work has been
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published in [58] and a journal summarizing these results was submitted to the IEEE

Transactions on Information Theory in Aug. 2017 [52].

The reminder of the dissertation is organized as follows. In Chapter 2 , we introduce

the distributed hypothesis testing problem with non-interactive encoders. Then, we study

the distributed hypothesis testing with cascaded encoders in Chapter 3. In Chapter 4, we

introduce the distributed identity testing model. Finally, we offer concluding remarks and

provide certain potential directions for the future work in Chapter 5.
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Chapter 2

Distributed Hypothesis Testing with

Non-Interactive Encoders

2.1 Introduction

In this chapter, we study the fundamental performance limits of problem in the feature parti-

tion scenario with non-interactive encoders.

We first focus on the zero-rate compression case in which each terminal is only allowed

to send messages to the decision maker with zero-rate compression. If the decision maker

were required to fully recover the data of terminals {Xl}Ll=1 as in the distributed source cod-

ing problems [11, 37], this zero-rate compression is not enough. However, in our setup, this

zero-rate compression will still be valuable for the decision maker for statistical inference. In

addition, we impose an exponential-type constraint on the type 1 error probability (i.e., the

type 1 error probability is required to decrease exponentially fast with a certain error expo-

nent). We fully characterize the best achievable error exponent of the type 2 error probability

under these zero-rate compression and exponential-type type 1 error probability constraints

by providing matching lower and upper bounds. A clear benefit of this zero-rate compres-

sion approach is that the terminals only need to consume a limited amount of communication
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resources. In addition, we show that a very simple scheme in which each terminal only sends

the empirical distribution (or an approximation of it) is optimal. This implies that the com-

plexity of the optimal scheme employed by sensors in practical detection problem can be

very low. Furthermore, we provide an example in which the performance of the scheme with

zero-rate compression is very close to that of the centralized case.

We then extend the study to the positive rate constraints case. Compared with the zero-

rate compression case, in this scenario, each terminal can convey more information to the

decision maker. As the general problem is very complicated, we focus on the special case of

testing against independence. The case with (X1, · · · , XL) all at one terminal (with Y being

at another terminal) was first considered by Ahlswede and Csiszár [1]. In [1], the prob-

lem was converted to a source coding with a helper problem. However, this approach may

not work for our case, as the corresponding problem will be a source coding with multiple

helpers problem, which is still open. In this chapter, we use a different approach to exploit

the more flexible rate constraints and characterize the corresponding type 2 error exponents.

Furthermore, we provide an upper-bound on the best achievable type 2 error exponent using

any scheme that satisfies the communication rate and type 1 error exponents.

The remainder of the chapter is organized as follows. In Section 2.2, we introduce the

model studied in this chapter. In Section 2.4, we present out results for the zero-rate com-

pression case. In Section 2.5, we focus on the scenario with positive rate constraints. In

Section 2.6, we use several numerical examples to illustrate analytical results obtained in

this chapter. Finally, we offer some concluding remarks in Section 2.7.

2.2 Model

Consider a system with L terminals: Xl, l = 1, · · · , L and a decision maker Y . Each terminal

and the decision maker observe a component of the random vector (X1, · · · , XL, Y ) that take
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values in a finite set X1 × · · · × XL × Y and admit a joint PMF with two possible forms:

H0 : PX1···XLY , H1 : QX1···XLY . (2.1)

With a slight abuse of notation, we use Xl to denote both the terminal and the alpha-

bet set from which the random variable Xl takes values. (Xn
1 , · · · , Xn

L, Y
n) are indepen-

dently and identically generated according to one of the above joint PMFs. In other words,

(Xn
1 , · · · , Xn

L, Y
n) is generated by either P n

X1···XLY or Qn
X1···XLY . In a typical hypothe-

sis testing problem, one determines which hypothesis is true under the assumption that

(Xn
1 , · · · , Xn

L, Y
n) are fully available at the decision maker. In this chapter, we consider

a distributed setting in which Xn
l , l = 1, · · · , L and Y n are at different locations. In par-

ticular, terminal Xl observes only Xn
l and terminal Y observes only Y n. Terminals Xls are

allowed to send messages to the decision maker Y . Using Y n and the received messages,

Y determines which hypothesis is true. We denote this system as SX1···XL|Y . Figure 2.1

illustrates the system model. In the following, we will use the term “decision maker” and

terminal Y interchangeably. Here, Y n is used to model any side information available at the

decision maker. If Y is set to be an empty set, then the decision maker does not have side

information.

Figure 2.1: Model

After observing the data sequence xnl ∈ X n
l , terminal Xl will use a encoder fl to trans-

form the sequence xnl into a message fl(xnl ), which takes values from the message setMl

fl : X n
l →Ml = {1, 2, . . . ,Ml}, (2.2)
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with rate constraint:

lim sup
n→∞

1

n
logMl ≤ Rl, l = 1, · · · , L. (2.3)

We also use the notation ||fl|| to denote the cardinality of fl, l = 1, · · · , L. Hence, we have

||fl|| = Ml, l = 1, · · · , L

Using messages Ml, l = 1, · · · , L and its side information Y n, the decision maker will

employ a decision function ψ to determine which hypothesis is true:

ψ :M1 × · · · ×ML × Yn → {H0, H1}. (2.4)

For any given encoders fl, l = 1, · · · , L and decision function ψ, one can define the accep-

tance region as

An =
{

(xn1 , · · · , xnL, yn) ∈ X n
1 × · · · × X n

L × Yn :

ψ(f1(xn1 ) · · · fL(xnL)yn) = H0

}
. (2.5)

Correspondingly, the type 1 error probability is defined as

αn = P n
X1···XLY (Acn), (2.6)

in which Acn denotes the complement of An, and the type 2 error probability is defined as

βn = Qn
X1···XLY (An). (2.7)

Our goal is to design the quantization functions fl, l = 1, · · · , L and the decision function

ψ to maximize the type 2 error exponent under certain type 1 error and communication rate

constraints (2.3).

More specifically, we consider two kinds of type 1 error constraint, namely:
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• Constant-type constraint

αn ≤ ε (2.8)

for a prefixed ε > 0, which implies that the type 1 error probability must be smaller

than a given threshold; and

• Exponential-type constraint

αn ≤ exp(−nr) (2.9)

for a given r > 0, which implies that the type 1 error probability must decrease expo-

nentially fast with an exponent no less than r. Hence the exponential-type constraint

is stricter than the constant-type constraint.

To distinguish these two different type 1 error constraints, we use different notations to

denote the corresponding type 2 error exponent.

• Under the constant-type constraint, we define the type 2 error exponent as

θ(R1, · · · , RL, ε) = lim inf
n→∞

(
− 1

n
log

(
min

f1,··· ,fL,ψ
βn

))
,

in which the minimization is over all fls and ψ satisfying condition (2.3) and (2.8).

• Under the exponential-type constraint, we define the type 2 error exponent as

σ(R1, · · · , RL, r) = lim inf
n→∞

(
− 1

n
log

(
min

f1,··· ,fL,ψ
βn

))
,

in which the minimization is over all fls and ψ satisfying condition (2.3) and (2.9).
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2.3 Preliminary

Following [11], for any sequence xn = (x(1), · · · , x(n)) ∈ X n, we use n(a|xn) to denote

the total number of indices t at which x(t) = a. Then, the relative frequencies or empirical

PMF- π(a|xn) , n(a|xn)/n,∀a ∈ X of the components of xn, is called the type of xn

and is denoted by tp(xn). The set of all types of sequences in X n is denoted by Pn(X ).

Furthermore, we call a random variable X(n) that has the same distribution as tp(xn) as the

type variable of xn.

For any given sequence xn, we use typical sequence [11] and r-divergent sequence [16]

to measure how likely this sequence is generated from a PMF PX .

2.3.1 Typical Sequence

For a given a type PX ∈ Pn(X ) and a constant η, we denote by T nη (X) the set of (PX , η)-

typical sequences in X n:

T nη (X) , {xn ∈ X n : |π(a|xn)− PX(a)| ≤ ηPX(a),∀a ∈ X} .

In the same manner, we use T̃ nη (X) to denote the set of (P̃X , η)-typical sequences. Note that

when η = 0, T n0 (X) denote the set of sequences xn ∈ X n of type PX , and we use T n(X)

for simplicity.

Furthermore, for yn ∈ Yn, we define T nη (X|yn) as the set of all xns that are jointly

typical with yn:

T nη (X|yn) = {xn ∈ X n : (xn, yn) ∈ T nη (XY )}. (2.10)

We use the following lemma to summarize key properties of typical sequences. More details

can be found in [11].

Lemma 2.1. ([16]) Let λ > 0 be arbitrary.

(1) P n
X(T nη (X)) ≥ 1− λ.
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(2) Let X(n) be a type variable for a sequence in X n, then

(n+ 1)−|X | exp[nH(X(n))] ≤ |T n0 (X(n))| ≤ exp[n(H(X(n)))]. (2.11)

(3) Let xn ∈ X n and X be a random variable in X , then

Pr(Xn = xn) = exp [−n(H(X(n)) +D(X(n)||X)) ]. (2.12)

2.3.2 r-divergent Sequence

The concept of r-divergent sequences also plays an important role in the following devel-

opment. Here, we review the definition and some important properties of r-divergent se-

quences. More details and properties of r-divergent sequences can be found in [16].

Definition 2.1. ([16]) Let X be a random variable taking values in a finite set X with PMF

PX , and r ≥ 0. An n-sequence xn = (x1, . . . , xn) ∈ X n is called r-divergent sequence for

X if

D(X(n)||X) ≤ r, (2.13)

where X(n) is the type variable of xn and D(·||·) is the Kullback-Leibler (KL) divergence

of the two random variables involved. The set of all r-divergent sequences is denoted by

Snr (X).

In particular, Sn0 (X) (i.e., r = 0) represents the set of all xn sequences such that tp(xn) =

PX , i.e. Sn0 (X) = T n0 (X). The following lemma from[16] summarizes key properties of r-

divergent sequences.

Lemma 2.2. ([16]) Let r > 0 be fixed.

(1) P n
X(Snr (X)) ≥ 1− (n+ 1)|X | exp(−nr).
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(2) Let X(n) be a type variable for a sequence in X n, then

(n+ 1)−|X | exp[nH(X(n))] ≤ |Sn0 (X(n))| ≤ exp[n(H(X(n)))]. (2.14)

(3) Let An be a subset of X n and

P n
X(An) ≥ 1− exp(−nr) (2.15)

holds. Let An(X(n)) , An ∩ Sn0 (X(n)), we have

|An(X(n))| ≥
(
1− (n+ 1)|X | exp[−n(r − cn)]

)
|Sn0 (X(n))| (2.16)

with cn = D(X(n)||X).

2.4 Testing under Zero-rate Compression with Exponential-

type Constraints

In this section, we focus on the “zero-rate” compression, i.e., R1 = · · · = RL = 0 under the

exponential-type constraint. More specifically, we assume

as n→∞, Ml →∞, (2.17)

but

Rl =
1

n
logMl ↓ 0, l = 1, · · · , L. (2.18)

In this case, σ(R1, · · · , RL, r) will be denoted as σ(0, · · · , 0, r). This zero-rate compression

is of practical interest, as the normalized (normalized by the length of the data) communica-

tion cost is minimal. It is well-known that in the traditional distributed source coding with

side information problems [11, 37], whose goal is to recover (Xn
1 , · · · , Xn

L) at terminal Y ,
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this zero-rate information is not useful. However, in our setup, the goal is only to determine

which hypothesis is true. This zero-rate information will be very useful.

The scenario with zero-rate compression under the constant-type constraint has been

considered in [34]. We will discuss the scenario with zero-rate compression under the

exponential-type constraint (2.9).

In the following subsections, we first review several concepts that are useful for our

development. We then characterize the type 2 error exponent with L = 2 before extending

the result to the general case.

2.4.1 The Case with L = 2

In this subsection, to assist the presentation, we first focus on the case with L = 2 and

provide details on how to characterize σ(0, 0, r). We will then discuss the general case in

Section 2.4.2.

We first establish an upper bound on the error exponent that any scheme can achieve.

We will follow the similar strategy as in [15]. In particular, we will first convert a problem

with the exponential-type constraint to a corresponding problem with the constant-type con-

straint. We then obtain an upper bound on the error exponent using the results in [34] for the

constant-type constraint.

Theorem 2.1. Let PX1X2Y be arbitrary and QX1X2Y > 0. For zero-rate compression in

SX1X2|Y with R1 = R2 = 0, the error exponent satisfies

σ(0, 0, r) ≤ σopt, (2.19)

in which

σopt , min
P̃X1X2Y

∈Hr
D
(
P̃X1X2Y ||QX1X2Y

)
(2.20)
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with

Hr =
{
P̃X1X2Y : P̃X1 = P̂X1 , P̃X2 = P̂X2 , P̃Y = P̂Y for some P̂X1X2Y ∈ ϕr

}
, (2.21)

ϕr =
{
P̂X1X2Y : D(P̂X1X2Y ||PX1X2Y ) ≤ r

}
. (2.22)

Proof. Please refer to Appendix A.1.

Figure 2.2: σopt for zero-rate hypothesis testing

Figure 2.2 illustrates a geometric interpretation of σopt. In a centralized detection prob-

lem,Xn
1 , X

n
2 and Y n are all available to the decision maker, so the decision maker knows the

joint distribution of the observations. Setting the acceptance region as all observations whose

empirical joint PMF having a KL-divergence to PX1X2Y less than or equal to r, expressed

by ϕr in Figure 2.2, then the best type 2 error exponent is the dashed line from QX1X2Y to

ϕr in Figure 2.2, denoted as σ′opt. In our distributed setting, different sequences are observed

at different terminals and sent to the decision maker using zero-rate compression. Hence,

the decision maker only gets the information about the marginal empirical PMF of the ob-

servations. Consequently, we should search over all joint distributions that have the same

marginal distributions with the ones in ϕr, which is the region Hr. Therefore, the best type

2 error exponent is the solid line from QX1X2Y toHr.

Now, we present a scheme that can achieve the type 2 error exponent characterized in

Theorem 2.1. Instead of showing that σ(0, 0, r) ≥ σopt directly, we show that σopt is achiev-
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Figure 2.3: Model for achievability in zero-rate compression

able in a transformed model. The original model with L = 2 is shown in Figure 2.3 (a),

denoted as SX1X2|Y . In the original model, the decision maker is located in terminal Y , so

it has full access to Y n. This model can also be viewed as a scenario in which the decision

maker is located in a separate terminal and terminal Y also sends encoded messages to the

decision maker, but its rate R is so large (R ≥ log |Y|) that the decision maker can fully

recover Y n. This new view is shown in Figure 2.3 (b). Therefore, the two system shown in

Figure 2.3 (a) and (b) are equivalent, resulting in σ(0, 0, r) = σ(0, 0, log |Y|, r). However,

if the rate for terminal Y is not large enough, such as R = 0, which is shown in Figure

2.3 (c), then the decision maker cannot fully recover Y n, thus it has less information than

the decision maker in Figure 2.3 (b), and yields a larger error probability. Hence, we have

σ(0, 0, r) = σ(0, 0, log |Y|, r) ≥ σ(0, 0, 0, r). We denote the system in Figure 2.3 (b) and (c)

as SX1X2Y . If we can show that σ(0, 0, 0, r) ≥ σopt in SX1X2Y , then we have σ(0, 0, r) ≥ σopt

in SX1X2|Y .

In the following, we will describe a scheme to show that σ(0, 0, 0, r) ≥ σopt in SX1X2Y .

Before proceeding to the formal proof, we first describe the high level idea of the scheme.

After observing xni , terminal Xi knows the type tp(xni ) and sends tp(xni ) (or an approxima-

tion of it, see below) to the decision maker. Terminal Y does the same. As there are at most

n|Xi| types [9], the rate required for sending the type from terminalXi is (|Xi| log n)/n, which
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goes to zero as n increases. After receiving all type information from the terminals, the de-

cision maker will check whether there is a joint type P̃X1X2Y ∈ Hr such that its marginal

types are the same as the information received from the terminals. If yes, the decision maker

declares H0 to be true, otherwise declares H1 to be true. If the message size Mi is less than

n|Xi|, then instead of the exact type information tp(xni ), each terminal will send an approx-

imated version. Details on how to approximate the type will be provided in the proof. As

long as Mi → ∞, the approximation will be close (to be made precise in the proof) to the

true type, and hence the decision maker can still use the above mentioned decision rule. We

will show that this scheme can achieve σopt in SX1X2Y .

The following theorem provides details about the above mentioned idea.

Theorem 2.2. For zero-rate compression in SX1X2Y with R1 = R2 = R = 0, the error

exponent satisfies

σ(0, 0, 0, r) ≥ σopt (2.23)

where σopt is defined as (2.20).

Proof. First, define g-distance from any joint distribution to PX1X2Y as

g
(
X̃1, X̃2, Ỹ

)
= min

P̂X1X2Y

P̂X1 = P̃X1

P̂X2
= P̃X2

P̂Y = P̃Y

D
(
P̂X1X2Y ||PX1X2Y

)
(2.24)

which is continuous in
(

(P̃X1)x1∈X1 , (P̃X2)x2∈X2 , (P̃Y )y∈Y

)
.

Next, divide the (|X1|+ |X2|+ |Y|) dimensional unit cube into equal-sizedM1×M2×M

small cells with each edge of length κ1 along the first |X1| components, each edge of length

κ2 along the |X2| components and each edge of length τ along the |Y| components, where

κ1 = M
−1/|X1|
1 , κ2 = M

−1/|X2|
2 , τ = M−1/|Y|,
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in which

M1 →∞,M2 →∞,M →∞, (2.25)

but logMi/n→ 0 for i = 1, 2 and logM/n→ 0, as n→∞ (i.e., zero-rate compression for

all three terminals).

Choose and fix a representative point in each cell for every set of variables (X̃1, X̃2, Ỹ ).

Then in a given cell, we make its representative variable set (X̌1, X̌2, Y̌ ) correspond in

such a way that((P̌X1)x1∈X1 , (P̌X2)x2∈X2 , (P̌Y )y∈Y) is the representative point of ((P̃X1)x1∈X1 ,

(P̃X2)x2∈X2 , (P̃Y )y∈Y). For each terminal, after observing its sequence, determines its type

and then finds the index of the corresponding edge. Each terminal then sends the index to

the decision maker. After receiving all the indexes, the decision maker can determine the

cell index. Since we have assumed (2.25), we see that with any η > 0

|P̃X1 − P̌X1| < η, x1 ∈ X1, (2.26)

|P̃X2 − P̌X2| < η, x2 ∈ X2, (2.27)

|P̃Y − P̌Y | < η, y ∈ Y , (2.28)

for sufficiently large n ≥ n0(η). Furthermore, the continuity of g(X̃1, X̃2, Ỹ ) in (X̃1, X̃2, Ỹ )

yields

|g(X̃1, X̃2, Ỹ )− g(X̌1, X̌2, Y̌ )| < η. (2.29)

Denoting by (X̌
(n)
1 , X̌

(n)
2 , Y̌ (n)) the representative point of (X

(n)
1 , X

(n)
2 , Y (n)) whereX(n)

1 ,

X
(n)
2 and Y (n) are the type variables of xn1 ∈ X n

2 , xn2 ∈ X n
2 and yn ∈ Yn respectively, we set

an acceptance region

An =
{

(xn1 , x
n
2 , y

n) : g(X̌
(n)
1 , X̌

(n)
2 , Y̌ (n)) ≤ r + 2η

}
.
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More precisely, our decoding scheme is as follows. Upon receiving (M1,M2,M), find the

representative point and its joint distribution. Then calculate the g-distance from this joint

distribution to PX1X2Y . If the g-distance is less than or equal to r+ 2η, then we decide H0 is

true and vice versa. In other words, we first find the region of joint distributions which has a

g-distance to PX1X2Y less than or equal to r+2η, which is visualized in Figure 2.4 asHr+2η.

Then after knowing the joint distribution of the representative point, we can tell whether it is

in Hr+2η or not. If it is in Hr+2η, we decide H0 is true and vice versa. In Figure 2.4, we use

a square region to denote all possible joint distributions of the representative points.

Figure 2.4: Visualization of acceptance region

Now we analyze the two types of error probability. For any ρ > 0 set

ξρ =
{

(xn1 , x
n
2 , y

n) : g(X
(n)
1 , X

(n)
2 , Y (n)) ≤ ρ

}
;

then in view of (2.29) it is clear that

ξr+η ⊂ An ⊂ ξr+3η (2.30)

It is easy to see that (xn1 , x
n
2 , y

n) ∈ ξr+η if (xn1 , x
n
2 , y

n) ∈ Snr+η(X1X2Y ), that is Snr+η(X1X2Y )
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⊂ ξr+η, which yields

1− αn = P n
X1X2Y

(An) ≥ 1− exp(−nr)

for n large enough. Hence, the constraint (2.9) is satisfied.

On the other hand, from the second inclusion in (2.30),

βn = Qn
X1X2Y

(An)

≤ Qn
X1X2Y

(ξr+3η)

≤
∑

X
(n)
1 X

(n)
2 Y (n)

g(X
(n)
1 , X

(n)
2 , Y (n)) ≤ r + 3η

exp
(
−nD

(
X

(n)
1 X

(n)
2 Y (n)||QX1X2Y

))

≤ (n+ 1)|X1||X2||Y| max
X

(n)
1 X

(n)
2 Y (n)

g(X
(n)
1 , X

(n)
2 , Y (n)) ≤ r + 3η

exp
(
−nD

(
X

(n)
1 X

(n)
2 Y (n)||QX1X2Y

))

≤ (n+ 1)|X1||X2||Y| exp

−n
 min

X̃1X̃2Ỹ

g(X̃1, X̃2, Ỹ ) ≤ r + 3η

D
(
X̃1X̃2Ỹ ||QX1X2Y

)

 .

Therefore,

σ(0, 0, 0, r) ≥ min
P̃X1X2Y

∈Hr+3η

D
(
P̃X1X2Y ||QX1X2Y

)
,

which establishes (2.23) if we let η → 0.

As σ(0, 0, r) = σ(0, 0, log |Y|, r). From Theorem 2.2, we have

σ(0, 0, r) = σ(0, 0, log |Y|, r) ≥ σ(0, 0, 0, r) ≥ σopt.

Coupled with Theorem 2.1, we have:

Theorem 2.3. Let PX1X2Y be arbitrary and QX1X2Y > 0. For zero-rate compression in
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SX1X2|Y with R1 = R2 = 0 and type 1 error constraint (2.9), the best type 2 error exponent

σ(0, 0, r) = σopt. (2.31)

where σopt is defined as (2.20).

Proposition 2.1. Given PX1X2Y and QX1X2Y , the problem of finding σopt defined in (2.20)

is a convex optimization problem.

Proof. First, givenQX1X2Y , it is easy to verify that the objective functionD(P̃X1X2Y ||QX1X2Y )

in (2.20) is a convex function of P̃X1X2Y .

Then, we show that the feasible setHr defined in (2.21) is also convex. Suppose P̃ ′X1X2Y
∈

Hr and P̃ ′′X1X2Y
∈ Hr, and P̃ ′X1X2Y

has the same marginal PMFs with P̂ ′X1X2Y
∈ ϕr, and

P̃ ′′X1X2Y
has the same marginal PMFs P̂ ′′X1X2Y

∈ ϕr. Setting

P̃ ′′′X1X2Y
= πP̃ ′X1X2Y

+ (1− π)P̃ ′′X1X2Y
,

for 0 ≤ π ≤ 1, we will show that P̃ ′′′X1X2Y
∈ Hr, i.e. Hr is a convex set. As we have

P̃ ′′′X1
= πP̃ ′X1

+ (1− π)P̃ ′′X1
= πP̂ ′X1

+ (1− π)P̂ ′′X1
,

and similar results with P̃ ′′′X2
and P̃ ′′′Y , we can conclude that P̃ ′′′X1X2Y

has the same marginal

distribution as πP̂ ′X1X2Y
+(1−π)P̂ ′′X1X2Y

. Due to the convexity ofD(P̂X1X2Y ||PX1X2Y ) with

respect to P̂X1X2Y for a given PX1X2Y , we have (πP̂ ′X1X2Y
+ (1 − π)P̂ ′′X1X2Y

) ∈ ϕr. This

implies that P̃ ′′′X1X2Y
∈ Hr, and henceHr is a convex set.

As the result, for any given PX1X2Y and QX1X2Y , characterizing σopt is a convex opti-

mization problem and can be solved efficiently.
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2.4.2 General Case

The results of the previous section can be extended to the general case with L terminals. We

have the following theorem, whose proof follows the similar steps as in those in Section 2.4.1

and hence is omitted for conciseness.

Theorem 2.4. Let PX1,··· ,XLY be arbitrary and QX1,··· ,XLY > 0. For zero-rate compression

in SX1···XL|Y with Ri = 0, i = 1, · · · , L and type 1 error constraint (2.9), the best type 2

error exponent

σ(0, · · · , 0, r) = min
P̃X1···XLY ∈Hr

D
(
P̃X1···XLY ||QX1···XLY

)
(2.32)

where

Hr =
{
P̃X1···XLY : P̃Xi = P̂Xi , P̃Y = P̂Y , i = 1, · · · , L for some P̂X1···XLY ∈ ϕr

}
, (2.33)

ϕr =
{
P̂X1···XLY : D(P̂X1···XLY ||PX1···XLY ) ≤ r

}
. (2.34)

Similar to (2.20), characterizing (2.32) is a convex optimization problem, hence it can be

solved efficiently.

2.5 Testing against Independence with Constant-type Con-

straints

In this section, we consider the scenario with positive communication rate constraints, i.e.,

Rl > 0, l = 1, · · · , L, under the constant-type constraint on the type 1 error probability. As

the general case is a very complex problem even for L = 1 [15], we focus on the testing

against independence case in which we are interested in determining whether X1, · · · , XL
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and Y are independent or not. Hence, the two hypotheses are

H0 : PX1···XLY , H1 : QX1···XLY = PX1···XLPY .

Note that the marginal distribution of (X1, · · · , XL) and Y are the same under both

hypotheses in the case of testing against independence.

To facilitate the presentation, in the following, we only provide details for the L = 2 case.

The results can be extended to the general L case with proper modifications. For L = 2, our

goal is to characterize θ(R1, R2, ε) under αn ≤ ε and communication constraints (2.3).

Compared with the zero-rate compression case discussed in Section 2.4, in this scenario,

each terminal can convey more information to the decision maker as the communication rate

constraint Rl > 0 is less strict. Before presenting the formal proof, we first describe high

level ideas on how to exploit the more flexible rate constraints (terms in the following will

be made precise in the proof). For a given rate constraint Rl, terminal Xl first generates a

quantization codebook containing 2nRl quantization sequences. After observing xnl , terminal

Xl picks one sequence unl from the quantization codebook to describe xnl and sends this

sequence to the decision maker. After receiving the descriptions from terminals, the decision

maker will declare that the hypothesis H0 is true if the descriptions from these terminals and

the side-information at the decision maker are correlated. Otherwise, the decision maker

will declare H1. The following theorem provides details of the scheme and error probability

analysis.

Theorem 2.5. In system SX1X2|Y with Rl > 0, l = 1, 2, constraint on type 1 error prob-

ability (2.8) and communication constraints (2.3), the error exponent of the type 2 error

probability is lower bounded by

θ(R1, R2, ε) ≥ max

PU1|X1PU2|X2

I(U1U2;Y ), (2.35)
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in which the maximization is over PUl|Xi’s such that I(Ul;Xl) ≤ Rl and |Ul| ≤ |Xl|+ 1.

Proof. In the following, η > η′ > η′′ > η′′′ are given small numbers.

Codebook generation. Fix a conditional PMF PU1U2|X1X2Y = PU1|X1PU2|X2 that at-

tains the maximum in (2.35). Let PU1(u1) =
∑

x1
PX1(x1)PU1|X1(u1|x1) and PU2(u2) =∑

x2
PX2(x2)PU2|X2(u2|x2). Randomly and independently generate b2nR1c sequences un1 (m1),

m1 ∈ {1, · · · , b2nR1c} each according to
∏n

i=1 PU1(u1i). Randomly and independently gen-

erate b2nR2c sequences un2 (m2), m2 ∈ {1, · · · , b2nR2c} each according to
∏n

i=1 PU2(u2i).

These sequences constitute the codebook c, which is revealed to all terminals. We use C to

denote the set of all possible codebooks.

Encoding for terminal X1. After observing sequence xn1 , terminal X1 finds a un1 (m1)

such that (xn1 , u
n
1 (m1)) ∈ T nη′′′(U1X1), and sends the index m1 to terminal Y . If there is more

than one such index, it sends the smallest one among them. If there is no such index, sends

0.

Encoding for terminal X2. Similarly, after observing a sequence xn2 , terminal X2 finds

a un2 (m2) such that (xn2 , u
n
2 (m2)) ∈ T nη′′′(U2X2), then it sends the index m2 to terminal Y . If

there is more than one such index, it sends the smallest one among them. If there is no such

index, it sends 0.

Testing. Upon receiving m1 and m2, terminal Y sets the acceptance region An for H0 to

An =
{

(m1,m2, y
n) : (un1 (m1), un2 (m2), yn) ∈ T nη (U1U2Y )

}
. (2.36)

This implies that terminalY decides Ĥ = H0 if and only if no 0 is received and (un1 (m1), un2 (m2),

yn) ∈ T nη (U1U2Y ).

Error probability analysis. Terminal Y chooses Ĥ 6= H0 if and only if one or more of

the following events occur:

ε1 =
{

(Un
1 (m1), Xn

1 ) /∈ T nη′′′ for all m1 ∈ [1 : b2nR1c]
}
,
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ε2 =
{

(Un
2 (m2), Xn

2 ) /∈ T nη′′′ for all m2 ∈ [1 : b2nR2c]
}
,

ε3 =
{

(Un
1 (M1), Un

2 (M2), Y n) /∈ T nη (U1U2Y )
}
.

Hence, An = (ε1 ∪ ε2 ∪ ε3)c.

For any particular codebook c ∈ C, we use αnc and βnc to denote the type 1 and the type

2 error probabilities respectively. In the following, we will first compute the probabilities of

two types of errors averaged over all possible codebooks:

E{αnc} =
∑
c∈C

αncPr(c), (2.37)

E{βnc} =
∑
c∈C

βncPr(c). (2.38)

We will then argue that there exists a particular codebook c∗ that has the desired properties.

a) Type 1 error probability: To analyze the type 1 error probability, we have

E{αnc} = P n
X1X2Y

(Acn) = P n
X1X2Y

(ε1 ∪ ε2 ∪ ε3)

≤ P n
X1X2Y

(ε1) + P n
X1X2Y

(ε2) + P n
X1X2Y

(εc1 ∩ εc2 ∩ ε3).

We now bound each term.

(1) By the covering lemma [11, Section 3.7], P n
X1X2Y

(ε1) → 0 as n → ∞ if R1 ≥

I(U1;X1) + δ(η) and P n
X1X2Y

(ε2)→ 0 as n→∞ if R2 ≥ I(U2;X2) + δ(η).

(2) To bound the last term, we need three steps, each of which uses a version of the Markov

lemma [11, Section 12.1].

Step 1: Show that (Un
2 (M2), Xn

1 , X
n
2 ) ∈ T nη′′(U2X1X2) with a probability tends to 1 as

n increases.

Since Xn
2 |{Un

2 (M2) = un2 , X
n
1 = xn1} ∼

∏n
i=1 PX2|X1(x2i|x1i) and η′′ > η′′′, by the

Markov lemma, Pr{(Un
2 (M2), Xn

1 , X
n
2 ) /∈ T nη′′} tends to zero as n→∞.
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Step 2: Show that (Un
1 (M1), Un

2 (M2), Xn
1 , X

n
2 ) ∈ T nη′(U1U2X1X2) with a probability

tends to 1 as n increases.

From the distribution we draw Un
1 (M1) and Un

2 (M2), we have the Markov chain

Un
2 (M2)↔ Xn

2 ↔ Xn
1 ↔ Un

1 (M1).

As (un2 , x
n
1 , x

n
2 ) ∈ T nη′′(U2X1X2) and from the Markov chain we know that

Pr{Un
1 (M1) = un1 |Un

2 (M2) = un2 , X
n
1 = xn1 , X

n
2 = xn2} = Pr{Un

1 (M1) = un1 |xn1}.

By the covering lemma, Pr{(xn1 , Un
1 ) ∈ T nη′′(U1X1)} converges to 1 as n → ∞, that

is Pr{Un
1 (M1) = un1 |xn1} satisfies the first condition in the Markov lemma. Then we

show that it also satisfies the second condition in the Markov lemma.

For all un1 ∈ T nη′′(U1|xn1 ),

Pr{Un
1 (M1) = un1 |Xn

1 = xn1}

= Pr{Un
1 (M1) = un1 , U

n
1 (M1) ∈ T nη′′(U1|xn1 )|Xn

1 = xn1}

= Pr{Un
1 (M1) ∈ T nη′′(U1|xn1 )|Xn

1 = xn1}

×Pr{Un
1 (M1) = un1 |Un

1 (M1) ∈ T nη′′(U1|xn1 ), Xn
1 = xn1}

≤ Pr{Un
1 (M1) = un1 |Un

1 (M1) ∈ T nη′′(U1|xn1 ), Xn
1 = xn1}

=
∑
m1

Pr{Un
1 (M1) = un1 ,M1 = m1|Un

1 (M1) ∈ T nη′′(U1|xn1 ), Xn
1 = xn1}

=
∑
m1

Pr{Un
1 (M1) = un1 |Un

1 (M1) ∈ T nη′′(U1|xn1 ), Xn
1 = xn1 ,M1 = m1}

×Pr{M1 = m1|Un
1 (M1) ∈ T nη′′(U1|xn1 ), Xn

1 = xn1}
(a)
=
∑
m1

Pr{Un
1 (m1) = un1 |Un

1 (m1) ∈ T nη′′(U1|xn1 )}

×Pr{M1 = m1|Un
1 (M1) ∈ T nη′′(U1|xn1 ), Xn

1 = xn1}
(b)

≤
∑
m1

Pr{M1 = m1|Un
1 (M1) ∈ T nη′′(U1|xn1 ), Xn

1 = xn1}2−n(H(U1|X1)−δ(η′′))
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= 2−n(H(U1|X1)−δ(η′′)),

where (a) follows since

Pr{Un
1 (M1) = un1 |Un

1 (M1) ∈ T nη′′(U1|xn1 ), Xn
1 = xn1 ,M1 = m1}

= Pr{Un
1 (m1) = un1 |Un

1 (m1) ∈ T nη′′(U1|Xn
1 = xn1 ), Xn

1 = xn1 ,M1 = m1}

= Pr{Un
1 (m1) = un1 |Un

1 (m1) ∈ T nη′′(U1|xn1 )}.

(b) follows from properties of typical sequences. Similarly, we can also prove that for

every un1 ∈ T nη′′(U1|xn1 ) and n sufficiently large,

Pr{Un
1 (M1) = un1 |Xn

1 = xn1} ≥ (1− η′′)2−n(H(U1|X1)+δ(η′′)).

Hence, this satisfies the second condition in the Markov Lemma. By the Markov

lemma, we have (Un
1 (M1), Un

2 (M2), Xn
1 , X

n
2 ) ∈ T nη′(U1U1X1X2).

Step 3: Show that(Y n, Un
1 (M1), Un

2 (M2)) ∈ T nη (U1U2Y ) with a probability tends to 1

as n increases.

First, (Un
1 (M1), Un

2 (M2))↔ (Xn
1 , X

n
2 )↔ Y n forms a Morkov chain as (Un

1 (M1), Un
2 (M2))

is a function of (Xn
1 , X

n
2 ). According to Step 1 and Step 2, we have (Un

1 (M1), Un
2 (M2), Xn

2 ,

Xn
1 ) ∈ T nη′(U1U2X1X2), and Y n is drawn ∼

∏n
i=1 PY |X1X2(yi|x1i, x2i), hence, by the

Markov lemma, we have (Y n, Un
1 (M1), Un

2 (M2)) ∈ T nη (U1U2Y ) with a probability

tends to 1 as n increases. This implies that P n
X1X2Y

(εc1 ∩ εc2 ∩ ε3) tends to 0 as n

increases.

Combining all steps above, we have that αn ↓ 0 as n increases, hence the type 1 error

probability constraint is satisfied.

b) Type 2 error probability: For the type 2 error probability, assume in this case that H1
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is true. Then

E{βnc} = (PX1X2PY )n(An) = (PX1X2PY )n(εc1 ∩ εc2 ∩ εc3)

= (PX1X2PY )n(εc1)× (PX1X2PY )n(εc2)× (PX1X2PY )n(εc3|εc1 ∩ εc2)

We now bound each factor.

(1) By the covering lemma, (PX1X2PY )n(εc1) → 1 as n → ∞ if R1 ≥ I(U1;X1) + δ(η)

and (PX1X2PY )n(εc2)→ 1 as n→∞ if R2 ≥ I(U2;X2) + δ(η).

(2) For the third term, we have

(PX1X2PY )n(εc3|εc1 ∩ εc2)

=
∑

(un1 ,u
n
2 ,y

n)∈Tnη

(PX1X2PY )n{Un
1 (M1) = un1 , U

n
2 (M2) = un2 , Y

n = yn|εc1 ∩ εc2}

=
∑

(un1 ,u
n
2 ,y

n)∈Tnη

P n
X1X2
{Un

1 (M1) = un1 , U
n
2 (M2) = un2 |εc1 ∩ εc2} × P n

Y {Y n = yn|εc1 ∩ εc2}

≤ 2n(H(U1U2Y )+δ(η))2−n(H(U1U2)−δ(η′))2−n(H(Y )−δ(η′))

= 2−n(I(U1U2;Y )−δ(η)).

Combining the bounds on the three factors, we have

E{βnc} ≤ 2−n(I(U1U2;Y )−δ(η)).

c) Existence of a particular codebook: In summary, combining a) and b) above, we

know that, if R1 ≥ I(U1;X1) and R2 ≥ I(U2;X2), we have

E{αnc} =
∑
c∈C

αncPr(c) ≤ ε, (2.39)

E{βnc} =
∑
c∈C

βncPr(c) ≤ 2−n(I(U1U2;Y )−δ(ε)). (2.40)
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Let ε0 = ε/3 and define

C1 , {c : αnc ≤ 3ε0},

C2 ,
{
c : βnc ≤ 3× 2−n(I(U1U2;Y )−δ(ε0))

}
.

As (2.39) and (2.40) are true for any ε, then (2.39) and (2.40) hold for ε0 = ε/3 when n

is sufficiently large. Then for the type 1 error probability, we have

ε0 ≥ E{αnc} =
∑
c∈C

αncPr(c)

=
∑
c∈C1

αncPr(c) +
∑
c∈C̄1

αncPr(c)

≥
∑
c∈C1

αncPr(c) + 3ε0Pr{C̄1}.

This implies Pr{C̄1} ≤ 1/3, i.e.,

Pr{C1} ≥ 2/3.

Similarly for the type 2 error probability, we have

Pr {C2}

= Pr
{
c : βnc ≤ 2−n(I(U1U2;Y )−δ(ε0)+ log 3

n
)
}

= Pr
{
c : βnc ≤ 2−n(I(U1U2;Y )−δ(ε∗0))

}
≥ 2/3.

Therefore

Pr{C1 ∩ C2} ≥ 1/3,
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which implies that there exists a codebook c∗ such that

θ(R1, R2, ε) ≥ I(U1U2;Y ),

R1 ≥ I(U1;X1),

R2 ≥ I(U2;X2).

Now we have shown that

αn = P n
X1X2Y

(Acn) ≤ ε, (2.41)

βn = Qn
X1X2Y

(An) ≤ 2−n(I(U1U2;Y )−δ(η)), (2.42)

if the conditions specified in the theorem are satisfied. Hence, we have (2.35).

Finally, we establish an upper bound on the type 2 error exponent that any scheme can

achieve.

Theorem 2.6. In system SX1X2|Y with Rl ≥ 0, l = 1, 2, the constraint on type 1 error

probability (2.8) and the communication constraints (2.3), the best error exponent for type 2

error probability

lim
ε→0

θ(R1, R2, ε) ≤ max
U1U2

I(U1U2;Y ) (2.43)

in which the maximization is over Ul’s such that Ri ≥ I(Ul;Xl), |Ul| ≤ |Xl| + 1, U1 →

X1 → (X2, Y ) and U2 → X2 → (X1, Y ).

Proof. We will show that for any encoding and decoding scheme that satisfies the type 1

error constraint αn ≤ ε and rate constraints (2.3), the type 2 error exponent must satisfy

(2.43).
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First, for any scheme that satisfies the type 1 error and rate constraints, we have

D(PM1M2Y n||PM1M2PY n)

=
∑

(m1,m2,yn)∈An

PM1M2Y n log
PM1M2Y n

PM1M2PY n
+

∑
(m1,m2,yn)∈Acn

PM1M2Y n log
PM1M2Y n

PM1M2PY n

(a)

≥ (1− αn) log
1− αn
βn

+ αn log
αn

1− βn
= (1− αn) log

1

βn
+ αn log

1

1− βn
−H(αn)

≥ (1− αn) log
1

βn
−H(αn)

(b)

≥ (1− ε) log
1

βn
−H(αn).

where Ml = fl(X
n
l ), l = 1, 2, αn and βn are defined in (2.6) and (2.7), and H(αn) is

H(αn) , −(1− αn) log(1− αn)− αn logαn. (2.44)

In the derivation above, (a) is true due to the log sum inequality [11] and (b) follows by the

constraint (2.8).

Hence we have the following upper bound

lim
ε→0

θ(R1, R2, ε) ≤ lim
n→∞

1

n
D(PM1M2Y n||PM1M2PY n)

= lim
n→∞

1

n
I(M1M2;Y n)

= lim
n→∞

1

n
(H(Y n)−H(Y n|M1M2))

= H(Y )− lim
n→∞

1

n
H(Y n|M1M2). (2.45)

If we simplify 1
n
H(Y n|M1M2), we obtain the desired bound. In Appendix A.2, we show

that

1

n
H(Y n|M1M2) = H(Y |U1U2),
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for properly chosen U1U2 satisfying the conditions specified in the statement of theorem.

Combing this with (2.45), we obtain the desired result.

2.6 Numerical Results

In this section, we provide numerical results to illustrate the application of the theories de-

veloped in Section 2.4 and Section 2.5.

2.6.1 Numerical Results for Testing with Zero-rate Compression under

Exponential-type Constraints

In Figure 2.5, we illustrate σopt, namely the optimal type 2 error exponent characterized in

Theorem 2.3, as a function of the type 1 error exponent constraint r. For comparison, we also

plot the corresponding curve for the centralized case. In the figure, the solid line represents

σopt and the dashed line is the optimal type 2 error exponent for the centralized case. In

generating Figure 2.5, we set X1, X2 and Y as binary random variables. Furthermore, we

set

PX1X2Y =

{
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8

}
and

QX1X2Y =

{
1

12
,

1

12
,

5

72
,

7

72
,
1

6
,
1

6
,
1

6
,
1

6

}
.

It is easy to verify that D(PX1X2Y ||QX1X2Y ) = 0.0624. From Figure 2.5, we can see that

the type 2 error exponent obtained in the distributed case is smaller than that of the cen-

tralized case for every r. This is reasonable as in the centralized case, the decision maker

has full access to all observations and hence makes less error. Furthermore, the type 2 er-

ror exponents for both settings are close to 0 when r > 0.062, which makes sense as when

r > D(PX1X2Y ||QX1X2Y ), no matter what observation is observed, the decision maker de-

cides H0 is true.
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Figure 2.5: σ(0, 0, r) vs r with D (PX1X2Y ||QX1X2Y ) = 0.0624

Figure 2.6: σ(0, 0, r) vs r with D (PX1X2Y ||QX1X2Y ) = 0.0588
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Figure 2.6 illustrates σopt for different PMFs. In generating Figure 2.6, we keep PX1X2Y

same as above, but change QX1X2Y to

QX1X2Y =

{
1

12
,

1

12
,

1

12
,

1

12
,
1

6
,
1

6
,
1

6
,
1

6

}
.

In this case, D(PX1X2Y ||QX1X2Y ) = 0.0588. From Figure 2.6, we can see that the type

2 error exponent obtained in the distributed setting is quite close to that of the centralized

case. This implies that, for certain PMFs, the distributed setting with a proper zero-rate

compression can achieve a performance close to that of the centralized setting.

2.6.2 Numerical Results for Testing against Independence under Constant-

type Constraints

In Figure 2.7, we illustrate θ(R1, R2, ε) discussed in Theorem 2.5 as a function of the rate

constraints. In generating this figure, we again set X1, X2 and Y to be binary random

variables and set

PX1X2Y =

{
1

6
,
1

3
,

1

12
,
1

6
, 0, 0,

1

8
,
1

8

}
,

from which one can calculate QX1X2Y = PX1X2PY . Furthermore, to make the computation

feasible, we assume |Ul| = |Xl| = 2 in the simulation. In order to visualize the result better,

we make R1 = R2 = R. Hence, we demonstrate a lower bound on the type 2 error exponent

achievable using our scheme.

From Figure 2.7, we can see that the type 2 error exponent increases as R increases,

which makes sense as the constraint is relaxed, the decision maker can get more information

about Xn
1 and Xn

2 , and thus make less error. Furthermore, when R is large enough, the

decision maker can fully recover Xn
1 and Xn

2 , which is then the same as the centralized

setting. According to Stein’s lemma, in the centralized setting, the type 2 error exponent

equals D(PX1X2Y ||PX1X2PY ). In our simulation, D(PX1X2Y ||PX1X2PY ) = 0.2229, and we
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can see that the maximum value in Figure 2.7 is quite close to 0.2229.

Figure 2.7: θ(R1, R2, ε) vs R = R1 = R2 with D(PX1X2Y ||QX1X2Y ) = 0.2229

2.7 Conclusion

In this chapter, we have discussed distributed inference problems with non-interactive en-

coders. Using properties of r-divergence sequences, we have characterized the best error ex-

ponent of the type 2 error probability under the zero-rate compression and exponential-type

type 1 error probability constraints. Furthermore, we have discussed the problem of testing

against independence under the constant-type constraint on the type 1 error probability. We

have derived a lower bound and upper-bound on the type 2 error exponent.
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Chapter 3

Distributed Testing with Cascaded

Encoders

3.1 Introduction

In this chapter, we discuss the distributed hypothesis testing with cascaded encoders.

We first focus on the problem of testing against independence. This work builds upon

Section 2.5, in which we studied the testing against independence case with non-interactive

communication. Compared with Section 2.5, this work allows cascaded communication for

terminals Xl, l = 1, · · · , L, so that terminal Xl can utilize the information from terminals

Xl′ , l′ = 1, · · · , l − 1, when it performs encoding. The cascaded communication results in

two major differences with the cases using non-interactive communication in [1] and Section

2.5. First, in the non-interactive communication case, one typically converts the testing

against independence problem to the problem of source coding with a helper [1], then uses

the corresponding results in the source coding with a helper problem to characterize the

type 2 error exponent. However, if we follow a similar strategy, then the problem will be

related to a source coding with multiple helpers problem, which is still an open problem

in network information theory. Second, in the existing work with multiple terminals under
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non-interactive communication as studied in Section 2.5, the type 2 error exponent is not

fully characterized. However, in our cascaded communication case, as terminals are allowed

to use the received massages to perform encoding, we are able to fully characterize the type

2 error exponent for certain scenarios.

We then extend the study to the case with general hypotheses. The problem with non-

interactive communication under the same hypotheses was first proposed and studied in [1]

and a tighter lower bound was derived in [13]. Different from these works, in which it is

assumed that data related to allXl, l = 1, · · · , L is stored in one terminal X (and hence there

are two terminals X and Y in the model studied in [13] and [1]), we allow data related to

Xl, l = 1, · · · , L to be stored in multiple terminals, and we allow cascaded communications

among encoders for encoding. As these two extensions make this problem more complex

and no upper bound is derived even for the case with non-interactive communications, in this

chapter, we only give a lower bound on the type 2 error exponent given the constraints on

the type 1 error probability and communication rates.

Finally, we compare performances of schemes with cascaded and non-interactive com-

munications. Intuitively, compared with the scheme with non-interactive communication in

Chapter 2, the decision maker can potentially obtain more information in the cascaded com-

munication case and hence is expected to make a better decision. We show that this is indeed

the case by giving an explicit example in which our scheme with cascaded communication

achieves a larger type 2 error exponent under different communication rate constraints. On

the other hand, we prove that, compared with non-interactive communication, cascaded com-

munication does not offer any improvement in the type 2 error exponent for the zero-rate data

compression case.

The remainder of the chapter is organized as follows. In Section 3.2, we introduce the

model studied in this chapter. In Section 3.3, we study the problem of testing against in-

dependence and extends the result to general case. In Section 3.5, we compare the perfor-

mances of schemes with cascaded communication and schemes with non-interactive com-
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munication. Finally, we offer some concluding remarks in Section 3.6.

3.2 Model

In this section, we present our model and summarize the difference between our model and

the existing work with non-interactive communication schemes.

Different with the model in Section 2.2, we consider a model illustrated in Figure 3.1.

These terminals broadcast messages in a sequential order from terminal 1 until terminal L,

Figure 3.1: Model

and each terminal will use all messages received so far along with its own observations for

encoding. More specifically, terminal X1 will first broadcast its encoded message, which

depends only on Xn
1 , and then terminal X2 will broadcast its encoded message, which now

depends on not only its own observationsXn
2 but also the message received from terminalX1.

The process continues until terminalXL, who will use messages received fromX1 untilXL−1

and its own observations Xn
L for encoding. Finally, terminal Y decides which hypothesis is

true based on its own information and the received messages from terminal X1, · · · , XL.

The main difference between our model and the non-interactive communication model

considered in Chapter 2 is that, in the non-interactive communication model, the encoding

function of each user relies only on its own observations. That is, the encoding function at

terminal Xl in the non-interactive communication model is given as

fl : X n
l →Ml = {1, 2, . . . ,Ml}, l = 1, · · · , L. (3.1)
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However, in the cascaded case, the encoding function of each user relies not only on its

own observations, but also the messages received from other terminals. More specifically,

terminal X1 uses an encoder

f1 : X n
1 →M1 = {1, 2, . . . ,M1}, (3.2)

and terminal Xl, l = 2, · · · , L uses an encoder

fl : (X n
l ,M1, · · · ,Ml−1)→Ml = {1, 2, . . . ,Ml}, (3.3)

with rates Rl such that

lim sup
n→∞

1

n
logMl ≤ Rl, l = 1, · · · , L. (3.4)

All remaining definitions are the same as Section 2.2.

In the following, we will use θnon-interactive(R1, · · · , RL, ε) to denote the corresponding

type 2 error exponent under constant-type constraint on the type 1 error probability in the

non-interactive model.

3.3 Main Results

In this section, we focus on a special case: testing against independence, in which we are

interested in determining whether (X1, · · · , XL) and Y are independent or not.

To simplify our presentation, we first present the results and detailed proof for L = 2

case in Section 3.3.1, and then extend the results of the L = 2 case to the general case with

L ≥ 2 terminals in Section 3.3.2.
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3.3.1 L = 2 Case

In this subsection, we study the L = 2 case in detail. Our goal is to characterize the type 2

error exponent θ(R1, R2, ε) under αn ≤ ε. We will show this in two parts. First, we design

a scheme and characterize the corresponding error exponent. Then we will show that the

scheme is optimal.

Compared with the non-interactive scenario considered in Chapter 2, in our model, X2

can use the message f1(Xn
1 ) from terminal X1 to perform the encoding. Hence, the coding

scheme will be more complex while terminal Y could potentially receive more information.

In the following, we first design a scheme and characterize its error exponent.

Theorem 3.1. For the test against independence with L = 2 cascaded encoders, the best

error exponent for the type 2 error probability satisfies

θ(R1, R2, ε) ≥ max
U1U2∈ϕ0

I(U1U2;Y ) (3.5)

where

ϕ0 =
{
U1U2 : R1 ≥ I(U1;X1), R2 ≥ I(U2;X2|U1),

U1 ↔ X1 ↔ (X2, Y ), (3.6)

U2 ↔ (X2, U1)↔ (X1, Y ), (3.7)

|U1| ≤ |X1|+ 1, |U2| ≤ |X2| · |U1|+ 1
}
.

Proof. In the following, η > η′ > η′′ > η′′′ are given small numbers.

Codebook generation. Fix a joint distribution attaining the maximum in (3.5), which

satisfies PU1U2|X1X2Y = PU1|X1PU2|U1X2 . Let PU1(u1) =
∑

x1
PX1(x1)PU1|X1(u1|x1), and

PU2|U1(u2|u1) =
∑

x2
PX2|U1(x2|u1)PU2|U1X2(u2|u1, x2). Randomly and independently gen-

erate b2nR1c sequences un1 (m1), m1 ∈ {1, · · · , b2nR1c} each according to
∏n

i=1 PU1(u1i).

For each un1 (m1), randomly and independently generate b2nR2c sequences un2 (m2), m2 ∈
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{1, · · · , b2nR2c} each according to
∏n

i=1 PU2|U1(u2i|u1i). These sequences constitute the

codebook c, which is revealed to all terminals. This process is shown in Figure 3.2. We use

C to denote the set of all possible codebooks.

Figure 3.2: Codebook generation

Encoding for terminal X1. Given a sequence xn1 , terminal X1 finds a un1 (m1) such that

(xn1 , u
n
1 (m1)) ∈ T nη′′′(X1U1), then it sends the index m1 to both terminal X2 and Y . If there

is more than one such index, it sends the smallest one among them. If there is no such index,

it sends 0.

Encoding for terminal X2. If m1 = 0 is received from terminal X1, terminal X2 sends

m2 = 0 to terminal Y . If m1 6= 0 is received, given xn2 and m1, terminal X2 finds a un2 (m2)

such that (un1 (m1), un2 (m2), xn2 ) ∈ T nη′′(U1U2X2) and sends the index m2 to terminal Y . If

there is more than one such index, it sends the smallest one among them. If there is no such

index, it sends 0.

Testing. Upon receiving messages from terminal X1 and X2, terminal Y sets the accep-

tance region An for H0 to

An =
{

(m1,m2, y
n) : (un1 (m1), un2 (m2), yn) ∈ T nη (U1U2Y )

}
.

This implies that terminalY decides Ĥ = H0 if and only if no 0 is received and (un1 (m1), un2 (m2),

yn) ∈ T nη (U1U2Y ).
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Analysis of two types of errors. Terminal Y chooses Ĥ = H1 if and only if one or more

of the following events occur:

ε1 =
{

(Un
1 (m1), Xn

1 ) /∈ T nη′′′(U1X1) for all m1 ∈ [1 : b2nR1c]
}
,

ε2 =
{

(Un
1 (M1), Un

2 (m2), Xn
2 ) /∈ T nη′′(U1U2X2) for all m2 ∈ [1 : b2nR2c]

}
,

ε3 =
{

(Un
1 (M1), Un

2 (M2), Y n) /∈ T nη (U1U2Y )
}
.

Here, we can see that Acn = ε1 ∪ ε2 ∪ ε3.

Using the definition in (2.37) and (2.38), we will then argue that there exists a particular

codebook c∗ that has the desired properties.

a) Type 1 error probability: To compute the type 1 error probability, we assume that H0

is true. Then

E{αnc} = P n
X1X2Y

(Acn)

= P n
X1X2Y

(ε1 ∪ ε2 ∪ ε3)

≤ P n
X1X2Y

(ε1) + P n
X1X2Y

(εc1 ∩ ε2) + P n
X1X2Y

(εc1 ∩ εc2 ∩ ε3).

We now bound each term.

(1) By the covering lemma [11, Section 3.7], P n
X1X2Y

(ε1) → 0 as n → ∞ if R1 ≥

I(U1;X1) + δ(η′′′).

(2) Since η′′ > η′′′, εc1 = {(Un
1 (M1), Xn

1 ) ∈ T nη′′′(U1X1)} andXn
2 |{Xn

1 , U
n
1 } = Xn

2 |Xn
1 ∼∏n

i=1 PX2|X1(x2i|x1i), by the conditional typicality lemma [11, Section 2.5], then

Pr{(Un
1 (M1), Xn

1 , X
n
2 ) ∈ T nη′′(U1X1X2)} → 1, thus Pr{(Un

1 (M1), Xn
2 ) ∈ T nη′′(U1X2)}

→ 1 as n → ∞. Therefore, again by the covering lemma, P n
X1X2Y

(εc1 ∩ ε2) → 0 as

n→∞ if R2 ≥ I(U2;X2|U1) + δ(η′′).

(3) To bound the last term, we need two steps.
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Step 1: Since Xn
2 , Y

n|{Xn
1 = xn1 , U

n
1 (M1) = un1} ∼

∏n
i=1 PX2Y |X1(x2i, yi|x1i), we

can show that Pr{(Xn
1 , X

n
2 , U

n
1 (M1), Y n) ∈ T nη′(X1X2U1Y )} → 1 using the condi-

tional typicality lemma.

Step 2: Since we have the Markov chain Un
2 (M2)↔ (Xn

2 , U
n
1 (M1))↔ (Xn

1 , Y
n) and

(Xn
1 , X

n
2 , U

n
1 (M1), Y n) ∈ T nη′(X1X2U1Y ) by Step 1, we can show that Pr{(Un

1 (M1),

Un
2 (M2), Xn

1 , X
n
2 , Y

n) ∈ T nη (U1U2X1X2Y )} → 1 as n → ∞ using Markov lemma

[11, Section 12.1]. By the covering lemma, we have limn→∞ Pr{(Un
2 (M2), Un

1 (m1), Xn
2 ) ∈

T nη′′(U2U1X2)} = 1, that is, P n
U2|U1X2

satisfies the first condition in the Markov lemma.

Now we prove that the second condition holds.

For all un2 ∈ T nη′′(U2|xn2 , un1 ),

Pr{Un
2 (M2) = un2 |Xn

2 = xn2 , U
n
1 (M1) = un1}

= Pr{Un
2 (M2) = un2 , U

n
2 (M2) ∈ T nη′′(U2|xn2 , un1 )|Xn

2 = xn2 , U
n
1 (M1) = un1}

≤ Pr{Un
2 (M2) = un2 |Un

2 (M2) ∈ T nη′′(U2|xn2 , un1 ), Xn
2 = xn2 , U

n
1 (M1) = un1}

=
∑
m2

Pr{Un
2 (M2) = un2 ,M2 = m2|Un

2 (M2) ∈ T nη′′(U2|xn2 , un1 ), Xn
2 = xn2 , U

n
1 (M1) = un1}

=
∑
m2

Pr{Un
2 (M2) = un2 |Un

2 (M2) ∈ T nη′′(U2|xn2 , un1 )}

·Pr{M2 = m2|Un
2 (M2) ∈ T nη′′(U2|xn2 , un1 ), Xn

2 = xn2 , U
n
1 (M1) = un1}

≤ 2−n(H(U2|X2,U1)−δ(η′′)),

Hence, this satisfies the second condition in the Markov Lemma. By the Markov

lemma, Pr{(Un
2 (M2), Xn

2 , U
n
1 (M1), Y n) ∈ T nη (U2X2U1Y )} → 1, i.e. Pr{(Un

2 (M2), Un
1 (M1),

Y n) ∈ T nη (U2U1Y )} → 1 as n→∞. Therefore, P n
X1X2Y

(εc1∩εc2∩ε3)→ 0 as n→∞.

b) Type 2 error probability: To calculate the type 2 error probability, assume in this case

that H1 is true, then we have

E{βnc} = (PX1X2PY )n(An)
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= (PX1X2PY )n(εc1 ∩ εc2 ∩ εc3)

= (PX1X2PY )n(εc1) · (PX1X2PY )n(εc2|εc1) · (PX1X2PY )n(εc3|εc1 ∩ εc2).

We now bound each factor.

(1) By the covering lemma, (PX1X2PY )n(εc1)→ 1 as n→∞, if R1 ≥ I(U1;X1) + δ(η′′′).

(2) The second term is the same as that of H0 as it depends only on P n
X1X2

. Hence again

by the covering lemma, (PX1X2PY )n(εc2|εc1) → 1 as n → ∞ if R2 ≥ I(U2;X2|U1) +

δ(η′′).

(3) For the third term, we have

(PX1X2PY )n(εc3|εc1 ∩ εc2)

=
∑

(un1 ,u
n
2 ,y

n)∈Tnη (U1U2Y )

(PX1X2PY )n{Un
1 (M1) = un1 , U

n
2 (M2) = un2 , Y

n = yn|εc1 ∩ εc2}

≤ 2n(H(U1U2Y )+δ(η))2−n(H(U1U2)−δ(η′))2−n(H(Y )−δ(η′))

= 2−n(I(U1U2;Y )−δ(η)).

Combining the bounds on these three factors, we have

E{βnc} ≤ 2−n(I(U1U2;Y )−δ(η)).

c) Existence of a particular codebook: Similar to Section 2.5, we can show that there exists

a codebook c∗ such that

αnc∗ ≤ ε,

βnc∗ ≤ 2−n(I(U1U2;Y )−δ(ε∗0)),
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as long as

R1 ≥ I(U1;X1), R2 ≥ I(U2;X2|U1).

This completes the achievability proof.

Now we show that the scheme in Theorem 3.1 is optimal.

Theorem 3.2. In the testing against independence with L = 2 cascaded encoders, when the

type 1 error constraint (2.8) is satisfied, the best error exponent for the type 2 error probability

satisfies

lim
ε→0

θ(R1, R2, ε) ≤ max
U1U2∈ϕ0

I(U1U2;Y ) (3.8)

where ϕ0 is defined in Theorem 3.1.

Proof. First, for any scheme (f1, f2, ψ) that satisfies the type 1 error constraint (2.8) and rate

constraints (3.4), we have

D (PM1M2Y n||PM1M2PY n)
(a)

≥ (1− αn) log
1− αn
βn

+ αn log
αn

1− βn
(b)

≥ (1− ε) log
1

βn
−H(αn),

in which M1 = f1(Xn
1 ), M2 = f2(Xn

2 ,M1), αn and βn are defined in (2.6) and (2.7) re-

spectively. In the above derivation, (a) is true due to the log sum inequality [11], and (b)

follows by the constraint (2.8). By the communication constraints (3.4), we have H(Ml) ≤

nRl, l = 1, 2.

Hence we have the following multi-letter expression of the upper bound

lim
ε→0

θ(R1, R2, ε) ≤ lim
n→∞

1

n
D(PM1M2Y n||PM1M2PY n)
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= lim
n→∞

1

n
(I(M1M2;Y n))

= H(Y )− lim
n→∞

1

n
(H(Y n|M1M2)). (3.9)

Then, we single-letterize the upper bound in (3.9) in the following steps.

First consider

nR1 ≥ H(M1) ≥ I(M1;Xn
1X

n
2 )

=
n∑
i=1

I(M1X
i−1
1 Xn

2(i+1);X1iX2i)

≥
n∑
i=1

I(M1X
i−1
1 Xn

2(i+1);X1i)

(a)
=

n∑
i=1

I(U1i;X1i),

where (a) is true by identifying U1i = (M1, X
i−1
1 , Xn

2(i+1)) and noting that U1i ↔ X1i ↔

(X2i, Yi) forms a Markov chain.

Next consider

nR2 ≥ H(M2) ≥ I(M2;Xn
1X

n
2 Y

n|M1)

=
n∑
i=1

I(M2;X1iX2iYi|M1X
i−1
1 Xn

2(i+1)Y
i−1)

(b)
=

n∑
i=1

I(M2Y
i−1;X1iX2iYi|M1X

i−1
1 Xn

2(i+1))

≥
n∑
i=1

I(M2Y
i−1;X2i|M1X

i−1
1 Xn

2(i+1))

(c)
=

n∑
i=1

I(U2i;X2i|U1i),

where (b) is true since Y i−1 ↔ (Xn
2(i+1), X

i−1
1 ,M1)↔ (X1i, X2i, Yi) forms a Markov chain,
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which can be derived in the following way,

(Xn
1 , X1i, X2i, Yi, X

n
2(i+1))↔ X i−1

1 ↔ Y i−1

⇒ (M1, X1i, X2i, Yi, X
n
2(i+1))↔ X i−1

1 ↔ Y i−1

(d)⇒ (X1i, X2i, Yi)↔ (M1, X
i−1
1 , Xn

2(i+1))↔ Y i−1,

in which (d) follows by the weak union property of Markov chain [59]. (c) follows by

defining U2i = (M2, Y
i−1) and noting that U2i ↔ (U1i, X2i) ↔ (X1i, Yi) forms a Markov

chain which is proved in Appendix B.1.

Finally, we consider

H(Y n|M1M2) =
n∑
i=1

H(Yi|M1M2Y
i−1)

≥
n∑
i=1

H(Yi|M1M2Y
i−1X i−1

1 Xn
2(i+1))

=
n∑
i=1

H(Yi|U1iU2i).

Define the time-sharing random variable Q ∼ Unif[1 : n] and independent of (M1,M2,

Xn
1 , X

n
2 , Y

n), and identify U1 = (U1Q, Q), U2 = (U2Q, Q), X1 = X1Q, X2 = X2Q, and

Y = YQ. Clearly, we have U1 ↔ X1 ↔ (X2, Y ) and U2 ↔ (U1, X2) ↔ (X1, Y ) form two

Markov chains. Hence we have shown

R1 ≥ I(U1;X1), R2 ≥ I(U2;X2|U1),

lim
ε→0

θ(R1, R2, ε) ≤ H(Y )−H(Y |U1U2) = I(Y ;U1U2),

for PU1U2|X1X2Y = PU1|X1PU2|U1X2 . This completes the converse proof.

Hence, we obtain a matching upper and lower bound on the type 2 error exponent which

is shown in Theorem 3.3.
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Theorem 3.3. In the testing against independence with L = 2 cascaded encoders, when the

type 1 error constraint (2.8) is satisfied, the best error exponent for the type 2 error probability

satisfies

lim
ε→0

θ(R1, R2, ε) = max
U1U2∈ϕ0

I(U1U2;Y ) (3.10)

where ϕ0 is defined in Theorem 3.1.

3.3.2 General L Case

The results in the previous subsection can be extended to the general case with L terminals

and a decision maker Y . The result is shown in the following theorem.

Theorem 3.4. In the testing against independence with L cascaded encoders, the best type

2 error exponent satisfies

θ(R1, · · · , RL, ε) ≥ max
U1···UL∈ϕ

I(U1 · · ·UL;Y ), (3.11)

in which

ϕ =
{
U1 · · ·UL : R1 ≥ I(U1;X1), Rl ≥ I(Ul;Xl|U1 · · ·Ul−1),

U1 ↔ X1 ↔ (X2, · · · , XL, Y ), (3.12)

Ul ↔ (Xl, U1, · · · , Ul−1)↔ (X1, · · · , Xl−1, Xl+1, · · · , XL, Y ),(3.13)

|U1| ≤ |X1|+ 1,

|Ul| ≤ |Xl| · |Ul−1| · · · |U1|+ 1, l = 2, · · · , L
}
.

Proof. The proof can be found in Appendix B.2.
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3.4 General PMF Case

In this section, we extend our study to the general PMF case (i.e., not necessarily for the test

against independence anymore) with L terminals:

H0 : PX1···XLY , H1 : QX1···XLY .

A detailed proof is given for the L = 2 case, and the result can be extended to the general

case with L terminals.

Theorem 3.5. For the case with general hypothesis PX1X2Y vs QX1X2Y with L = 2 interac-

tive encoders, the best error exponent of the type 2 error probability satisfies

θ(R1, R2, ε) ≥ max
U1U2∈ϕ0

min
P̃U1U2X1X2Y

∈ξ0
D
(
P̃U1U2X1X2Y ||QU1U2X1X2Y

)
(3.14)

where ϕ0 is defined in Theorem 3.1,

ξ0 =
{
P̃U1U2X1X2Y : P̃U1X1 = PU1X1 , P̃U1U2X2 = PU1U2X2 , P̃U1U2Y = PU1U2Y

}
.

and QU1|X1 = PU1|X1 , QU2|U1X1X2 = PU2|U1X1X2 .

Proof. In the following, ε > ε′ > ε′′ > ε′′′ are given small numbers.

Codebook generation. Fix a joint distribution attaining the maximum if (3.14), which

satisfies PU1U2|X1X2Y = PU1|X1PU2|U1X2 . Let PU1(u1) =
∑

x1
PX1(x1)PU1|X1(u1|x1), and

PU2|U1(u2|u1) =
∑

x2
PX2|U1(x2|u1)PU2|U1X2(u2|u1, x2). Randomly and independently gen-

erate ||f1|| = 2n(I(U1;X1)+η) sequences un1 (m1), m1 ∈ {1, · · · , ||f1||} each according to∏n
i=1 PU1(u1i). For each un1 (m1), randomly and independently generate ||f2|| = 2n(I(U2;X2|U1)+η)

sequences un2 (m2), m2 ∈ {1, · · · , ||f2||} each according to
∏n

i=1 PU2|U1(u2i|u1i). These se-

quences constitute the codebook c, which is revealed to all terminals. We use C to denote the

set of all possible codebooks.
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Encoding for terminal X1. Given a sequence xn1 , terminal X1 finds a un1 (m1) such that

(xn1 , u
n
1 (m1)) ∈ T (n)

ε′′′ (X1U1), then it sends the index m1 to both terminal X2 and Y . If there

is more than one such index, it sends the smallest one among them. If there is no such index,

it sends 0.

Encoding for terminal X2. If 0 is received from terminal X1, terminal X2 sends 0 to

terminal Y . If m1 6= 0 is received, given xn2 and m1, terminal X2 finds a un2 (m2) such that

(un1 (m1), un2 (m2), xn2 ) ∈ T
(n)
ε′′ (U1U2X2) and sends the index m2 to terminal Y . If there is

more than one such index, it sends the smallest one among them. If there is no such index, it

sends 0.

Testing. Upon receiving messages from terminal X1 and X2, terminal Y sets the accep-

tance region An for H0 to

An =
{

(m1,m2, y
n) : (un1 (m1), un2 (m2), yn) ∈ T (n)

ε (U1U2Y )
}
.

This implies that terminalY decides Ĥ = H0 if and only if no 0 is received and (un1 (m1), un2 (m2),

yn) ∈ T (n)
ε (U1U2Y ).

Analysis of two types of errors. Terminal Y chooses Ĥ 6= H0 if and only if one or more

of the following events occur:

ε1 =
{

(Un
1 (m1), Xn

1 ) /∈ T (n)
ε′′′ (U1X1) for all m1 ∈ [1 : 2nR1 ]

}
,

ε2 =
{

(Un
1 (M1), Un

2 (m2), Xn
2 ) /∈ T (n)

ε′′ (U1U2X2) for all m2 ∈ [1 : 2nR2 ]
}
,

ε3 =
{

(Un
1 (M1), Un

2 (M2), Y n) /∈ T (n)
ε (U1U2Y )

}
.

Hence, we can see that Acn = ε1 ∪ ε2 ∪ ε3.

Using the definition in (2.37) and (2.38), we will then argue that there exists a particular

codebook c∗ that has the desired properties. The analysis of the type 1 error probability is

similar to the analysis in Section 3.3.1, but the analysis of the type 2 error probability is

substantially more involved.

61



a) Type 1 error probability: To compute the type 1 error probability, we assume that H0

is true. Then

E{αnc} = P n
X1X2Y

(Acn) = P n
X1X2Y

(ε1 ∪ ε2 ∪ ε3) (3.15)

≤ P n
X1X2Y

(ε1) + P n
X1X2Y

(εc1 ∩ ε2) + P n
X1X2Y

(εc1 ∩ εc2 ∩ ε3).

From (3.15) we can see that type 1 error probability only relies on PX1X2Y , which is the same

as in Section 3.3.1. Hence, the analysis of the type 1 error probability is the same as that in

Section 3.3.1 as the rate constraints R1 ≥ I(U1;X1) and R2 ≥ I(U2;X2|U1) are satisfied.

The detailed analysis is omitted here.

b) Type 2 error probability: To calculate the type 2 error probability, assume in this case

that H1 is true. For m1 ∈ [1 : M1], m2 ∈ [1 : M2], and yn ∈ T
(n)
ε (Y |un1 (m1), un2 (m2)),

define

Sm1,m2(yn) = {un1 (m1)} × {un2 (m2)} × T (n)
ε (X1|un1 (m1))× T (n)

ε (X2|un1 (m1)un2 (m2))× {yn},

and

ϕn =

||f1||⋃
m1=1

||f2||⋃
m2=1

⋃
yn∈T (n)

ε (Y |un1 (m1),un2 (m2))

Sm1,m2(yn).

Suppose U (n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n) is a type variable of (un1 , u

n
2 , x

n
1 , x

n
2 , y

n) ∈ Sm1,m2(xn2 , y
n),

then

Qn
X1X2Y

(xn1 , x
n
2 , y

n) = exp
[
−n
(
H
(
X

(n)
1 X

(n)
2 Y (n)

)
+D

(
X

(n)
1 X

(n)
2 Y (n)||QX1X2Y

))]
.

Denoting N
(
U

(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n)

)
the number of those elements (un1 , u

n
2 , x

n
1 , x

n
2 , y

n) ∈
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ϕn that have
(
U

(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n)

)
as their type variable, it follows that

N
(
U

(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n)

)
≤ exp

[
n
(
I (X1;U1) + I (X2;U2|U1)

+H
(
X

(n)
1 X

(n)
2 |U

(n)
1 U

(n)
2 Y (n)

)
+H (Y |U1U2) + 2η + 2ε

)]
.

Hence,

E{βnc} = Qn
X1X2Y

(An)

≤
∑

U
(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n)

exp
[
−n
(
k
(
U

(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n)

)
− 2η − 2ε

)]
,(3.16)

where

k
(
U

(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n)

)
= H

(
X

(n)
1 X

(n)
2 Y (n)

)
+D

(
X

(n)
1 X

(n)
2 Y (n)||QX1X2Y

)
−I (X1;U1)− I (X2;U2|U1)−H (Y |U1U2)

−H
(
X

(n)
1 X

(n)
2 |U

(n)
1 U

(n)
2 Y (n)

)
, (3.17)

and the sum is taken over all possible type variables of elements (un1 , u
n
2 , x

n
1 , x

n
2 , y

n) ∈ ϕn.

Hence, we have (un1 (m1), xn1 ) ∈ T (n)
ε (U1X1), (un1 (m1), un2 (m2), xn2 ) ∈ T (n)

ε (U1U2X2), and

(un1 (m1), un2 (m2), yn) ∈ T
(n)
ε (U1U2Y ). This implies that the sum ranges over all possible

type variables
(
U

(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n)

)
such that, for all u1 ∈ U1, u2 ∈ U2, x1 ∈ X1,

x2 ∈ X2, and y ∈ Y ,

|P
U

(n)
1 X

(n)
1

(u1x1)− PU1X1(u1x1)| ≤ εPU1X1(u1x1),

|P
U

(n)
1 U

(n)
2 X

(n)
2

(u1u2x2)− PU1U2X2(u1u2x2)| ≤ εPU1U2X2(u1u2x2),

|P
U

(n)
1 U

(n)
2 Y (n)(u1u2y)− PU1U2Y (u1u2y)| ≤ εPU1U2Y (u1u2y).
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Thus, we can rewrite (3.17) as

k
(
U

(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n)

)
= H

(
X̃1X̃2Ỹ

)
+D

(
X̃1X̃2Ỹ ||QX1X2Y

)
−I
(
X̃1; Ũ1

)
− I

(
X̃2; Ũ2|Ũ1

)
−H

(
Ỹ |Ũ1Ũ2

)
−H

(
X̃1X̃2|Ũ1Ũ2Ỹ

)
+ δ(ε), (3.18)

with some variable Ũ1Ũ2X̃1X̃2Ỹ such that

P̃U1X1 = PU1X1 , P̃U1U2X2 = PU1U2X2 , P̃U1U2Y = PU1U2Y ,

where δ(ε)→ 0. Through some calculation, we can get

k
(
U

(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n)

)
= D

(
P̃U1U2X1X2Y ||QU1U2X1X2Y

)
+ δ(ε),

where QU1|X1 = PU1|X1 , PU2|U1X2 = QU2|U1X2 .

Thus, by (3.16) and (3.19), we have

E{βnc} ≤ (n+ 1)|U1|·|U2|·|X1|·|X2|·|Y|

max
P̃U1U2X1X2Y

∈ξ(U1U2)
exp

[
−n
(
D
(
P̃U1U2X1X2Y ||QU1U2X1X2Y

)
+ δ(ε)− 2η − 2ε

)]
.

c) Existence of a particular codebook: Using similar arguments in Section 3.3.1, we can

see that there exists a codebook c∗ such that

αnc∗ ≤ ε,

βnc∗ ≤ (n+ 1)|U1|·|U2|·|X1|·|X2|·|Y|

max
P̃U1U2X1X2Y

∈ξ(U1U2)
exp

[
− n

(
D
(
P̃U1U2X1X2Y ||QU1U2X1X2Y

)
+ δ(ε)

) ]
,
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as long as

R1 ≥ I(U1;X1), R2 ≥ I(U2;X2|U1).

As ε > 0 is arbitrary, it is concluded that

θ(R1, R2, ε) ≥ min
P̃U1U2X1X2Y

∈ξ(U1U2)
D
(
P̃U1U2X1X2Y ||QU1U2X1X2Y

)
.

This completes the achievability proof.

The achievable scheme could be potentially improved by employing binning scheme [31,

36]. However, the obtained error exponent form is very complicated and hence we omit it.

The achieve scheme above can also be easily extended to the general L case.

Theorem 3.6. For the case with general hypothesis PX1···XLY vsQX1···XLY with L interactive

encoders, the best error exponent of the type 2 error probability satisfies

θ(R1, · · · , R2, ε) ≥ max
U1···UL∈ϕ

min
P̃U1···ULX1···XLY ∈ξ

D
(
P̃U1···ULX1···XLY ||QU1···ULX1···XLY

)
,

where ϕ is defined in Theorem 3.4 and

ξ =
{
P̃U1···ULX1···XLY : P̃U1···UlXl = PU1···UlXl , P̃U1···ULY = PU1···ULY , l = 1, · · · , L

}
.

3.5 Comparison with the Non-interactive Communication

Model

In this section, we compare the performance achieved by the cascaded communication scheme

and that of the non-interactive communication scheme. We will provide concrete examples

to show that for certain PMF and positive communication rates, the scheme with cascaded
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communication outperforms that of the non-interactive communication scheme. On the other

hand, we will also prove that when the communication rates go to zero (zero-rate compres-

sion), the performance of the cascaded communication scheme is the same as that of the

non-interactive communication scheme, and hence the cascaded scheme does not improve

the performance in these scenarios.

3.5.1 Example When the Cascaded Scheme Is Better Than the Non-

interactive Scheme

Here, we provide an example in which the error exponent achieved using the cascaded

scheme is larger than that can be achieved using the non-interactive scheme. The example

is about the testing against independence case. The testing against independence problem

with non-interactive communications is studied in Section 2.5, which provides a lower and

an upper bound on the type 2 error exponent of non-interactive schemes. As the lower and

upper bounds in Section 2.5 do not match with each other, in this part, we compare the type

2 error exponent achieved by the scheme with cascaded communications shown in the proof

of Theorem 3.1, with the upper bound on the type 2 error exponent of the non-interactive

scheme derived in Theorem 2.5.

In the example, we let X1, X2 and Y be binary random variables with joint PMF

PX1X2Y , which is shown in Table 3.1. For testing against independence case, we have

Table 3.1: The joint PMF PX1X2Y

X1X2Y 000 010 100 110
PX1X2Y 0.0704 0.2108 0.0015 0.3233
X1X2Y 001 011 101 111
PX1X2Y 0.2206 0.0667 0.0046 0.1021

QX1X2Y = PX1X2PY , which can be easily calculated from Table 3.1. With given com-

munication constraint R = R1 = R2, we use Theorem 3.1 to find the best value of the type 2

error exponent that we can achieve using our cascaded scheme. For comparison, we also use
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Theorem 2.5 to find an upper bound on the type 2 error exponent of the non-interactive case.

ForR = 0.48, we list the conditional distributions PU1|X1 and PU2|X2 for non-interactive case

in Table 3.2 and the conditional distributions PU1|X1 and PU2|X2U1 for the cascaded case in

Table 3.3.

Table 3.2: PU1|X1 and PU2|X2 for non-interactive case when R = 0.48

U1|X1 0|0 1|0 0|1 1|1
PU1|X1 0.9991 0.0009 0.1564 0.8436
U2|X2 0|0 1|0 0|1 1|1
PU2|X2 0.9686 0.0314 0.0357 0.9643

Table 3.3: PU1|X1 and PU2|X2U1 for cascaded case when R = 0.48

U1|X1 0|0 1|0 0|1 1|1
PU1|X1 0.0155 0.9845 0.5829 0.4171
U2|X2U1 0|00 1|00 0|01 1|01
PU2|X2U1 0.0636 0.9364 0.9727 0.0273
U2|X2U1 0|10 1|10 0|11 1|11
PU2|X2U1 0.9898 0.0102 0.0005 0.9995

The simulation results for different Rs are shown in Figure 3.3. From Figure 3.3, we

can see that the type 2 error exponents in both cases increase with the increasing value of

R, which makes sense as the more information we can send, the less errors we will make.

We also observe that the type 2 error exponent achieved using our cascaded communication

scheme is even larger than an upper bound on the type 2 error exponent of any non-interactive

schemes. Hence, we confirm the intuitive idea that more information offered by the cascaded

communication facilitates a better decision making for certain testing against independence

cases with positive communication rates.

We also list the error exponents for R ≥ 0.46 in Table 3.4 since it is not obvious to

see the increase in the performance of both cascaded and non-interactive communication.

Note that when R is large enough, we can let U1 = X1 and U2 = X2. And we have

θnon-ineractive ≤ I(X1X2;Y ) = θ. To achieve this maximum value, the constraints of R1 and

R2 can be simplified in the following:
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Figure 3.3: Simulation results

• Non-interactive case:

R1 ≥ H(X1), R2 ≥ H(X2). (3.19)

• Cascaded case:

R1 ≥ H(X1), R2 ≥ H(X2|X1). (3.20)

We also list the values these theoretic limits in Table 3.5.

Table 3.4: Error exponents for R ≥ 0.42

R 0.42 0.46 0.50 0.52
θnon-interactive 0.096724 0.10136 0.10585 0.10930

θ 0.11222 0.11612 0.11625 0.11630
R 0.54 0.58 0.62 0.66

θnon-interactive 0.11013 0.11496 0.11754 0.11754
θ 0.11640 0.11661 0.11755 0.11755
R 0.68 0.70 0.72 0.74

θnon-interactive 0.11754 0.11754 0.11754 0.11754
θ 0.11755 0.11755 0.11755 0.11755
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Table 3.5: Theoretic limits for U1 = X1 and U1 = X2

I(X1X2;Y ) H(X1) H(X2) H(X2|X1)
0.1187 0.6838 0.5127 0.4259

From Table 3.4 and Table 3.5, we can see that the increasing speed of θ decreases

when R ≥ 0.42 as R is large enough for terminal X2. This same happens for θnon-interactive

when R ≥ 0.52. Furthermore, both θnon-interactive and θ approach the best possible value of

I(X1, X2;Y ) = 0.1187 asR→ 0.68. We note that there is a slight gap between the theoretic

limit and simulation results. This is due to the precision of the numerical simulation.

3.5.2 Example When the Cascaded Scheme Has the Same Performance

as that of the Non-interactive Scheme

In this subsection, we provide an example for which the cascaded scheme has the same

performance as that of the non-interactive scheme. In particular, we will prove that, under

zero-rate data compression, i.e. Rl = 0, l = 1, · · · , L, cascaded communication does not

improve the performance.

In the non-interactive communication scenario with zero-rate compression, a matching

upper bound and lower bound on the type 2 error exponent was provided in [34, Theorem

2] when QX1···XLY > 0. If we can prove an upper bound on the type 2 error exponent for

the cascaded communication case that is no larger the error exponent shown in [34], then we

can arrive at the conclusion that the cascaded communication won’t help under the zero-rate

compression case.

For reference, we state the error exponent of the non-interactive scheme characterized in

[34] in the following.

Theorem 3.7. ([34]) Let PX1···XLY be arbitrary andQX1···XLY > 0, for all ε ∈ [0, 1), the type

2 error exponent for zero-rate compression under αn ≤ ε with L non-interactive encoders is
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given by

θnon-interactive(0, · · · , 0, ε) = min
P̃X1···XLY ∈L

D
(
P̃X1···XLY ||QX1···XLY

)
(3.21)

where

L =
{
P̃X1···XLY : P̃Xl = PXl , l = 1, · · · , L, P̃Y = PY

}
.

In the following, we provide an upper bound on the type 2 error exponent for the cascaded

case.

Theorem 3.8. Let PX1···XLY be arbitrary and QX1···XLY > 0, for all ε ∈ [0, 1), the best type

2 error exponent for zero-rate compression under αn ≤ ε with L cascaded encoders satisfies

θ(0, · · · , 0, ε) ≤ min
P̃X1···XLY ∈L

D
(
P̃X1···XLY ||QX1···XLY

)
(3.22)

where L is defined in Theorem 3.7.

Proof. Please see Appendix B.3.

Comparing Theorem 3.8 with Theorem 3.7, we can see that the upper bound on the

type 2 error exponent for the cascaded communication scheme is the same as the type 2

error exponent achievable by the non-interactive communication scheme. This implies that

the performance of the cascaded communication scheme is the same as that of the non-

interactive communication scheme in the zero-rate data compression case.

The conclusion that cascaded communication does not improve the type 2 error exponent

under the zero-rate data compression case also holds when we have the exponential-type

constraint on the type 1 error probability defined in (2.9).

In the cascaded communication case, based on the results in Theorem 3.8, we can use a

similar strategy as in [15] to convert the problem under the exponential-type constraint (2.9)
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to the corresponding problem under the constraint in (2.8). As the converting strategy is

independent of the communication style, it will be the same as that in Section 2.4. Then an

upper bound on the type 2 error exponent under the exponential-type constraint can be easily

derived without going into details, shown in the sequel.

Theorem 3.9. Let PX1···XLY be arbitrary and QX1···XLY > 0, the best type 2 error exponent

for zero-rate compression case under (2.9) with L cascaded encoders satisfies

σ(0, · · · , 0, r) ≤ min
P̃X1···XLY ∈Hr

D
(
P̃X1···XLY ||QX1···XLY

)
(3.23)

where

Hr =
{
P̃X1···XLY : P̃Xl = P̂Xl , P̃Y = P̂Y , l = 1, · · · , L

for some P̂X1···XLY ∈ ϕr
}
, (3.24)

ϕr =
{
P̂X1···XLY : D(P̂X1···XLY ||PX1···XLY ) ≤ r

}
. (3.25)

Comparing Theorem 3.9 with Theorem 2.4, where a matching upper and lower bound

is provided for the non-interactive scheme, we can conclude that there is no gain in perfor-

mance on the type 2 error exponent under zero-rate compression with the exponential-type

constraint on the type 1 error probability.

3.6 Conclusion

In the chapter, we have considered distributed testing problems with cascaded encoders. We

have first investigated the special case of testing against independence. We have designed

a scheme to benefit from the extra information provided by cascaded communications, and

have shown that the proposed scheme is optimal when certain Markovian relation exists.

We have then derived a lower bound on the type 2 error exponent for cases with general
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hypotheses. Compared with existing results in the non-interactive communication cases,

we have shown that cascaded communication does provide performance gain under certain

PMFs and positive communication rates but does not offer gain under zero-rate data com-

pression scenarios.
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Chapter 4

Distributed Identity Inference with Data

Compression

4.1 Introduction

In this chapter, we extend our study to the case with model uncertainties.

We first focus on the zero-rate compression problem under exponential-type constraint

on the type 1 error probability. Compared with [34], in which a composite hypothesis testing

problem was studied under zero-rate compression and a constant-type constraint on the type

1 error probability, our exponential-type error probability constraint is much stricter and

a more complex coding/decoding scheme is needed. Interestingly, the encoding scheme

in [16] is universal, i.e., it does not depend on the the distributions under either hypothesis.

The decoding scheme in [16], however, depends on the knowledge of distribution in H0

and hence is not universal. As H0 is composite in our case, the decoding scheme in[16]

is not applicable anymore. By devising a new universal decoding scheme and providing a

matching upper-bound, we fully characterize the type 2 error exponent under the zero-rate

compression and the exponential-type constraint on the type 1 error probability.

We then extend our study to identity testing problem with positive-rate compression,
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which has not been studied in the area of distributed hypothesis testing. This problem is

related to parameter estimation with multi-terminal compression [14], in which the decision

maker tries to estimate the unknown parameter in the joint distribution of the data at different

terminals after receiving the compressed messages from each terminal. In [14], the authors

first provided a universal coding scheme for encoding, then employed minimum-entropy

decoding to recover the messages sent by terminals, and finally derived the asymptotic dis-

tribution of the joint type of the sequences and messages to get the maximum-likelihood

estimators. We can follow their scheme and calculate the two types of error probabilities by

utilizing the asymptotic distribution of the joint types of sequences and messages. However,

due to complex derivations involved, the obtained type 2 error exponent bound is very com-

plicated and does not provide meaningful insights. Instead of following this route, we take

an alternative approach to obtain meaningful performance bound. The enabling observation

of our scheme is that our goal is only to determine whether the data (Xn, Y n) is generated

by a PMF in H0 or not, but we do not care which particular PMF in H0 is used to generate

the data. Hence, it is not necessary to estimate the unknown parameter. Based on this obser-

vation, we employ a universal encoding scheme similar to the one used in [14] but design a

different universal decoding scheme that determines the hypothesis without first making pa-

rameter estimations, and further characterize the type 2 error exponent of this scheme. Using

this idea, we first investigate the constant-type error probability constraint case. We establish

a lower bound on the type 2 error exponent for general PMF. We then investigate the special

case of testing against independence, in which we are interested in whether X and Y are

independent or not. Due to this special requirement, we can simplify our coding/decoding

scheme further and also establish a matching upper bound on the type 2 error exponent, and

hence fully characterize the performance for this special case. We then extend our study to

the more challenging case with exponential-type constraint on the type 1 error probability,

and design a scheme to provide a lower bound on the type 2 error exponent.

The remainder of the chapter is organized as follows. In Section 4.2, we introduce the
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model studied in this chapter. In Section 4.3, we provide an important lemma that play an

important part in the proof. In Section 4.4, we present the results of identity testing with

zero-rate compression. Section 4.5 show the results of identity testing with positive-rate

compression. Finally, we offer some concluding remarks in Section 4.6.

4.2 Model

To simplify our presentation, we assume we only have terminal X and terminal Y . In this

chapter, our goal is to determine whether the true joint distribution is the same as the given

distribution QXY or far away from it. We interpret this problem as a hypothesis testing

problem with a composite null hypothesis and a simple alternative hypothesis:

H0 : PXY ∈ Π vs H1 : QXY , (4.1)

where Π = {PXY ∈ PXY : ||PXY −QXY ||1 ≥ λ} and λ is some fixed positive number. The

model is shown in Figure 4.1. As discussed in the Section 1.4, the other formulation with

Figure 4.1: Model

simple null and composite alternative hypothesis can be analyzed following existing work

and hence is not discussed in this chapter.

In a typical identity testing problem, one determines which hypothesis is true under the

assumption that (Xn, Y n) are fully available at the decision maker. In this chapter, we con-

sider a setting in which terminal X only observes Xn and terminal Y observes only Y n.

Terminals X and Y are allowed to send encoded messages to the decision maker. And the

decision maker decides which hypothesis is true using the encoded messages directly, which
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makes the problem more complex. We denote the system as SXY in the sequel.

More specifically, the system consists of 2 encoders f and g, one at terminal X and the

other one at terminal Y , and one decision function ψ at the decision maker. After observing

the data sequence xn ∈ X n and yn ∈ Yn, encoder f or g transforms the sequence xn or yn

into a message f(xn) or g(yn) taking values from the message setMn and Nn

f : X n →Mn = {1, 2, . . . ,Mn}, (4.2)

g : Yn → Nn = {1, 2, . . . , Nn}, (4.3)

with rate constraint:

lim sup
n→∞

1

n
logMn ≤ R1, (4.4)

lim sup
n→∞

1

n
logNn ≤ R2. (4.5)

Using the messages f(Xn) and g(Y n), the decision maker will use the decision function

ψ to determine which hypothesis is true:

ψ : (Mn,Nn)→ {H0, H1}. (4.6)

For any given decision function ψ, one can define the acceptance region as

An = {(xn, yn) ∈ X n × Yn : ψ(f(xn), g(yn)) = H0} .

For any given f, g and ψ, the type 1 error probability αn and the type 2 error probability βn

are defined as following:

αn = sup
PXY ∈Π

P n
XY (Acn), and βn = Qn

XY (An). (4.7)
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Based on the definition of the encoding functions f, g and the decoding function ψ, we

can define the type 2 error exponents under two types of constraints on the type 1 error

probability similarily in Section 2.2.

4.3 Preliminaries

It will be clear in the sequel, in our schemes and analysis, we would like to cover Π using

regions with small area. To serve our purpose, we would like each region to have diminishing

small area as n increases, at the same time we would also like to control the growth of the

number of regions needed to cover Π. The following particular way of covering Π strikes

a desirable balance for our purpose. In particular, we let Λn(XY) be the set of all possible

types of (Xn, Y n). First, choose the center points tXY ∈ ΛΠ
n (XY), where ΛΠ

n (XY) =

Π ∩ Λn(XY). It is easy to get the |ΛΠ
n (XY)| ≤ (n + 1)|X |·|Y|. Then define the ζ-set around

each center point

NtXY ,
{
t̃XY ∈ PXY : ||t̃XY − tXY ||1 ≤ ζ

}
, (4.8)

where ζ = 1
n

. We can prove the following lemma.

Lemma 4.1. If we choose tXY ∈ ΛΠ
n (XY) as the center points, and define the ζ-set as (4.8),

then we have ⋃
tXY ∈ΛΠ

n (XY)

NtXY ⊇ Π. (4.9)

Proof. Please see Appendix C.1.

4.4 Identity Testing under Zero-rate Data Compression

In this section, we will characterize the error exponent of the type 2 error probability with

zero-rate data compression.
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As discussed in the Section 1.4, the identity testing under zero-rate data compression

with constant-type constraint was studied in [34]. Hence, here we will focus on the identity

testing problem with an exponential-type constraint on the type 1 error. AsH0 is a composite

hypothesis, we provide a universal encoding and decoding scheme to establish a lower bound

on the error exponent of the type 2 error. We further establish a matching upper bound and

hence fully characterize the error exponent of the type 2 error for this scenario.

Theorem 4.1. Let PXY ∈ Π be arbitrary and QXY > 0. For zero-rate data compression in

SXY and the type 1 error constraint (2.9), the error exponent satisfies

σ(0, 0, r) = σopt (4.10)

in which

σopt , inf
PXY ∈Π

min
P̃XY ∈Hr

D
(
P̃XY ||QXY

)
(4.11)

with

Hr =
{
P̃XY : P̃X = P̂X , P̃Y = P̂Y for some P̂XY ∈ ϕr

}
,

ϕr =
{
P̂XY : D(P̂XY ||PXY ) ≤ r

}
.

Proof. Achievability:

We first show the achievability by providing a universal coding scheme.

Step 1:Encoding.

Divide the (|X | + |Y|) dimensional unit cube into equal-sized Mn · Nn small cells with

each edge of length κn along the first |X | components, and each edge of length τn along the

|Y| components, where

κn = M−1/|X |
n , τn = N−1/|Y|

n ,
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in which

Mn →∞, Nn →∞, (4.12)

but 1
n

logMn → 0 and 1
n

logNn → 0, as n → ∞ (i.e., zero-rate compression for all two

terminals).

Choose and fix a representative point in each cell for every set of variables (X̃, Ỹ ). Then

in a given cell, we make its representative variable set (X̌, Y̌ ) correspond in such a way

that((P̌X)x∈X , (P̌Y )y∈Y) is the representative point of ((P̃X)x∈X , (P̃Y )y∈Y). For each termi-

nal, after observing its sequence, it determines its type and then finds the index of the corre-

sponding edge. Each terminal then sends the index to the decision maker. After receiving all

the indexes, the decision maker can determine the cell index. Since we have assumed (4.12),

we see that with any η > 0

|P̃X − P̌X | < η, x ∈ X , (4.13)

|P̃Y − P̌Y | < η, y ∈ Y , (4.14)

for sufficiently large n.

We note that the encoding scheme is universal and does not depend on the knowledge of

PXY .

Step 2: Acceptance region and type 1 error analysis

For the decision maker, it needs to design a universal acceptance region so that the type

1 error constraint is satisfied regardless of what the true value of PXY is. One can certainly

design an individual acceptance region that satisfy the type 1 error constraint for each possi-

ble value of PXY ∈ Π using the approach in the simple hypothesis case, then take the union

of these individual regions as the final acceptance region. This will clearly satisfy the type 1

error constraint regardless the true value of PXY . This approach will work if there are a finite

number of possible PXY s. However, in our case, there are infinitely many possible PXY s in
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Π. This approach will lead to very loose performance bound. In the following, we design a

new approach that will lead to performance bound matching with the converse bound to be

presented below.

According to Lemma 4.1, we can choose tXY as the center points and design NtXY to

cover the set Π. In our approach, we first design individual acceptance region AtXYn for each

center point tXY such that type 1 error probability constraint is satisfied. Then, we show that

the acceptance region AtXYn can be applied to each distribution t̃XY ∈ NtXY to satisfy the

type 1 error probability constraint. Hence, by taking union of these acceptance regions (the

number of regions grows in polynomial order of n) , we can find An such that the type 1

error probability constraint is satisfied and a tight lower bound on the type 2 error exponent

can be imposed.

Step 2.1: Acceptance region for tXY .

Set

ftXY

(
X̃, Ỹ

)
= min

P̂XY

P̂X = P̃X

P̂Y = P̃Y

D
(
P̂XY ||tXY

)

which is continuous in
(

(P̃X)x∈X , (P̃Y )y∈Y

)
. Furthermore, the continuity of ftXY

(
X̃, Ỹ

)
in
(
X̃, Ỹ

)
yields ∣∣∣ftXY (X̃, Ỹ )− ftXY (X̌, Y̌ )∣∣∣ < η. (4.15)

Denoting by (X̌(n)(xn), Y̌ (n)(yn)) the representative point of (X(n)(xn), Y (n)(yn)) where

X(n)(xn) and Y (n)(yn) are the type variables of xn ∈ X n, and yn ∈ Yn respectively, we set

an acceptance region based on tXY :

AtXYn =
{

(xn, yn) : ftXY
(
X̌(n)(xn), Y̌ (n)(yn)

)
≤ r + 3η

}
.

For any ρ > 0 set

ξtXYρ =
{

(xn, yn) : ftXY (X̃, Ỹ ) ≤ ρ
}

;
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then in view of (4.15) it is clear that

ξtXYr+2η ⊂ AtXYn ⊂ ξtXYr+4η. (4.16)

Step 2.2: Error analysis for tXY .

It is easy to see that (xn, yn) ∈ ξtXYr+2η if (xn, yn) ∈ Snr+2η(tXY ), that is Snr+2η(tXY ) ⊂

ξtXYr+2η, which yields

1− αtXYn = tXY
(
XnY n ∈ AtXYn

)
≥ 1− exp(−nr)

for n large enough. Hence, the constraint (2.9) is satisfied.

Step 2.3: Error analysis for t̃XY ∈ NtXY \ tXY .

First, we have the following inequality:

ftXY
(
X̌(n)(xn)Y̌ (n)(yn)

) (a)

≤ ft̃XY
(
X̌(n)(xn)Y̌ (n)(yn)

)
+ δ(ζ) (4.17)

≤ D
(
X̌(n)(xn)Y̌ (n)(yn)||t̃XY

)
+ δ(ζ), (4.18)

where (a) is true due to the continuity of the divergence, shown in Appendix C.2. And δ(ζ)

is of the same order of ζ , i.e. δ(ζ) ∼ O( 1
n
).

Then, it is easy to get that (xn, yn) ∈ ξtXYr+2η if (xn, yn) ∈ Snr+2η−δ(ζ)(t̃XY ), that is

Snr+2η−δ(ζ)(t̃XY ) ⊂ ξtXYr+2η, which yields

1− αt̃XYn = t̃XY
(
XnY n ∈ AtXYn

)
≥ 1− exp(−nr)

for n large enough and 1
η
∼ o(n). Hence, the constraint (2.9) is satisfied.

Step 3: Acceptance region for all PXY ∈ Π.
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According to the results from Step 2.1 to step 2.3, we can set the acceptance region as

An =
⋃

tXY ∈ΛΠ
n (XY)

AtXYn . (4.19)

It is obvious that

αn = sup
PXY ∈Π

P n
XY (Acn) ≤ sup

PXY ∈Π
P n
XY

 ⋂
tXY ∈ΛΠ

nXY)

(AtXYn )c

 ≤ exp(−nr).

Step 4: Type 2 error exponent analysis.

From the second inclusion in (4.16), we have

Qn
XY (An) ≤ Qn

XY

 ⋃
tXY ∈ΛΠ

n (XY)

ξtXYr+4η


≤

∑
tXY ∈ΛΠ

n (XY)

Qn
XY

(
ξtXYr+4η

)
≤

∑
tXY ∈ΛΠ

n (XY)

∑
P̃XY

ftXY (X̃, Ỹ ) ≤ r + 4η

exp
(
−nD

(
P̃XY ||QXY

))

≤
(
(n+ 1)2|X ||Y|) · sup

PXY ∈Π
max
P̃XY

fpXY (X̃, Ỹ ) ≤ r + 4η

exp
(
−nD

(
P̃XY ||QXY

))

≤
(
(n+ 1)2|X ||Y|) · exp

−n
 inf
PXY ∈Π

min
P̃XY

fPXY
(X̃, Ỹ ) ≤ r + 4η

D
(
P̃XY ||QXY

)

 .

Therefore

βn = Qn
XY (An) ≤

(
(n+ 1)2|X ||Y|) · exp

−n
 inf
PXY ∈Π

min
P̃XY

fPXY
(X̃, Ỹ ) ≤ r + 4η

D
(
P̃XY ||QXY

)

 .
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Thus

σ(0, 0, r) ≥ inf
PXY ∈Π

min
P̃XY ∈Hr+4η

D
(
P̃XY ||QXY

)
,

which establishes the lower bound in Theorem 4.1 if we let η → 0.

Converse

Here, we establish an upper bound on the error exponent that any scheme can achieve.

Following the similar strategy as in [15], we can first convert a problem with the exponential-

type constraint to a corresponding problem with the constant-type constraint. We can then

obtain an upper bound on the error exponent using the results in [34] for the constant-type

constraint. To invoke “Blowing up lemma” [2] in the proof of in [34], the positive condition

QXY > 0 is needed.

Let An be an arbitrary acceptance region such that

αn ≤ exp(−nr), r > 0 (4.20)

where

αn = sup
PXY ∈Π

P n
XY (Acn). (4.21)

Equations (4.20) and (4.21) imply that

inf
PXY ∈Π

P n
XY (An) ≥ 1− exp[−n(r − γ)] ∀n ≥ n0 (4.22)

where γ > 0 is an arbitrarily small constant.

Next, for each PXY ∈ Π, select an arbitrary “internal point” PX0Y0 ∈ ϕr, where ϕr is

specified in (4.1). Then clearly

D(PX0Y0 ||PXY ) < r. (4.23)
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Define

T̂n(δ) = {joint types P̂n on X n × Yn : D(P̂n||PX0Y0) < δ} (4.24)

where δ > 0 is an arbitrary constant. Then, in view of (4.23) and the uniform continuity of

the divergence, for all P̂n ∈ T̂n(δ) it holds that

cn ≡ D(P̂n||PXY ) < r − 2γ, (4.25)

provided that we take γ > 0 and δ > 0 sufficiently small. Consequently, according to

Lemma 2.2, we have

|An(P̂n)| ≥ (1− (n+ 1)|X ||Y| exp(−nγ))|S0(P̂n)| (4.26)

for all P̂n ∈ T̂n(δ). Now we define the set

Tn(δ) =
{

(xn, yn) ∈ X n × Yn : X(n)Y (n) ∈ T̂n(δ)
}

(4.27)

and consider an i.i.d. random sequence of length n generated according to the probability

distribution PX0Y0 . Then, from (4.26), we have

P n
X0Y0

(An) ≥ P n
X0Y0

(An ∩ Tn(δ))

=
∑

P̂n∈T̂n(δ)

P n
X0Y0

(An ∩ S0(P̂n))

=
∑

P̂n∈T̂n(δ)

P n
X0Y0

(An(P̂n))

≥ (1− (n+ 1)|X ||Y| exp(−nγ)) ·
∑

P̂n∈T̂n(δ)

P n
X0Y0

(S0(P̂n))

= (1− (n+ 1)|X ||Y| exp(−nγ))P
X

(n)
0 Y

(n)
0

(T̂n(δ))

≥ (1− (n+ 1)|X ||Y| exp(−nγ)) · (1− (n+ 1)|X ||Y| exp(−nδ)). (4.28)
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Now consider the zero-rate (R1 = 0, R2 = 0, R ≥ 0) hypothesis testing problem with

H0 : PX0Y0 ∈ Π vs H1 : QXY . (4.29)

Then, for this hypothesis testing problem, if we use the same acceptance regionAn as above,

the type 1 error probability

α(0)
n = 1− inf

PXY ∈Π
P n
X0Y0

(An)

≤ 1− (1− (n+ 1)|X ||Y| exp(−nγ)) · (1− (n+ 1)|X ||Y| exp(−nδ))

≤ ε.

Hence, for the hypothesis testing problem (4.29), the acceptance region An satisfies the

constant-type type 1 error probability constraint.

As a special case of Theorem 4 in [34], we know that the type 2 error exponent

θ(0, 0, ε) ≤ inf
PXY ∈Π

min
P̃XY ∈L0

D
(
P̃XY ||QXY

)
, (4.30)

where

L0 =
{
P̃XY : P̃X = PX0 , P̃Y = PY0

}
.

On the other hand, we note that PX0Y0 was arbitrary as far as condition (4.23) is satisfied.

Therefore, in the light of the definition ofHr, we see that the infimum of the right-hand side

in (4.30) over all possible internal points PX0Y0 satisfying (4.23) coincides with

inf
PXY ∈Π

min
P̃XY ∈Hr

D
(
P̃XY ||QXY

)
.
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Thus (4.30) reduces to

σ(0, 0, r) ≤ inf
PXY ∈Π

min
P̃XY ∈Hr

D
(
P̃XY ||QXY

)
.

4.5 Identity Testing under Positive Rate Compression

In this section, we investigate the identity testing under positive rate compression constraints

(4.4) and (4.5). We first establish a lower bound on the type 2 error exponent under constant-

type constraint (2.8) for general PMF. We then investigate a special case of identity testing

against independence. For this special case, we can establish matching lower bounds and

upper bounds under constant-type constraint (2.8). Finally, we provide a lower bound on the

type 2 error exponent under the exponential-type constraint (2.9).

4.5.1 Results with Constant-type Constraint

As H0 is composite, we need a universal encoding and decoding scheme. The universal

encoding method is similar with that in [14], but a different decoding scheme is needed. In

[14], their goal was to estimate the unknown parameter in the joint distribution of (X, Y ).

Therefore, the authors utilized a complex decoding method to get maximum-likelihood es-

timators. They first use the minimum-entropy decoding method to recover the massages

sent by each terminal, and then derived an asymptotic distribution for the joint types of se-

quences (Xn, Y n) and messages (Un, V n), and finally used score vector of the observable

type to find the maximum-likelihood estimators. Following their schemes with necessary

changes, we can calculate the two types of error probabilities by utilizing the asymptotic

distribution of the joint types of sequences and messages. However, due to complex deriva-

tions involved, the obtained type 2 error exponent formulator is very complicated and does
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not provide meaningful insights. Furthermore, our goal is to decide whether the joint dis-

tribution of (X, Y ) is QXY or not, which makes the estimation the unknown parameter not

necessary. Hence, we can simplify our decoder design and performance analysis. In the

following method, we will show a simple decoding method using the result in Lemma 4.1.

We first focus on the case with general PMF stated in (4.1).

Let U be an arbitrary finite set. For each distribution PX on X , let ω(·|·;PX) be any

stochastic mapping from X to U , i.e. ω(u|x;PX) be the probability of u ∈ U given x ∈ X .

Similarly, for each distribution PY on Y , let %(·|·;PY ) be any stochastic mapping from Y to

V , i.e. %(v|y;PY ) be the probability of v ∈ V given y ∈ Y .

Theorem 4.2. For R1 ≥ 0, R2 ≥ 0, we have

θ(R1, R2, ε) ≥ inf
PXY ∈Π

max
(ω,%)∈ϕPXY

min
P̃UVXY ∈ξPXY

D
(
P̃UV XY ||QUV XY

)
, (4.31)

where

ϕPXY =
{

(ω, %) : R′1 ≥ I(X;U), R′2 ≥ I(Y ;V ),

R′1 −R1 ≤ I(U ;V ),

R′2 −R2 ≤ I(U ;V ),

R′1 −R1 +R′2 −R2 ≤ I(U ;V )

PU |X = ω(u|x;PX), PV |Y = %(v|y;PY ),

U ↔ X ↔ Y ↔ V
}
, (4.32)

and

ξPXY =
{
P̃UV XY : P̃UX = PUX , P̃V Y = PV Y , P̃UV = PUV

}
. (4.33)

Note that ϕPXY denotes the set of (ω, %) when the distribution of (X, Y ) is PXY , and similar
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for ξPXY .

Proof. Step 1: Encoding.

In this step, we show a universal encoding scheme.

Step 1.1: Codebook generation.

For each tX ∈ Λn(X ), i.e. the type ofXn, generate 2nR
′
1 sequences uns1 , s1 ∈ {1, · · · , 2nR

′
1}

randomly and independently according to P tX
U (u) =

∑
x∈X ω(u|x; tX)tX(x) for some

ω(u|x; tX) ∈ ϕtXY . Then randomly assign to every sequence a bin indexm1 ∈ {1, · · · , 2nR1},

this bin is denoted as B(m1). Similarly, for each tY ∈ Λn(Y), i.e. the type of Y n, gen-

erate 2nR
′
2 sequences vns2 , s2 ∈ {1, · · · , 2nR

′
2} randomly and independently according to

P tY
V (v) =

∑
y∈Y %(v|y; tY )tY (y) for some %(v|y; tY ) ∈ ϕtXY . Then randomly assign to

every sequence a bin index m2 ∈ {1, · · · , 2nR2}, this bin is denoted as B(m2).

Step 1.2: Encoding.

Given a sequence xn, terminal X finds it type and chooses uns10
generated according to

P tX
U , that jointly typical with xn. Then terminals X sends the bin index m1 to the decision

maker. Similarly, given a sequence yn, terminal Y finds it type and chooses vns20
generated

according to P tY
V , that jointly typical with yn. Then terminals Y sends the bin index m2 to

the decision maker.

Step 2: Testing.

Upon receiving m1 and m2, the decision maker needs to design a universal acceptance

region so that the type 1 error constraint is satisfied. Based on Lemma 4.1, for each center

point tXY , we set an individual acceptance regionAtXYn such that the type 1 error probability

constraint under tXY is satisfied. Then we show that using the same acceptance regionAtXYn ,

the type 1 error probability constraint can also be satisfied for t̃XY ∈ NtXY . Finally, we make

the final acceptance region as the union of a finite number of acceptance regions AtXYn and

show that the type 1 error probability constraint under H0 is satisfied.

Step 2.1: Acceptance region for tXY .
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Set

AtXYn =
{

(m1,m2) : ∃ unique s1 ∈ B(m1), s2 ∈ B(m2) : (uns1 , v
n
s2

) ∈ T nε (tUV )
}
, (4.34)

where the joint typicality is according to

tUV (uv) =
∑

x∈X ,y∈Y

ω(u|x; tX) · %(v|y; tY ) · tXY . (4.35)

The decision maker chooses Ĥ 6= H0 if and only if one or more of the following events

occur:

ε1 =
{

(Un
s1
, Xn) /∈ T nε′′′ for all s1 ∈ [1 : 2nR

′
1 ]
}
,

ε2 =
{

(V n
s2
, Y n) /∈ T nε′′′ for all s2 ∈ [1 : 2nR

′
2 ]
}
,

ε3 =
{
∃ none or more than one (s1, s2) ∈ B(m1)× B(m2) : (Un

s1
, V n

s2
) /∈ T nε

}
.

Hence, An = (ε1 ∪ ε2 ∪ ε3)c.

To analyze the type 1 error probability, we have

αn = tnXY (Acn)

= tnXY (ε1 ∪ ε2 ∪ ε3)

≤ tnXY (ε1) + tnXY (ε2) + tnXY (εc1 ∩ εc2 ∩ ε3).

Step 2.2: Type 1 error analysis for tXY .

When the true PXY = tXY , we can bound each term.

(1) By the covering lemma [11, Section 3.7], tnXY (ε1)→ 0 as n→∞ if R′1 ≥ I(U ;X) +

δ(ε) and tnXY (ε2)→ 0 as n→∞ if R′2 ≥ I(V ;Y ) + δ(ε).

(2) To bound the last term, we first show that there exists (S1, S2) ∈ B(M1)×B(M2) such
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that (Un
S1
, V n

S2
) /∈ T nε ; then we show that such (S1, S2) are unique when

R′1 −R1 ≤ I(U ;V )− δ(ε), (4.36)

R′2 −R2 ≤ I(U ;V )− δ(ε), (4.37)

R′1 −R1 +R′2 −R2 ≤ I(U ;V )− δ(ε). (4.38)

For the existence of (S1, S2), we first show that

(V n
S2
, Xn, Y n) ∈ T nε′ , S2 ∈ B(M2); (4.39)

then we show that for (S1, S2) ∈ B(M1)× B(M2)

(Un
S1
, V n

S2
, Xn, Y n) ∈ T nε . (4.40)

Since V ↔ Y ↔ X , we can prove that (V n
S2
, Xn, Y n) ∈ T nε′ , S2 ∈ B(M2) by the

Markov lemma [11, Section 12.1]. We can also prove that (Un
S1
, V n

S2
, Xn, Y n) ∈ T nε

for (S1, S2) ∈ B(M1) × B(M2) using Markov lemma [11, Section 12.1] since U ↔

X ↔ Y ↔ V , details are shown in Appendix C.3.

To show (S1, S2) are unique and (S1, S2) = (S10, S20), we have three situations:

S1 =
{

(Un
S1
, V n(S20)) ∈ T nε , S1 6= S10 for some S1 ∈ B(M1)

}
, (4.41)

S2 = {(Un(S10), V n(S2)) ∈ T nε , S2 6= S20 for some S2 ∈ B(M2)} , (4.42)

S3 =
{

(Un
S1
, V n(S2)) ∈ T nε , S1 6= S10, S2 6= S20,

for some (S1, S2) ∈ B(M1)× B(M2)} . (4.43)

The probability of a particular Un
S1
, S1 6= S10 that is jointly typical with V n(S20) can

be bounded as

tXY
(
(Un

S1
, V n(S20)) ∈ T nε

)
≤ 2−n(I(U ;V )−δ(ε)). (4.44)
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Hence the error probability is

tXY (S1) ≤
∑

S1∈B(M1),S1 6=S10

tXY ((Un
S1
, V n(S20)) ∈ T nε )

≤ 2n(R′1−R1)2−n(I(U ;V )−δ(ε)), (4.45)

which tends to 0 as n→∞ if R′1 −R1 ≤ I(U ;V ).

In an analogous manner, we have

tXY (S2) ≤ 2n(R′2−R2)2−n(I(U ;V )−δ(ε)), (4.46)

and

tXY (S3) ≤ 2n(R′1−R1+R′2−R2)2−n(I(U ;V )−δ(ε)). (4.47)

Hence, we have shown such (s1, s2) are unique when

R′1 −R1 ≤ I(U ;V )− δ(ε),

R′2 −R2 ≤ I(U ;V )− δ(ε),

R′1 −R1 +R′2 −R2 ≤ I(U ;V )− δ(ε).

Step 2.3: Type 1 error analysis for t̃XY ∈ NtXY \ tXY .

As for t̃XY ∈ NtXY , ||t̃XY − tXY ||1 ≤ 1
n

, XnY n generated according to t̃XY ∈ NtXY ,

has the type tX and tY . Hence, the Un and V n sequences are the same as what generated

in Stpe 2.3. Due to the continuity of mutual information theory and entropy, we can show

that if R′1 ≥ I(U ;X) + δ(ε) and R′2 ≥ I(V ;Y ) + δ(ε), the constraint on the type 1 error

probability is satisfied using the acceptance region AtXYn .
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First we show the probability that t̃XY (XnUn ∈ T nε′′′(tUX)) = tXY (XnUn ∈ T nε′′′(tUX)).

t̃XY (XnUn ∈ T nε′′′(tUX)) =
∑

xn∈Tn
ε′′′ (tX)

t̃nX(xn)
∑

un∈Tn
ε′′′ (U |x

n)

t̃nU(un)

= 2n(H(X)+H(U |X)−D(tX ||t̃X)−H(X)−H(U)+δ(ε′′′))

= 2−n(I(U ;X)−D(tX ||t̃X)+δ(ε′′′))

(a)
= 2−n(I(U ;X)+δ(ε)),

where (a) is true due to D(tX ||t̃X)→ 0 with order O( 1
n
) given ||t̃X − tX || ≤ 1

n
.

Hence, we can show that ifR′1 ≥ I(U ;X)+δ(ε), there exists at least one un that is jointly

typical with xn according to tUX . Similarly, we can prove that if R′2 ≥ I(V ;Y ) + δ(ε), there

exists at least one vn that is jointly typical with yn according to tV Y .

Following similar steps, we can prove that there exists unique (S1, S2) ∈ B(M1)×B(M2)

such that (Un
S1
, V n

S2
, Xn, Y n) ∈ T nε . Therefore, the type 1 error probability constraint is

satisfied.

Step 2.4: Acceptance region for all PXY ∈ Π.

According to the results in Step 2.2 and Step 2.3, we can set the acceptance region as

An =
⋃

tXY ∈ΛΠ
n (XY)

AtXYn (4.48)

It is obvious that

αn = sup
PXY ∈Π

P n
XY (Acn) ≤ ε.

Step 2.5: The type 2 error exponent.

Qn
XY (An) = Qn

XY

 ⋃
tXY ∈ΛΠ

n (XY)

AtXYn

 (4.49)
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≤
∑

tXY ∈ΛΠ
n (XY)

Qn
XY (AtXYn ) (4.50)

(a)
=

∑
tXY ∈ΛΠ

n (XY)

exp

(
−n
(

max
(ω,%)∈ϕtXY

min
P̃UVXY

D
(
P̃UV XY ||QUV XY

)))
(4.51)

≤ (n+ 1)|X ||Y| max
tXY ∈ΛΠ

n (XY)
exp

(
−n
(

max
(ω,%)∈ϕtXY

min
P̃UVXY

D
(
P̃UV XY ||QUV XY

)))
(4.52)

≤ (n+ 1)|X ||Y| exp

(
−n
(

inf
PXY ∈Π

max
(ω,%)∈ϕPXY

min
P̃UVXY

D
(
P̃UV XY ||QUV XY

)))
, (4.53)

where (a) is the result in [13].

Hence, we obtain a lower bound on the type 2 error exponent.

We now focus on the special case of testing against independence, for which the hypothe-

ses are

H0 : PXY ∈ Π⊥ vs H1 : QYQY , (4.54)

where Π⊥ = Π ∩ {PXY : PX = QX , PY = QY }. This special hypothesis has a two-fold

meaning: whether (X, Y ) are independent or not and whether the joint distribution of (X, Y )

is QXQY or not. Due to the fact that the marginal distribution in this special case is the same

for both hypotheses, we can simplify our encoding/decoding scheme and derive a matching

upper bound on the type 2 error exponent, which allows us to fully characterize the optimal

type 2 error exponent.

Theorem 4.3. For R1 ≥ 0, R2 ≥ 0, we have

θ(R1, R2, ε) = inf
PXY ∈Π⊥

max
UV ∈ϕPXY

I(U ;V ). (4.55)

where

ϕPXY = {UV : I(U ;X) ≤ R1, I(V ;Y ) ≤ R2, U ↔ X ↔ Y ↔ V } . (4.56)

93



Proof. Achievability:

In the following, ε > ε′ > ε′′ > ε′′′ are given small numbers.

Step 1: Encoding.

Step 1.1: Codebook generation.

Since all PXY ∈ Π⊥ have the same marginal distribution, ω(u|x;PX) can be sim-

plified to PU |X and %(v|y;PY ) can be simplified to PV |Y . Fix PU |X , generate 2nR1 se-

quences unm1
, m1 ∈ {1, · · · , 2nR1} randomly and independently according to PU(u) =∑

x∈X PU |X(u|x)PX(x). Similarly, fixed PV |Y , generateN(tY ) = 2nR2 sequences vnm2
, m2 ∈

{1, · · · , 2nR2} randomly and independently according to PV (v) =
∑

y∈Y PV |Y (v|y)PY (y).

These sequences constitute the codebook c, which is revealed to all terminals. We use C to

denote the set of all possible codebooks.

Step 1.2: Encoding.

Given a sequence xn, terminal X finds it type and chooses unm1
, generated according to

PU , that jointly typical with xn. Then terminals X send m1 to the decision maker. Similarly,

given a sequence yn, terminal Y finds it type and chooses vnm2
, generated according to PV ,

that jointly typical with yn. Then terminals Y send m2 to the decision maker.

Step 2: Testing.

Upon receiving m1 and m2, the decision maker needs to design a universal acceptance

region so that the type 1 error constraint is satisfied. Similarly to the scheme for the general

PMF case, we first set an individual acceptance region AtXYn such that the type 1 error prob-

ability constraint under tXY is satisfied for each center point tXY . Then we show that using

the same acceptance regionAtXYn , the type 1 error probability constraint can also be satisfied

for t̃XY ∈ NtXY . Finally, we make the final acceptance region as the union of a finite number

of acceptance regionsAtXYn and show that the type 1 error probability constraint under H0 is

satisfied.
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Step 2.1: Acceptance region based on each center point tXY . Set

AtXYn =
{

(m1,m2) : (unm1
, vnm2

) ∈ T nε (tUV )
}
, (4.57)

where the joint typicality is according to

tUV (uv) =
∑

x∈X ,y∈Y

PU |X(u|x) · PV |Y (v|y) · tXY (xy). (4.58)

The decision maker chooses Ĥ 6= H0 if and only if one or more of the following events

occur:

ε1 =
{

(Un
M1
, Xn) /∈ T nε′′′ for all M1 ∈ [1 : 2nR1 ]

}
,

ε2 =
{

(V n
M2
, Y n) /∈ T nε′′′ for all M2 ∈ [1 : 2nR2 ]

}
,

ε3 =
{

(Un
M1
, V n

M2
) /∈ T nε

}
.

Hence, An = (ε1 ∪ ε2 ∪ ε3)c.

Using the definition in (2.37) and (2.38), we will then argue that there exists a particular

codebook c∗ that has the desired properties.

To analyze the type 1 error probability, we have

E{αnc} = tnXY (Acn)

= tnXY (ε1 ∪ ε2 ∪ ε3)

≤ tnXY (ε1) + tnXY (ε2) + tnXY (εc1 ∩ εc2 ∩ ε3).

Step 2.2: Type 1 error analysis for tXY

When the true PXY = tXY , we can bound each term.

(1) By the covering lemma [11, Section 3.7], tnXY (ε1)→ 0 as n→∞ if R1 ≥ I(U ;X) +

δ(ε) and tnXY (ε2)→ 0 as n→∞ if R2 ≥ I(V ;Y ) + δ(ε).
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(2) To bound the last term, we use a version of the Markov lemma [11, Section 12.1].

First, we show that (V n
M2
, Xn, Y n) ∈ T nε′′ with a probability tends to 1 as n increases.

Since Y n|{V n
M2

= vnm2
, Xn = xn} ∼

∏n
i=1 PY |X(y|x) and ε′′ > ε′′′, by the Markov

lemma, Pr{(V n
M2
, Xn, Y n) /∈ T nε′′} tends to zero as n→∞.

Second, we show that (Un
M1
, V n

M2
, Xn, Y n) ∈ T nε′ with a probability tends to 1 as n

increases similar as in Appendix C.3.

Hence, we have proven that the constraint on the type 1 error probability is satisfied.

Step 2.3: Type 1 error analysis for PXY ∈ NtXY \ tXY .

As all PXY ∈ Π⊥ has the same marginal distribution as QxQY , we can easily get that if

R1 ≥ I(U ;X) + δ(ε), there exists at least one un that is jointly typical with xn according to

tUX . Similarly, we can get that if R2 ≥ I(V ;Y ) + δ(ε), there exists at least one vn that is

jointly typical with yn according to tV Y .

From the way we generate the (Un, V n) sequences, we can get that the Markov chain

V n
M2
↔ Y n ↔ Xn ↔ UN

M1
still holds. Then we can use the same steps as in Step 2.2 to

prove that the third term P n
XY (εc1 ∩ εc2 ∩ ε3) still holds.

Step 2.4: Acceptance region for all PXY ∈ Π⊥.

According to the results in Step 2.2 and Step 2.3, we can set the acceptance region as

An =
⋃

tXY ∈ΛΠ⊥
n (XY)

AtXYn (4.59)

It is obvious that

E{αnc} = sup
PXY ∈Π⊥

P n
XY (Acn) ≤ ε.

Step 2.5: The type 2 error exponent.
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For the type 2 error probability, assume in this case that H1 is true. Hence,

(QXQY )n(An) = (QXQY )n

 ⋃
tXY ∈ΛΠ⊥

n (XY)

AtXYn

 (4.60)

≤
∑

tXY ∈ΛΠ⊥
n (XY)

(QXQY )n
(
AtXYn

)
(4.61)

Then, for a particular tXY , we have

E{βnc} = (QXQY )n(εc1 ∩ εc2 ∩ εc3)

= (QXQY )n(εc1) · (QXQY )n(εc2) · (QXQY )n(εc3|εc2εc1)

We now bound each factor.

(1) By the covering lemma, (QXQY )n(εc1) tends to 1 as n→∞ if R1 ≥ I(U ;X) + δ(ε).

Similarly, (QXQY )n(εc2) tends to 1 as n→∞ if R2 ≥ I(V ;Y ) + δ(ε).

(2)

(QXQY )n(εc3|εc2, εc1) =
∑

(un,vn)∈Tε(tUV )

Qn
X(un|εc2, εc1)Qn

Y (vn|εc2, εc1)

(a)

≤ 2n(H(UV )+δ(ε)−H(U)−δ(ε)−H(V )−δ(ε))

= 2−n(I(U ;V )−δ(ε)), (4.62)

where (a) is true due to the fact that the marginal distributions forX and Y repecitively

are the same in both hypotheses.

Hence, we give a lower bound on the type 2 error exponent.

(QXQY )n(An) ≤
∑

tXY ∈ΛΠ⊥
n (XY)

(QXQY )n(AtXYn ) (4.63)
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≤
∑

tXY ∈ΛΠ⊥
n

2−n(I(U ;V )−δ(ε)) (4.64)

≤ (n+ 1)|X ||Y|2
−n

(
inf

PXY ∈Π⊥ I(U ;V )−δ(ε)
)
. (4.65)

c) Existence of a particular codebook: Similar to Section 2.5, we can show that there

exists a codebook c∗ such that

αnc∗ ≤ ε,

βnc∗ ≤ (n+ 1)|X ||Y|2
−n

(
inf

PXY ∈Π⊥ I(U ;V )−δ(ε)
)
,

as long as

R1 ≥ I(U1;X1), R2 ≥ I(U2;X2|U1).

This completes the achievability proof.

Converse:

We will show that for any encoding and decoding scheme that satisfies the type 1 error

constraint αn ≤ ε and rate constraints (4.4), the type 2 error exponent is upper bounded by

right side of (4.55).

For each PXY ∈ Π⊥ and k = 1, 2, . . ., define :

θk(R1, R2)= sup
f,g

{
1

k
D(Pf(Xk)g(Y k)||Qf(Xk)Qg(Y k))

∣∣∣
1

k
log ||f || ≤ R1,

1

k
log ||g|| ≤ R2

}
, (4.66)

For every R1 ≥ 0 and R2 ≥ 0, according to [1], we have the following

a) lim sup
n→∞

1

n
log βn ≤ − sup

k
θk(R1, R2) for all ε ∈ (0, 1), (4.67)

b) lim
ε→0

lim inf
n→∞

1

n
log βn ≥ − sup

k
θk(R1, R2). (4.68)
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From above, we can see that when ε→ 0,

θ(R1, R2, ε) = inf
PXY ∈Π⊥

sup
k
θk(R1, R2). (4.69)

Moreover,

1

n
D(Pf(Xk)g(Y k)||Qf(Xk)Qg(Y k)) =

1

n
I(f(Xn); g(Y n)).

Then, we single-letterize the θ(R1, R2) in the following way. For R1, we have

nR1 ≥ H(M1)

≥ I(M1;Xn
1 )

=
n∑
i=1

I(M1;Xi|X i−1)

=
n∑
i=1

I(M1, X
i−1;Xi)

(a)
=

n∑
i=1

I(Ui;Xi).

where (a) is true by identifying Ui = (M1, X
i−1) and noting that Ui → Xi → Yi forms a

Markov chain as

(Xn, X i−1)↔ Xi ↔ Yi

⇒ (M1, X
i−1)↔ Xi ↔ Yi.

Similarly, we can get

nR2

(b)

≥
∑
i=1

I(Vi;Yi), (4.70)

where (b) is true by identifying Vi = (M2, Y
i−1) and noting that Vi → Yi → Xi forms a
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Markov chain as

(Y n, Y i−1)↔ Yi ↔ Xi ⇒ (M2, Y
i−1)↔ Yi ↔ Xi.

Then we have

I(M1;M2) ≤
∑
i=1

I(M1X
i−1;M2X

i−1) (4.71)

=
∑
i=1

I(Ui;Vi) (4.72)

Using a time-sharing random variable Q ∼ Unif[1 : n], independent of (Xn, Y n, Un, V n)

we obtain

1

n

n∑
i=1

I(Xi;Ui|Q = i) = I(XQ;UQ|Q),

1

n

n∑
i=1

I(Yi;Vi|Q = i) = I(YQ;VQ|Q),

1

n

n∑
i=1

I(Ui;Vi|Q = i) = I(UQ;VQ|Q),

Since Q is independent of XQ, we have

I(XQ;UQ|Q) = I(XQ;UQ, Q).

Thus, defining X = XQ, Y = YQ, U = (UQ, Q) and V = (VQ, Q) and letting n → ∞, we

have shown that

R1 ≥ I(X;U),

R2 ≥ I(Y ;V ),

lim
ε→0

θ(R1, R2, ε) ≤ I(U ;V ).
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for some conditional PMF PU |X and PV |Y .

4.5.2 Results with Exponential-type Constraint

In this subsection, we consider the case with exponential-type constraint, i.e., we require that

the exponent of the type 1 error should be larger than r. Due the complexity of the problem

for the general case SXY , we here give the result assuming terminal Y can communicate with

a large rate R2 > log |Y| so that the decision maker has full information about Y n. We will

use σ(R1, r) to denote the corresponding type 2 error exponent.

Let U be an arbitrary finite set and P(U|X )be the set of all possible conditional probabil-

ity distributions (PU |X(u|x))(u,x)∈U×X on U given values in X . Let ω denote the continuous

mapping from P(X ) to P(U|X ) and Φ be the set of all possible ω.

Theorem 4.4. For R1 ≥ 0, r ≥ 0, we have

σ(R1, r) ≥ inf
PXY ∈Π

sup
ω∈φPXY (R1,r)

min
P̃UXY ∈ΞPXY (ω)

D
(
P̃UXY ||QUXY

)
. (4.73)

where

φPXY (R1, r) =

{
ω ∈ Φ : max

X̂ : D(X̂||X) ≤ r

P̂U|X = ω(X̂)

I
(
Û ; X̂

)
≤ R1

}
,

Ξ̂PXY (ω) =

P̂UXY :

D
(
P̂UXY ||PUXY

)
≤ r

PU |X = P̂U |X = ω(X̂)

U ↔ X ↔ Y

 ,

ΞPXY (ω) =
{
P̃UXY : P̃UX = P̂UX , P̃UY = P̂UY ,

for some P̂UXY ∈ Ξ̂tXY (ω)
}
,
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and QU |X = P̃U |X , QUXY = QU |XQXY .

Proof. Step 1: Encoding.

In this step, we show a universal encoding scheme.

Given a sequence xn, terminal X finds its type tX . Let η > 0 be an arbitrary small

number. For each type variable X̂(n) with ρn ≡ D(X̂(n)||tX) ≤ r + η choose a joint type

variable Û (n)X̂(n) for Un ×X n such that

µn ≡ D
(
Û (n)|X̂(n)||tU |X

)
≤ η/3; (4.74)

I
(
Û (n); X̂(n)

)
≤ R + η/3, (4.75)

where tU |X = ω(X̂(n)). With this Û (n)X̂(n), we put

M̂ ≡M(X̂(n)) ≡ exp
(
n
(
I
(
Û (n); X̂(n)

)
+ η/3

))
. (4.76)

It is easily shown that there exists M(X̂(n)) unm such that for every x ∈ Sn0 (X̂(n)) we have

some uni such that (uni , x
n) ∈ Sn0 (Û (n)X̂(n)), i ∈ {1, · · · ,M(X̂(n))}. Send the index i ∈

{1, · · · ,M(X̂(n))} to the decision maker.

Step 2: Testing.

Upon receiving i, the decision maker needs to design a universal acceptance region so

that the type 1 error constraint is satisfied. Based on Lemma 4.1, for each center point tXY ,

we set an individual acceptance regionAtXYn such that the type 1 error probability constraint

under tXY is satisfied. Then we show that using the same acceptance regionAtXYn , the type 1

error probability constraint can also be satisfied for t̃XY ∈ NtXY . Finally, we make the final

acceptance region as the union of a finite number of acceptance regions AtXYn and show that

the type 1 error probability constraint under H0 is satisfied.

Step 2.1: Acceptance region for tXY .

To define an acceptance region AtXYn , we have the following steps.
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(1) Region Ci.

It can be easily shown that there exist u1, · · · , uM such that for every x ∈ Sn0 (X̂(n)),

we have some ui jointly typical with xn, i.e. (ui, x
n) ∈ Sn0 (X̂(n)). Hence, there exist

M̂ disjoint subsets C1, · · · , CM ⊂ Sn0 (X̂(n)) such that

Sn0 (X̂(n)) =
M̂⋃
i=1

Ci, (4.77)

and for every xn ∈ Ci, we have

(uni , x
n) ∈ Sn0 (X̂(n)), , i = 1, · · · , M̂ . (4.78)

(2) Region Bi(x
n).

For each i ∈ {1, · · · , M̂} and xn ∈ Ci, define

Bi(x
n) =

{
yn ∈ Yn : (uni , x

n, yn) ∈ Snr+η(tUXY )
}

= {yn ∈ Yn : D(uni , x
n, yn||tUXY ) ≤ r + η} , (4.79)

where tUXY = tXY PU |X . By simple derivations, we have

D
(
Û (n)X̂(n)||tUX

)
= D

(
X̂(n)||tX

)
+D

(
Û (n)|X̂(n)||tU |X

)
. (4.80)

Hence, using (4.74), (4.80) and the Markov chain U ↔ X ↔ Y , we have

Pr{Y n ∈ Bi(x
n)|Xn = xn}

= Pr{Y n ∈ Bi(x
n)|UnXn = uni x

n}

≥ 1− (n+ 1)|U|·|X |·|Y| exp[−n(r + η − ρn − µn)]

≥ 1− exp[−n(r + η/3− ρn)]. (4.81)
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(3) Region B(X̂(n)).

Set

B(X̂(n)) =
M̂⋃
i=1

⋃
xn∈Ci

({xn} ×Bi(x
n)); (4.82)

then we have

Pr{XnY n ∈ B(X̂(n)))}

=
M̂∑
i=1

∑
xn∈Ci

Pr{Xn = xn} · Pr{Y n ∈ Bi(x
n|Xn = xn)

≥
M̂∑
i=1

∑
xn∈Ci

Pr{Xn = xn} · (1− exp[−n(r + η/3− ρn)])

= Pr{Xn ∈ Sn0 (X̂n)} · (1− exp[−n(r + η/3− ρn)])

= Pr{Xn ∈ Sn0 (X̂n)} − Pr{Xn ∈ Sn0 (X̂n)} · exp[−n(r + η/3− ρn)]

(a)

≥ Pr{Xn ∈ Sn0 (X̂n)} − exp[−n(r + η/3)],

where (a) is true due to the fact that

Pr(Xn ∈ Sn0 (X̂(n))) =
∑

xn∈Sn0 (X̂(n))

Pr(Xn = xn)

≤ exp
(
n
(
H
(
X̂(n)

)))
· exp

(
−n
(
H
(
X̂(n)

)
+D

(
X̂(n)||tX

)))
≤ exp(−nρn).

(4) Region Bi.

For each i ∈ {1, · · · , M̂}, set

Bi = {yn ∈ Yn : (xn, yn) ∈ Bi(x
n) for some xn ∈ Ci} (4.83)
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and

A(X̂(n)) =
M̂⋃
i=1

(Ci × Bi). (4.84)

Then, since for every xn ∈ Ci Bi(x
n) ⊂ Bi, we have that B(X̂(n)) ⊂ A(X̂(n)). Hence,

we have

Pr(XnY n ∈ A(X̂(n))) ≥ Pr{Xn ∈ Sn0 (X̂n)} − exp[−n(r + η/3)]. (4.85)

(5) Acceptance Region AtXYn .

Set the acceptance region as

AtXYn =
⋃
X̂(n) :

D(X̂(n)||X) ≤ r + η

A(X̂(n)) (4.86)

(6) Type 1 error probability.

1− αtXYn = Pr(XnY n ∈ AtXYn )

=
∑
X̂(n) :

D(X̂(n)||X) ≤ r + η

Pr(A(X̂(n)))

=
∑
X̂(n) :

D(X̂(n)||X) ≤ r + η

Pr(Xn ∈ Sn0 (X̂(n)))−
∑
X̂(n) :

D(X̂(n)||X) ≤ r + η

exp[(−n(r + η/3))

≥ 1− (n+ 1)|X | exp(−n(r + η))− (n+ 1)|X | exp(−n(r + η/3))

≥ 1− exp(−nr)

for n large enough, which means the constraint on the type 1 error probability is satis-

fied.

Step 2.3: Type 1 error analysis for t̃XY ∈ NtXY \ tXY .
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As for t̃XY ∈ NtXY , ||t̃XY − tXY ||1 ≤ 1
n

, XnY n generated according to t̃XY ∈ NtXY ,

has the type tX and tY . Hence, the region of X̂(n) is the same as the region generated by

tXY . And we can calculate the distance of X̂(n) and t̃X :

D(X̂(n)||t̃X) =
∑
x∈X

t̂X(x) log
t̂X(x)

t̃X(x)

=
∑
x∈X

t̂X(x) log
t̂X(x)

tX(x)
+
∑
x∈X

t̂X(x) log
tX(x)

t̃X(x)

(a)
= D(X̂(n)||tX) +

∑
x∈X\{t̃X(x)=0}

t̂X(x) log
tX(x)

t̃X(x)

≤ D(X̂(n)||tX) +
∑

x∈X\{t̃X(x)=0}

t̂X(x) log
t̃X(x) + ζ

t̃X(x)

(b)

≤ D(X̂(n)||tX) +
∑

x∈X\{t̃X(x)=0}

t̂X(x)
ζ

t̃X(x)

≤ D(X̂(n)||tX) + δ(ζ), (4.87)

where (a) is true as if ∃x0 ∈ X , such that t̃X(x0) = 0, then tX(x0) < 1
n

, which means

tX(x0) = 0 for n-sequence; (b) is true due to the inequality log(1 + c · x) ≤ c · x for x > 0

and a constant c > 0. Furthermore, from the last inequality, we can see that δ(ζ) is a function

of ζ and δ(ζ) ∼ O( 1
n
).

Using the inequality (4.87), we can verify that all the equations/inequalities in Step 2.2

still hold.

Step 2.4: Acceptance region for all PXY ∈ Π.

According to the results in Step 2.2 and Step 2.3, we can set the acceptance region as

An =
⋃

tXY ∈ΛΠ
n (XY)

AtXYn . (4.88)

It is obvious that

αn = sup
PXY ∈Π

P n
XY (Acn) ≤ exp(−nr).
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Step 2.5: The type 2 error exponent.

For the type 2 error probability, we have

βn = Qn
XY (An)

= Qn
XY

 ⋃
tXY ∈ΛΠ

n (XY)

AtXYn


≤

∑
tXY ∈ΛΠ

n (XY)

Qn
XY (AtXYn ). (4.89)

First, we analyze the type 2 error probability for a particular AtXYn . fix any type variable

X̂(n) for X n such that D(t̂X ||tX) ≤ r + η. With this X̂(n), set

Fi = {uni } × Ci × Bi, i = 1, · · · , M̂ . (4.90)

Let Ũ (n)X̃(n)Ỹ (n) be any possible type variable for Fi where t̃X = t̂X , P̃U |X = ω(X̂(n)).

Define

Fi(Ũ (n)X̃(n)Ỹ (n)) =
{

(uni , x
n, yn) ∈ Fi : tp(uni x

nyn) = Ũ (n)X̃(n)Ỹ (n)
}
.

It can be checked by Lemma 2.2 that for each i = 1, · · · , M̂ .

∣∣∣Fi(Ũ (n)X̃(n)Ỹ (n))
∣∣∣ ≤ exp

(
−n
(
H
(
Ỹ (n)|Ũ (n)

)
+H

(
X̃(n)|Ũ (n)Ỹ (n)

)))
.

We also have

Qn
XY (xnyn) = exp

(
−n
(
H
(
X̃(n)Ỹ (n)

)
+D

(
X̃(n)Ỹ (n)||QXY

)))
(4.91)
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for any (xn, yn) such that tp(xnyn) = X̃(n)Ỹ (n). Let

F(Ũ (n)X̃(n)Ỹ (n)) =
M̂⋃
i=1

Fi
(
Ũ (n)X̃(n)Ỹ (n)

)
(4.92)

and it follows that

βtXYn

(
Ũ (n)X̃(n)Ỹ (n)

)
= Qn

XY

(
F
(
Ũ (n)X̃(n)Ỹ (n)

))
≤ exp

(
−n
(
H
(
X̃(n)Ỹ (n)

)
+D

(
X̃(n)Ỹ (n)||QXY

)))
· exp

(
−n
(
H
(
Ỹ (n)|Ũ (n)

)
+H

(
X̃(n)|Ũ (n)Ỹ (n)

)))
· exp

(
n
(
I
(
X̃(n); Ũ (n)

)
+ η/3

))
= exp

(
−n
(
D
(
Ũ (n)X̃(n)Ỹ (n)||QUXY

)
− η/3

))

where QU |X = P̃U |X and QUXY = QU |XQXY , i.e. U ↔ X ↔ Y forms a Markov chain

under QUXY . Thus the type 2 error probability for AtXYn is

βtXYn ≤
∑

Ũ(n)X̃(n)Ỹ (n)

exp
(
−n
(
D
(
Ũ (n)X̃(n)Ỹ (n)||QUXY

)
− η/3

))
≤ (n+ 1)|U|·|X |·|Y| · exp

(
−n
(
D
(
Ũ (n)X̃(n)Ỹ (n)||QUXY

)
− η/3

))
(4.93)

Meanwhile, from the way of constructing Bi in (4.83), it follows that for any possi-

ble Ũ (n)X̃(n)Ỹ (n), there must exist some type variable Û (n)X̂(n)Ŷ (n) for the subset {uni } ×

∪xn∈Ci({xn} × Bi) such that

D
(
Û (n)X̂(n)Ŷ (n)||tUXY

)
≤ r + η (4.94)

P̂UX = P̃UX , P̂UY = P̃UY .
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Note that Û (n)X̂(n)Ŷ (n) has to satisfy (4.74), therefore, we define the following two sets:

Ξ̂η
tXY

(ω) =


P̂UXY :

D
(
P̂UXY ||tUXY

)
≤ r + η

D
(
P̂U |X ||tU |X

)
≤ η/3

tU |X = ω(X̂)

U ↔ X ↔ Y


,

Ξη
tXY

(ω) =
{
P̃UXY : P̃UX = P̂UX , P̃UY = P̂UY , for some P̂UXY ∈ Ξ̂η

tXY
(ω)
}
.

Then, (4.93) yields for each ω ∈ φtXY ,

βtXYn ≤ (n+ 1)|U|·|X |·|Y| · exp

(
−n

(
min

P̃UXY ∈ΞηtXY

D
(
P̃UXY ||QUXY

)
− η/3

))
,

where QU |X = P̃U |X , QUXY = QU |XQXY . Hence, we have

βtXYn ≤ (n+ 1)|U|·|X |·|Y| · exp

(
−n

(
max
ω∈φtXY

min
P̃UXY ∈ΞηtXY

D
(
P̃UXY ||QUXY

)))
.

Then (4.89) yields

βn ≤
∑

tXY ∈ΛΠ
n (XY)

(n+ 1)|U|·|X |·|Y| exp

(
−n
(

max
ω∈φtXY

min
P̃UXY

D
(
P̃UXY ||QUXY

)))
(4.95)

≤ (n+ 1)|X |·|Y|(n+ 1)|U|·|X |·|Y| max
tXY ∈ΛΠ

n (XY)

exp
(
− n

(
max
ω∈φtXY

min
P̃UXY

D
(
P̃UXY ||QUXY

)))
(4.96)

≤ (n+ 1)|X ||Y|(n+ 1)|U|·|X |·|Y| exp
(
− n

(
inf

PXY ∈Π
sup

ω∈φPXY

min
P̃UXY

D
(
P̃UXY ||QUXY

)))
, (4.97)

where QU |X = P̃U |X , QUXY = QU |XQXY .

Hence, we give a lower bound on the type 2 error exponent.
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4.6 Conclusion

In this chapter, we have studied the distributed identity testing problem, in which the decision

maker should decide whether the distribution indirectly revealed from the compressed data

from multiple distributed terminals is the same as or λ-far from a given distribution. Under

zero-rate compression and exponential-type constraint on the type 1 error probability, we

have fully characterized the type 2 error exponent by providing matching upper and lower

bounds. We have also fully characterized the type 2 error exponent for the testing against

independence case under constant-type constraint and positive transmission rate constraint.

Finally, for the positive transmission rate case, we have established a lower bound on the

type 2 error exponent for general PMF case under constant-type error probability constraint

and exponential-type error probability constraint.
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Chapter 5

Conclusion and Extensions

In this chapter, we summarize the contributions we have made in this dissertation and pro-

pose certain potential directions in the field of distributed hypothesis testing.

5.1 Conclusion

This dissertation has explored the distributed inference problems from information theoretic

perspective.

First, we have discussed the distributed inference problems with non-interactive en-

coders. Using properties of r-divergence sequences, we have characterized the best error ex-

ponent of the type 2 error probability under both the zero-rate compression and exponential-

type type 1 error probability constraints. Furthermore, we have discussed the problem of

testing against independence under the constant-type constraint on the type 1 error probabil-

ity. We have derived a lower bound and an upper bound on the type 2 error exponent.

Second, we have considered distributed testing problems with cascaded encoders. We

have first investigated the special case of testing against independence. We have designed

a scheme to benefit from the extra information provided by cascaded communications, and

have shown that the proposed scheme is optimal when certain Markovian relation exists.

We have then derived a lower bound on the type 2 error exponent for cases with general
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hypotheses. Compared with the existing results in the non-interactive communication cases,

we have shown that cascaded communication does achieve performance gain under certain

PMFs and positive communication rates but it does not offer gain under zero-rate data com-

pression scenarios.

Finally, we have studied the distributed identity testing problem, in which the decision

maker decides whether the distribution indirectly revealed from the compressed data from

multiple distributed terminals is the same as or λ-far from a given distribution. Under zero-

rate compression and exponential-type constraint on the type 1 error probability, we have

fully characterized the type 2 error exponent by providing matching upper and lower bounds.

We have also fully characterized the type 2 error exponent for the testing against indepen-

dence case under constant-type constraint and positive transmission rate constraint. Finally,

for the positive transmission rate case, we have established a lower bound on the type 2

error exponent for general PMF case under constant-type error probability constraint and

exponential-type error probability constraint.

5.2 Future Directions

Equipped with the techniques and results presented in this dissertation, we can extend the

current research on the following directions. First, it will be interesting to design inference

algorithms with more sophisticated interactive communication schemes. Second, it is of in-

terest to investigate how to compress data in nonparametric scenarios with unknown learning

tasks.

5.2.1 Distributed Inference with Sophisticated Interactive Schemes

In Chapter 3, we have discussed the distributed inference problem under a simple form of in-

teraction among users, in which terminal Xl encodes messages based on its own data and the

messages received from terminal Xl′ , l′ = 1, · · · , l− 1. As a natural extension, one can con-
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Figure 5.1: Sophisticated interactive communication

sider a more sophisticated form of interaction among users, in which terminal Xls can send

multiple rounds of messages to each other. This model is related to [21, 48] and references

therein, which study the multiple rounds of communication between two terminals X and Y .

Different from their works, in this model, the decision maker can utilize its own information

and messages received from the interactive communication from terminals Xls. Moreover,

when L > 2, the problem is much more complicated and it needs further exploration.

To simplify the presentation, we use the case of L = 2 to illustrate the main idea. Ter-

minal X1 first encodes its local data to messages M11 and broadcasts it. Terminal X2 utilizes

the messages M11 to encode its own information as M21 and broadcasts it. This is called

one round of interactive communication of X1 and X2. After receiving M21, terminal X1 can

further encode its local information as M21 and broadcast it. This process continues for N

rounds. The encoding functions for X1 and X2 can be written as

f1i : {X n
1 ,M2(i−1), · · · ,M21} →M1i = {1, · · · ,M1i}, (5.1)

f2i : {X n
2 ,M1i, · · · ,M11} →M2i = {1, · · · ,M2i}. (5.2)

After receiving all messages from terminals X1 and X2, the decision maker Y makes a deci-

sion about the joint PMF of (X1, X2, Y ) using a decoding function

ψ : {M11,M21, · · · ,M1N ,M2N} → {H0, H1}, (5.3)

where H0 : PX1X2Y and H1 : QX1X2Y . This process is shown in Figure 5.1.
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The goal of this problem is similar to what we have discussed in Chapter 3, i.e., to

maximize the type 2 error exponent under the constraints on the type 1 error probability

and communication rates. Moreover, one may want to compare the performance with the

one in Chapter 3. Intuitively, the decision maker obtains more information through multiple

rounds of communication between terminals X1 and X2 and thus it may achieve a better

performance. Finally, based on the result of L = 2, one can try to see whether or not it is

possible to generalize the results to any L terminals.

5.2.2 Learning Task Oblivious Data Summarization

In this section, we point out another interesting topic: data summarization when the learning

or inference task is oblivious.

As introduced in the Section 1.1, the massive volume of data produced nowadays bring

challenges in the storage and process of the large dataset. To overcome this difficulty, we

have discussed the way to distribute the data into multiple terminals and infer useful infor-

mation from these distributed data using the computation power offered by these distributed

machines. Another potential resolution is to have big data summarized so that they need

less storage and extremely shorter time to get processed and retrieved. The summarized data

will be a compact but still informative version of the entire data. Various techniques to sum-

marize the data are introduced in [17] and references therein to fulfill different learning or

inference tasks. However, users might not specify the learning task or users might perform

more than one task on the processed data. In these cases, the techniques introduced for a

specific task may not be optimal universally and new methods are needed to be explored.

One possible way is to select a subset of data which can represent the whole dataset. This

method is illustrated in Figure 5.2, in which one has a large dataset V , and selects a subset

S that contains enough information of V for any learning task.

More specifically, one aims to select a subset of data without a specified learning task un-

der a nonparametric model, i.e., no assumption is made about the distribution of the observed
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Figure 5.2: Data summarization

data. A reasonable approach is to select samples that preserve the distribution information

revealed from the dataset as much as possible. Hence, one can first estimate the probability

density function (pdf) of the observed data, then choose a subset such that the estimated pdf

on the chosen subset approaches the original pdf on the whole dataset as close as possible.

Unfortunately, if one aims to choose the best subset of data point that minimizes the

distance between the pdf estimated from the original dataset and the pdf estimated from the

chosen dataset, the complexity is too high. In fact, the problem is an NP-hard problem,

hence once the dataset size is large, the problem is not solvable. One possible approach to

overcome this challenge is to transform the subset selection problem to a submodular max-

imization problem with cardinality constraint, which was first studied in [27]. Nemhauser

and et al. proved that the greedy method can provide a good approximation to the optimal

solution of the original NP-hard optimization problem within polynomial time complex-

ity. Later in 2015, Mirzasoleiman et al. proposed a linear-time algorithm to maximize the

monotone submodular function with cardinality constraint problem with near-optimal per-

formance guarantee [26]. Hence, the ultimate goal in this problem is to design a proper

submodular function to describe the distance between the two estimated pdfs and then use

the stochastic greedy algorithm in [26] to solve it.
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Appendix A

Appendix of Chapter 2

A.1 Proof of Theorem 2.1

In this appendix, we present the proof of Theorem 2.1. In this proof, we need to show that

for any encoding and decoding scheme that meets the type 1 error constraint, we have (2.19).

Let An be an arbitrary acceptance region such that

αn ≤ exp(−nr), r > 0 (A.1)

where

αn = P n
X1X2Y

(Acn). (A.2)

Equations (A.1) and (A.2) imply that

P n
X1X2Y

(An) ≥ 1− exp(−n(r − γ)), ∀n ≥ n0, (A.3)

where γ > 0 is an arbitrarily small constant, and n0 is a sufficiently large positive integer.

Next, select an arbitrary “internal point” PX10X20Y0 ∈ ϕr, where ϕr is specified in (2.22).

Then clearly

D(PX10X20Y0||PX1X2Y ) < r. (A.4)
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Define

T̂n(δ) = {joint types P̂n on X n
1 ×X n

2 × Yn : D(P̂n||PX10X20Y0) < δ} (A.5)

where δ > 0 is an arbitrary constant. Then, in view of (A.4) and the uniform continuity of

the divergence, for all P̂n ∈ T̂n(δ) it holds that

cn ≡ D(P̂n||PX1X2Y ) < r − 2γ, (A.6)

provided that we take γ > 0 and δ > 0 sufficiently small. Consequently, according to

Lemma 2.2, we have

|An(P̂n)| ≥ (1− (n+ 1)|X1||X2||Y| exp(−nγ))|S0(P̂n)| (A.7)

for all P̂n ∈ T̂n(δ). Now we define the set

Tn(δ) = {(xn1 , xn2 , yn) ∈ X n
1 ×X n

2 × Yn : X
(n)
1 X

(n)
2 Y (n) ∈ T̂n(δ)} (A.8)

and consider an i.i.d. random sequence of length n generated according to the probability

distribution PX10X20Y0 . Then, from (A.7), we have

P n
X10X20Y0

(An) ≥ P n
X10X20Y0

(An ∩ Tn(δ))

=
∑

P̂n∈T̂n(δ)

P n
X10X20Y0

(An ∩ S0(P̂n))

=
∑

P̂n∈T̂n(δ)

P n
X10X20Y0

(An(P̂n))

=
∑

P̂n∈T̂n(δ)

∑
tp(xn10,x

n
20,y

n
0 )=P̂n

(xn10,x
n
20,y

n
0 )∈An

P n
X10X20Y0

(Xn
10 = xn10, X

n
20 = xn20, Y

n
0 = yn0 )

(a)
=

∑
P̂n∈T̂n(δ)

∑
tp(xn10,x

n
20,y

n
0 )=P̂n

(xn10,x
n
20,y

n
0 )∈An

exp
(
−n
(
H
(
X

(n)
10 X

(n)
20 Y

(n)
0

)
+D

(
X

(n)
10 X

(n)
20 Y

(n)
0 ||X10X20Y0

)))
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=
∑

P̂n∈T̂n(δ)

|An(P̂n)| exp
(
−n
(
H
(
X

(n)
10 X

(n)
20 Y

(n)
0

)
+D

(
X

(n)
10 X

(n)
20 Y

(n)
0 ||X10X20Y0

)))
≥

∑
P̂n∈T̂n(δ)

(1− (n+ 1)|X1||X2||Y| exp(−nγ))|S0(P̂n)|

exp
(
−n
(
H
(
X

(n)
10 X

(n)
20 Y

(n)
0

)
+D

(
X

(n)
10 X

(n)
20 Y

(n)
0 ||X10X20Y0

)))
≥ (1− (n+ 1)|X1||X2||Y| exp(−nγ))

∑
P̂n∈T̂n(δ)

P n
X10X20Y0

(
S0(P̂n)

)
= (1− (n+ 1)|X1||X2||Y| exp(−nγ))PX10X20Y0

(
T̂n(δ)

)
≥ (1− (n+ 1)|X1||X2||Y| exp(−nγ))× (1− (n+ 1)|X1||X2||Y| exp(−nδ)), (A.9)

where (a) is true due to (2.12), and the last step is true due to (2.16).

Now consider the zero-rate (R1 = 0, R2 = 0, R ≥ 0) hypothesis testing problem with

H0 : PX10X20Y0 vs H1 : QX1X2Y . (A.10)

Then, for this hypothesis testing problem, if we use the same acceptance regionAn as above,

the type 1 error probability

α(0)
n = 1− P n

X10X20Y0
(An)

≤ 1− (1− (n+ 1)|X1||X2||Y| exp(−nγ))× (1− (n+ 1)|X1||X2||Y| exp(−nδ))

≤ ε,

where ε is the constant-type constraint on the type 1 error probability.

Hence, for the hypothesis testing problem (A.10), the acceptance region An satisfies the

constant-type type 1 error probability constraint.

From [34], we know that the type 2 error exponent

θ(0, 0, ε) ≤ min
P̃X1X2Y

∈L0

D
(
P̃X1X2Y ||QX1X2Y

)
, (A.11)
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where

L0 =
{
P̃X1X2Y : P̃X1 = PX10 , P̃X2 = PX20 , P̃Y = PY0

}
.

On the other hand, we note that PX10X20Y0 was arbitrary as far as condition (A.4) is satisfied.

Therefore, in the light of the definition ofHr, we see that the infimum of the right-hand side

in (A.11) over all possible internal points PX10X20Y0 satisfying (A.4) coincides with

min
P̃X1X2Y

∈Hr
D
(
P̃X1X2Y ||QX1X2Y

)
.

Thus (A.11) reduces to

σ(0, 0, r) ≤ min
P̃X1X2Y

∈Hr
D
(
P̃X1X2Y ||QX1X2Y

)
.

A.2 Proof of Theorem 2.6

Now we simplify the upper bound in (2.45) in the following steps. First consider

nR1 ≥ H(M1)

≥ I(M1;Xn
1 )

=
n∑
i=1

I(M1;X1i|X i−1
1 )

=
n∑
i=1

I(M1X
i−1
1 ;X1i)

(a)
=

n∑
i=1

I(M1X
i−1
1 X i−1

2 ;X1i)

(b)
=

n∑
i=1

I(U1i;X1i),
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where (a) follows since X1i ↔ (M1, X
i−1
1 ) ↔ X i−1

2 forms a Markov chain, which can be

derived by the following:

(Xn
1 , X1i)↔ X i−1

1 ↔ X i−1
2

(c)⇒ (M1, X1i)↔ X i−1
1 ↔ X i−1

2

(d)⇒ X1i ↔ (M1, X
i−1
1 )↔ X i−1

2 , (A.12)

(c) is true asM1 is a function ofXn
1 and (d) is true due to the weak union property of Markov

chain [59]. (b) is true by identifying U1i = (M1, X
i−1
1 , X i−1

2 ) and noting that U1i ↔ X1i ↔

(X2i, Yi) forms a Markov chain as

(Xn
1 , X

i−1
1 , X i−1

2 )↔ X1i ↔ (X2i, Yi)

⇒ (M1, X
i−1
1 , X i−1

2 )↔ X1i ↔ (X2i, Yi).

Following similar steps as above, we have

nR2

(e)

≥
n∑
i=1

I(M2X
i−1
2 Y i−1;X2i)

(f)
=

n∑
i=1

I(U2i;X2i),

where (e) follows since Y i−1 ↔ (M2, X
i−1
2 ) ↔ X2i; (f) is true by identifying U2i =

(M2, X
i−1
2 , Y i−1) and noting that U2i ↔ X2i ↔ (X1i, Yi).

Finally, we consider

H(Y n|M1M2) =
n∑
i=1

H(Yi|M1M2Y
i−1)

≥
n∑
i=1

H(Yi|M1M2Y
i−1X i−1

1 X i−1
2 )

=
n∑
i=1

H(Yi|U1iU2i).

Define the time-sharing random variable Q to be the uniformly distributed over [1 : n] and
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independent of (M1,M2, X
n
1 , X

n
2 , Y

n), and identify U1 = (U1Q, Q), U2 = (U2Q, Q, ) X1 =

X1Q, X2 = X2Q, and Y = YQ. Clearly, we have U1 ↔ X1 ↔ (X2, Y ) and U2 ↔ X2 ↔

(X1, Y ) forms three Markov chains. Hence we have shown

R1 ≥ I(U1;X1),

R2 ≥ I(U2;X2),

lim
ε→0

θ(R1, R2, ε) ≤ H(Y )−H(Y |U1U2) = I(Y ;U1U2),

for some conditional PMF PU1|X1 and PU2|X2 .
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Appendix B

Appendix of Chapter 3

B.1 Proof of the Markov chain U2i ↔ (U1i, X2i)↔ (X1i, Yi)

First, we need the following lemma introduced and proved in [19, Lemma 1].

Lemma B.1. [19] Let A1, A2, B1, B2 be the random variables with joint PMF PA1A2B1B2 =

PA1B1PA2B2 and assume that {f i}ki=1, {gi}ki=1 are any collection of P -measurable mappings

with domain structure given by:

f 1(A1, A2); f 2(A1, A2, g
1); · · · ; fk(A1, A2, g

1, · · · , gk−1),

g1(B1, B2, f
1); · · · ; gk(B1, B2, f

1, · · · , fk). (B.1)

Then,

I(A2;B1|A1, B2, f
1, f 2, · · · , fk, g1, g2, · · · , gk) = 0. (B.2)

To prove the Markov chain U2i ↔ (U1i, X2i)↔ (X1i, Yi), first we set

 A1 := X i−1
1 , B1 := X i−1

2

A2 := Xn
1i, B2 := Xn

2i

(B.3)
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Then according to Lemma B.1, we have

I(Xn
1i;X

i−1
2 |X i−1

1 , Xn
2i,M1) = 0, (B.4)

where M1 = f 1(A1, A2). Thus, we have the following Markov chain,

(X1i, X
n
1(i+1))↔ (X i−1

1 , Xn
2i,M1)↔ X i−1

2 . (B.5)

As M2 = g1(B1, B2,M1), we have

X1i ↔ (X i−1
1 , Xn

2i,M1)↔M2. (B.6)

Since Yi ↔ (X1i, X2i)↔ (X i−1
1 , Xn

2(i+1),M1,M2), we can have

(X1i, Yi)↔ (X i−1
1 , X2i, X

n
2(i+1),M1)↔ (M2, Y

i−1), (B.7)

i.e.

(X1i, Yi)↔ (X2i, U1i)↔ U2i. (B.8)

B.2 Proof sketch of Theorem 3.4

In this appendix, we provide a proof sketch of Theorem 3.4.

In the following, η > η′ > η′′ > η′′′ are given small numbers.

Codebook generation. Fix a joint distribution attaining the maximum in (3.11), which

satisfies

PU1···UL|X1···XLY = PU1|X1

L∏
l=2

PUl|U1···Ul−1Xl .
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Let

PU1(u1) =
∑
x1

PX1(x1)PU1|X1(u1|x1),

and

PUl|Ul−1···U1(ul|ul−1 · · ·u1)

=
∑
xl

PXl|U1···Ul−1
(xl|u1, · · · , ul−1) · PUl|Ul−1···U1Xl(ul|ul−1, · · · , u1, xl)

for l = 2, · · · , L.

Randomly and independently generate b2nR1c sequences un1 (m1),m1 ∈ {1, · · · , b2nR1c}

each according to
∏n

i=1 PU1(u1i). For each (un1 (m1), · · · , unl−1(ml−1)), randomly and in-

dependently generate b2nRlc sequences unl (ml), ml ∈ {1, · · · , b2nRlc} each according to∏n
i=1 PUl|Ul−1···U1(uli|u(l−1)i · · ·u1i) for l = 2, · · · , L. These sequences constitute the code-

book c, which is revealed to all terminals. We use C to denote the set of all possible code-

books.

Encoding for terminal X1. Given a sequence xn1 , terminal X1 finds a un1 (m1) such that

(xn1 , u
n
1 (m1)) ∈ T (n)

η′′′ (X1U1), then it sends the index m1 to both terminal X2 and Y . If there

is more than one such index, it sends the smallest one among them. If there is no such index,

it sends 0.

Encoding for terminal Xl, l = 2, · · · , L. If at least one 0 is received from terminals

X1, · · · ,Xl−1, terminal Xl sends ml = 0 to terminal Y . If m1 6= 0, · · · ,ml−1 6= 0 are re-

ceived from terminals X1, · · · ,Xl−1, given xnl and (m1 · · ·ml−1), terminal Xl finds a unl (ml)

such that (un1 (m1), · · · , unl (ml), x
n
l ) ∈ T (n)

η′′ (U1 · · ·UlXl) and sends the index ml to terminal

Y . If there is more than one such index, it sends the smallest one among them. If there is no

such index, it sends 0.

Testing. Upon receiving messages from terminal X1, · · · ,XL, terminal Y sets the accep-
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tance region An for H0 to

An =
{

(m1, · · · ,mL, y
n) : (un1 (m1), · · · , unL(mL), yn) ∈ T (n)

η (U1 · · ·ULY )
}
.

This implies, terminalY decides Ĥ = H0 if and only if no 0 is received and (un1 (m1), · · · , unL(mL),

yn) ∈ T (n)
η (U1 · · ·ULY ).

Analysis of two types of errors. Terminal Y chooses Ĥ = H1 if and only if one or more

of the following events occur:

ε1 =
{

(Un
1 (m1), Xn

1 ) /∈ T (n)
η′′′ (U1X1) for all m1 ∈ [1 : b2nR1c]

}
,

εl =
{

(Un
1 (M1), · · · , Un

l−1(Ml−1), Un
l (ml), X

n
l ) /∈ T (n)

η′′ (U1 · · ·UlXl)

for all ml ∈ [1 : b2nRlc]
}
, l = 2, · · · , L,

εL+1 =
{

(Un
1 (M1), · · · , Un

L(ML), Y n) /∈ T (n)
η (U1 · · ·ULY )

}
.

Here, we can see that Acn = ε1 ∪ · · · ∪ εL+1.

For any particular codebook c ∈ C, we use αnc and βnc to denote the type 1 and the type

2 error probabilities respectively. In the following, we will first compute the probabilities of

two types of errors averaged over all possible codebooks:

E{αnc} =
∑
c∈C

αncPr(c),

E{βnc} =
∑
c∈C

βncPr(c).

We will then argue that there exists a particular codebook c∗ that has the desired properties.

Following similar analysis as in Section 3.3.1, we can show that the error exponent stated

in the theorem is achievable using this scheme.
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B.3 Proof of Theorem 3.8

In this appendix, to facilitate the presentation, we show a detailed proof for L = 2. The proof

for the general L is similar. Our proof follows a similar strategy as that in [34] and employs

the “blowing-up” lemma [2].

First, we define

Cm1 = {xn1 ∈ X n
1 : f1(xn1 ) = m1},

Dm2|m1 = {xn2 ∈ X n
2 : f2(xn2 ,m1) = m2},

Fm1,m2 = {yn ∈ Yn : ψ(m1,m2, y
n) = H0},

then we can write

An =

||f1||⋃
m1=1

||f2||⋃
m2=1

Cm1 ×Dm2|m1 × Fm1,m2 . (B.9)

And we can see that Cm1s are pairwise disjoint and for fixed m1, Dm2|m1s are pairwise

disjoint for different m2.

We have P n
X1X2Y

(An) ≥ 1− ε, then there exists an index (m10,m20) such that

P n
X1X2Y

(Cm10 ×Dm20|m10 × Fm10,m20) ≥ 1− ε
||f1|| · ||f2||

.

To simplify the notations, we let C = Cm10 , Dm20|m10 = D and Fm10,m20 = F . We can

rewrite the equation above as

P n
X1X2Y

(C ×D × F ) ≥ exp(−nδn) (B.10)

where δn = − 1
n

log(1 − ε) + 1
n

log(||f1|| · ||f2||) and δn → 0 by (2.17) and (2.18). (B.10)

implies that

P n
X1

(C) ≥ exp(−nδn), P n
X2

(D) ≥ exp(−nδn),
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P n
Y (F ) ≥ exp(−nδn).

Define the Hamming k-neighborhood ΓkC of C by

ΓkC = {zn ∈ X n
1 : ∃xn1 ∈ C, s.t. d(xn1 , u

n) ≤ k}.

Using Blowing-up lemma [10], there exists sequences kn and γn satisfying kn/n→ 0 and γn →

0, and such that

P n
X1

(ΓknC) ≥ 1− γn, (B.11)

P n
X2

(ΓknD) ≥ 1− γn, (B.12)

P n
Y (ΓknF ) ≥ 1− γn. (B.13)

Furthermore, kn and γn depend only on X1, X2, Y and γn. In the following, we will use

k instead of kn. (B.11), (B.12) and (B.13) hold true if we replace P by P̃ where P̃X1X2Y

satisfies the marginal constraints P̃X1 = PX1 , P̃X2 = PX2 , and P̃Y = PY . Moreover, via

simple derivations we have

P̃ n
X1X2Y

(ΓkC × ΓkD × ΓkF ) ≥ 1− 3γn. (B.14)

As T̃ (n)
η (X1X2Y ) is the set of (P̃X1X2Y , η)-typical sequences, then P̃ n

X1X2Y
(T̃

(n)
η (X1X2Y )) ≥

1−ηn, where ηn is a small number such that ηn/n→ 0 as n→∞. Hence, for all sufficiently

large n, we obtain

P̃ n
X1X2Y

(
(ΓkC × ΓkD × ΓkF ) ∩ T̃ (n)

η (X1X2Y )
)
≥ 1

2
. (B.15)
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By the definition of T̃ (n)
η (X1X2Y ), we have the following decomposition:

T̃ (n)
η (X1X2Y ) =

⋃
P̂X1X2Y ∈ Pn(X1 ×X2 × Y)

|P̂X1X2Y − P̃X1X2Y | ≤ ηP̃X1X2Y

T̂ (n)(X1X2Y ).

Given the fact of equiprobable elements of a given T̂ (n)(X1X2Y ), (B.15) can be rewritten as

∑
P̂X1X2Y ∈ Pn(X1 ×X2 × Y)

|P̂X1X2Y − P̃X1X2Y | ≤ ηP̃X1X2Y

P̃ n
X1X2Y

(T̂ (n)(X1X2Y ))
|(ΓkC × ΓkD × ΓkF ) ∩ T̂ (n)(X1X2Y )|

|T̂ (n)(X1X2Y )|
≥ 1

2
.

Hence, there exists a type P̂X1X2Y ∈ Pn(X1 × X2 × Y) satisfying |P̂X1X2Y − P̃X1X2Y | ≤

ηP̃X1X2Y and such that

|(ΓkC × ΓkD × ΓkF ) ∩ T̂ (n)(X1X2Y )|
|T̂ (n)(X1X2Y )|

≥ 1

2
.

Since pairs (xn1 , x
n
2 , y

n) of the same type are also equiprobable under Qn
X1X2Y

, we conclude

that for the previous type P̂X1X2Y ,

Qn
X1X2Y

(ΓkC × ΓkD × ΓkF )

≥ Qn
X1X2Y

((ΓkC × ΓkD × ΓkF ) ∩ T̂ (n)(X1X2Y ))

= Qn
X1X2Y

(T̂ (n)(X1X2Y ))
|(ΓkC × ΓkD × ΓkF ) ∩ T̂ (n)(X1X2Y )|

|T̂ (n)(X1X2Y )|

≥ 1

2
Qn
X1X2Y

(T̂ (n)(X1X2Y )). (B.16)

Consider an arbitrary element (zn, vn, wn) of ΓkC × ΓkD × ΓkF . By definition of Γk,

there exists at least one element (xn1 , x
n
2 , y

n) ∈ C×D×F such that (x1i, x2i, yi) differs from
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(zi, vi, wi) for at most 3k values of i. We thus have

Qn
X1X2Y

(zn, vn, wn) =
n∏
i=1

QX1X2Y (zi, vi, wi)

≤ ρ−3k

n∏
i=1

QX1X2Y (x1i, x2i, yi)

= ρ−3kQX1X2Y (xn1 , x
n
2 , y

n), (B.17)

where ρ = minx1∈X1,x2∈X2,y∈Y QX1X2Y (x1, x2, y) > 0. As (zn, vn, wn) ranges over ΓkC ×

ΓkD × ΓkF , each element (xn1 , x
n
2 , y

n) of C × D × F will be selected at most |Γk(xn1 )| ·

|Γk(xn2 )| · |Γk(yn)| times. By virtue of this, (B.17) yields

Qn
X1X2Y

(ΓkC × ΓkD × ΓkF )

≤ ρ−3k|ΓkC(xn1 )| · |Γk(xn2 )| · |Γk(yn)|Qn
X1X2Y

(C ×D × F ).

From [10], we have the upper bound

|Γk(xn1 )| ≤ exp

[
(n

(
H

(
k

n

)
+
k

n
log |X1|

))
.

Thus, we can write

Qn
X1X2Y

(ΓkC × ΓkD × ΓkF ) ≤ exp(nξn)Qn
X1X2Y

(C ×D × F ), (B.18)

where

ξn = 3H

(
k

n

)
+
k

n
log(|X1||X2||Y|)−

3k

n
log ρ→ 0.

Finally, combining (B.16) and (B.18) with the upper bound on Qn
X1X2Y

(T̂ (n)(X1X2Y )),

we have

Qn
X1X2Y

(C ×D × F )
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≥ 1

2
exp(−nξn)Qn

X1X2Y

(
T̂ (n)(X1X2Y )

)
≥ (n+ 1)−|X1||X2||Y|

2
exp

(
−n
(
D
(
P̂X1X2Y ||QX1X2Y

)
+ ξn

))
≥ exp

(
−n
(
D
(
P̂X1X2Y ||QX1X2Y

)
+ ςn

))
,

where ςn → 0.

ςn = ςn(ρ, η,M1,M2, |X1|, |X2|, |Y|)→ 0.

SinceD(P̃X1X2Y ||Q̃X1X2Y ) is uniformly continuous, we can find a sequence µn = µn(ρ, |X1|, |X2|, |Y|)→

0 such that

∣∣∣P̂X1X2Y − P̃X1X2Y

∣∣∣ ≤ ηP̃X1X2Y

⇒
∣∣∣D (P̂X1X2Y ||QX1X2Y

)
−D

(
P̃X1X2Y ||QX1X2Y

)∣∣∣ ≤ µn.

Hence,

Qn
X1X2Y

(C ×D × F ) ≥ exp
(
−n
(
D
(
P̃X1X2Y ||QX1X2Y

)
+ ςn + µn

))
, (B.19)

and consequently

θ(+0,+0, ε) ≤ min
P̃X1X2Y

∈L0

D
(
P̃X1X2Y ||QX1X2Y

)
.

Since P̃X1X2Y satisfies the appropriate marginal constraints, the proof is complete.

130



Appendix C

Appendix of Chapter 4

C.1 Proof of Lemma 4.1

In this appendix, we provide the proof for Lemma 4.1. To simplify the presentation, we show

that Lemma 4.1 exists when Y = φ and X = {a, b}.

Figure C.1: Example

Proof. (1) First, we notice that for two different types tX1 , tX2 ,

||tX1 − tX2||1 ≥
2

n
. (C.1)

Hence, we can number all the types tX ∈ Λn(X ) as tiX , i ∈ {1, · · · , (n + 1)|X |} with

||tiX − ti+1
X ||1 = 2

n
. Then, the space PX is cut into cells by tiX , label each cell by Cti+1

X

tiX
.

(2) Then, we show that for each PX ∈ PX ∩ Π, we have PX ∈
⋃
tX∈ΛΠ

n (X )NtX .
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• If ∃ tX ∈ ΛΠ
n (X ), such that PX = tX , it is easy to see PX ∈

⋃
tX∈ΛΠ

n (X )NtX .

• If PX 6= tX , ∀tX ∈ ΛΠ
n (X ), we will show that there exists a tX ∈ ΛΠ

n (X ) such

that PX ∈ NtX .

Suppose ∀ tX ∈ ΛΠ
n (X ), PX 6∈ NtX , i.e.

||tX − PX ||1 >
1

n
, ∀tX ∈ ΛΠ

n (X ). (C.2)

As ∃ i ∈ {1, · · · , (n + 1)|X |} such that PX ∈ C
ti+1
X

tiX
, where at least one of

{tiX , ti+1
X } belongs to ΛΠ

n (X ), then

||tiX − ti+1
X ||1 = ||tiX − PX + PX − ti+1

X ||1

=
∑
xj∈X

|tiX(xj)− PX(xj) + PX(xj)− ti+1
X (xj)|

=
∑
xj∈X

|tiX(xj)− PX(xj)|+ |PX(xj)− ti+1
X (xj)|

= ||tiX − PX ||1 + ||PX − ti+1
X ||1

>
1

n
+

1

n
=

2

n
,

which contradicts with ||tiX − ti+1
X ||1 = 2

n
. Hence there must exist a tX ∈ ΛΠ

n (X )

such that PX ∈ NtX .

C.2 Proof of (4.17)

Given tXY ∈ ΛΠ
n (XY) and t̃XY ∈ NtXY , then for any P̃XY ∈ PXY , we have

ftXY
(
X̌(n)(xn)Y̌ (n)(yn)

)
≤ ft̃XY

(
X̌(n)(xn)Y̌ (n)(yn)

)
+ δ(ζ). (C.3)

Proof. t̃XY ∈ NtXY means that ||tXY − t̃XY ||1 ≤ ζ , i.e. tXY (x, y) − ζ ≤ t̃XY (x, y) ≤
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tXY (x, y) + ζ for each (x, y) ∈ X × Y .

ftXY
(
X̌(n)(xn)Y̌ (n)(yn)

)
= min

P̂XY

P̂X = X̌(n)(xn)

P̂Y = Y̌ (n)(yn)

D
(
P̂XY ||tXY

)

= min
P̂XY

P̂X = X̌(n)(xn)

P̂Y = Y̌ (n)(yn)

∑
(x,y)∈X×Y

P̂XY (x, y) log
P̂XY (x, y)

t̃XY (x, y)

+ min
P̂XY

P̂X = X̌(n)(xn)

P̂Y = Y̌ (n)(yn)

∑
(x,y)∈X×Y

P̂XY (x, y) log
t̃XY (x, y)

tXY (x, y)

= ft̃XY
(
X̌(n)(xn)Y̌ (n)(yn)

)
+ min

P̂XY

P̂X = X̌(n)(xn)

P̂Y = Y̌ (n)(yn)

∑
(x,y)∈X×Y

P̂XY (x, y) log
t̃XY (x, y)

tXY (x, y)

≤ ft̃XY
(
X̌(n)(xn)Y̌ (n)(yn)

)
+ min

P̂XY

P̂X = X̌(n)(xn)

P̂Y = Y̌ (n)(yn)

∑
(x,y)∈X×Y

P̂XY (x, y) log
tXY (x, y) + ζ

tXY (x, y)

(a)

≤ ft̃XY
(
X̌(n)(xn)Y̌ (n)(yn)

)
+ min

P̂XY

P̂X = X̌(n)(xn)

P̂Y = Y̌ (n)(yn)

∑
(x,y)∈X×Y

P̂XY (x, y)
ζ

tXY (x, y)

(b)

≤ ft̃XY
(
X̌(n)(xn)Y̌ (n)(yn)

)
+ δ(ζ),

where (a) is true due to the inequality log(1 + c · x) ≤ c · x, for x > 0, c > 0; and (b) is

true as P̂XY
tXY

< ∞: if ∃(x0, y0) ∈ X × Y , such that tXY (x0, y0) = 0, then t̃XY (x0, y0) < 1
n
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and we can find P̂XY (x0, y0) = 0.

Hence, we can get ftXY (X̌(n)(xn)Y̌ (n)(yn)) ≤ ft̃XY (X̌(n)(xn)Y̌ (n)(yn)) + δ(ζ) and δ(ζ)

is a function of ζ and δ(ζ) ∼ O( 1
n
).

C.3 Proof of (4.40)

From the distribution we draw Un
S1

and V n
S2

, we have the Markov chain

V n
S2
↔ Y n ↔ Xn ↔ Un

S1
.

As (vn, xn, yn) ∈ T nε′′ and from the Markov chain we know that

Pr{Un
S1

= un|V n
S2

= vn, Xn = xn, Y n = yn} = Pr{Un
S1

= un|xn}.

By the covering lemma, Pr{(xn, Un) ∈ T nε′′} converges to 1 as n → ∞, that is Pr{Un
S1

=

un|xn} satisfies the first condition in the Markov lemma. Then we show that it also satisfies

the second condition in the Markov lemma.

For all un ∈ T nε′′(U |xn),

Pr{Un
S1

= un|Xn = xn}

= Pr{Un
S1

= un, Un
S1
∈ T nε′′(U |xn)|Xn = xn}

= Pr{Un
S1
∈ T nε′′(U |xn)|Xn = xn}

×Pr{Un
S1

= un|Un
S1
∈ T nε′′(U |xn), Xn = xn}

≤ Pr{Un
S1

= un|Un
s1
∈ T nε′′(U |xn), Xn = xn}

=
∑
m1

Pr{Un
S1

= un, S1 = s1|Un
s1
∈ T nε′′(U |xn), Xn = xn}

=
∑
m1

Pr{Un
S1

= un|Un
s1
∈ T nε′′(U |xn), Xn = xn, S1 = s1}
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×Pr{S1 = s1|Un
s1
∈ T nε′′(U |xn), Xn = xn}

(a)
=
∑
m1

Pr{Un
s1

= un|Un
s1
∈ T nε′′(U |xn)}

×Pr{S1 = s1|Un
s1
∈ T nε′′(U |xn), Xn = xn}

(b)

≤
∑
m1

Pr{S1 = s1|Un
s1
∈ T nε′′(U |xn), Xn = xn} × 2−n(H(U |X)−δ(ε′′))

= 2−n(H(U |X)−δ(ε′′)),

where (a) follows since

Pr{Un
S1

= un|Un
s1
∈ T nε′′(U |xn), Xn = xn, S1 = s1}

= Pr{Un
S1

= un|Un
s1
∈ T nε′′(U |Xn = xn), Xn = xn, S1 = s1}

= Pr{Un
S1

= un|Un
s1
∈ T nε′′(U |xn)}.

(b) follows from properties of typical sequences. Similarly, we can also prove that for

every un ∈ T nε′′(U |xn) and n sufficiently large,

Pr{Un
s1

= un|Xn = xn} ≥ (1− ε′′)2−n(H(U |X)+δ(ε′′)).

Hence, this satisfies the second condition in the Markov Lemma. By the Markov lemma, we

have (Un
s1
, V n

s1
, Xn, Y n) ∈ T nε′ .
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