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Abstract

k Nearest Neighbor (kNN) method is an important statistical method. There are several

advantages of kNN methods. Firstly, they are usually computationally fast and do not require too

much parameter tuning. Secondly, kNN methods are purely nonparametric, which means that it

can automatically adapt to any continuous underlying distributions, without relying on any specific

models. Thirdly, for many statistical problems, including density estimation, functional estimation,

classification and regression, kNN methods are all proven to be consistent, as long as a proper k is

selected. With these advantages, kNN methods are widely used in these problems.

In this dissertation, we mainly investigate theoretical properties of kNN method under three

scenarios.

Firstly, we discuss the theoretical properties of kNN methods for estimation of differential

entropy and mutual information. A commonly used kNN entropy estimator is called

Kozachenko-Leonenko estimator, which achieves the best empirical performance for a large

variety of distributions. We study the convergence rate of the Kozachenko-Leonenko estimator

under different scenarios. If the distribution has heavy tails, then the Kozachenko-Leonenko

estimator may not be consistent. To improve Kozachenko-Leonenko estimator, we use truncated

kNN distance instead. We derive the minimax convergence rate, which characterizes the

fundamental limits of entropy estimation. We show that the Kozachenko-Leonenko estimator with

truncated kNN distances is nearly minimax rate optimal, up to a log polynomial factor. Building on

the analysis of Kozachenko-Leonenko entropy estimator, we then investigate mutual information

estimation. A widely used kNN based mutual information estimator is called called Kraskov,

Stögbauer and Grassberger (KSG) estimator. We derive the convergence rate of an upper bound of

bias and variance of KSG mutual information estimator. Our results hold for distributions whose

densities can approach zero.

Secondly, we analyze the kNN method in Kullback-Leibler (KL) divergence estimation.

Estimating KL divergence from identical and independently distributed samples is an important
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problem in various domains. One simple and effective estimator is based on the k nearest neighbor

distances between these samples. We analyze the convergence rates of the bias and variance of this

estimator. We discuss two types of distributions, including those with densities bounded away from

zero and those whose densities can approach zero. Furthermore, for both two cases, we derive a

lower bound of the minimax mean square error and show that kNN method is asymptotically

minimax rate optimal.

Finally, we analyze the kNN method in supervised learning, i.e. classification and regression.

The problem can be formulated as the prediction of target Y based on feature vector X ∈ Rd.

Depending on whether Y is numerical or categorical, the problem is called classification and

regression, respectively. In our analysis, we discuss kNN methods for binary classification and

regression. We first analyze the convergence rate of the standard kNN classification and regression,

in which the same k is used for all training samples, under a large variety of underlying feature

distributions. We then derive the minimax convergence rate. The result shows that there exists a

gap between the convergence rate standard kNN method and the minimax rate. We then design an

adaptive kNN method, and prove that the proposed method is minimax rate optimal.
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Chapter 1

Introduction

In this chapter, we introduce the background of this dissertation. In Section 1.1, we introduce basic

tools used in this research dissertation. We then introduce three topics, i.e. analysis of k Nearest

Neighbor (kNN) estimation of entropy and mutual information, estimation of Kullback-Leibler

(KL) divergence, and kNN supervised learning, in Sections 1.2, 1.3, and 1.4, respectively.

1.1 Preliminaries

1.1.1 kNN Method

kNN is an important nonparametric statistical method, which was first proposed in [30]. Since then,

kNN method has been widely used in a large variety of statistical problems, with the following

main aspects.

The first one is density estimation [10, 58, 59, 98], which is the problem of estimating the

probability density function (pdf) of an unknown continuous distribution, given some identical

and independently distributed (i.i.d) samples drawn from this distribution. For this problem, the

k-th nearest neighbor distances of samples are used for the computation of pdf. Large kNN

distances typically indicates a lower pdf, and vise versa. The empirical performance of kNN

density estimation is comparable to other popular nonparametric methods, such as kernel density

1



estimation. Moreover, theoretically, it has been shown that kNN density estimator attains minimax

optimal convergence rate under some smoothness conditions [82].

kNN method can also be used in functional estimation, which is the problem of estimating

the value of statistical functionals that describe certain properties of a distribution, such as the

entropy, mutual information and KL divergence, which describe the uncertainty of a random

variable, the mutual dependence between two random variables, and the distance between two

distributions, respectively. A popular entropy estimator, called Kozachenko-Leonenko estimator,

was proposed in [49]. This estimator is based on kNN distances of the samples. The performance

of this estimator has been analyzed in [7,34,76,83]. The mutual information between two random

variables also attracted research interests. For example, [50] proposed a mutual information

estimator, called Kraskov, Stögbauer and Grassberger (KSG) estimator, which has become the most

popular estimator of mutual information between two continuous random variables. Moreover, [89]

discussed the kNN estimation of KL divergence. kNN method can also be used in estimating other

functionals, such as Rényi entropy [54] and Rényi mutual information [69].

Another important application of kNN method is supervised learning, including classification

and regression [21, 25, 30]. For these problems, the target values corresponding to the k nearest

neighbors are averaged to make a prediction. [30] proposed a kNN method for nonparametric

classification, and the convergence rate of kNN method has been analyzed in many previous

literatures, under different assumptions [17, 20, 31, 46, 78].

kNN method is purely nonparametric, which means that it can automatically adapt to any

continuous underlying functions, without relying on any specific models. Another common

nonparametric method is Kernel method, which can also be used for problems mentioned above.

Both these two methods are proven to be asymptotic consistent under a large variety of scenarios

[10]. Compared with Kernel method, kNN method has several advantages. Firstly, kNN method

does not require too much parameter tuning. Usually the only parameter we need to adjust is

k. On the contrary, Kernel method usually requires adjustment of bandwidth at each dimension

separately, and thus the cost of parameter tuning is higher than kNN method, especially when
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dealing with high dimensional problems. Moreover, some numerical experiments suggest that for

the estimation of information theoretic functionals, kNN type methods can usually outperform

Kernel method [28,34,44]. As a result, kNN methods are widely used for nonparametric statistical

problems.

Despite the widespread use of kNN type methods, several theoretical problems still need further

study. In particular, the theoretical convergence rate of functional estimation, classification and

regression are still not completely established. Providing a theoretical framework of these methods

is a fundamental and important task, which ensures a formal guarantee of these methods, often in

terms of convergence rates. These theoretical bounds can not only improve the understanding of

these methods, but also facilitate the design of novel methods.

1.1.2 Order Statistics

Order statistics is crucially important for the analysis of kNN methods for density estimation,

functional estimation and supervised learning problems [10, 23]. [23] and [10] provide a complete

introduction of order statistics and how it is used for the analysis of kNN methods in a large variety

of scenarios.

Denote X as a random variable taking values in Rd, which follows some unknown underlying

distribution, and X1, . . . ,XN be N i.i.d samples drawn from this distribution. For any fixed x ∈

Rd, define x(k) as the k-th nearest neighbor of x among X1, . . . ,XN , which means that

∥∥x(1) − x
∥∥ ≤ . . . ≤

∥∥x(n) − x
∥∥ , (1.1)

in which ‖·‖ can be an arbitrary norm. Typically, `2 and `∞ are used. If ‖Xi − x‖ = ‖Xj − x‖ for

some i, j, and i 6= j, then we have a distance tie. A tie breaking mechanism is then needed. By

convention, ties are broken by random selection or comparing indices. However, in our analysis,

we assume that X follows a continuous distribution, thus ties happen with zero probability. As a

result, with probability 1, the result will be the same regardless of tie breaking mechanisms.

3



Let U(1), . . . , U(n) be uniform order statistics, which is a permutation of U1, . . . , Un, in which

Ui is uniformly distributed in [0, 1]. U(k) follows Beta distribution. Denote P (B(x, εk)), in which

εk is the distance of x to its k-th nearest neighbors. Then P (B(x, εk))
d
= U(k), in which d

= means

equal in distribution [10,23]. It can be shown that the probability density function (pdf) of U(k) and

εk can be expressed as following:

fU(k)
(u)


(N−1)!

(k−1)!(N−k−1)!
uk−1(1− u)N−k−1 if x ∈ {X1, . . . ,XN}

N !
k!(N−k−1)!

uk(1− u)N−k−1 otherwise,
(1.2)

and

fεk(r) =


(N−1)!

(k−1)!(N−k−1)!
P k−1(B(x, r))(1− P (B(x, r)))N−k−1 dP (B(x,r))

dr
if x ∈ {X1, . . . ,XN}

N !
k!(N−k−1)!

P k(B(x, r))(1− P (B(x, r)))N−k−1 dP (B(x,r))
dr

otherwise.

(1.3)

The above results are used multiple times in our theoretical analysis of kNN functional estimation,

classification and regression problems.

1.1.3 Minimax analysis

Denote F as a set of possible pdfs. Let θ : F 7→ Θ denotes a functional defined on F . The goal

of the functional estimation is to estimate the parameter θ(f) for some unknown pdf f , based

on N i.i.d samples drawn from the distribution with this pdf. For example, differential entropy

h(f) = −
∫
f(x) ln f(x)dx is one of the important functionals. Let L : Θ × Θ 7→ R+ be a loss

function, which can be a metric or a semimetric. The estimation risk is defined as

R = E[L(θ̂, θ)], (1.4)
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and the minimax estimation risk is defined as

inf
θ̂

sup
f∈F

R = inf
θ̂

sup
f∈F

E[L(θ̂, θ)]. (1.5)

The minimax lower bound of functional estimation is usually derived by selecting a finite subset

of F , which has finite number of elements, and converting the estimation problem to a hypothesis

testing problem. There are several main approaches, including Le Cam’s method, Fano’s method

and Assouad’s method.

Le Cam’s method [52] provides the minimax lower bound by converting the estimation problem

to a binary hypothesis testing problem. In particular, two distributions f1 and f2 are selected

from F . The optimal detection method is likelihood ratio test. Assign both f1 and f2 with prior

probability 1/2, then the error probability of this hypothesis testing problem can be lower bounded

using the total variation distance between f1 and f2. To construct a minimax lower bound using

Le Cam’s method, a typical method is to find two distributions in F to make the total variation

distance as small as possible, but the difference of the values of the functionals, i.e. |θ(f1)−θ(f2)|,

to be as large as possible.

Fano’s method [45] constructs multiple hypotheses f1, . . . , fn amongF . Assign f1, . . . , fn with

uniform prior, and define a random variable U = i if f = fi. Denote XN as N observed samples

drawn from distribution f , then U → XN → Û forms a Markov chain. Then the lower bound of

the error probability of hypothesis testing, P (Û 6= U), can be obtained using Fano’s inequality.

Assouad’s method [3] is somewhat different from Le Cam’s or Fano’s method. Instead of

reducing the estimation problem to one hypothesis testing problem with two or more hypotheses,

this method transforms the original estimation problem into multiple binary hypothesis testing

problems. The hypotheses are designed so that the error of estimation, classification or regression

is lower bounded by a positive constant, as long as one of these hypothesis testing is incorrect. Thus

we can lower bound the error by calculating the minimum probability of making wrong decisions.

Minimax risk characterizes the theoretical limit of nonparametric estimation, classification
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and regression. A lower bound of minimax estimation risk is an important way to check the

performance of a nonparametric method. In particular, by comparing the bound of the convergence

rate of the estimation error, or the excess risk of classification, with the minimax lower bound, we

can know whether this nonparametric method can be further improved.

1.1.4 Main contributions

In this research dissertation, we analyze the performance of kNN methods in various areas,

including entropy and mutual information estimation, KL divergence estimation, and supervised

learning. Our results depend on the boundedness of the support of underlying distribution.

To begin with, we define the support of X to be

supp(X) =
{
x ∈ Rd|P (B(x, r)) > 0 for all r > 0

}
, (1.6)

in which B(x, r) = {x′| ‖x′ − x‖ < r}, and P (B(x, r)) is the probability mass of B(x, r).

For distributions with bounded support, i.e. µ(supp(X)) < ∞, in which µ denotes Lebesgue

measure, the performance of kNN methods have already been analyzed in many previous works.

For example, [34,39,77] provided a bound for functional estimation, and [20,46] showed a bound

for classification. In these previous results, it is commonly assumed that the pdf of X is bounded

away from zero. However, for many practical problems, the support set is actually not bounded,

and the density function can approach zero. In this case, the analysis of the performance of kNN

method can usually becomes harder, since the kNN distances are larger at the region in which the

density is low. As a result, the inference of pdf based on the kNN method becomes less accurate.

Under these situations, more theoretical analysis is needed for us to have a better understanding

of the performance of kNN method. This understanding could potentially help us to design an

improved kNN method that has better performance.

In particular, we study the following problems:

• Analysis of the convergence rate of Kozachenko-Leonenko entropy estimator and KSG
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mutual information estimator, without requiring that the support set is bounded;

• Analysis of the convergence rate of a kNN KL divergence estimator, for both distributions

with bounded support and those with unbounded support;

• Analysis of the standard kNN method for classification and regression, in which k is the

same for all samples. In particular, we provide both the upper and the lower bound of the

convergence rate of the excess risk of classification and regression. We show that there is

a gap between the lower and upper bounds. To close this gap, we propose a new adaptive

method to improve the convergence rate, in which k is different for different samples.

For all of these three problems mentioned above, in addition to giving a bound of the

convergence rate of kNN method, we also show a minimax lower bound, and compare these two

bounds.

1.2 Estimation of Entropy and Mutual Information

Information theoretic quantities, such as Shannon entropy and mutual information, have a broad

range of applications in statistics and machine learning, such as clustering [19,66], feature selection

[12, 72], anomaly detection [53], test of normality [86], etc. These quantities are determined by

the distributions of random variables, which are usually unknown in real applications. Hence,

the nonparametric estimation of entropy and mutual information using samples drawn from these

distributions has attracted significant research interests [22, 32, 34, 49, 50, 70, 90].

Depending on whether the underlying distribution is discrete or continuous, the estimation

methods are different. In the discrete setting, the simplest method is plug-in estimator, which

estimates the probability mass function and then calculate the entropy based on these estimated

probabilities. However, since the entropy function is concave, the simple plug-in estimator can

cause negative bias. [62] proposed a correction method for this negative methods. Several further

modifications of the simple plug-in estimators were proposed in various literatures [70]. However,

7



an important problem of all of these estimators is that the sample complexity is high. These

estimators can be accurate only if the number of samples is much larger than the number of

possible values, i.e. the alphabet size. However, in many practical tasks, we need to face the

challenge that the datasets are large and the data only represent a tiny fraction of an underlying

distribution. In other words, the sample size can usually be much smaller than the alphabet size.

[71] showed that for the purpose of estimating the entropy, it is not necessary to estimate the

probability mass function, and it is possible to accurately estimate the entropy with sample size

fewer than the support size. Moreover, it was found in [85] that the ’histogram of histogram’ of

the empirical distribution is actually a sufficient statistics of entropy and some other functionals.

With this discovery, several new estimators are designed, which can accurately estimate entropy

with much fewer samples comparing with the support size. For example, [90] designed a method

to estimate the entropy for discrete variables using polynomial approximation. With this method,

the number of samples required to ensure the uncertainty to be below a certain threshold grows

sublinearly with the alphabet size. Furthermore, [90] also provided a minimax lower bound of the

estimation of entropy for discrete distribution, which shows that this method is minimax optimal.

[40] designed a similar method, which is also minimax optimal under some different assumptions.

For continuous distributions, the estimation method becomes crucially different, since the

number of possible values of the random variable is infinite. Many methods have been proposed

to estimate the differential entropy. Roughly speaking, these methods can be categorized into three

different categories.

The first type of methods seek to convert the continuous distribution to a discrete one by

assigning data points into bins based on their positions, and then count the number of samples

in each bin. After that, the entropy value can be estimated as if the distribution is discrete. [36]

provided a complete introduction of this method. The number of bins, denoted as m, need to be

carefully adjusted to achieve a desirable bias and variance tradeoff. With the increasing of the

number of bins, the bias becomes lower and the variance becomes higher. Moreover, we need to

carefully select a rule to let m grow with N . If we use fixed number of bins, then a fixed bias
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exists, hence the estimator can not be consistent [70]. As a result, it is necessary to let the number

of bins to grow with sample size N , to make the estimator to be consistent. However, if m grows

too fast with N , then the variance can be large. Therefore, it is important to design a rule such

that m grows with N with a proper speed. This speed depends on the smoothness of distribution

and the dimensionality. However, the information about the smoothness of the distribution is also

unknown. The accuracy of a naive implementation of this method is not competitive in general

[28, 44]. An improvement of this method was proposed in [22], which uses adaptive bin sizes

at different locations to estimate the mutual information between two random variables with

continuous distributions. In particular, at the regions with higher density, the bin size is smaller,

and vice versa. This method is particularly competitive, if the support of distribution is highly

irregular. Another method to improve the histogram estimation is ensembling [68], in which several

estimators with different bin sizes are used, and the estimated value are then averaged according to

a carefully designed weight. With the ensembled method, the convergence rate of estimation can

be greatly improved.

The second type of methods try to learn the underlying distribution first, and then calculate

the entropy or mutual information functionals [32, 33, 51, 64]. One of the method of estimating

the pdf of a distribution is Kernel density estimation. A method for automatically selecting the

bandwidth was proposed in [64], which determines the bandwidth by calculating the covariance

matrix of the distribution. Moreover, it can be shown that some modified kernel methods can

improve the performance. For example, [32] designed a new method to estimate entropy and

mutual information, which is based on fitting the density with a local Gaussian model. This method

is especially competitive for estimating mutual information between strongly dependent random

variables. However, this method requires numerical optimization, which can be time consuming.

[33] improved and generalized the method in [32], and show that the local linear or local Gaussian

approximation methods are competitive by numerical experiments. In particular, [33] proposed two

types of estimators, namely, local likelihood density estimation, and k-LNN entropy estimator.

Both of these two types rely on density estimation by maximizing the local likelihood. If the
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polynomial degree is no more than 2, then analytical solution exists, otherwise we need to rely

on numerical optimization methods. The difference of these two types of methods is that the

former method estimates the pdf with Kernel density estimation, while the second one is based on

local nearest neighbor method. Both these two types of methods show desirable performance for

estimating entropy or mutual information when the distribution has boundary. However, generally

speaking, these methods usually involves nontrivial parameter tuning when the dimensions of

random variables are high, as we need to tune the bandwidth for every dimensions of the kernel.

Sometimes, it is even necessary to use a bandwidth matrix that is not diagonal. In this case, we

need to tune the whole bandwidth matrix, thus the number of parameters becomes large, especially

for high dimensional distributions.

The third type, which is the focus of our work, estimates entropy and mutual information

directly based on kNN distances of each sample. A typical example of entropy estimator is

Kozachenko-Leonenko estimator [49]. The basic principle of Kozachenko-Leonenko estimator is

actually to estimate the logarithm of density using k nearest neighbor with some bias correction

[50]. However, for the purpose of consistently estimating the entropy, it is not necessary to

consistently estimate the value of pdf. In fact, if we want to consistently estimate the pdf, k need to

grow with sample size N , and a optimal growth rule of k over N need to be carefully determined.

However, for entropy estimation, even if we use fixed k, the Kozachenko-Leonenko estimator is

still consistent. As a result, the usage of Kozachenko-Leonenko estimator is more convenient than

estimating entropy by estimating the pdf first. Since the mutual information between two random

variables is the sum of the entropies of two marginal distributions minus the joint entropy, we

can just estimate mutual information by estimating the marginal and the joint entropies separately

using Kozachenko-Leonenko estimator. However, Kozachenko-Leonenko estimator is used three

times. As a result, the error may not cancel out. Based on Kozachenko-Leonenko estimator,

Kraskov, Stögbauer and Grassberger [50] proposed a new mutual information estimator, called

KSG estimator, which can be viewed as an adaptive recombination of these three estimators. Unlike

Kozachenko-Leonenko estimator, the calculation of mutual information with KSG estimator is not
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directly based on the k nearest neighbor distance, because the KSG estimator carefully combines

three Kozachenko-Leonenko estimators such that the term related to the kNN distance is canceled

out. [50] shows that the empirical performance of KSG estimator is better than estimating marginal

and joint entropies separately, since the errors of these estimators seem to cancel out after the

combination of these three estimators. An explanation of the reason why KSG estimator performs

better than using Kozachenko-Leonenko estimator three times was proposed in [34], which shows

that the ’correlation boosting’ effect can cause the cancellation of the three bias terms of three

Kozachenko-Leonenko estimators. Compared with other types of methods, Kozachenko-Leonenko

entropy estimator and KSG mutual information estimator are computationally fast and do not

require too much parameter tuning. The only parameter that we need to adjust is k. This makes

these methods convenient to use. In addition, numerical experiments show that these kNN methods

can achieve the best empirical performance for a large variety of distributions [28, 34, 44].

Despite the widespread use of Kozachenko-Leonenko and KSG estimator, the theoretical

properties of these estimators, especially the latter, still need further exploration. Some previous

works [10, 34, 39, 77] derived a bound of the convergence rate of the bias and variance of

Kozachenko-Leonenko estimator for distributions with bounded support. Moreover, it is usually

assumed that the pdf is bounded away from zero. For example, in [10] and [34], the convergence

rate for Kozachenko-Leonenko estimator whose pdf is bounded away from zero is discussed.

In this case, due to the existence of the boundary of the support set, the convergence rate of

Kozachenko-Leonenko estimator can be slower, and the analysis of the boundary effect need

to be considered. If the assumption about the boundedness of support is removed, then the

analysis becomes much harder, since the tail of distribution can cause significant estimation error.

Other works, including [7, 24, 76, 83], analyzed the Kozachenko-Leonenko estimator without

requiring that the support is bounded, under some tail assumptions. In particular, [83] analyzed

the convergence of a truncated Kozachenko-Leonenko estimator with k = 1, for one dimensional

random variables whose distributions has unbounded support, under a tail assumption that is

roughly equivalent to requiring that the distribution has exponentially decreasing tails. [24] derived

11



a bound of the convergence rate for Kozachenko-Leonenko estimator with k = 1. The result

shows that under some assumptions, the estimated value of Kozachenko-Leonenko estimator is

asymptotically normal, and the asymptotic variance is a bit higher than the theoretical lower

limit provided in [56]. [7] showed that if the distribution is smooth, the derivatives of the

pdf decay almost as fast as the pdf itself, and the dimensionality is no more than 3, then the

Kozachenko-Leonenko estimator is asymptotic normally distributed and asymptotically efficient.

This means that the ratio between asymptotic variance and the local minimax lower bound

converges to 1 as the sample size N increases. If the dimension is more than 3, then we can design

an ensembled estimator, which takes a weighted average of the Kozachenko-Leonenko estimators

with different k. This ensembled estimator is asymptotically efficient for arbitrary dimensions.

For KSG mutual information estimator, the analysis can be even more challenging, as

KSG estimator is actually an adaptive recombination of Kozachenko-Leonenko estimators. This

adaptivity makes the problem much more difficult. [34] made a significant progress toward in

understanding the properties of KSG estimator. In particular, [34] showed that the estimator is

consistent under some mild assumptions (Assumption 2 in [34]). Furthermore, [34] provided a

bound of the convergence rate of bias and variance under some more restrictive assumptions

(Assumption 3 in [34]). However, although not stated explicitly in [34], one can show that, for a pdf

that satisfies Assumption 3 in [34], its support set must be bounded. Moreover, its joint, marginal

and conditional pdfs are all bounded both from above and away from zero in their supports. As a

result, the analysis of [34] does not hold for some commonly seen pdfs, e.g. ones with unbounded

support such as Gaussian. Therefore, it is important to extend the analysis of the properties of kNN

information estimators to other types of distributions.

In this dissertation, we analyze kNN information estimators, including Kozachenko-Leonenko

and KSG estimators, that hold for variables with both bounded and unbounded support. In

particular, we make the following contributions:

Firstly, we analyze the convergence rate of Kozachenko-Leonenko entropy estimator.

Our assumptions allow the distribution to have unbounded support, for which the original
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Kozachenko-Leonenko estimator is not always accurate. In particular, we show that the original

Kozachenko-Leonenko estimator is not necessarily consistent under our assumptions. Therefore

we use a truncated Kozachenko-Leonenko estimator. We derive a bound on the convergence rate

of bias and variance, and provide a rule to select the truncation parameter so that the convergence

rate is optimized. Our assumptions follow [83], which requires that the pdf is second-order smooth

and has a exponentially decreasing tail. Our result improves [83] in the following aspects: 1) Using

a different truncation threshold, we achieve a better convergence rate of bias; 2) We generalize the

result to arbitrary but fixed k and dimensionality. Moreover, we extend the analysis to distributions

with heavier tails, such as Cauchy distribution. Some techniques in [83] can not be directly used to

analyze the scenario addressed in this dissertation. Hence, we use a new approach for the derivation

of bias and variance of Kozachenko-Leonenko estimator. Furthermore, we show a minimax lower

bound of the mean square error of entropy estimator among all possible estimators. The result

shows that the truncated Kozachenko-Leonenko estimator is nearly minimax optimal, up to a log

polynomial factor.

Secondly, building on the analysis of Kozachenko-Leonenko estimator, we derive the

convergence rate of an upper bound on the bias and variance of KSG mutual information estimator

for smooth distributions that satisfy a weak tail assumption. Our results hold mainly for two types

of distributions. The first type includes distributions that have unbounded support, such as Gaussian

distributions. The second type includes distributions that have bounded support but the density

functions approach zero. This type is different from the case analyzed in [34], which focus on

distributions with bounded support but the density is bounded away from zero. To the best of our

knowledge, this is the first attempt to analyze the convergence rate of KSG estimator for these two

types of distributions. Our technique for bounding the bias is significantly different from [34]. In

[34], the distribution is assumed to be smooth almost everywhere, but has a non-smooth boundary,

which is the main cause of the bias. To deal with the boundary effect, the support of density was

divided into an interior region and a boundary region, and then the bias in these two regions were

bounded separately. It turns out that the boundary bias is dominant. On the contrary, in our analysis,
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by requiring that the density is smooth, we can avoid the boundary effect. However, we allow the

density to be arbitrarily close to zero in its support. In the region on which the density is low, the

kNN distances are large. As a result, larger local bias occurs in these regions. To deal with this

situation, we divide the whole support of the density into a central region, on which the density is

relatively high, and a tail region, on which the density is lower. We then bound the bias in these

two regions separately, and let the threshold dividing the central region and the tail region decay

with respect to the sample size with a proper speed, so that the bias in these two regions decay

with approximately the same rates. Then the overall convergence rate can be determined. In our

analysis, we let k be an arbitrarily fixed integer.

The results of this part have been published in [94, 95, 99].

1.3 Estimation of KL Divergence

KL divergence has a broad range of applications in information theory, statistics and machine

learning. For example, KL divergence can be used in hypothesis testing [1], text classification

[26], outlying sequence detection [13], multimedia classification [65], speech recognition [73],

etc. In many applications, we hope to know the value of KL divergence, but the distributions are

unknown. Therefore, it is important to estimate KL divergence based only on some i.i.d samples.

Such problem has been widely studied [2, 14–16, 74, 88, 89, 93].

The estimation method is different depending on whether the underlying distribution is discrete

or continuous. For discrete distributions, an intuitive method is called plug-in estimator, which first

estimates the probability mass function (PMF) by simply counting the number of occurrences at

each possible value and then calculates the KL divergence based on the estimated PMF. However,

since it is always possible that the number of occurrences at some locations is zero, this method has

infinite bias and variance for arbitrarily large sample size. As a result, it is necessary to design some

new estimators, such that both the bias and variance converge to zero. Several methods have been

proposed in [15, 16, 93]. These methods perform well for distributions with fixed alphabet size.
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Recently, there is a growing interest in designing estimators that are suitable for distributions with

growing alphabet size. [14] provided an ‘augmented plug-in estimator’, which is a modification of

the simple plug-in method. The basic idea of this method is to add a term to both the numerator

and the denominator when calculating the ratio of the probability mass. Although this modification

will introduce some additional bias, the overall bias is reduced. Moreover, a minimax lower bound

has also been derived in [14], which shows that the augmented plug-in estimator proposed in [14]

is rate optimal.

For continuous distributions, there are also many interesting methods. A simple one is to divide

the support into many bins, so that continuous values can be quantized, and then the distribution can

be converted to a discrete one. As a result, the KL divergence can be estimated based on these two

discrete distributions. However, compared with other methods, this method is usually inefficient,

especially when the distributions have heavy tails, as the probability mass of a bin at the tail of

distributions is hard to estimate. An improvement was proposed in [88], which is based on data

dependent partitions on the densities with an appropriate bias correction technique. Comparing

with the direct partition method mentioned above, this adaptive one constructs more bins at the

regions with higher density, and vice versa, to ensure that the probability mass in each bins are

approximately equal. It is shown in [88] that this method is strongly consistent. Another estimator

was designed in [67], which uses a kernel based approach to estimate the density ratio. There

are also some previous works that focus on a more general problem of estimating f -divergence,

with KL divergence being a special case. For example, [63] constructed an estimator based on a

weighted ensemble of plug in estimators, and the parameters need to be tuned properly to get a good

bias and variance tradeoff. Another method of estimating f -divergence in general was proposed in

[74], under certain structural assumptions.

Among all the methods for the estimation of KL divergence between two continuous

distributions, a simple and effective one is kNN method based estimator. kNN method, which was

first proposed in [30], is a powerful tool for nonparametric statistics. Kozachenko and Leonenko

[49] designed a kNN based method for the estimation of differential entropy, which is convenient
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to use and does not require too much parameter tuning. Both theoretical analysis and numerical

experiments show that this method has desirable accuracy [7,34,44,76,77,83,99]. In particular, [99]

shows that this estimator is nearly minimax rate optimal under some assumptions. The estimation

of KL divergence shares some similarity with that of entropy estimation, since KL divergence

between f and g, which denotes the probability density functions (pdf) of two distributions, is

actually the difference of the entropy of f and the cross entropy between f and g. As a result, the

idea of Kozachenko-Leonenko entropy estimator can be used to construct a kNN based estimator

for KL divergence, which was first proposed in [89]. The basic idea of this estimator [89] is to

obtain an approximate value of the ratio between f and g based on the ratio of kNN distances. It

has been discussed in [89] that, compared with other KL divergence estimators, the kNN based

estimator has a much lower sample complexity, and is easier to generalize and implement for high

dimensional data. Moreover, it was proved in [89] that the kNN based estimator is consistent, which

means that both the bias and the variance converge to zero as sample sizes increase. However, the

convergence rate remains unknown.

In this dissertation, we make the following two contributions. Our first main contribution is

the analysis of the convergence rates of bias and variance of the kNN based KL divergence

estimator proposed in [89]. For the bias, we discuss two significantly different types of distributions

separately. In the first type of distributions analyzed, both f and g have bounded support, and are

bounded away from zero. One such example is when both distributions are uniform distributions.

This implies that the distribution has boundaries, where the pdf suddenly changes. There are two

main sources of estimation bias of kNN method for this case. The first source is the boundary

effect, as the kNN method tends to underestimate the pdf values at the region near the boundary.

The second source is the local non-uniformity of the pdf. It can be shown that the bias caused

by the second source converges fast enough and thus can be negligible. As a result, the boundary

bias is the main cause of bias of the kNN based KL divergence estimator for the first type of

distributions considered. In the second type of distributions analyzed, we assume that both f and

g are continuous everywhere. For example, a pair of two Gaussian distributions with different
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mean or variance belong to this case. For this type of distributions, the boundary effect does not

exist. However, as the density values can be arbitrarily close to zero, we need to consider the bias

caused by the tail region, in which f or g is too low and thus kNN distances are too large for us

to obtain an accurate estimation of the density ratio f/g. For the variance of this estimator, we

bound the convergence rate under a unified assumption, which holds for both two cases discussed

above. The convergence rate of the mean square error can then be obtained based on that of the

bias and variance. In this dissertation, we assume that k is fixed. We will show that with fixed k,

the convergence rate of the mean square error over the sample sizes is already minimax optimal.

Our second main contribution is to derive a minimax lower bound of the mean square error of

KL divergence estimation, which characterizes the theoretical limit of the convergence rates of any

methods. For discrete distributions, the minimax lower bound has already been derived in [37] and

[14]. However, for continuous distributions, the minimax lower bound has not been established. In

fact, there exists no estimators that are uniformly consistent for all continuous distributions. For

example, let f =
∑m

i=1 pi1((i − 1)/m < x ≤ i/m), in which 1 is the indicator function, and g is

uniform in [0, 1]. Then the estimation error of KL divergence between f and g equals the estimation

error of the entropy of p = (p1, . . . , pm). Since m can be arbitrarily large, according to the lower

bound derived in [90], there exists no uniformly consistent estimator. As a result, to find a minimax

lower bound, it is necessary to impose some restrictions on the distributions. In this dissertation,

we analyze the minimax lower bound for two cases that match our assumptions for deriving the

upper bound, i.e. distributions with bounded support and densities bounded away from zero, and

distributions that are smooth everywhere and densities can be arbitrarily close to zero. For each

case, we show that the minimax lower bound nearly matches our upper bound using kNN method.

This result indicates that the kNN based KL divergence estimator is nearly minimax optimal.

There are some previous works that have analyzed the estimation of a class of functionals

including KL divergence, such as [6, 42, 43, 51]. Most of these works focus on the case in which

the pdf is bounded away from zero, and the support is bounded and known to us. When the support

is unknown, previous boundary correction methods can not be used, hence both the upper bound
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and minimax lower bound of the convergence rate become slower. Moreover, the case in which

pdfs can approach zero still needs further study. To the best of our knowledge, our work is the first

attempt to analyze the KL divergence estimation for cases in which the pdf is bounded away from

zero with unknown support, and the first attempt to analyze the KL divergence estimation for cases

in which the pdf can approach zero with matching upper and lower bounds in general.

The results of this part have been published in [97, 100].

1.4 Supervised Learning

Supervised learning is the task of inferring a function that predicts the target Y from a feature

vector X ∈ Rd. Depending on whether Y takes values among a discrete or continuous set, the

problem is called classification and regression, respectively. Associated with both classification

and regression problems, there exists a loss function L(Ŷ , Y ), which measures the accuracy of the

prediction rule, and the risk R is defined as the expectation of the loss function. Given the joint

distribution of X and Y , we can decide an optimal prediction rule Ŷ = g∗(X), which has the

minimum risk, called Bayes risk, denoted as R∗. For classification problem, suppose that Ŷ take

values in {−1, 1}, then we have

g∗(x) =

 1 if E[Y |X = x] > 0

−1 otherwise,
(1.7)

and the corresponding Bayes risk is

R∗ = E
[

1− |η(X)|
2

]
. (1.8)

For regression problem, g∗(x) depends on the loss function we use. Suppose that we are using `2

loss function, i.e. L(Ŷ , Y ) = (Ŷ − Y )2, then

g∗(x) = E[Y |X = x], (1.9)
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and the corresponding Bayes risk is

R∗ = E[Var[Y |X]]. (1.10)

However, in practical supervised learning problems, the joint distribution of feature vector X and

target Y is unknown. The determination of prediction rule must be based on a finite number of

i.i.d training samples (X1, Y1), . . . , (XN , YN). As a result, it is inevitable for a classification or

regression method to have some excess risk, which is defined as the gap between its risk and the

Bayes risk. For some types of supervised learning methods, the excess risk can asymptotically

converge to zero as the number of training samples increases. These methods are called consistent

classifiers or regressors. The problem of checking whether a classification and regression method

is consistent, and characterizing the corresponding convergence rate, has attracted significant

research interests [8, 11, 61, 91, 92].

The analysis of the consistency of a classification or regression method is crucially different

between parametric and nonparametric methods. For parametric statistical learning methods,

the possible underlying distributions of the feature and target are determined by some finite

dimensional parameters. In this case, a classification or regression method can probably be

consistent only if the model assumption is correct, i.e. the actual distribution is within the

hypothesis space. In this case, the convergence rate can usually be fast. However, if the assumption

is not correct, then the excess risk will converge to some positive value, rather than zero, when

the training sample size goes to infinity. On the contrary, nonparametric learning methods are

much more flexible, which means that they can automatically adapt to arbitrary Bayes decision

boundaries or underlying joint distributions of (X, Y ).

Among all of the nonparametric learning methods, kNN is a simple and popular one. For

classification problem, given any test point X, the kNN classifier assigns it with label Ŷ determined

by the majority vote from the labels of k nearest neighbors of X among the training set. For

regression problem, the mean of the observed labels of k nearest neighbors of X is assigned to
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be the predicted label. The performance of kNN classification and regression has been extensively

investigated. For kNN regression, the excess risk can actually be expressed as following:

R−R∗ = E[(Ŷ − E[Y |X])2], (1.11)

which can be decomposed into a squared bias term E[(E[Ŷ |X] − E[Y |X])2] and a variance term

E[(Ŷ − E[Ŷ |X])2]. The bias term depends both on k and sample size N . It is shown in [78]

that if k/N → 0 as N goes to infinity, then the bias converges to zero. The variance depends

mainly on k, and converges to zero if k increases with N . As a result, if we use fixed k for kNN

regression, which depends neither on the sample size N , nor the position of each sample, then

under some weak assumptions, the risk will converge to a limit value that is higher than the Bayes

risk [21]. For larger fixed k, such a limit value is lower. However, as long as k is fixed, the limit

value can not reach the Bayes risk in general [10]. To make the kNN regression consistent, we

need to ensure that both the bias and the variance converges to zero. As a result, it is necessary

to simultaneously require that k → ∞ and k/N → 0. Under these two conditions, [78] shows

that for all joint distributions (X, Y ), without any assumptions, the kNN regression method is

universally consistent. The above analysis also holds for kNN classification, since the loss of kNN

classification can actually be bounded by the loss of regression estimates.

Given that k/N → 0 and k →∞, we know that the kNN classification and regression methods

are consistent. The next problem is to find a bound of the convergence rate of the kNN method. If

k grows too fast, then the variance decays fastly but the bias decays slowly, and vice versa. There

exists an optimal growth rate of k over N , under which the convergence rate of the squared bias

and the variance are the same, and thus the best bias and variance tradeoff is attained. The best

growth rate of k over N depends on the distribution. For a smoother distribution, we can worry

less about the bias and thus let k grow with N faster.

Important progresses towards identifying the best growth rate of k and finding the

corresponding optimal convergence rate have been made in [5, 20, 29, 35]. [35] analyzed the
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convergence rate of local risk at a a specific query point, i.e. E[L(Ŷ , Y )|X = x]. Note that the

total risk R = E[L(Ŷ , Y )] is the expectation of local risk, hence it can be shown that if the

distribution satisfies strong density assumption, which means that the support of the distribution

of X is bounded, and the underlying probability density function (pdf) f(x) is bounded away

from zero in its support, then the convergence rate of local excess risk is of the same order as the

convergence rate of total excess risk [9, 10, 29]. In this case, for both classification and regression

problems, kNN method can achieve the best convergence rate in the minimax sense [5, 20, 82].

However, for many common cases, the support of distribution of X is not bounded, or the pdf

is not bounded away from zero. In this cases, we can no longer ensure that the convergence rate

of total risk is still of the same order as that of local risk. The reason is that E[L(Ŷ , Y )|X =

x] does not converge uniformly for all x. As a result, for distributions with unbounded support,

further analysis is needed. [20] derived the convergence rate of standard kNN classifier under a

’probablistic continuous’ assumption, which is a slight variation of the strong density assumption.

Although the assumptions made in [20] does not require the support of density to be bounded,

this assumption actually does not hold for many common unbounded distributions. For example,

consider that conditional on Y = 1 or Y = −1, X follows Gaussian distribution with center c1 or

c−1, then this probabilistic continuous assumption is not satisfied. An important progress toward

identifying the convergence rate of kNN classification for distributions with unbounded support

is shown in [31], which gives a bound of the excess risk of standard kNN classifier. A minimax

lower bound was also shown in [31], and it is observed that there exists some gap between this two

convergence rates. This phenomenon can be explained by the fact that the kNN distances tend to

be large in the regions where the pdf of the features is low. As a result, the conditional distribution

of the target at the test point can be quite different from that at its nearest neighbors. As a result, the

inference using kNN method becomes less accurate. To improve the accuracy of kNN classification

and regression, adaptive k is necessary, which means that different k for different samples is used.

In particular, a ’sliced nearest neighbor’ method was proposed in [31], which divides the support

into several regions depending on the pdf of X, and uses different k in different regions. It was
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proved that this new method attains the minimax convergence rate. However, this method requires

us to know the underlying pdf. Although the pdf can be estimated from the training samples, the

theoretical guarantee of the adaptive classifier is not established, after we take the estimation error

into consideration. If apart from a set of labeled training samples, we also have abundant unlabeled

samples, which are much more than labeled samples, then it is possible to estimate the pdf with

sufficient accuracy. We can then use the estimated density values to determine the optimal k. In

this case, the problem is actually a semi-supervised learning problem, which was discussed in [17].

However, in supervised learning problem, those unlabeled data is not available.

In this dissertation, we focus on kNN supervised learning, including both classification and

regression, with neither precise knowledge of feature distribution, nor any unlabeled data. In

particular, we make the following contributions:

Firstly, we derive a bound for the convergence rate of the standard kNN classification and

regression, which uses the same k for all test samples, under assumptions that are more general

than those discussed in existing studies such as [20] and [31]. In particular, we introduce parameters

to describe the properties of the distribution of the feature vector, such as tail parameters, as well

as parameters to describe the distribution of labels, such as margin parameters. Our bound depends

on these parameters and is applicable to a broader class of distributions than those derived in the

existing literatures. The derived bound recovers the bounds in the existing studies [4, 20, 29, 46],

although some assumptions are slightly different. Furthermore, we provide a lower bound for the

excess risk of the standard kNN method over a set of distributions. We show that the lower bound

and the upper bound almost match, therefore our bounds are tight and can not be further improved.

Secondly, we derive a minimax lower bound over all classification and regression methods that

do not have the information of the underlying regression function, under the same assumptions

as mentioned above. The result indicates that, if the distribution has tails, then there exists a gap

between the convergence rate of the excess risk of the standard kNN method and the minimax

convergence rate. Hence, the standard kNN classification and regression are not optimal under

these scenarios.
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Thirdly, to close the gap identified above, we propose and analyze a new adaptive kNN method,

in which we use different value of k for different test points. Our approach is based solely on

labeled training samples, without requiring the precise knowledge of pdf f(x). In particular, for

a given test sample, we select k as an increasing function of the number of training samples that

fall in a fixed radius ball centered at this test sample. The purpose of our choice of k is to achieve

a desirable bias and variance tradeoff. This is motivated by the observation that if k increases, the

kNN distances will increase and hence the bias will also increase. On the other hand, the variance

decreases with k. As a result, if there are many training samples around the test point x, then

we can safely use a larger k to reduce the variance, without worrying too much about the bias,

since the kNN distances are still not large when the training samples are dense around the test

point. On the contrary, if there are fewer training samples around the test point, then we need to

use a smaller k to control the bias. Building on this intuition, we carefully design a selection rule

of k, which is an increasing function of the number of samples in the fixed radius neighborhood

of each testing point. Intuitively, the number of samples in the fixed radius neighborhood can be

viewed as an estimation of density around the test point. However, here we do not expect to have

a consistent density estimation, since the bias of this density estimate does not decay with the

sample size N . Nevertheless, our method can still bridge the gap mentioned above, and achieve

the minimax optimal convergence rate, despite that the density estimation using a fixed radius

nearest neighbor search is not consistent. Furthermore, as will be clear in the sequel, our proposed

method does not need too much parameter tuning. To the best of our knowledge, our method is

the first nonparametric classification and regression method that is proven to be rate optimal for

feature distributions with both bounded and unbounded support.

The results of this part have been published in [96, 101, 102].
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Chapter 2

Analysis of KNN Information Estimators

2.1 Introduction

In this chapter, we analyze the convergence rate of Kozachenko-Leonenko entropy estimator

and KSG mutual information estimator. Our analysis holds for variables with both bounded and

unbounded support. The remainder of this chapter is organized as follows. In Section 2.2, we

provide our main result of the analysis of Kozachenko-Leonenko entropy estimator, and then

compare with [83]. In Section 2.3, we analyze KSG mutual information estimator, and then

compare with [34]. In these two sections, we show the basic ideas of the proofs of our main

results and relegate the detailed proofs to Appendices. In Section 2.4, we extend our analysis to

heavy tailed distributions. In Section 2.5, we provide numerical examples to illustrate the analytical

results. Finally, in Section 2.6, we offer concluding remarks.

2.2 Kozachenko-Leonenko Entropy Estimator

As KSG mutual information estimator depends on Kozachenko-Leonenko entropy estimator, in

this section, we first derive convergence results for Kozachenko-Leonenko estimator.

Consider a continuous random variable X ∈ Rdx with unknown pdf f(x). The differential
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entropy of X is

h(X) = −
∫
f(x) ln f(x)dx.

Given N i.i.d samples {x(i), i = 1, . . . , N} drawn from this pdf, the goal of

Kozachenko-Leonenko estimator is to give a nonparametric estimation of h(X). The expression of

Kozachenko-Leonenko estimator is given by [49]:

ĥ(X) = −ψ(k) + ψ(N) + ln cdx +
dx
N

N∑
i=1

ln ε(i), (2.1)

in which ψ is the digamma function defined as ψ(t) = Γ′(t)
Γ(t)

with

Γ(t) =

∫ ∞
0

ut−1e−udu,

and ε(i) is the distance from x(i) to its k-th nearest neighbor. The distance is defined as d(x,x′) =

‖x− x′‖, in which ‖·‖ can be any norm. `2 and `∞ are commonly used. cdx is the volume of

corresponding unit norm ball.

If some samples are very far away from the most of the other samples, then the kNN distances

of these samples can be very large, which may significantly deteriorate the performance of the

original Kozachenko-Leonenko estimator. To address this problem, we use a truncated estimator.

Similar approach was proposed in [34, 83]:

ĥ(X) = −ψ(k) + ψ(N) + ln cdx +
dx
N

N∑
i=1

ln ρ(i), (2.2)

in which

ρ(i) = min{ε(i), aN}

with aN being a truncation radius that depends on the sample size N . A smaller aN can make the
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estimator more stable. However, if aN is too small, then additional bias will occur. Therefore, to

obtain a desirable tradeoff, a proper selection of aN is important. In [83], aN is chosen to be 1/
√
N .

In this paper, in order to achieve a better convergence rate, we propose to use a different truncation

threshold:

aN = AN−β, (2.3)

in which A, β are two constants. The choice of β can affect the convergence rate of

Kozachenko-Leonenko estimator. In the following theorem, we optimize β, to make convergence

rate of the truncated Kozachenko-Leonenko estimator as fast as possible. We will show that,

with the optimal choice of β, the proposed truncated Kozachenko-Leonenko estimator is minimax

optimal.

Theorem 2.1. Suppose that the pdf f(x) satisfies the following assumptions:

(a) f ∈ W 2,∞, in which W is Sobolev space, and the second order weak derivative of f is bounded

by M ;

(b) There exists a constant C such that

∫
f(x) exp(−bf(x))dx ≤ Cb−1 (2.4)

for any b > 0.

For sufficiently large N , if we let β = 1/(dx + 2), then the bias of truncated

Kozachenko-Leonenko estimator is bounded by:

∣∣∣E [ĥ(X)
]
− h(X)

∣∣∣ = O
(
N−

2
dx+2 lnN

)
. (2.5)

The above bound holds for arbitrary but fixed k.

Proof. (Outline) As discussed in [50], the correction term−ψ(k) in (2.2) is designed for correcting

the bias caused by the assumption that the average pdf in the ball B(x, ε) is equal to the pdf at its
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center, i.e. f(x), which does not hold in general. Hence, the bias of original Kozachenko-Leonenko

estimator (2.1) is caused by the local non-uniformity of the density. If ε is large, the average pdf in

B(x, ε) can significantly deviate from f(x). By substituting ε with ρ, which is upper bounded by

aN , we can control the bias caused by large kNN distances. This type of bias is lower if we use a

small aN . However, the truncation also induces additional bias, which can be serious if aN is too

small. Therefore we need to select aN carefully to obtain a tradeoff between these two bias terms.

First, using results from order statistics [10, 23], we know E[lnP (B(X, ε))] = ψ(k) − ψ(N).

Hence

E[ĥ(X)] = −ψ(k) + ψ(N) + ln cdx +
dx
N

N∑
i=1

E[ln ρ(i)]

= −E[lnP (B(X, ε))] + ln cdx + dxE[ln ρ]. (2.6)

We then divide the support of f(x) into a central region (called S1, which have a relatively high

density) and a tail region (called S2, which have a relatively low density). The exact definitions

of S1 and S2 are shown in (A.11) and (A.12) in Appendix A.1. and decompose the bias of the

truncated Kozachenko-Leonenko estimator (2.2) into three parts:

E[ĥ(X)]− h(X) = −E
[
ln
P (B(X, ε))

P (B(X, ρ))
1(X ∈ S1)

]
− E

[
ln
P (B(X, ρ))

f(X)cdxρ
dx
1(X ∈ S1)

]
−E

[
ln
P (B(X, ε))

f(X)cdxρ
dx
1(X ∈ S2)

]
. (2.7)

All of these three terms converge to zero. The first term in (2.7) is the additional bias caused by

truncation in the central region. Note that ε and ρ are different only when ρ > aN , thus if aN does

not decay to zero too fast, then P (ε ≤ aN) happens with a high probability. Hence the first term

converges to zero. The second term is the bias caused by local non-uniformity of the pdf in the

central region. Recall that ρ = min{ε, aN} ≤ aN = AN−β , ρ will converge to zero, hence the

local non-uniformity will gradually disappear with the increase of N . The last term is the bias in

the tail region. We let the tail region to shrink with the increase of N , and let the central region to
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expand, then the third term can also converge to zero. These three terms are bounded separately,

and the results depend on the selection of truncation parameter β. The overall convergence rate

is determined by the slowest one among these three terms. In our proof, we carefully select β to

optimize the overall rate.

For detailed proof, please refer to Appendix A.1.

Our assumptions (a), (b) in Theorem 2.1 are almost the same as assumptions (A0)-(A2) in [83],

except that now we no longer require f(X) to be positive everywhere, as was required in [83]. As

a result, our analysis holds for distributions with both bounded and unbounded support.

Assumption (a) is the smoothness assumption. As a pdf,
∫
f(x)dx = 1, under which we can

show that the boundedness of Hessian or the second order weak derivative implies the boundedness

of f(x) and ∇f(x).

Assumption (b) is the tail assumption, which is roughly equivalent to requiring that the density

has exponentially decreasing tails [83]. To be more precise, we now show some examples that

satisfy Assumption (b):

• (b) holds if the pdf has a bounded support. Note that f(x) exp(−bf(x)) is maximized when

f(x) = 1/b, therefore f(x) exp(−bf(x)) ≤ 1/(eb) always holds. Denote S as the support

set of f , and m(S) =
∫
S
dx as the support size, then

∫
f(x) exp(−bf(x))dx ≤

∫
S

1

eb
dx =

m(S)

eb
, (2.8)

hence for any distributions with bounded support, assumption (b) holds with C = m(S)/e.

• (b) holds if dx = 1 and f(x) ∼ exp(−α|x|θ) for some constant α > 0, and θ > 1, and

sufficiently large x. This was mentioned in [83].

• Moreover, as discussed in [83], many distributions with exponentially decreasing tails also

satisfy our assumption (b). For example, this assumption holds for Gaussian distribution with

dx ≤ 2 and exponential distribution with dx = 1.
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We remark that the above conditions are only sufficient but not necessary conditions for

assumption (b) to hold. In fact, assumption (b) also holds for other distributions, even if X does

not have any finite moments. In this case, the original Kozachenko-Leonenko estimator without

truncation may not be consistent, but the truncated one is still consistent, and the convergence rate

can be bounded using Theorem 2.1. One such example is constructed in Appendix A.2, see random

variable X2 there.

Furthermore, we extend our results to distributions with heavy tails in Section 2.4. As

a byproduct of such extension, we also show that for all sub-Gaussian or sub-exponential

distribution, such as Gamma distribution, even if (b) is not satisfied, the convergence bound in

Theorem 2.1 still approximately holds.

The result in Theorem 2.1 holds for truncated Kozachenko-Leonenko estimator. In

the following, we illustrate that the truncation is necessary by showing that the original

Kozachenko-Leonenko estimator is not necessarily consistent for pdfs satisfying our assumptions.

In particular, we have the following proposition.

Proposition 2.2. Under Assumption (a), (b) in Theorem 2.1, with sufficiently largeM andC, there

exists a pdf f(x), such that

lim
N→∞

E[ĥ0(X)]− h(X) 6= 0, (2.9)

in which ĥ0 is the original Kozachenko-Leonenko estimator without truncation.

Proof. (Outline) The basic idea of the proof is to construct two distributions whose entropy

are the same, but the difference of the expectation of the estimated result using the original

Kozachenko-Leonenko estimator does not converge to zero. As a result, for at least one of these

two distributions, the original Kozachenko-Leonenko estimator is not consistent. Please refer to

Appendix A.2 for details.

The next theorem gives an upper bound of variance of ĥ(X). The assumptions for the analysis

of variance are much weaker than the assumption for bias.
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Theorem 2.3. Assume the following conditions:

(c) The pdf is continuous almost everywhere;

(d) ∃r0 > 0,

∫
f(x)

(
ln inf{f̃(x, r)|r < r0}

)2

dx <∞, (2.10)

and

∫
f(x)

(
ln sup{f̃(x, r)|r < r0}

)2

dx <∞, (2.11)

in which f̃(x, r) = P (B(x, r))/V (B(x, r)) is the average pdf over B(x, r).

Under assumptions (c) and (d), if 0 < β < 1/dx, then the variance of truncated

Kozachenko-Leonenko estimator is bounded by:

Var[ĥ(X)] = O
(

1

N

)
. (2.12)

Proof. (Outline) Our proof uses some techniques in [10], which proved O(1/N) convergence of

variance of Kozachenko-Leonenko estimator with k = 1 for one dimensional distribution with

bounded support. We generalize the result to arbitrary fixed dx and k, and the support set can

be both bounded and unbounded, as long as the distribution satisfies assumption (c) and (d) in

Theorem 2.3. However, since our assumptions are weaker, we need some additional techniques to

ensure that the derivation is valid. For detailed proof, please see Appendix A.3.

Our assumptions (c) and (d) are weaker than the corresponding assumptions (B1) and (B2) in

[83]. To show this, we provide a sufficient condition of (c) and (d). In particular, conditions (c) and

(d) are both satisfied, if S1): the pdf is Lipschitz or α-Hölder continuous with 0 < α < 1; and

S2):
∫
f(x)(ln f(x))2dx <∞. We now compare S1) and S2) with conditions in [83]. (B1) in [83]
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requires that the pdf is Lipschitz, and (B2) requires that

∫
f(x)

 sup
‖x−x′‖≤a

f(x′)

f(x)


j

(ln f(x))2dx <∞

for j = 0, 1, 2, 3. We observe that sufficient condition S2) mentioned above only requires it to

hold for j = 0. Note that our assumptions (c), (d) are very weak and hold for almost all common

distributions. If assumptions (a) and (b) are satisfied, then assumptions (c) and (d) must hold, since

(c) is implied by (a), and from (b), it is straightforward to prove that
∫
f(x)(ln f(x))2dx < ∞.

This property combining with (a) imply that (d) holds for sufficiently small r. We provide detailed

proof of this argument in Appendix A.7.1. Under these assumptions, our bound of variance is

exactly the same as the result in [83].

From Theorem 2.1 and Theorem 2.3, under assumptions (a) and (b), the convergence rate of

the mean square error of Kozachenko-Leonenko estimator is bounded by:

E[(ĥ(X)− h(X))2] = O
(
N−

4
dx+2 lnN +

1

N

)
. (2.13)

In the following theorem, we provide a minimax lower bound on the convergence of mean square

error, under assumptions (a) and (b) in Theorem 2.1.

Theorem 2.4. Define

FM,C = {f |Assumptions (a),(b) in Theorem 2.1 are satisfied with constant M and C},

(2.14)

then under assumptions (a), (b) in Theorem 2.1, for sufficiently large M and C,

inf
ĥ

sup
f∈FM,C

E[(ĥ(X)− h(X))2] = Ω

(
N−

4
dx+2 (lnN)−

4dx+4
dx+2 +

1

N

)
. (2.15)
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Proof. Please refer to Appendix A.4 for the proof.

Theorem 2.4 shows that the gap between the convergence rate of the derived upper bound

of the mean square error of Kozachenko-Leonenko estimator and the minimax lower bound is a

log-polynomial factor, which implies that the truncated Kozachenko-Leonenko estimator is nearly

minimax rate optimal.

We now compare our results with related work [7,38,39,83]. We generalize the result in [83] to

arbitrary fixed k and dimensionality, and obtain a tighter bound of the bias by selecting a different

truncation parameter. Moreover, our upper bound of the mean square error (2.13) is the same as

the result of [39], if the Hölder parameter s in [39] is 2. Actually, if s = 2, then the assumptions

in [39] can be viewed as a special case of our analysis, since according to (2.8), assumption (b) in

Theorem 2.1 is satisfied for all distributions with bounded support. We note that the convergence

rate derived is slower than the result in [7]. However, in [7], the partial derivatives of the pdf are

required to decay almost as fast as the pdf itself in the tails of the distribution, while we only have a

overall bound on the Hessian of the pdf. Moreover, we do not assume a bound on the moment of the

distribution. Consider that the gap between upper bound (2.13) and minimax lower bound (2.15) is

only a log polynomial factor, we believe that our bound can not be significantly improved further

in general, although it is possible that for some specific distributions, the actual convergence rate

of Kozachenko-Leonenko estimator is faster than the bound we derived. Moreover, we note that

[38] also provides a minimax analysis of entropy estimation. The bounds in (2.13) and (2.15) are

consistent with the minimax bound in Theorem 6 in [38], for the special case when the smoothness

index s = 2. The main difference between our work and [38] lies on the assumptions: Theorem 6

in [38] focuses on the case in which f is compactly supported within [0, 1]d, while our upper and

lower bound do not require the support set to be bounded.
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2.3 KSG Mutual Information Estimator

In this section, we focus on KSG mutual information estimator. Consider two continuous random

variables X ∈ Rdx and Y ∈ Rdy with unknown pdf f(x,y). The mutual information between X

and Y is

I(X;Y) = h(X) + h(Y)− h(X,Y). (2.16)

Define the joint variable Z = (X,Y) ∈ Rdz with dz = dx + dy, and define the metric in the Rdz

space as

d(z, z′) = max{‖x− x′‖ , ‖y − y′‖}. (2.17)

The KSG estimator proposed in [50] can be expressed as

Î(X;Y) = ψ(N) + ψ(k)− 1

N

N∑
i=1

ψ(nx(i) + 1)− 1

N

N∑
i=1

ψ(ny(i) + 1), (2.18)

with

nx(i) =
N∑
j=1

1(‖x(j)− x(i)‖ < ε(i)),

ny(i) =
N∑
j=1

1(‖y(j)− y(i)‖ < ε(i)),

in which ε(i) is the distance from z(i) = (x(i),y(i)) to its k-th nearest neighbor using the distance

metric defined in (2.17).

Recall that the original Kozachenko-Leonenko estimator is not consistent for some

distributions satisfying our assumptions, and thus we use a truncated one instead. However,

the situation for KSG estimator is different. From (2.18), we observe that unlike the original

Kozachenko-Leonenko estimator, KSG estimator avoids the ln ε(i) term, therefore the effect
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caused by large kNN distances is limited. Note that nx(i) and ny(i) can not be less than k or more

than N , therefore ψ(nx(i) + 1) and ψ(ny(i) + 1) are both always in [ln(k+ 1), ln(N + 1)]. Hence,

if nx(i) and ny(i) for a sample i differ significantly from others, the influence on the accuracy is

at most (ln(N + 1))/N . This ensures the robustness of KSG estimator. Therefore, in the following

analysis, we use the original KSG estimator without truncation.

Our analysis of the bias of KSG estimator is based on the following assumptions:

Assumption 2.1. There exist finite constants Ca, Cb, Cc, C ′c, Cd, C
′
d and Ce, such that

(a) f(x,y) ≤ Ca almost everywhere;

(b) The two marginal pdfs are both bounded, i.e. f(x) ≤ Cb, and f(y) ≤ Cb;

(c) The joint and marginal densities satisfy

∫
f(x,y) exp(−bf(x,y))dxdy ≤ Cc/b, (2.19)∫

f(x) exp(−bf(x))dx ≤ C ′c/b,∫
f(y) exp(−bf(y))dy ≤ C ′c/b

for all b > 0;

(d) The Hessian of joint distribution and marginal distribution are bounded everywhere, i.e.

∥∥∇2f(z)
∥∥
op
≤ Cd,

∥∥∇2f(x)
∥∥
op
≤ C ′d, and

∥∥∇2f(y)
∥∥
op
≤ C ′d;

(e) The two conditional pdfs are both bounded, i.e. f(x|y) ≤ Ce and f(y|x) ≤ Ce.

It was proved in [34] that under its Assumption 2, KSG estimator is consistent, but the

convergence rate was unknown. Note that the distributions that satisfy the Assumption 2 of [34]

may have arbitrarily slow convergence rate, especially for heavy tail distributions. Our assumptions

are stronger than Assumption 2 of [34], in which (a)-(c) were not required. In [34], the convergence

rate was derived under its Assumption 3, which also strengthens its Assumption 2. The main
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difference between Assumption 3 of [34] and our assumptions is that [34] requires

∫
f(x,y) exp(−bf(x,y))dxdy ≤ Cce

−C0b. (2.20)

One can show that a joint pdf satisfying assumption (2.20) is bounded away from 0 and the

distribution must have bounded support. On the contrary, we only require this integration to decay

inversely with b, see (2.19). This new assumption is valid for distributions whose joint pdf can

approach zero as close as possible, thus our analysis holds for distributions with both bounded and

unbounded support. This assumption roughly requires that both the marginal density and the joint

density have exponentially decreasing tails. For example, joint Gaussian distribution satisfies this

assumption. Another difference is that we strengthen the Hessian from bounded almost everywhere

to everywhere, to ensure the smoothness of density, and thus avoid the boundary effect. Figure 2.1

illustrates the difference between [34] and our analysis. [34] holds for type (a), such as uniform

distribution, while our analysis holds for type (b) and (c), such as Gaussian distribution. In addition,

we do not truncate the kNN distances as in [34].

(a) Bounded support, pdf is
bounded away from zero. Ex-
ample: Uniform distribution

(b) Unbounded support, pdf has
a long tail. Example: Gaussian
distribution

(c) Bounded support, pdf can
approach zero.

Figure 2.1: Comparison of three types of distributions. The convergence rate of KSG estimator for
type (a) was derived in [34], while we analyze type (b) and (c).

To deal with these assumption differences, our derivation is significantly different from those

of [34]. Theorem 2.5 gives an upper bound of bias under these assumptions.

Theorem 2.5. Under the Assumption 2.1, for fixed k > 1 and sufficiently large N , the bias of
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KSG estimator is bounded by

|E[Î(X;Y)]− I(X;Y)| = O
(
N−

2
dz+2 lnN

)
+O

(
N−

min{dx,dy}
dz

)
. (2.21)

Proof. (Outline) Recall that KSG estimator is an adaptive combination of two adaptive

Kozachenko-Leonenko estimators that estimate the marginal entropy, and one original

Kozachenko-Leonenko estimator that estimates the joint entropy. We express KSG estimator in

the following way:

Î(X;Y) =
1

N

N∑
i=1

T (i) =
1

N

N∑
i=1

[Tx(i) + Ty(i)− Tz(i)],

in which

T (i) := ψ(N) + ψ(k)− ψ(nx(i) + 1)− ψ(ny(i) + 1),

and

Tz(i) := −ψ(k) + ψ(N) + ln cdz + dz ln ρ(i),

Tx(i) := −ψ(nx(i) + 1) + ψ(N) + ln cdx + dx ln ρ(i),

Ty(i) := −ψ(ny(i) + 1) + ψ(N) + ln cdy + dy ln ρ(i),

in which we ρ(i) = min{ε, aN}. Note that although we analyze the original KSG estimator

without truncation, we can decompose it to truncated Kozachenko-Leonenko estimators for the

convenience of analysis. We bound the bias of these three Kozachenko-Leonenko estimators

separately. Note that 1
N

∑N
i=1 Tz(i) is actually the Kozachenko-Leonenko estimator for the joint

entropy. Therefore the bias of joint entropy estimator E[Tz]−h(Z) can be bounded using Theorem

2.1. For the marginal entropy estimators 1
N

∑N
i=1 Tx(i) and 1

N

∑N
i=1 Ty(i), we only need to analyze
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Tx, and then the bound of Ty can be obtained in the same manner. Note that

E[Tx]− h(X) = E[E[Tx|X] + ln f(X)],

and we call E[Tx|X] + ln f(X) the local bias. The pointwise convergence rate of the local bias is

O(N−
2
dx ). However, the overall convergence rate is slower than the pointwise convergence rate.

In the setting discussed in [34], the boundary bias is dominant. In our case, by dividing the whole

support into a central region and a tail region, with the threshold selected carefully, we let the

convergence rate of bias at these two regions decay with approximately the same rate. For detailed

proof, please see Appendix A.5.

The following theorem gives a bound on the variance of KSG estimator, which holds for all

continuous distributions, even if Assumption 2.1 is not satisfied.

Theorem 2.6. If (X,Y) has pdf f(x,y), then the variance of KSG estimator is bounded by

Var
[
Î(X;Y)

]
= O

(
(lnN)2

N

)
. (2.22)

Proof. We refer to Theorem 6 in [34] for the proof. Although the bound in [34] is derived for

truncated KSG estimator, it can be shown that the steps in [34] actually also hold for the original

KSG estimator. Details are omitted for brevity.

2.4 Extension to Heavy Tailed Distributions

In previous sections, we have derived bounds of the convergence rates of bias and variance of

Kozachenko-Leonenko and KSG estimators. We do not have any tail assumptions for bounding

the variance (Theorem 2.3 and 2.6). However, the convergence rate of bias is related to the strength

of tails, thus it is necessary to add some tail assumptions. The assumption (b) in Theorem 2.1 and

the assumption (c) in Assumption 2.1 follow assumption (A2) in [83]. It was discussed in [83]
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that these assumptions are roughly equivalent to requiring that f(x) or f(x,y) has exponentially

decreasing tails. In this section, we extend the results in Theorem 2.1 and Theorem 2.5 to

distributions with polynomially decreasing tails.

Theorem 2.7. Suppose the pdf f(x) satisfies assumption (a) in Theorem 2.1, and

P (f(X) ≤ t) ≤ µtτ (2.23)

for some constant µ > 0, τ ∈ (0, 1], and arbitrary t > 0. Let β = 1/(dx + 2), then the bias of

truncated Kozachenko-Leonenko estimator is bounded by:

|E[ĥ(X)]− h(X)| = O
(
N−

2τ
dx+2 lnN

)
. (2.24)

Theorem 2.8. Assume that the joint distribution of X and Y satisfies Assumption 2.1 (a)-(e),

except that the assumption (c) is changed to the following one:

(c’) The joint and marginal densities satisfy

P (f(X,Y) ≤ t) ≤ µtτ , (2.25)

P (f(X) ≤ t) ≤ µ′tτ ,

P (f(Y) ≤ t) ≤ µ′tτ

for some constant µ, µ′ > 0, τ ∈ (0, 1], and arbitrary t > 0. Then the bias of KSG estimator is

bounded by

|E[Î(X;Y)− I(X;Y)] = O
(
N−

2τ
dz+2 lnN

)
+O

(
N−

min{dx,dy}
dz

)
. (2.26)

Proof. (Outline) For the proof of Theorem 2.7 and Theorem 2.8, recall that τ ∈ (0, 1]. The case

with τ = 1 is already proved in Theorem 2.1 and 2.5. Note that (2.23) with τ = 1 is equivalent
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to (2.4). In particular, (A.4) shows that (2.4) implies (2.23) with τ = 1, while (A.5) with m = 1

shows such equivalence at the reverse direction. As a result, the bounds in Theorem 2.1 and 2.5

still hold for τ = 1. If 0 < τ < 1, there are several details in the proof that are different from

the case of τ = 1. Nevertheless, the basic ideas are still the same. In Appendix A.6, we provide a

brief proof of Theorem 2.7 and 2.8. We only show some important steps, in which the proof with

0 < τ < 1 and that with τ = 1 are different. We omit other steps that are very similar to the proof

of Theorem 2.1 and Theorem 2.5.

Now we discuss the new assumptions (2.23) and (2.25). These two assumptions are

generalizations of (2.4) and (2.19). If τ < 1, then (2.23) holds for many common distributions

with polynomially decreasing tails. We have the following proposition to determine τ .

Proposition 2.9. For one dimensional random variable X with dimension dx, if E[|X|α] < ∞,

then for any τ < α/(α + dx), there exists a constant µ1 such that P (f(X) ≤ t) ≤ µ1t
τ .

The proof of Proposition 2.9 is shown in Appendix A.6. The boundedness of moment, i.e.

E[|X|α] < ∞, is a sufficient but not necessary condition of (2.23). (2.23) can still hold for some

distributions that do not have any finite moments. However, for most of common distributions,

there exists some α such that E[|X|α] is finite. Proposition 2.9 shows how our assumption (2.23)

is related to the boundedness of moments. Note that τ ′ can be arbitrarily close to τ . Combining

Proposition 2.9 with Theorem 2.7 and Theorem 2.8, we have the following corollary.

Corollary 2.10. (1) Bias bounds for Kozachenko-Leonenko estimator: If E[‖X‖α] < ∞, and the

Hessian of f satisfies ‖∇2f‖ ≤M for some constant M , then

|E[ĥ(X)]− h(X)| = O
(
N−

2
dx+2

α
α+dx

+δ
)
, (2.27)

for arbitrarily small δ > 0.

(2) Bias bounds for KSG estimator: If Assumption 2.1 (a),(b),(d) and (e) holds, E[‖X‖α] < ∞,
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E[‖Y‖α] <∞, and supx E[‖Y ‖α |X = x] <∞, then the bias of KSG estimator is bounded by

|E[Î(X;Y)− I(X;Y)] = O
(
N−

2
dz+2

α
α+dz

+δ
)

+O
(
N−

min{dx,dy}
dz

)
, (2.28)

for arbitrarily small δ > 0. In (2.28), dz = dx + dy.

Now we show some examples. For Cauchy distribution, E[|X|α] < ∞ for any α < 1, hence

the convergence rate of bias of Kozachenko-Leonenko estimator isO
(
N−1/(dx+2)+δ

)
for arbitrarily

small δ > 0. For all sub-Gaussian or sub-exponential distributions that are second order smooth,

E[|X|α] < ∞ for all α > 0, hence the convergence rate becomes O(N−2/(dx+2)+δ) for arbitrarily

small δ > 0. For KSG estimator, the convergence rate can also be derived similarly from (2.28).

2.5 Numerical Examples

In this section we provide numerical experiments to illustrate the analytical results obtained in this

paper.

2.5.1 Kozachenko-Leonenko estimator

We conduct the following numerical experiments. Firstly, we calculate the convergence rates

of bias and variance of Kozachenko-Leonenko entropy estimator for distributions with different

dimensions. Secondly, we compare the performance of Kozachenko-Leonenko estimator for

different k.

In the simulation, the bias and variance is estimated by repeating the simulation many times

and then calculate the sample mean and sample variance of all the estimated values. We do not

need to run too many trials to obtain an accurate estimation of variance. But the estimation of bias

is much harder, if the dimension of X is low. In this case, the bias can be much lower than the

square root of variance, as a result, the sample mean may deviate seriously from the expectation of

estimated value E[ĥ(X)]. Hence a large number of trials is needed. If the dimensionality is higher
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than 2, then the bias converges slowly comparing with the variance, and thus we do not need to run

too many trials. We select the number of trials in the following way: run simulations until relative

uncertainty of bias falls below 0.05, in which the relative uncertainty is defined as the ratio between

the length of the 99% confidence interval of bias and the estimated value of bias.

Fig. 2.2 (a), (b) show the convergence of bias and variance of Kozachenko-Leonenko estimator

under Gaussian distribution with dimensions from 1 to 6. In Fig. 2.2, we fix k = 3. These figures

are log-log plots with base 10. We observe that for dx ≤ 3, with log10N ≥ 2, i.e. N ≥ 100,

the bias of Kozachenko-Leonenko estimator decays monotonically with sample size N . However,

for distribution with higher dimensions, the bias increases with N before the subsequent decay.

We explain this phenomenon as follows. According to (2.6), the bias of Kozachenko-Leonenko

estimator can be expressed as E[ĥ(X)] − h(X) = −E[lnP (B(X, ε))] + E[ln(f(X)cdxρ
dx)]. In

the regions where Hessian is positive, P (B(x, ε)) > f(x)cdxρ
dx , which causes negative bias. If

Hessian is negative in B(x, ε), then if ρ ≤ aN , which happens with high probability, then ρ = ε

and thus P (B(x, ε)) < f(x)cdxρ
dx . This causes positive bias. When sample sizes is not large,

the positive and negative bias terms can cancel out. However, the positive bias occurs where the

Hessian is negative, which occurs around x = 0 for standard Gaussian distributions, and thus

converges faster to zero than the negative bias, which occurs at the tail of distribution. Therefore,

with a larger sample size, the negative bias is dominant over the positive bias, and thus the total

bias becomes more serious. If we continue to increase the sample size, then the negative bias term

also converges to zero.

We then calculate the empirical convergence rates by finding the negative slope of the

curves in Fig. 2.2 (a), (b) by linear regression. Considering that in Fig. 2.2 (a), (b), the bias of

Kozachenko-Leonenko estimator decays with stable speed only when the sample size is large,

we perform linear regression using the segment of curves where the sample size is larger than

a certain threshold. For the convergence rate of variance, the linear regression is conducted over

the whole curve since the variance always decay smoothly. These results are then compared with

the theoretical convergence rates, which are obtained from Theorem 2.1 and 2.3. The results are
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shown in Table 2.1, in which we say that the theoretical convergence rate of bias or variance is γ

if it decays with either O(N−γ), or O(N−γ+δ) for arbitrarily small δ > 0, and two ‘Sample Size’

columns refer to the interval of sample size we use for the computation of the convergence rate of

bias and variance, respectively.
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Figure 2.2: Empirical convergence of Kozachenko-Leonenko entropy estimator for Gaussian
distribution.

Table 2.1: Convergence rate of Kozachenko-Leonenko estimator for standard Gaussian
distributions

dx Bias Bias Sample Size Variance Variance Sample Size
(Empirical) (Theoretical) (Empirical) (Theoretical)

1 0.97 0.67 102 ∼ 104 1.00 1.00 102 ∼ 104

2 0.66 0.50 102 ∼ 105 1.00 1.00 102 ∼ 105

3 0.43 0.40 102 ∼ 105 1.01 1.00 102 ∼ 105

4 0.33 0.33 103 ∼ 105 0.99 1.00 102 ∼ 105

5 0.29 0.28 104 ∼ 106 1.01 1.00 102 ∼ 106

6 0.25 0.25 105 ∼ 107 1.03 1.00 102 ∼ 107

Fig. 2.2 (a), (b) and Table 2.1 show that for dx > 2, the above empirical convergence rates

basically agree with the theoretical prediction. We find that for dx = 1 and dx = 2, the empirical

rate is faster than the theoretical convergence rate. As discussed in previous sections, our bound

holds for all distributions that satisfy our assumptions, and the actual convergence rate can be faster

for some specific distributions. For Gaussian distributions, the Hessian of the pdf decays almost as

fast as the pdf itself, while our assumptions only have a bound of Hessian over Rd.
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Moreover, we compare the performance of Kozachenko-Leonenko estimator for different k.

The result is shown in Fig. 2.2 (c) for fixed dx = 2, which shows that for different k, the

convergence rate of Kozachenko-Leonenko estimator is approximately the same, but the constant

factor can be different. For standard Gaussian distribution with dx = 2, the performance of

Kozachenko-Leonenko estimator with k = 5 is better than that with k = 1, 10, 20. If the dimension

of random variable is low, then the squared bias usually converges faster than the variance, thus we

can use large k. On the contrary, with higher dimension, it may be better to use small k.

2.5.2 KSG estimator

Now we evaluate the performance of KSG estimator using joint Gaussian distribution. In this

numerical experiment, we let (X,Y) ∼ N (0,K), in which K is a dz dimensional square matrix,

Ki,j = ρ + (1 − ρ)δij , and δij = 1 if i = j, otherwise 0. In this numerical simulation, we use

ρ = 0.6.

Similar to the experiments on Kozachenko-Leonenko entropy estimator, to ensure the accuracy

of estimation of the bias of KSG mutual information estimator, we still use adaptive number of

trials. We continue to run simulations until the relative uncertainty is lower than 0.05. For both

experiments, we use fixed k = 3 and then plot log10(Bias) and log10(Variance) against log10(N)

separately. The result is shown in Figure 2.3. The empirical convergence rates are compared with

the theoretical convergence rates from Theorem 2.5 and 2.6, and the results are shown in Table 2.2.

For simplicity, we still use the same notation as those used for Kozachenko-Leonenko estimator.

The value of theoretical convergence rate of bias and variance in Table 2.2 is γ if the bound in

Theorem 2.5 or 2.3 is either O(N−γ) or O(N−γ+δ) for arbitrarily small δ > 0. Unlike the curve

for Kozachenko-Leonenko estimator, for KSG estimator, with this example, the curve of both bias

and variance appear to be close to a straight line. Therefore, the empirical convergence rates of bias

and variance are calculated by linear regression over the whole curve. The ‘Sample Size’ column

in table 2.2 is used for the calculation of both bias and variance.

From Fig. 2.3, we observe that the bias and variance of KSG mutual information estimator for
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Figure 2.3: Empirical convergence of KSG mutual information estimator for Gaussian distribution.

Table 2.2: Comparison of convergence rate of KSG estimator

Dimension Bias Bias Variance Variance Sample Size
(Empirical) (Theoretical) (Empirical) (Theoretical)

dx = 1, dy = 1 0.50 0.50 0.99 1.00 102 ∼ 105

dx = 1, dy = 2 0.35 0.33 0.96 1.00 102 ∼ 105

dx = 1, dy = 3 0.27 0.25 0.98 1.00 102 ∼ 105

dx = 1, and dy = 1, 2, 3 basically agree with the theoretical prediction. The bounds in Theorem

2.5 and 2.6 are general bounds that consider the worst cases satisfying our assumptions. For some

specific distributions, the empirical convergence rates can be faster than our theoretical prediction.

In addition, in our derivation, we bound the total bias of KSG estimator by bounding the bias of its

three components separately, and then use the sum of these three bounds as the bound of total bias.

However, as was discussed in [34], the bias of the decomposed marginal entropy estimator and the

joint entropy estimator may cancel out. As a result, the practical performance of KSG estimator

can be better than the theoretical prediction.
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2.6 Conclusion

In this chapter, we have analyzed the convergence rates of bias and variance of truncated

Kozachenko-Leonenko entropy estimator and KSG mutual information estimator for smooth

distributions, under a tail assumption that is roughly equivalent to requiring the distribution to

have an exponentially decreasing tail. Our assumptions allow distributions with heavy tails, for

which the original Kozachenko-Leonenko estimator without truncation may not be accurate. In

particular, we have shown that there exists a distribution under which the Kozachenko-Leonenko

estimator without truncation is not consistent. To solve this problem,we have analyzed a truncated

Kozachenko-Leonenko estimator. By optimally choosing the truncation threshold, we have

improved the convergence rate of bias in [83], and have extended the analysis to any fixed k and

arbitrary dimensions. Moreover, we have derived a minimax lower bound of the convergence rate

of all entropy estimators, which shows that truncated Kozachenko-Leonenko estimator is nearly

minimax optimal. Building on the analysis of Kozachenko-Leonenko estimator, we have then

provided a bound for KSG estimator. Our analysis has no restrictions on the boundedness of the

support set. Finally, we have extended the analysis of Kozachenko-Leonenko and KSG estimator

to distributions with polynomially decreasing tails. We have also used numerical examples to show

that the practical performances of Kozachenko-Leonenko and KSG estimators are consistent with

our analysis in general.

45



Chapter 3

Analysis of Kullback-Leibler Divergence

Estimator

3.1 Introduction

In this chapter, we analyze the convergence rate of the kNN KL divergence estimator, and show

that it is minimax rate optimal. This chapter is organized as follows. In Section 3.2, we provide

the problem statements. In Sections 3.3 and 3.4, we characterize the convergence rates of the bias

and variance of the kNN based KL divergence estimator respectively. In Section 3.5, we show

the minimax lower bound. We then provide numerical examples in Section 3.6, and concluding

remarks in Section 3.7.

3.2 Problem Statement

Consider two pdfs f, g : Rd → R where f(x) > 0 only if g(x) > 0. The KL divergence between

f and g is defined as

D(f ||g) =

∫
f(x) ln

f(x)

g(x)
dx. (3.1)
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f and g are unknown. However, we are given a set of samples {X1, . . . ,XN} drawn i.i.d from

pdf f , and another set of samples {Y1, . . . ,YM} drawn i.i.d from pdf g. The goal is to estimate

D(f ||g) based on these samples.

[89] proposed a kNN based estimator:

D̂(f ||g) =
d

N

N∑
i=1

ln
νi
εi

+ ln
M

N − 1
, (3.2)

in which εi is the distance between Xi and its k-th nearest neighbor in {X1, . . . ,Xi−1,Xi+1, . . . ,XN},

while νi is the distance between Xi and its k-th nearest neighbor in {Y1, . . . ,YM}, d is the

dimension. The distance between any two points u,v is defined as ‖u− v‖, in which ‖·‖ can

be an arbitrary norm. The basic idea of this estimator is using kNN method to estimate the density

ratio. An estimation of f at Xi is

f̂(Xi) =
k

N − 1

1

V (B(Xi, εi))
, (3.3)

in which V (S) is the volume of set S. (3.3) can be understood as follows. Apart from Xi,

there are another N − 1 samples from X1, . . . ,XN , among which k points fall in V (B(Xi, εi)).

Therefore, k/(N − 1) is an estimate of Pf (B(Xi, εi)), in which Pf is the probability mass with

respect to the distribution with pdf f . As the distribution is continuous, we have Pf (B(Xi, εi)) ≈

f(Xi)V (B(Xi, εi)). We can then use (3.3) to estimate f̂(Xi). Similarly, as there are M samples

Y1, . . . ,YM generated from g, we can obtain an estimate ĝ by

ĝ(Xi) =
k

M

1

V (B(Xi, νi))
. (3.4)

As

D(f ||g) = EX∼f

[
ln
f(X)

g(X)

]
≈ 1

N

N∑
i=1

ln
f(Xi)

g(Xi)
, (3.5)
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by replacing f(Xi), g(Xi) with (3.3) and (3.4) respectively, we can get the expression of the KL

divergence estimator in (3.2).

[89] has proved that this estimator is consistent, but the convergence rate remains unknown. In

this paper, we analyze the convergence rates of the bias and variance of this estimator, and derive

the minimax lower bound.

3.3 Bias Analysis

In this section, we derive convergence rate of the bias of the estimator (3.2). We will consider two

different cases depending on whether the support is bounded or not, as they have different sources

of biases.

3.3.1 The Cases with Densities Bounded Away from Zero

We first discuss the case in which the distributions have bounded support and the densities are

bounded away from zero. The main source of bias of this case is boundary effects. Define Sf and

Sg as the support of pdf f and g, respectively, and define ‖∇2f‖op and ‖∇2g‖op as the operator

norm of the Hessian of f and g respectively. We make the following assumptions.

Assumption 3.1. Assume the following conditions:

(a) Sf ⊆ Sg;

(b) There exist constants Lf , Uf , Lg, Ug such that Lf ≤ f(x) ≤ Uf for all x ∈ Sf and

Lg ≤ g(x) ≤ Ug for all x ∈ Sg;

(c) The Hausdorff measure of Sf and Sg are bounded by Hf and Hg respectively;

(d) The diameters of Sf and Sg are bounded by R, i.e. sup
x1,x2∈Sg

‖x2 − x1‖ < R;

(e) There exists a constant 0 < a < 1 such that for all r ≤ R and x ∈ Sf , V (B(x, r) ∩ Sf ) ≥

aV (B(x, r)), and for all x ∈ Sg, V (B(x, r)∩Sg) ≥ aV (B(x, r)), in which V denotes the volume

of a set;

(f) There exists a constant C0, such that ‖∇2f‖op ≤ C0, ‖∇2g‖op ≤ C0.
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Assumption (a) is necessary to ensure that the definition of KL divergence in (3.1) is valid. (b)

bounds both the lower and upper bound of the pdf value. (c) restricts the surface area of the supports

of f and g. Since the kNN divergence estimator tends to cause significant bias at the region near to

the boundary, the estimation bias for distributions with irregular supports with large surface area

are usually large. (d) requires the boundedness of the support. The case with unbounded support

will be considered in Section 3.3.2. (e) ensures that the angles at the corners of the support sets

have a lower bound, so that there will not be significant bias at the corner region. (f) ensures the

smoothness of distribution in the support set. Note that (3.3) and (3.4) actually estimate the average

density f and g over the ball B(Xi, εi) and B(Xi, νi). If the f and g are smooth, then the average

values will not deviate too much from the pdf value at the center of the balls, i.e. f(Xi) and g(Xi).

Based on the above assumptions, we have the following theorem regarding the bias of

estimator (3.2).

Theorem 3.1. Under Assumption 3.1, the convergence rate of the bias of kNN based KL

divergence estimator with fixed k is bounded by:

|E[D̂(f ||g)]−D(f ||g)| = O

((
ln min{M,N}
min{M,N}

) 1
d

)
. (3.6)

Proof. (Outline) Considering that

D(f ||g) = −h(f)−
∫
f(x) ln g(x)dx, (3.7)

in which h denotes the differential entropy, we decompose the KL divergence estimator to an

estimator of the differential entropy of f , as well as an estimator of the cross entropy between f

and g. We then bound the bias of these two estimators. In particular, we can write

E[D̂(f ||g)]−D(f ||g) = −I1 + I2 + I3, (3.8)
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with

I1 = −ψ(k) + ψ(N) + ln cd + dE[ln ε]− h(f),

I2 = −ψ(k) + ψ(M + 1) + ln cd

+dE[ln ν] + E[ln g(X)],

I3 = lnM − ψ(M + 1)− ln(N − 1) + ψ(N), (3.9)

in which ψ is the digamma function, ψ(u) = d(ln Γ(u))/du, with Γ being the Gamma function.

Due to the property of Gamma distribution, we know that | lnM − ψ(M + 1)| ≤ 1/M , and

| ln(N − 1) − ψ(N)| ≤ 1/N . Hence I3 decays sufficiently fast and can be negligible for large

sample sizes N and M .

I1 has the same form as the bias of Kozachenko-Leonenko entropy estimator [49], which has

been analyzed in many previous literatures [7, 10, 34, 76, 99]. With some modifications, the proofs

related to the entropy estimator can also be used to bound I2, which is actually the bias of a

cross entropy estimator. However, as the assumptions are different from the assumptions made in

previous literatures, we need to derive (3.6) in a different way.

In our proof, for both the entropy estimator and the cross entropy estimator, we divide the

support into two parts, the central region and the boundary region. In the central region, B(x, ε)

will be within Sf and B(x, ν) will be within Sg with high probability. Since f and g are smooth,

the expected estimate f̂ and ĝ are very close to the truth, and thus will not cause significant bias.

The main bias comes from the boundary region, in which the density estimator f̂ and ĝ are no

longer accurate, as B(x, ε) or B(x, ν) exceeds the supports Sf and Sg. We bound the boundary

bias by letting the boundary region to shrink with a proper speed.

The detailed proof is shown in Appendix B.1.

For distributions under Assumption 3.1, the boundary bias dominates the bias due to the local

nonuniformity of the pdf. We would like to remark that this finding relies on the smoothness level

of the pdf f and g. If instead of assuming that f and g have bounded Hessian, we only require
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f and g to satisfy some weak smoothness conditions, for example, f and g may be Hölder with

smoothness parameter less than 1, then the dominant cause of bias becomes the local nonuniformity

of pdf instead of the boundary.

Our convergence rate in (3.6) appears to be slower than [51] and [43]. [51] studies

nonparametric estimation of Renyi divergence Dα(f ||g) = (1/(α − 1)) ln
(∫

fα(x)g1−α(x)dx
)
,

which becomes KL divergence when α → 1. [43] focus on another class of functionals, also with

KL divergence as a special case. However, in these works, the support sets are assumed to be

known, while in our work, we do not assume the knowledge of the support set.

3.3.2 The Case with Density Approaching Zero

We now consider the second case where the density is smooth everywhere and the density can be

arbitrarily close to zero. For this case, the main source of bias is tail effects. Note that in this case,

the support can be either bounded or unbounded. For example, f(x) ∼ 1 + cos(x) in [−π, π] is

an example of distribution with bounded support, while Gaussian distribution is an example with

unbounded support. We make the following assumptions:

Assumption 3.2. Assume the following conditions:

(a) If f(x) > 0, then g(x) > 0;

(b) P(f(X) ≤ t) ≤ µtγ and P(g(X) ≤ t) ≤ µtγ for some constants µ and γ ∈ (0, 1], in which

X follows a distribution with pdf f ;

(c)‖∇2f‖op ≤ C0, ‖∇2g‖op ≤ C0 for some constant C0, in which ‖·‖op is the operator norm;

(d) E[‖X‖s] ≤ K, and E[‖Y‖s] ≤ K for some constants s > 0, K > 0.

Assumption (a) ensures that the definition of KL divergence in (3.1) is valid. (b) is the tail

assumption. A lower γ indicates a stronger tail, and thus the convergence of bias of the KL

divergence estimator will be slower. For example, for any distributions with bounded support,

γ ≥ 1. For Gaussian distribution with dimensionality d ≤ 2, γ = 1. For high dimensional

Gaussian distributions, γ can be arbitrarily close to 1. For tn distribution, γ = n/(n + 1). For
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Cauchy distribution, γ = 1/2. If f and g have different tail strength, i.e. P(f(X) < t) ≤ µtγf and

P(g(X) < t) ≤ µtγg , then the convergence rate depends on the smaller γ value. For example, if

γf > γg, then f must also satisfy Assumption 2(b) with γg, for another constant µ′. Therefore we

can just use γ = γg in (b). (c) is the smoothness assumption. (d) is an additional tail assumption,

which is actually very weak and holds for almost all of the common distributions, since s can be

arbitrarily small. However, this assumption is important since it prevents very large ε and ν. Based

on the above assumptions, we have the following theorem regarding the bias of estimator (3.2).

Theorem 3.2. Under Assumption 3.2, the convergence rate of the bias of kNN based KL

divergence estimator with fixed k is bounded by:

∣∣∣E[D̂(f ||g)]−D(f ||g)
∣∣∣

= O
(

(min{M,N})−
2γ
d+2 ln min{M,N}

)
. (3.10)

Proof. (Outline) Similar to the proof of Theorem 3.1, we still decompose the KL divergence

estimator to two estimators that estimate the entropy of f and the cross entropy between f and

g, separately. In particular, we can still decompose the bias using (3.8). For simplicity, we only

provide the convergence bound of I2, which is the error of the cross entropy estimator. The bound

of the entropy estimator holds similarly.

For the cross entropy estimator, we divide the support into two parts, including a central region

S1, in which f or g is relatively high, and a tail region S2, in which f or g is relatively low.

According to the results of order statistics [10, 23], E[lnPg(B(x, ν))] = ψ(k) − ψ(M + 1), in

which Pg(S) is the probability mass of S with respect to the distribution with pdf g. Therefore, I2

can be bounded by

|I2| =

∣∣∣∣E [ln Pg(B(X, ν))

cdνdg(X)

]∣∣∣∣
≤

2∑
i=1

∣∣∣∣E [ln Pg(B(X, ν))

cdνdg(X)
1(X ∈ Si)

]∣∣∣∣ . (3.11)
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We bound two terms in (3.11) separately. To derive the bound of bias in S1, we find a high

probability upper bound of νi, denoted as ρ. The bound of bias can be obtained by bounding the

local non-uniformity of g in B(νi, ρ) if νi ≤ ρ. On the contrary, if νi > ρ, we use assumption (d)

to ensure that νi will not be too large, and thus will not cause significant estimation error. We let ρ

to decay with M at a proper speed, to maximize the overall convergence rate of the bias.

To bound the bias in S2, we let the threshold between S1 and S2 to decay with sample size M ,

so that the probability mass of S2 also decreases with M . We then combine the bound of S1 and

S2, and adjust the rate of the decay of the threshold between S1 and S2 properly.

The detailed proof can be found in Appendix B.2.

The convergence rate for distributions with densities approaching zero in (3.10) appears to be

slower than that in [6], which analyzes a class of two sample functionals including KL divergence.

However, [6] requires the derivatives of the pdf to decay simultaneously with the pdf itself, while

our assumption only have a uniform bound on the Hessian. As a result, the estimation bias at the

tail can be larger under our assumptions.

3.4 Variance Analysis

We now discuss the variance of this divergence estimator. Define

f̃(x, r) = Pf (B(x, r))/V (B(x, r)) (3.12)

as the average pdf f overB(x, r). g̃ is similarly defined. Then we make the following assumptions.

Assumption 3.3. Assume that the following conditions hold:

(a) f and g are continuous almost everywhere;
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(b) ∃r0 > 0, such that

∫
f(x)

(
inf
r<r0

f̃(x, r)

)2

dx <∞; (3.13)∫
f(x)

(
sup
r<r0

f̃(x, r)

)2

dx <∞; (3.14)∫
f(x)

(
inf
r<r0

g̃(x, r)

)2

dx <∞; (3.15)∫
f(x)

(
sup
r<r0

g̃(x, r)

)2

dx <∞; (3.16)

(c) E[‖X‖s] ≤ K and E[‖Y‖s] ≤ K for two finite constants s,K > 0;

(d) There exist two constants C and Ug, such that for all x, f(x) ≤ Cg(x) and g(x) ≤ Ug.

Assumption 3.3 (a)-(c) are satisfied if either Assumption 3.1 or Assumption 3.2 is satisfied. (a)

only requires that the pdf is continuous almost everywhere, and thus holds not only for distributions

that are smooth everywhere, but also for distributions that have boundaries. (b) is obviously

satisfied under Assumption 3.1, since it requires that the densities are both upper and lower

bounded. From Assumption 3.2, it is also straightforward to show that
∫
f(x) ln2 f(x)dx < ∞

and
∫
f(x) ln2 g(x) < ∞. This property combining with the smoothness condition (Assumption

3.2 (c)) imply that (3.16) holds for sufficiently small r0. (c) is the same as Assumption 3.2 (d) and

weaker than Assumption 3.1 (d). Therefore, (a)-(c) are weaker than both previous assumptions on

the analysis of bias. (d) is a new assumption which restricts the density ratio. This is important

since if the density ratio can be too large, which means that there exists a region on which there

are too many samples from {X1, . . . ,XN}, but much fewer samples from {Y1, . . . ,YM}, then νi

will be large and unstable for too many i ∈ {1, . . . , N}. Therefore we use assumption (d) to bound

the density ratio.

Under these assumptions, the variance of the divergence estimator can be bounded using the

following theorem.

Theorem 3.3. Under Assumption 3.3, the convergence rate of the variance of estimator (3.2) with
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fixed k can be bounded by:

Var[D̂(f ||g)] = O
((

1

M
+

1

N

)
ln2(M +N)

)
. (3.17)

Proof. (Outline) From (3.2), we have

Var[D̂(f ||g)]

= Var

[
d

N

N∑
i=1

ln νi −
d

N

N∑
i=1

ln εi

]

≤ 2 Var

[
d

N

N∑
i=1

ln εi

]
+ 2 Var

[
d

N

N∑
i=1

ln νi

]
. (3.18)

Our proof uses some techniques from [10], which proved the O(1/N) convergence of variance

of Kozachenko-Leonenko entropy estimator with k = 1 for one dimensional distributions, and

[99], which generalizes the result to arbitrary fixed dimension and k, without restrictions on the

boundedness of the support. The basic idea is that if one sample is replaced by another i.i.d sample,

then it can be shown that the k-NN distance will change only for a tiny fraction of the samples.

The first term in (3.18) is just the variance of Kozachenko-Leonenko entropy estimator.

Therefore we can use similar proof procedure as was already used in the proof of Theorem 2

in [99]. [99] analyzed a truncated Kozachenko-Leonenko entropy estimator, which means that εi is

truncated by an upper bound aN . We prove the same convergence bound for the estimator without

truncation.

For the second term in (3.18), the analysis becomes much harder, since the kNN distance may

change for much more samples from {X1, . . . ,XN}, instead of only a tiny fraction of samples.

For this term, we design a new method to obtain the high probability bound of the deviation

of (d/N)
∑N

i=1 ln νi from its mean. The basic idea of our new methods can be briefly stated as

following: Define two sets S1 and S ′1, in which S1 is a subset of Rd such that for any x ∈ S1, Y1 is

among the k nearest neighbors of x in {Y1, . . . ,YM}. Similarly, define S ′1 to be a set such that for
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all x ∈ S ′1, Y′1 is among the k nearest neighbors of x. If we replace Y1 with Y′1, the kNN distance

of Xi, i = 1, . . . , N will only change if Xi ∈ S1 or Xi ∈ S ′1. With this observation, we give a high

probability bound of the number of samples from {X1, . . . ,XN} that are in S1 and S ′1 respectively,

and then bound the maximum difference of the estimated result caused by replacing Y1 with Y′1.

Based on this bound, we can then bound the second term in (3.18) using Efron-Stein inequality.

The detailed proof can be found in Appendix B.3.

Remark 3.4. Assumption 3.3 (d) does not hold for certain scenarios. For example, for two

Gaussian distributions with same variances but different means, the density ratio f/g is not

bounded. In the following, we slightly weaken this assumption:

(d’) For all δ > 0, there exists a constant Cδ that depends on δ, such that

sup
S:Pg(S)≤t

Pf (S) ≤ Cδt
1−δ, (3.19)

in which Pf (S) =
∫
S
f(x)dx and Pg(S) =

∫
S
g(x)dx are the probability masses of S under f and

g respectively. If Assumption 3.3 holds, except that Assumption 3.3 (d) is replaced by (d’), then

for arbitrarily small δ,

Var[D̂(f ||g)] = O

((
1

M
+

1

N

)1−δ
)
. (3.20)

This result indicates that if f/g is not bounded, but the region such that f/g is large has a small

probability mass, then the convergence rate becomes slightly slower, but the effect is smaller than

any polynomial factor. The proof of this argument is shown in Appendix B.4. In Appendix B.4,

we also show that (d’) is satisfied for two Gaussian distributions with same variances and different

means.

In the analysis above, we have derived the convergence rate of bias and variance. With these

results, we can then bound the mean square error of kNN based KL divergence estimator. For
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distributions that satisfy Assumptions 3.1 and 3.3, the mean square error can be bounded by

E[(D̂(f ||g)−D(f ||g))2]

= O
(
M− 2

d ln
2
d M +N−

2
d ln

2
d N

+

(
1

M
+

1

N

)
ln2(M +N)

)
. (3.21)

For distributions that satisfy Assumptions 3.2 and 3.3, the corresponding bound is

E[(D̂(f ||g)−D(f ||g))2]

= O
(
M− 4γ

d+2 ln2M +N−
4γ
d+2 ln2N

+

(
1

M
+

1

N

)
ln2(M +N)

)
. (3.22)

3.5 Minimax Analysis

In this section, we derive the minimax lower bound of the mean square error of KL divergence

estimation, which holds for all methods (not necessarily kNN based) that do not have the

knowledge of the distributions f and g. The minimax analysis also considers two cases, i.e. the

distributions whose densities are bounded away from zero, and those who has approaching zero

densities.

For the first case, the following theorem holds.

Theorem 3.5. Define Sa as set of pairs (f, g) that satisfies Assumptions 3.1 and 3.3, and

Ra(N,M) := inf
D̂

sup
(f,g)∈Sa

E[(D̂(N,M)−D(f ||g))2], (3.23)

in which D̂(N,M) is the estimation of KL divergence using N,M samples drawn respectively

from the distributions whose densities are f and g. Then for sufficiently large Uf , Ug and
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sufficiently small Lf and Lg, we have

Ra(N,M)

= Ω

(
1

N
+N−

2
d(1+ 2

ln lnN ) ln−2N ln−(2− 2
d)(lnN)

+
1

M
+M− 2

d(1+ 2
ln lnM ) ln−2M ln−(2− 2

d)(lnM)

)
.

(3.24)

Proof. (Outline) The minimax lower bound of functional estimation can be bounded using Le

Cam’s method [82]. For the proof of Theorem 3.5, we use some techniques from [90], which

derived the minimax bound of entropy estimation for discrete distributions. The main idea is to

construct a subset of distributions that satisfy Assumptions 3.1 and 3.3, and then conduct Poisson

sampling. These operations can help us calculate the distance between two distributions in a more

convenient way, which is important for using Le Cam’s method. Details of the proof can be found

in Appendix B.5.

In Theorem 3.5, ‘sufficiently large’ means that a quantity is larger than a universal constant or

a constant depending only on dimension d, and ‘sufficiently small’ is just the opposite.

(3.24) can be simplified as

Ra(N,M) = Ω

(
1

N
+

1

M
+N−( 2

d
+δ) +M−( 2

d
+δ)
)
, (3.25)

for arbitrarily small δ > 0.

Our minimax lower bound (3.24) is slower than that in [42], which holds for a class of

functionals including the KL divergence. The reason is that the support Sf and Sg of pdfs f and

g are fixed in [42], while in our Theorem 3.5, Sa contains distributions with a broad range of

different support sets, as long as these support sets are restricted by Assumption 3.1 (c) and (d),

which only require that the surface area of these supports are bounded by Hf and Hg, and the

diameters are bounded by R. As a result, the minimax convergence rate becomes slower. In other
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words, [42] and our work provide the theoretical limit of KL divergence estimation with known

and unknown support, respectively. If the supports are known, then there is some gap between the

upper bound in Theorem 3.1 and the lower bound in Theorem 3.5, indicating that the convergence

rate can be improved by some boundary correction methods. One example of such improvement is

mirror reflection method in [57]. On the contrary, if the support is unknown, then our result shows

that the kNN method with no boundary correction is already nearly optimal, and it is impossible

to design a boundary correction method to achieve a better convergence rate, up to a factor that is

asymptotically smaller than any polynomial of sample sizes.

For the second case, the corresponding result is shown in Theorem 3.6.

Theorem 3.6. Define Sb as set of pairs (f, g) that satisfies Assumptions 3.2 and 3.3, and

Rb(N,M) := inf
D̂

sup
(f,g)∈Sb

E[(D̂(N,M)−D(f ||g))2], (3.26)

then for sufficiently large µ,C0, K,

Rb(N,M) = Ω

(
1

M
+M− 4γ

d+2 (lnM)−
4d+8−4γ
d+2

+
1

N
+N−

4γ
d+2 (lnN)−

4d+8−4γ
d+2

)
. (3.27)

Proof. (Outline) The minimax convergence rate of differential entropy estimation under similar

assumptions was derived in [99]. We can extend the analysis to the minimax convergence rate of

cross entropy estimation between f and g. Combine the bound for entropy and cross entropy, we

can then obtain the minimax lower bound of the mean square error of KL divergence estimation.

The detailed proof is shown in Appendix B.6.

In Theorem 3.6, ‘sufficiently large’ and ‘sufficiently small’ have the same meaning as in

Theorem 3.5.

Comparing (3.25) with (3.21), as well as (3.27) with (3.22), we observe that the convergence

rate of the upper bound of mean square error of kNN based KL divergence estimator nearly matches
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the minimax lower bound for both cases. These results indicate that the kNN method with fixed k

is nearly minimax rate optimal. If we use a growing k, the constant factor may improve and the

logarithm factor may be removed.

3.6 Numerical Examples

In this section, we provide numerical experiments to illustrate the theoretical results in this paper.

In the simulation, we plot the curve of the estimated bias and variance over sample sizes. For

illustration simplicity, we assume that the sample sizes for two distributions are equal, i.e.M = N .

For each sample size, the bias and variance are estimated by repeating the simulation T times, and

then calculate the sample mean and the sample variance of all these trials. For low dimensional

distributions, the bias is relatively small, therefore it is necessary to conduct more trials comparing

with high dimensional distributions. In the following experiments, we repeat T = 100, 000 times

if d = 1, and 10, 000 times if d > 1. In all of the figures, we use log-log plots with base 10. In all

of the trials, we fix k = 3.

Figure 3.1 shows the convergence rate of kNN based KL divergence estimator for two uniform

distributions with different support. This case is an example that satisfies Assumption 3.1. In Figure

3.2, f and g are two Gaussian distributions with different mean but equal variance. In Figure 3.3,

f and g are two Gaussian distributions with the same mean but different variance. These two cases

are examples that satisfy Assumption 3.2.

For all of these distributions above, we compare the empirical convergence rates of the bias

and variance with the theoretical prediction. The empirical convergence rates are calculated by

finding the negative slope of the curves in these figures by linear regression, while the theoretical

ones come from Theorems 3.1, 3.2 and 3.3 respectively. The results are shown in Table 3.1. For

the convenience of expression, we say that the theoretical convergence rate of bias or variance is

β, if it decays with either O(N−β) or O(N−β+δ) for arbitrarily small δ > 0, given the condition

M = N .
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Figure 3.1: Convergence of bias and variance of kNN based KL divergence estimator for two
uniform distributions with different support sets. f = 1 in [0.5, 1.5]d, and g = 2−d in [0, 2]d.
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Figure 3.2: Convergence of bias and variance of kNN based KL divergence estimator for two
Gaussian distributions with different means. f is the pdf of N (0, Id), and g is the pdf of N (1, Id),
in which Id denotes d dimensional identity matrix, and 1 = (1, . . . , 1).

In Table 3.1, we observe that for the distribution used in Figure 3.1, the empirical convergence

rates of both bias and variance agree well with the theoretical prediction, in which the theoretical

bound of bias comes from Theorem 3.1, while the variance comes from Theorem 3.3.

For the distribution in Figure 3.2, Assumption 3.3 no longer holds since f/g can reach infinity.

However, this case satisfies assumption (d’) in (3.19). For this case, the theoretical and empirical

result also match well, in which the bias and variance come from Theorem 3.2 and (3.20),

respectively. Note that for Gaussian distributions with different mean, it can be shown that for
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Figure 3.3: Convergence of bias and variance of kNN based KL divergence estimator for two
Gaussian distributions with different variances. f is the pdf of N (0, Id), and g is the pdf of
N (0, 2Id).

Table 3.1: Theoretical and empirical convergence rate of kNN KL divergence estimator

Bias, Empirical/Theoretical Variance, Empirical/Theoretical
d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

Fig.3.1 1.01/1.00 0.51/0.50 0.34/0.33 1.00/1.00 0.98/1.00 0.96/1.00
Fig.3.2 0.72/0.67 0.61/0.50 0.44/0.40 0.99/1.00 0.99/1.00 0.97/1.00
Fig.3.3 0.90/0.67 0.68/0.50 0.45/0.40 0.99/1.00 1.00/1.00 0.99/1.00

any γ < 1, there exists a constant µ, such that Assumption 3.2 (b) holds. Therefore, according to

Theorem 3.2, the convergence rate of bias is O(N−
2
d+2

+δ) for arbitrarily small δ > 0, hence the

theoretical rate in the second line of Table 3.1 is 0.67, 0.50 and 0.40, respectively.

For the distribution in Figure 3.3, the empirical and theoretical convergence rate of the variance

matches well, while the empirical rate of bias is faster than the theoretical prediction. Note that

the bound we have derived holds universally for all distributions that satisfy the assumptions.

For certain specific distribution, the convergence rate can probably be faster. In particular, there

is an uniform bound on the Hessian of f and g in Assumption 3.2 (c). However, for Gaussian

distributions, the Hessian is lower where the pdf value is small. Therefore, the local non-uniformity

is not as serious as the worst case that satisfies the assumptions.
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3.7 Conclusion

In this chapter, we have analyzed the convergence rates of the bias and variance of the kNN

based KL divergence estimator proposed in [89]. For the bias, we have discussed two types of

distributions depending on the main causes of the bias. In the first case, the distribution has bounded

support, and the pdf is bounded away from zero. In the second case, the distribution is smooth

everywhere and the pdf can approach zero arbitrarily close. For the variance, we have derived the

convergence rate under a more general assumption. Furthermore, we have derived the minimax

lower bound of KL divergence estimation. The bound holds for all possible estimators. We have

shown that for both types of distributions, the kNN based KL divergence estimator is nearly

minimax rate optimal. We have also used numerical experiments to illustrate that the practical

performances of kNN based KL divergence estimator are consistent with our theoretical analysis.
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Chapter 4

KNN Supervised Learning

4.1 Introduction

In this chapter, we focus on both classification and regression problems with neither precise

knowledge of the feature distribution nor any unlabeled data. We propose an adaptive kNN method

that works for both classification and regression problems. We prove that the proposed adaptive

kNN method is minimax rate optimal for a wide range of distributions for both classification and

regression. Furthermore, we show that the optimal choice of a key parameter depends only on the

dimension of the feature. Hence, the proposed adaptive kNN method does not involve too much

parameter tuning.

The remainder of this chapter is organized as follows. In Section 4.2, we present the precise

statement of the classification and regression problem and our proposed adaptive kNN method. The

theoretical analyses for classification and regression problems are presented in Section 4.3 and 4.4,

respectively. In Section 4.5, we conduct numerical experiments to compare the performance of our

new proposed adaptive kNN with that of the standard one, for both classification and regression

problems. Finally, we offer concluding remarks in Section 4.6.
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4.2 Problem Formulation and Proposed Method

For classification problems, we let the feature vector X and target Y take values in Rd and {−1, 1},

respectively. (X, Y ) follows an unknown joint distribution. Denote f(x) as the pdf of X. We use

0-1 loss function

L(Ŷ , Y ) =

 0 if Ŷ = Y

1 if Ŷ 6= Y
. (4.1)

With this loss function, the risk of a classifier Ŷ = g(X) is

R(g) = E[L(Y, Ŷ )] = P(g(X) 6= Y ). (4.2)

Define function η as

η(x) := E[Y |X = x]

= P(Y = 1|X = x)− P(Y = −1|X = x). (4.3)

It can be shown that the Bayes optimal classification rule is given by [29]:

g∗(x) = sign(η(x)), (4.4)

and the corresponding risk, called Bayes risk, is

R∗ = P(g∗(X) 6= Y ) = E
[

1− |η(X)|
2

]
. (4.5)

From (4.2) and (4.5), it can be shown that the excess risk R−R∗ takes the following form:

R−R∗ = E[1(g(X) 6= g∗(X))|η(X)|], (4.6)
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in which 1(·) is the indicator function.

For regression problems, the target Y can take value in R. We assume that Y has the following

relationship with X:

Y = η(X) + ε, (4.7)

in which η is the true underlying regression function and ε denotes the noise that satisfies E[ε|X =

x] = 0 for all x. We use `2 loss to evaluate the regression accuracy: L(Ŷ , Y ) = (Ŷ − Y )2. With

this loss function, the risk of regression function Ŷ = g(X) is

R = E[(g(X)− Y )2]. (4.8)

Under `2 loss, the Bayes optimal regression rule is given by g∗(x) = η(x), and the corresponding

Bayes risk is R∗ = E[(η(X)− Y )2] = E[ε2]. Then the excess risk can be expressed as

R−R∗ = E[(g(X)− η(X))2]. (4.9)

In practice, for both classification and regression problems, f(x) and η(x) are unknown.

Instead, the prediction rule is based on N i.i.d samples (Xi, Yi), i = 1, . . . , N , which are all

drawn from the joint distribution of X and Y . Since for any classification or regression method,

R ≥ R∗ always holds, we evaluate their performance using the excess risk R − R∗. In particular,

we characterize the convergence rate, i.e. the rate at which the excess risk goes to zero.

4.2.1 The standard kNN rules

The standard kNN classification rule has the following form:

g(x) = sign (η̂(x)) , (4.10)
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in which

η̂(x) =
1

k

k∑
i=1

Y (i) (4.11)

with Y (i) being the target value corresponding to X(i) and X(i) being the i-th nearest neighbor of

x. The distance of Xi and Xj is ‖Xi −Xj‖, in which ‖·‖ can be any norm. In the standard kNN

classification, k is the same for all samples.

The standard kNN regression rule is

g(x) =
1

k

k∑
i=1

Y (i), (4.12)

with Y (i) defined similarly as the target value of the i-th nearest neighbor of x. Again, here k is the

same for all samples.

4.2.2 Proposed adaptive kNN method

Our proposed adaptive kNN classification and regression methods has the same form as (4.10) and

(4.12). However, instead of using the same k for all testing samples, we use a sample dependent k.

In particular, for a given query point x, let B(x, A) be a ball centered at x with a fixed radius A, in

which the norm used for this radius is the same as the norm for kNN distances. We select k as:

k = bKnqc+ 1, (4.13)

in which 0 < q < 1, and

n =
N∑
i=1

1(Xi ∈ B(x, A)) (4.14)

is the number of training samples falling in B(x, A). K,A, q are three design parameters. In

Sections 4.3 and 4.4, we will show that for both classification and regression problems, the
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parameters K and A do not impact the convergence rates of the excess risk, as long as K and

A are fixed with respect to sample size N . q will impact the convergence rate. We will show that

the optimal q, under which the best convergence rate is achieved, is 2p/(d + 2p), in which p is a

parameter that describes the smoothness of η, and will be defined in Section 4.3.

Our design is motivated by the observation that in the regions where f(x) is small, the kNN

distances are large, thus the values of the underlying regression function η(x) can be quite different

at these k points. As a result, the inference of η(x) from these k neighbors may not be accurate.

To solve this problem, we use smaller k at the tail of distribution. [31] uses similar ideas, but the

method to choose k in [31] needs the exact value of f(x). In particular, the scheme in [31] divides

the support of distribution into several regions based on the value of pdf. Each region corresponds

to a different choice of k, which is then used to predict the target value of a test point, if it falls on

this region. Nevertheless, in practice, f(x) is unknown. In our algorithm, we use (4.14) as a proxy

to measure f(x), and use (4.13) to adaptively set the value of k. It is easy to see from (4.13) and

(4.14) that n (and hence k) tends to be smaller in regions with smaller density, and vise versa. The

purpose of adding 1 to bKnqc in (4.13) is to ensure that k is at least 1. Our method shares some

similarity with [17], which uses the result of kernel density estimate to determine k. However, [17]

requires a sufficiently large number of unlabeled data to ensure that the estimated density function

is sufficiently close to the real density function, so that the adaptive kNN algorithm converges as

fast as the case in which f(x) is known and the selection of k is based on the real f(x). On the

contrary, our method does not require unlabeled data, and we do not hope to have an accurate

estimation of the density. In fact, since the radius is fixed, the bias of density estimation using

(4.14) will not converge to zero as sample size N increases. Nevertheless, despite that the density

estimation is not consistent, we can still show that our classification and regression methods are

minimax rate optimal.
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4.3 Classification

In this section, we focus on classification problems. We begin with the analysis of the convergence

rate of the excess risk of the standard kNN classification. We then derive a minimax lower bound.

Finally, we characterize the convergence rate of our adaptive method and show that our new method

is minimax optimal.

The analysis of the classification risk is based on the following assumptions:

Assumption 4.1. There exist finite constants Ca, Cb, Cc and α > 0, β > 0, p ∈ (0, 2], such that:

(a) For all t > 0,

P(0 < |η(X)| ≤ t) ≤ Cat
α; (4.15)

(b) For all t > 0,

P(f(X) ≤ t) ≤ Cbt
β; (4.16)

(c) For an arbitrary r > 0 and any x in the support of f(x),

|η(B(x, r))− η(x)| ≤ Ccr
p, (4.17)

in which η(B(x, r)) := E[Y |X ∈ B(x, r)];

(d) ∃D > 0 such that

P(B(x, r)) ≥ Cdf(x)V (B(x, r)) (4.18)

for all x and 0 < r < D, in which B(x, r) is a ball centered at x with radius r, V (B(x, r)) is the

volume of B(x, r), and P(B(x, r)) is the probability mass of B(x, r).

The assumptions here share some similarities with previous work [20, 31]. In particular,

Assumption 4.1 (a) is called margin assumption, which controls the size of the region near the
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Bayes decision boundary. This assumption is reasonable because misclassification is easier to

occur at the position where P(Y = 1|x) and P(Y = −1|x) are close. For example, if f(x|Y = 1)

and f(x|Y = −1) are pdfs of two Gaussian distributions with different mean or variance, then

Assumption 4.1 (a) holds with α = 1. The same assumption was first proposed in [60], and used in

later works [20, 29, 31]. Assumption 4.1 (b) controls the tail of the distribution. If the distribution

of feature vector X has unbounded support, then the maximum β such that Assumption 4.1 (b)

holds for constant Cb is at most 1. On the contrary, if the support is bounded, then the maximum

β is at least 1. Furthermore, if the density is bounded away from zero, then Assumption 4.1

(b) holds for arbitrarily large β. Assumption 4.1 (c) describes the smoothness of the regression

function η(x). A traditional quantity that evaluates the smoothness of functions is the Hölder

parameter. As discussed in [31] (Remark 2.1), for the standard kNN algorithm, it is not suitable to

assume that the smoothness index is greater than 1. However, we use (4.17) to replace the Hölder

condition, so that it is possible to impose an assumption that allows up to second-order smoothness

of η. Assumption 4.1 (d) is the minimum probability mass assumption, which was already used

in existing works [17, 31]. This assumption is satisfied by many common distributions, such as

Gaussian, Uniform, exponential distributions.

The following proposition provides sufficient conditions for Assumption 4.1 (b) and (c).

Proposition 4.1. (A) If the τ -th moment of X is bounded, i.e., E[||X||τ ] < ∞, then for any

β < τ/(d+ τ), there exists a constant Cb such that Assumption 4.1 (b) holds.

(B) If Assumption 4.1 (d) holds, η(x) has bounded Hessian, i.e., there exists a constant CH ,

such that ||∇2η(x)||op ≤ CH , in which ||·||op denotes the operator norm, and there exists a constant

D′, such that

sup
u∈B(x,D′)

‖∇η(x)‖2 ‖∇f(u)‖2

f(x)
≤ C0, (4.19)

in which C0 is a constant, then Assumption 4.1 (c) holds with p = 2.

For the proof of Proposition 4.1 (A), please refer to Appendix F in [99]. The condition in
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Proposition 4.1 (A) shows that our tail assumption is weaker than assuming the boundedness

of moments of feature vector X. For Proposition 4.1 (B), the proof is shown in Appendix C.1.

Intuitively, Proposition 4.1 (B) means that the derivatives of η and f decay with f , so that the

average value of η in B(x, r) does not deviate too much from η(x). Similar assumption was

already used in [7] and [17]. For example, if X follows Laplace distribution and η is sinusoidal,

then Assumption 4.1 (c) is satisfied.

4.3.1 Convergence rate of the standard kNN classifier

Now under Assumption 4.1, we provide a bound of the convergence rate of the standard kNN

classifiers, which select the same value of k for every x. In the following analysis, the kNN distance

is based on metric d(x1,x2) = ||x2 − x1||, in which || · || is an arbitrary norm. The convergence

rate depends on the growth rate of k over sample size N . In the following theorem, we show the

best convergence rate when such a growth rate is optimally selected.

Theorem 4.2. Under Assumption 4.1 (a)-(d), if k is optimally selected, then the convergence rate

of excess risk is

R−R∗ =

O
(
N−min{ β(α+1)

2β+α+1
,

pβ(α+1)
βd+p(α+2β)}

)
if β 6= p

d
;

O
(
N−

β(α+1)
2β+α+1 lnN

)
if β = p

d
.

(4.20)

The above rate is attained if

k ∼

 N
2β

2β+α+1 if β ≤ p
d
;

N
2pβ

2α+β(d+2p) if β > p
d
.

(4.21)

Moreover, this bound is almost tight. In particular, denote S as the set of all pairs (f, η) such

that Assumption 4.1 (a)-(d) hold with sufficiently large Ca, Cb, Cc, then for the standard kNN
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classification,

inf
k

sup
(f,η)∈S

(R−R∗) = Ω
(
N−min{ β(α+1)

2β+α+1
,

pβ(α+1)
βd+p(α+2β)}

)
. (4.22)

Proof. (Outline) For the proof of our upper bound, let δ and ∆ be two parameters to be determined,

we divide the support into four regions and analyze each region separately.

• S1 = {x|f(x) ≥ N−δ, |η(x)| > 2∆}. In this region, the pdf is larger than threshold N−δ,

and the underlying regression function at x is at least (2∆)-far away from zero. For any test

point x in this region, the label prediction of the standard kNN classifier is different from

the prediction of Bayes classifier only if the estimated regression function η̂(x) has different

sign with the real regression function η(x), which happens with a decreasing probability as

the sample size N increases. The excess risk can then be bounded by giving a bound of this

probability.

• S2 = {x|f(x) ≥ N−δ, |η(x)| ≤ 2∆}. In this region, the pdf is larger than N−δ, but the

underlying regression function is close to zero. Therefore, P(Y = 1|x) is close to P(Y =

−1|x), which indicates that the inherent randomness is large. Therefore, the risk of both

the kNN classifier and the Bayes optimal classifier are large in this region. The conditional

excess risk in S2 can be bounded by 2∆.

• S3 =
{
x|C0k/N < f(x) < N−δ

}
for some constant C0. In this region, the pdf is relatively

small, and the probability that η̂(x) and η(x) have opposite sign becomes larger, thus the

technique for the analysis of S1 is no longer effective. However, f(x) > C0k/N ensures that

with high probability, all of the k nearest neighbors are not too far away from test point x.

We can then use the estimation error to bound the excess risk of classification in this region.

• S4 = {x|f(x) ≤ C0k/N}. In this region, the pdf is too small and classification can be pretty

inaccurate. Hence, we bound the excess risk simply with the probability of a sample falling

in this region.
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For the proof of our lower bound, we construct three types of distributions. For each type,

we can find a lower bound of R − R∗, in terms of k and N . The first type of distribution is just a

uniform distribution, and the first lower bound indicates the impact of variance. The second type of

distribution involves n cubes with relatively low density and one cube with relatively high density.

We adjust n and the density in these cubes, so that the estimation of η(x) in the first n cubes with

low density is sufficiently inaccurate, therefore we can get another lower bound proportional to the

total probability mass of these n cubes. This bound indicates the effect of tail. The third type of

distribution also uses (n + 1) cubes, similar to the second type. However, the cube size becomes

adaptive, and thus can generate a new bound. These three bounds are then combined together. It

turns out that if k is larger, than the first bound becomes lower, but the second and third bound

becomes higher, and vice versa. We then find the infimum of the maximum of these three bounds

by adjusting k.

Detailed proofs of the upper and lower bounds are shown in Appendix C.2.1 and Appendix

C.2.2, respectively.

Now we compare our result with that of the existing works. If the distribution has a density

that is bounded below by a positive constant, then our result nearly matches the previous results

[20, 29, 46]. In particular, for any arbitrarily large β, there exists a constant Cb so that Assumption

4.1 (b) holds. This assumption corresponds to the strong density assumption in [5]. In this case, we

have

R−R∗ = O
(
N−

p(α+1)
d+2p

+ε
)
, (4.23)

for arbitrarily small ε > 0. (4.23) agrees with the result of [20, 29, 46]. For distributions with tails,

our convergence rate is faster than the result in Theorem 4.3 in [31]. Note that the assumptions in

[31] are the same as ours under p = 1 and β = 1. In this case, our convergence rate isO(N−
α+1
d+α+2 ),

which is an improvement over the previous result O(N−
α+1
d+α+3 lnN) in [31].

From this theorem, we observe that, to achieve the best convergence rate for the standard kNN,
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the selection of k depends on parameters α and β, which may not be available in practice. On

the contrary, the proposed adaptive kNN method presented in Section 4.2.2 does not need this

information. Furthermore, we will show in Section 4.3.3 that the proposed method achieves a

better convergence rate.

4.3.2 Minimax convergence rate

We now derive the minimax convergence rate of all classifiers (including those classifiers that do

not use kNN distances) under Assumption 4.1. Denote S as the collection of (f, η) that satisfy

Assumption 4.1, g as the possible classifier. We have the following minimax convergence rate that

holds for all classifiers that do not have the knowledge of the underlying regression function η(x).

Theorem 4.3. If

β(2α− d) ≤ 2α, (4.24)

then

inf
g

sup
(f,η)∈S

(R−R∗) = Ω
(
N−min{β, pβ(α+1)

βd+p(α+2β)}
)
. (4.25)

Proof. (Outline) A common approach to obtain the minimax bound is to find a subset of S, and

then convert the problem into a hypothesis testing problem using Assouad lemma [4]. We refer to

[4] and [82] for a detailed introduction of this type of method.

In our proof, we carefully select a subset S∗ ⊂ S. In particular, S∗ contains a number of pairs

(f, ηv), in which v is a vector with each component taking binary values, such that the marginal

distributions of features are the same among S∗, but the underlying regression functions are

different depending on v. Then the problem of finding the minimax lower bound of classification

can be converted into the problem of finding the minimum error probability of hypothesis testing.

Since S∗ ⊂ S , the minimax convergence rate among S∗ can also be used as a lower bound of the
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minimax rate among S. The detailed proof can be found in Appendix C.3.

We now discuss the additional condition (4.24) and the result (4.25). Note that if the distribution

has unbounded support, then as discussed above, the maximum β such that there exists a constant

Cb so that Assumption 4.1 (b) holds is no more than 1. As a result, regardless of the dimension

d and the margin parameter α, (4.24) always holds. Our result generalizes and improves some

previous results [5, 31]. Under the strong density assumption, i.e., the support is bounded and the

density is bounded away from zero, our result on the minimax convergence rate is also consistent

with Theorem 3.5 in [5]. If β = 1, then our minimax convergence rate is consistent with Theorem

4.1 in [5], and faster than the result in Theorem 4.2 in [31], since Assumption 4.1 (c) requires

two-order smoothness of function η.

4.3.3 Convergence rate of the proposed adaptive kNN classification

As we can observe from Theorem 4.2 and Theorem 4.3, there exists a gap between the convergence

rates of the standard kNN classifier and the minimax lower bound in (4.20) and (4.25), respectively.

In particular, if β is small, the convergence rate of the standard kNN classifier is O(N−
β(α+1)
2β+α+1 ),

while the minimax rate is O(N−β). In this section, we show that this gap can be closed using

the new adaptive kNN method presented in Section 4.2.2. To obtain the convergence rate of this

adaptive kNN classifier, we need the following additional assumption.

Assumption 4.2. For any t > 0,

P
(

f(X)

Pq(B(X, A))
< t1−q

)
≤ C ′bt

β, (4.26)

for some constant C ′b, in which q is the design parameter of the adaptive kNN classifier used in

(4.13).

Intuitively, Assumption 4.2 is approximately the same as Assumption 4.1 (b). Use the

approximation P (B(x, A)) ≈ f(x)cdA
d, (4.26) can be roughly converted to P(f(X) < t) ≤
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C ′bt
β/(CdA

d)β/(1−q). Since C ′b, Cd and A are all constants, it has the same form as Assumption 4.1

(b). To be more precise, we propose some sufficient conditions to help verify Assumption 4.2.

Proposition 4.4. (1) If Assumption 4.1 (b) holds, i.e. P(0 < f(X) < t) ≤ Cbt
β , and there exists a

constant C ′d such that for any x,

P(B(x, A)) ≤ C ′df(x)V (B(x, A)), (4.27)

then Assumption 4.2 holds for β and some constant C ′b;

(2) If P(0 < f(X) < t) ≤ Cbt
β0 , and for any δ > 0, there exists a constant C(δ, A) that

depends on δ and A, such that

P(B(x, A)) ≤ C(δ, A)f 1−δ(x), (4.28)

then Assumption 4.2 holds for any β < β0 and some constant C ′b.

Condition (4.27) is a complement of Assumption 4.1 (d). For many common distributions,

such as uniform, exponential and Cauchy distributions, (4.27) holds. Therefore, with (4.27) and

Assumption 4.1, Assumption 4.2 also holds. For some other distributions, such as Gaussian

distribution, (4.27) is not satisfied, which means that the ratio between the average pdf of B(x, A)

to the pdf at its center P(B(x, A))/f(x)V (B(x, A)) can reach infinity. To incorporate this type of

distributions into our analysis, we propose a weakened condition (4.28).

The following theorem provides a bound of the convergence rate of the excess risk of the

proposed adaptive kNN classifier.

Theorem 4.5. Let

λ = min

{
1

2
q,
p

d
(1− q)

}
. (4.29)

Under Assumption 4.1 and Assumption 4.2, the convergence rate of the excess risk of the adaptive
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kNN classifier is bounded by

R−R∗ =

 O
(
N−min{λβ(α+1)

λα+β
,β}
)

if β 6= λ

O(N−β lnN) if β = λ
. (4.30)

As a result, the optimal q is q∗ = 2p/(d+ 2p), and the corresponding optimal convergence rate is

R−R∗ =

 O
(
N−min{ pβ(α+1)

βd+p(α+2β)
,β}
)

if β 6= p
d+2p

O(N−β lnN) if β = p
d+2p

.

Proof. (Outline) Similar to the proof of Theorem 4.2, we divide the support set into four regions

S1, . . . , S4 and derive bound for each region separately. S1 and S2 are defined similar to S1 and

S2 for the standard kNN classifier. In S1, we obtain lower and upper bounds of k, which hold

with high probability. Then we bound the probability that η̂(x) has different sign with the real

regression function η(x) using the derived upper and lowers bound of k. For S2, we use similar

bounds derived in the analysis of the standard kNN classifier.

We further divide the tail region into S3 and S4. Here, S3 is selected to ensure that k ≤ n

with a high probability, hence the kNN distance will not exceed A. As discussed in Section 4.2,

the main reason for the performance improvement of our new adaptive classifier, as compared to

the standard one, is that we use adaptive k, so that the estimation of the underlying regression

function at the tail of the feature distribution becomes more accurate. More specifically, we can

obtain a better convergence rate in S3. It was shown in [60] that the excess classification error

probability can be bounded by the estimation error, hence we can find the bound of the estimation

error first, and then use this bound to obtain a bound for the excess classification error probability.

In S4, which denotes the region on which the pdf of feature is very small, we can no longer ensure

that k ≤ n with a high probability, hence the kNN distance can be larger than A. As a result, the

estimation of the regression function in this region can be quite inaccurate. In this case, we bound

the excess risk simply with the probability of a test sample falling in this region. The detailed proof
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is shown in the Appendix C.4.

The convergence rate of the adaptive kNN classifier proposed in [31] is almost the same as our

results under p = 1 and β = 1, except that we have removed the logarithm factor. However, the

adaptive kNN method in [31] requires the precise knowledge of the pdf of X, while our method

can achieve the minimax optimal rate without knowing the pdf. Moreover, our analysis also cover

other values of β and p.

Here we use Gaussian distribution as an example.

Example 4.6. Gaussian distributions do not satisfy (4.27). However, (4.28) is satisfied, and hence

Assumption 4.2 is satisfied for any β ∈ (0, 1). Based on this fact, we can bound the convergence

rate of the adaptive kNN classifier with k selected by (4.13). According to (4.30), if α = 1, η(x)

satisfies Assumption 4.1(c) with p = 2, then

R−R∗ = O
(
N−

4β
2+β(d+4)

+ε
)
,∀0 < β < 1, ε > 0, (4.31)

which is equivalent to the following result:

R−R∗ = O
(
N−

4
d+6

+ε
)
, (4.32)

for arbitrarily small ε > 0.

4.4 Regression

In this section, we extend the study to kNN regression. Our analysis can be viewed as an answer

to question 1 in [79], which tries to extend the analysis of nonparametric regression to the case in

which the pdf is not bounded away from zero. For kNN regression, we replace Assumption 4.1 (a)

with the conditional variance assumption.
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Assumption 4.3. Assume that Assumption 4.1 (b), (c), (d) hold, and (a) is replaced by

Var[Y |X = x] ≤ Ca,∀x. (4.33)

(4.33) means that the noise variance is bounded. We will analyze the convergence rate of kNN

nonparametric regression for the case where η(x) is bounded and unbounded separately.

4.4.1 Bounded η(x)

We first analyze the convergence rate for the case where η(x) is bounded. We specify this additional

assumption as following:

Assumption 4.4. There exists a constant M , such that for all x, |η(x)| ≤M .

Under this assumption, the following theorem gives a bound of the convergence rate of the

standard kNN regression when k is optimally selected.

Theorem 4.7. Under Assumptions 4.3 and 4.4, the optimal growth rate of k is

k ∼

 N
2p
d+2p if β > 2p

d

N
β
β+1 if β ≤ 2p

d

. (4.34)

If k is selected according to (4.34), then the convergence rate of the standard kNN regression

method is

R−R∗ =


O
(
N−

2p
d+2p

)
if β > 2p

d

O
(
N−

β
β+1 lnN

)
if β = 2p

d

O
(
N−

β
β+1

)
if β < 2p

d

. (4.35)

Moreover, the above convergence rate is almost tight. In particular, denote S as the set of all

pairs (f, η) such that Assumptions 4.3 and 4.4 hold with sufficiently large Ca, Cb, Cc,M , then for
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the standard kNN regression method,

inf
k

sup
(f,η)∈S

(R−R∗) =

 Ω
(
N−

2p
d+2p

)
if β > 2p

d

Ω
(
N−

β
β+1

)
if β ≤ 2p

d
.

(4.36)

Now we compare our result with that of existing results. If the feature distribution has bounded

support and the density is bounded away from zero, then our result is consistent with previous

results, including [9, 35, 79] and Section 3 of [29]. If the density is not bounded away from

zero, then the convergence rate depends on the tail parameter β. For many common distributions,

we have β ≤ 2p/d, hence the convergence rate of the mean square error of the standard kNN

regression is slow. The following theorem shows a minimax lower bound of nonparametric

regression.

Theorem 4.8. Denote S as the set of all (f, η) such that Assumption 4.3 is satisfied with f and η,

then

inf
g

sup
(f,η)∈S

(R−R∗) = Ω
(
N−min{ 2p

d+2p
,β}
)
. (4.37)

If β > 2p/(d + 2p), then (4.37) is consistent with previous results in [79, 82], which focus on

the case with pdf bounded away from zero. This result indicates that if the tail of distribution is

not heavy enough, then it is possible that the convergence rate of regression is not affected. For

distributions with heavier tails, i.e. β is lower, then the regression problem becomes inherently

more difficult.

Similar to the standard kNN classification, for regression problems, from (4.35) and (4.37), we

observe that for many common feature distributions with tails, the standard kNN converges slower

than the minimax lower bound. For example, if the feature follows exponential distribution and

the regression function η has bounded Hessian, then we have β = 1 and p = 2. In this case, the

convergence rate isO(N−1/2), while the minimax optimal rate is Ω(N−0.8). As is already discussed

in kNN classification problems, this gap can be intuitively explained by the fact that kNN distances
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are large at the tail region, and hence the estimate of η(x) becomes less accurate.

We now show the convergence rate of our new adaptive kNN regression. Similar to the kNN

classification problem, our analysis for regression also requires Assumption 4.2.

Theorem 4.9. Define λ as (4.29), i.e. λ = min {q/2, p(1− q)/d}, then with fixed K,A and q,

under Assumptions 4.2, 4.3, 4.4, the convergence rate of the adaptive kNN regression is bounded

by

R−R∗ =

 O
(
N−min{β,2λ}) if β 6= 2λ

O
(
N−β lnN

)
if β = 2λ

. (4.38)

As a result, the optimal q is q∗ = 2p/(d+ 2p), the corresponding λ is p/(d+ 2p). Thus except

the special case β = 2p/(d+ 2p), the optimal convergence rate is

R−R∗ = O
(
N−min{β, 2p

d+2p}
)
. (4.39)

The above result shows that the convergence rate of our new method in (4.39) is an

improvement over the standard kNN regression method, for distributions with β < 2p/d. This

bound also matches the lower bound provided in Theorem 4.8, showing that our new method is

minimax rate optimal. For the previously discussed example, in which the feature distribution is

one dimensional exponential, and the regression function η has bounded Hessian, the convergence

rate isO (N−0.8), which matches the minimax lower bound and is an improvement overO
(
N−1/2

)
achieved by the standard kNN. This implies that the accuracy of our adaptive method can

significantly outperform that of the standard kNN regression, especially for distributions with

heavier tails.

4.4.2 Unbounded η(x)

Now we generalize the above analysis to the case where η(x) is not necessarily bounded. In this

case, for the test samples whose kNN distances among the training samples are large, the accuracy
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of estimation of η(x) deteriorates more seriously, as large kNN distances occurring at the tail of the

distribution here can cause a more serious effect. In this case, we need to change some assumptions.

For example, the second order moment of the feature distribution must be bounded, otherwise there

is no universally consistent regression method. Then under the new assumption, we derive bounds

of the convergence rates of the standard kNN and our adaptive kNN method. The analysis shows

that our proposed adaptive method can still outperform the standard one.

We formulate all the assumptions required for the analysis of the cases with unbounded η as

follows.

Assumption 4.5. Suppose that (4.33) and Assumptions 4.1 (c), (d) hold. In addition,

(b’) E[‖X‖2] ≤ MX for some constant MX and
∫

(1 + ‖x‖2)e−bf(x)f(x)dx ≤ C ′bb
−β′ for all

b ≥ 0;

(e) For any x1 and x2 with ‖x2 − x1‖ ≥ D, in which D is the constant in Assumption 4.1 (d),

there exists a constant L such that |η(x2)− η(x1)| ≤ L ‖x2 − x1‖.

Assumption 4.5 (b’) is a modification of Assumption 4.1 (b). We now compare these two

assumptions. It can be proved that if Assumption 4.5 (b’) holds for some β′, then Assumption

4.1 (b) holds for β = β′, but the converse is not true. For many distributions with heavy tails, the

maximum β′ such that Assumption 4.5 (b’) holds is smaller than the maximum β that Assumption

4.1 (b) holds.

The following theorem shows that without the new tail Assumption 4.5 (b’), we can not find

a regressor that is uniformly consistent, which implies that the new tail Assumption 4.5 (b’) is

necessary.

Theorem 4.10. Under (4.33), Assumptions 4.1 (c), (d), and Assumption 4.5 (e), if Assumption 4.5

(b’) does not hold, then no regressor is uniformly consistent, i.e. there exists a δ > 0, such that

lim sup
N→∞

sup
(f,η)∈S

(R−R∗) ≥ δ, (4.40)

in which S denotes the set of all (f, η) that satisfy the assumptions mentioned above.
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With Assumption 4.5, our bounds of the convergence rates of the standard kNN and the

adaptive kNN regression are shown in Theorem 4.11 and Theorem 4.12, respectively.

Theorem 4.11. Under Assumption 4.5, the optimal growth rate of k is

k ∼

 N
2p
d+2p if β′ > 2p

d
,

N
β′
β′+1 if β′ ≤ 2p

d
.

(4.41)

If k is selected in this way, then the convergence rate of the standard kNN regression, without

requiring the boundedness η(x), is bounded by:

R−R∗ =


O
(
N−

2p
d+2p

)
if β′ > 2p

d
,

O
(
N
− β′
β′+1 lnN

)
if β′ = 2p

d
,

O
(
N
− β′
β′+1

)
if β′ < 2p

d
.

(4.42)

Theorem 4.12. Under Assumptions 4.2 and 4.5, the convergence rate of the adaptive kNN

regressor is bounded by:

R−R∗ =

 O
(
N−min{β′,2λ}) if β′ 6= 2λ

O
(
N−β

′
lnN

)
if β′ = 2λ

, (4.43)

in which λ is defined in (4.29). The optimal q is q∗ = 2p/(d+2p). The corresponding convergence

rate is

R−R∗ =

 O
(
N−min{β′, 2p

d+2p}
)

if β′ 6= 2p
d+2p

O
(
N−β

′
lnN

)
if β′ = 2p

d+2p
.

We observe that if the feature distribution has a bounded support, or is sub-Gaussian or

sub-exponential, then the convergence rate does not suffer seriously from the unbounded regression

function η(x), since it can be shown that in this case, Assumption 4.5 (b’) holds with any

β′ < 1, and we can just let β′ to be sufficiently close to 1, and therefore (4.43) becomes
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R − R∗ = O(N−2p/(d+2p)), if we let q = 2p/(d + 2p). This rate is the same as the convergence

rate we derived for the case with bounded η(x). Such observation can be explained by the fact

that the training samples are not too far away from each other. For example, for sub-exponential

distributions, we have E
[
max
i,j
‖Xi −Xj‖

]
= O(lnN), which implies that with Assumption 4.5

(e), the difference between the values of η at all samples can not exceed O(lnN) on average. In

this case, the performance of both standard and adaptive kNN regression are similar to the case

with bounded η, except that there may be an additional lnN factor. However, for distributions with

heavy tails, the maximum β′ such that Assumption 4.5 (b’) holds is smaller than the maximum

β such that Assumption 4.1 (b) holds. Hence the convergence rate with unbounded regression

function can be substantially slower than the case with a bounded real regression function. This

phenomenon can be explained by the fact that the distances between samples can be large, which

can cause serious effect when we estimate η based on the nearest neighbors.

Finally, we would like to compare our result with [47, 48]. In [47, 48], it was assumed that the

distribution has finite moments, i.e. E[‖X‖m] < ∞ with m > 2p. An adaptive kernel regression

method was proposed, and it was shown that this method is minimax optimal if m > 2p. From

Proposition 4.1 (A), if the m-th moment of X is bounded, then Assumption 4.1 (b) is satisfied for

all β < m/(d+m), therefore the condition m > 2p is stronger than the condition that Assumption

4.1 (b) is satisfied for some β > 2p/(d+2p). This condition is usually not satisfied for some heavy

tailed distributions. Our assumptions allow a broader range of distributions, in which β can be any

positive number, and the convergence rate of the adaptive kNN method is minimax optimal for

arbitrary β > 0 instead of only for large β.

4.5 Numerical Examples

In this section, we provide numerical experiments to illustrate the analytical results derived in

this chapter. In these experiments, we compare the empirical performance of our adaptive kNN

classification and regression methods with that of the standard one.
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To make the comparison between the proposed adaptive kNN and the standard kNN as fair

as possible, we set the parameter in the following way. For the proposed adaptive kNN, we fix

A = 1 in all of the numerical experiments, and then find best K to minimize the empirical risk at

N = 500 by conducting a series of numerical simulations with different K. Similarly, at N = 500,

we also find best k for the standard kNN method. After K in the proposed method and k in the

standard kNN are both optimally tuned, we compare the performance for different sample sizes.

For our new adaptive method, we use the same value ofA andK as discussed above to determine k

in (4.13). For q in (4.13), we use q = 2p/(d+2p). In all of the cases, p = 2, thus q = 4/(d+4). For

the standard kNN method, we let k grow with N , and the growth rate is specified in the Theorems

4.2, 4.7 and 4.11.

We show the simulation results for classification and regression separately.

4.5.1 Classification

The results of simulations on one and two dimensional feature distributions are shown in Fig. 4.1

and 4.2, respectively.

In Fig. 4.1 (a)-(c), the underlying distributions are: (a) Laplace distribution; (b) t5 distribution;

and (c) t2 distribution, respectively. In these experiments, the underlying regression function is

η(x) = cos(5x). In (d), the feature distribution is one dimensional standard Laplace distribution,

and η(x) is periodic, with period 2. For 0 ≤ x < 2,

η(x) =


2x if x ∈ [0, 1

2
)

2(1− x) if x ∈ [1
2
, 3

2
)

2(x− 2) if x ∈ [3
2
, 2)

. (4.44)

Fig. 4.2 shows the simulation results for two dimensional cases. In both (a) and (b), the

feature vector follows the standard Gaussian distribution. In (a), the regression function is

η(x) = cos(2x1 + 2x2). This is an example where η depends on two components of X. In (b),

η(x) = cos(2x1), which implies that there is only one useful feature among two features. With
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(a) 1d Laplace distribution, η(x) = cos(5x).
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(b) t5 distribution, with regression function
η(x) = cos(5x).
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(c) t2 distribution, with regression function
η(x) = cos(5x).
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(d) 1d Laplace distribution. η is determined in (4.44).

Figure 4.1: Comparison of excess risk of the proposed adaptive kNN classifier and the standard
kNN classifier on one dimensional distributions. Blue line corresponds to the adaptive classifier.
Orange dashed line corresponds to the standard classifier.

these settings, we show the base-10 log-log plot of the classification error rate minus the Bayes

risk, with respect to the training sample size. The test sample size is fixed at N ′ = 1000, and each

point in the curves is averaged over 1, 000 trials.

In addition, in Table 4.1, we list the comparison of the empirical convergence rates and the

theoretical convergence rates for both our adaptive kNN classifier and the standard one. The

empirical convergence rates are the negative slope of the curves in Figures 4.1 and 4.2, which

are calculated by linear regression. Theoretical rates are calculated from Theorems 4.2 and 4.5.

For presentation convenience, if the theoretical convergence rate is O(N−µ), we then list µ in
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(a) 2d Laplace distribution, with regression function
η(x) = cos(2x1 + 2x2).
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(b) 2d Laplace distribution, η(x) = cos(2x1).

Figure 4.2: Numerical simulation for two dimensional distributions.

Table 4.1: Comparison of convergence rates of kNN classification

Distribution Standard Adaptive
Empirical/Theoretical Empirical/Theoretical

Fig 4.1(a) 0.51/0.50 0.80/0.57
Fig 4.1(b) 0.50/0.45 0.79/0.54
Fig 4.1(c) 0.43/0.40 0.62/0.50
Fig 4.1(d) 0.49/0.50 0.77/0.57
Fig 4.2(a) 0.48/0.50 0.58/0.50
Fig 4.2(b) 0.48/0.50 0.61/0.50

Table 4.1. For all cases in the simulation, we have α = 1. For Gaussian and Laplace distributions,

β = 1. For t5 and t2 distributions, β = 5/6 and 0.5, respectively.

The results from Figures 4.1 and 4.2 show that the excess risk of both the standard kNN

and our adaptive kNN method converges to zero with a stable convergence rate. Our result also

indicates that the convergence rate of the standard kNN classifier is not optimal, due to the large

kNN distances at the regions with low density. For all these distributions, our adaptive classifier

significantly outperforms the standard one. If the sample size is large, then the advantage of our new

classifier is more obvious. This observation is consistent with our theoretical analysis. Moreover, as

discussed before, the convergence rate for the standard kNN method is obtained using the optimal

choice of k that depends on unknown parameters α and β. In practice, such information is not
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available, thus the convergence rate is usually worse if we pick a suboptimal selection rule of k.

We also observe from Table 4.1 that for all these six cases, the empirical convergence rates of

the standard kNN classifiers are close to the theoretical rate indicated in Theorem 4.2. However,

the adaptive kNN method actually converges faster than the theoretical results from Theorem 4.5.

This phenomenon can be explained by the fact that all results derived in Section 4.3 are rates of

uniform convergence. For a specific distribution, the bound may not be tight.

4.5.2 Regression

Now we compare the empirical convergence rates of the adaptive and the standard kNN regression.

We first present results for one dimension case. In our numerical experiments, X follows

standard Laplace, t2 and Cauchy distribution, respectively, corresponding to different tail strength.

For each distribution, we conduct simulations with η(x) = sin(x) and η(x) = x separately, in

which the former one is an example of bounded regression function, and the latter one is an

example of unbounded regression function. Similar to the simulation of kNN classification, we still

tune the parameter k and K optimally at N = 500 first. Moreover, we fix q = 2p/(d + 2p) = 0.8

and A = 0.5 for our adaptive method for all of these experiments.

Fig. 4.3 shows the log-log plot of the mean square estimation error against the training sample

size N , for some one dimensional distributions, in which each curve is averaged over 500 trials.

It can be shown that the expectation of mean square error is the excess risk R − R∗. From Fig.

4.3, we observe that our new adaptive regression method significantly outperforms the standard

kNN method, especially for large sample sizes. For t2 and Cauchy distributions, we only plot the

result with a bounded regression function. For the unbounded case, the curves are not plotted since

the estimated MSE error of both regression methods are unstable for these two distributions. This

phenomenon is reasonable, because for these two distributions, E[X2] is infinite, which violates

Assumption 4.5. As a result, R−R∗ is infinite.

Fig. 4.4 shows simulation results for distributions with higher dimensions. We focus on Laplace

distribution with d = 2 and d = 3. The parameter selection follows the same rule as the case with
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(d) Bounded Cauchy

Figure 4.3: MSE of the proposed adaptive kNN regression method vs the standard kNN regression
with d = 1. Blue line corresponds to adaptive regression. Orange dashed line corresponds to the
standard kNN regression.

d = 1, and the parameter q of the adaptive method is selected according to q = 2p/(d+ 2p).

Moreover, we compare the empirical and theoretical convergence rates in Table 4.2. We use the

same methods to calculate these rates as are already used in Table 4.1.

The results in Fig. 4.3, Fig. 4.4 and Table 4.2 agree with our theoretical prediction. All of the

above results show that the adaptive kNN regression significantly outperforms the standard one,

and the empirical convergence rate agrees well with our theoretical prediction.
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(b) Unbounded Laplace, d = 3

Figure 4.4: MSE of the proposed adaptive kNN regression method vs the standard kNN
regression for higher dimensions. Blue line corresponds to adaptive regression. Orange dashed
line corresponds to the standard kNN regression.

Table 4.2: Comparison of convergence rates of kNN regression

Distribution Standard Adaptive
Laplace, d = 1, bounded η 0.55/0.50 0.77/0.80

Laplace, d = 1, unbounded η 0.51/0.50 0.81/0.80
t2, d = 1, bounded η 0.42/0.40 0.65/0.66

Cauchy d = 1, bounded η 0.34/0.33 0.50/0.50
Laplace d = 2, unbounded η 0.48/0.50 0.66/0.67
Laplace, d = 3, unbounded η 0.48/0.50 0.57/0.57

4.6 Conclusion

In this chapter, we have analyzed the convergence rate of the standard kNN classification and

regression, and derived a minimax lower bound for all nonparametric classification methods, under

some tail, smoothness and margin assumptions. Building on these analysis, which show that there

is a gap between the convergence rates of the standard kNN and the minimax bound, we have then

proposed an adaptive kNN method to close this gap, which can be used for both classification and

regression problems. In the proposed method, we select k based on the number of training samples

in the fixed radius nearest neighbor of the test point. We have obtained an upper bound of the

excess risk of the proposed method that matches the minimax lower bound under some general

assumptions. For regression problems, we have extended our analysis to cases with unbounded
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regression function η. Since the most important parameter of our adaptive kNN method, i.e., q,

can be selected without any knowledge of the underlying distribution, the parameter tuning of our

adaptive kNN method is simpler than the standard one. Moreover, numerical results illustrate that

our new method significantly outperforms the standard kNN method, especially for large training

datasets.
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Chapter 5

Conclusion and Extension

In this chapter, we summarize our contributions we have made in this dissertation, and propose

certain potential directions related to the application of kNN method in functional estimation and

machine learning.

5.1 Summary of the dissertation

kNN method can be used in many areas. This dissertation discusses the application of kNN method

in two main scenarios, i.e. functional estimation and machine learning.

Firstly, we have analyzed the performance of kNN method in the estimation of entropy and

mutual information. The results hold mainly for distributions whose densities can approach zero.

We provided minimax lower bounds, and the result shows that the gap between the convergence

rate of the kNN method and the minimax lower bound is only a log-polynomial factor, which

indicates that the kNN method is nearly optimal. Under our assumptions, we show that it is

necessary to make the Kozachenko-Leonenko entropy estimator to be truncated to ensure its

consistency.

Secondly, we have analyzed the kNN method used in the estimation of KL divergence. The

estimation of KL divergence between distributions with pdf f and g can be viewed as the estimation

of both the entropy of f and the cross entropy between f and g, in which the latter one is harder to
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analyze. We have bounded the convergence rate of the kNN estimator under two cases, including

the case in which the pdf is bounded away from zero, and the case in which the pdf can approach

zero. For both two cases, we have derived the corresponding minimax lower bound, and show that

the kNN KL divergence estimator is nearly minimax optimal.

Finally, we have designed and analyzed a new adaptive kNN method used in supervised

learning. For classification and regression problems, simple kNN method which uses the same

k for all samples may not be minimax optimal. We have proposed an adaptive kNN method, in

which different k are used for different test samples. It turns out that our new method is minimax

optimal, and does not require the complete knowledge of underlying distribution.

5.2 Future Directions

The research in this dissertation can be extended in the following directions.

5.2.1 Estimation of Rényi entropy, mutual information and divergence.

Apart from Shannon entropy, Rényi entropy is another way to measure the randomness of a random

variable. For a random variable X, which follows a continuous distribution with pdf f , the Rényi

entropy is defined as

hα(X) =
1

1− α
ln

∫
fα(x)dx, (5.1)

in which α ≥ 0 is a fixed constant. Rényi mutual information and divergence are defined in

similar way as Shannon mutual information and divergence. Rényi entropy, mutual information

and divergence reduce to the Shannon counterparts at the limit α→ 1. Despite that the estimation

of Shannon entropy, mutual information and divergence has been analyzed in many previous

literatures, the estimation of Rényi functionals are less discussed and requires further research.

An kNN estimator of Rényi entropy for continuous random variables was proposed in [55], and
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it was shown that this estimator is weakly consistent. [69] proposed a kNN method to estimate

the Rényi mutual information based on a copula transformation approach. There are also some

analysis on the estimation of Rényi divergence [51].

It would be interesting to design more efficient methods to estimate these Rényi functionals, as

well as a complete theoretical analysis.

5.2.2 kNN based Q learning

kNN method can also be extended to Q learning algorithms for MDP (S,A,P , R, γ) with

continuous state space S, in which the action space A can be both discrete and continuous.

While MDP problems with discrete state and action spaces have been widely studied(see [80]

and references therein), the continuous state space makes the problem more challenging. For

continuous state space, nearest neighbor based method is useful for approximating the state value

functions [75]. However, the method in [75] is not minimax optimal, and it is of interest to design

an improved nearest neighbor based Q learning method.

Firstly, it is possible to design a new method based on nearest neighbor Q learning such that

the convergence rate of the estimation of Q learning is minimax optimal. As is shown in [75],

the minimax lower bound of sample complexity is Ω(1/εd+2), while the method in [75] achieves

Õ(1/εd+3). Here, ε is the error bound on the learnedQ values. Therefore, there exists a gap between

the convergence rate and the minimax lower bound. We hope to close this gap by putting forward

a new method.

Secondly, it would be interesting to design a method that can achieve optimal sample

complexity in obtaining the optimal policy. In our first goal, we try to obtain the optimal

convergence rate of the Q function estimation. Although getting an accurate Q function will help

us to find the optimal policy, the optimal method for estimating Q function is no longer optimal in

optimizing the policy. Intuitively, in order to get an optimal policy, one may only need to get an

accurate estimation of Q function where the action is close to the optimal action. For actions that

are far away from the optimal action, we do not need to accurately estimate theirQ function values,
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since they are not competitive and can thus be ruled out with only a few number of queries. Hence,

there may exists a method that can directly get the optimal policy. Our main idea is to design a

method based on nearest neighbor Q learning combined with UCB exploration. In [27, 41], it has

been proved that Q learning combined with UCB exploration is sample efficient for discrete space.

It is promising to extend such analysis to continuous space, and show that the nearest neighbor Q

learning method combined with UCB is sample efficient.
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Appendix A

Appendix of Chapter 2

A.1 Proof of Theorem 1: the bias of Kozachenko-Leonenko en-

tropy estimator

In this section, we analyze the bias of truncated Kozachenko-Leonenko estimator

ĥ(X) = −ψ(k) + ψ(N) + ln cdx +
dx
N

N∑
i=1

ln ρ(i),

under Assumptions (a), (b) in Theorem 2.1, in which

ρ(i) = min{ε(i), aN}, (A.1)

and the truncation threshold is set to be aN = AN−β , in which β < 1/dx. We hope to select a β to

optimize the convergence rate of bias.

We begin with deriving three lemmas based on Assumptions (a) and (b) in the theorem

statement.
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Lemma A.1. Under Assumption (a) in Theorem 2.1, there exists constant C1, such that

|P (B(x, r))− f(x)cdxr
dx | ≤ C1r

dx+2, (A.2)

in which B(x, r) := {u| ‖u− x‖ < r}.

Proof.

∣∣P (B(x, r))− f(x)cdxr
dx
∣∣ =

∣∣∣∣∫
u∈B(x,r)

(f(u)− f(x))du

∣∣∣∣ . (A.3)

Using Taylor expansion, we have

∣∣∣∣∫
u∈B(x,r)

(f(u)− f(x))du

∣∣∣∣ =

∣∣∣∣∫
u∈B(x,r)

(∇f(x))T (u− x) + (u− x)T∇2f(ξ(u))(u− x))du

∣∣∣∣
=

∣∣∣∣∫
u∈B(x,r)

(u− x)T∇2f(ξ(u))(u− x)du

∣∣∣∣
≤ M

∣∣∣∣∫
u∈B∞(x,r)

‖u− x‖2
2 du

∣∣∣∣
≤ C1r

dx+2,

for some constant C1, in which B∞(x, r) denotes the smallest L∞ ball (i.e. a cube) that contains

B(x, r). In the steps above, we enlarge the domain of integration from B(x, r) to B∞(x, r) for the

convenience of calculation.

Assumption (b) controls the tail of distribution. We can show that the following lemma holds:

Lemma A.2. (1) Under Assumption (b) in Theorem 2.1, There exists µ > 0 such that

P (f(X) ≤ t) ≤ µt,∀t > 0; (A.4)

(2) Under (A.4), for any integer m ≥ 1, there exists a constant Km, such that

∫
fm(x) exp(−bf(x))dx ≤ Km

bm
. (A.5)
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Proof. Proof of (A.4):

P (f(X) ≤ t) = P
(
e−

f(X)
t ≥ e−1

)
≤ eE

[
e−

f(X)
t

]
≤ eCt, (A.6)

in which the last inequality comes from Assumption (b) in Theorem 2.1. Hence (A.4) holds with

µ = eC.

Proof of (A.5): Note that for all u > 0, um−1 ≤ (2(m− 1)/e)m−1eu/2, hence

∫
fm(x) exp(−bf(x))dx = E[fm−1(X) exp(−bf(X))]

=
1

bm−1
E[(bf(X))m−1 exp(−bf(X))]

≤
(

2(m− 1)

e

)m−1
1

bm−1
E
[
exp

(
b

2
f(X)

)
exp(−bf(X))

]
≤ 2

(
2(m− 1)

e

)m−1
C

bm
.

Based on Lemma A.2, we can show another lemma. Define

V (t) = m ({x|f(x) > t}) , (A.7)

in which m denotes Lebesgue measure. From (A.7), V (t) is the volume of the region in which the

pdf is higher than t. Under Assumption (b) in Theorem 2.1, we have the following bound.

Lemma A.3. Under Assumption (b) in Theorem 2.1, for sufficiently small t,

V (t) ≤ µ

(
1 + ln

1

µt

)
, (A.8)

in which µ is the constant in (A.4).

Proof. (Outline) Here we provide an intuitive explanation. As discussed in [83], roughly speaking,

assumption (b) requires the distribution to have an exponential tail. For exponential or Laplace
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distribution, it is obvious that V (t) = O(ln(1/t)). Therefore it is reasonable to assume that this

bound holds generally for any distributions that satisfy assumption (b). The detailed proof is shown

in Appendix A.1.1.

Now we analyze the convergence rate of Kozachenko-Leonenko estimator in (2.2).

E[ĥ(X)]− h(X)
(a)
= −ψ(k) + ψ(N) + E

[
ln
(
cdxρ

dx
)]
− h(X)

(b)
= −E [lnP (B(X, ε))] + E

[
ln
(
cdxρ

dx
)]
− h(X)

(c)
= −E [lnP (B(X, ε))] + E

[
ln
(
f(X)cdxρ

dx
)]

(d)
= −E

[
ln

(
P (B(X, ε))

P (B(X, ρ))

)
1(X ∈ S1)

]
−E

[
ln

(
P (B(X, ρ))

f(X)cdxρ
dx

)
1(X ∈ S1)

]
− E

[
ln

(
P (B(X, ε))

f(X)cdxρ
dx

)
1(X ∈ S2)

]
:= −I1 − I2 − I3. (A.9)

Here, (a) uses the fact that ρ(i)’s are identically distributed for all i, thus

E

[
dx
N

N∑
i=1

ln ρ(i)

]
= E[dx ln ρ(i)],∀i.

From now on, we omit i for convenience. In (b), we use the fact from order statistics [23] that

P (B(x, ε)) ∼ B(k,N − k), in which B denotes Beta distribution. Therefore

E[lnP (B(x, ε))|x] = ψ(k)− ψ(N). (A.10)

(c) holds because h(X) = −E[ln f(X)]. In (d), S1 and S2 are defined as:

S1 =

{
x|f(x) ≥ λC1

cdx
A2N−γ

}
, (A.11)

S2 =

{
x|f(x) <

λC1

cdx
A2N−γ

}
, (A.12)
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in which γ is defined by

γ = min{2β, 1− βdx}, (A.13)

and

λ = 2 max

{
1,

k + 1

C1Adx+2

}
. (A.14)

Roughly speaking, S1 is the region where the f(x) is relatively large, while S2 corresponds to

the tail region. Regarding the two regions S1 and S2, we have the following lemma.

Lemma A.4. Under Assumptions (a) and (b) in Theorem 2.1, there exist constants C2 and C3,

such that for N > k,

P (ε > aN ,X ∈ S1) ≤ C2N
−(1−βdx), (A.15)

P (ε > aN) ≤ C3N
−min{1−βdx, 2

dx+2}. (A.16)

Proof. Please see Appendix A.1.2.

From (A.9), we know that the bias of Kozachenko-Leonenko estimator can be bounded by

giving an upper bound to I1, I2 and I3 separately. Recall that ρ = min{ε, aN}.
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Bound of I1

|I1| = E[(lnP (B(X, ε))− lnP (B(X, ρ)))1(X ∈ S1)]

(a)
= E[(lnP (B(X, ε))− lnP (B(X, ρ)))1(X ∈ S1, ε > aN)]

(b)

≤ E[− lnP (X, ρ)1(X ∈ S1, ε > aN)]

(c)
= E[− lnP (X, aN)1(X ∈ S1, ε > aN)]

(d)

≤ − ln[(k + 1)N−(γ+βdx)]P (X ∈ S1, ε > aN)

(e)
= O(N−(1−βdx) lnN).

Here (a) uses the definition of ρ in (A.1), which implies that ρ, ε are different only when ε > aN .

(b) uses P (B(X, ε)) ≤ 1. (c) uses the definition of ρ again, which says that ρ = aN if ε > aN . (d)

uses the lower bound of P (B(x, aN)) derived in (A.31). (e) uses (A.15) in Lemma A.4.

Bound of I2

|I2| =

∣∣∣∣E [ln(P (B(X, ρ))

f(X)cdxρ
dx

)
1(X ∈ S1)

]∣∣∣∣
(a)

≤ E
[
max

{∣∣∣∣ln(f(X)cdxρ
dx + C1ρ

dx+2

f(X)cdxρ
dx

)∣∣∣∣ , ∣∣∣∣ln(f(X)cdxρ
dx − C1ρ

dx+2

f(X)cdxρ
dx

)∣∣∣∣}1(X ∈ S1)

]
= E

[∣∣∣∣ln(f(X)cdxρ
dx − C1ρ

dx+2

f(X)cdxρ
dx

)∣∣∣∣1(X ∈ S1)

]
(b)
= E

[
1

ξ(X)

C1ρ
2

f(X)cdx
1(X ∈ S1)

]
(c)

≤ 2E
[

C1ρ
2

f(X)cdx
1(X ∈ S1)

]
= O

(
N−2β lnN

)
. (A.17)

Here, (a) uses Lemma A.1. (b) uses Lagrange mean value theorem, and 1 − C1ρ2

f(X)cdx
≤ ξ(X) ≤ 1.

(c) holds because from the definition of S1 in (A.11) and the choice of γ in (A.13), we have

C1ρ
2

f(x)cdx
≤ C1a

2
N

f(x)cdx
=
C1A

2N−2β

f(x)cdx
≤ 1

2
, (A.18)
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for x ∈ S1. Hence, we have ξ(X) ≥ 1/2.

Bound of I3

I3 = E
[
ln

(
P (B(X, ε))

f(X)cdxρ
dx

)
1(X ∈ S2)

]
= E[ln(P (B(X, ε)))1(X ∈ S2)]− E[ln(f(X))1(X ∈ S2)]− E[ln(cdxρ

dx)1(X ∈ S2)].

(A.19)

The first term of (A.19) can be bounded using (A.10).

E[ln(P (B(X, ε)))1(X ∈ S2)] = E[ln(P (B(X, ε)))|X ∈ S2]P (X ∈ S2)

= (ψ(k)− ψ(N))P (X ∈ S2)

= −O(N−γ lnN), (A.20)

in which the second step holds because according to (A.10), E[lnP (B(x, ε))|x] = ψ(k) − ψ(N)

for any x.

For the second term of (A.19), we define a random variable T = f(X), with cdf FT , and a

constant T0 = λC1

cdx
A2N−γ . According to (A.4), FT (t) = P (f(X) ≤ t) ≤ µt, therefore

|E[ln f(X)1(X ∈ S2)]| = |E[lnT1(T < T0)]| =
∣∣∣∣∫ T0

0

fT (t) ln tdr

∣∣∣∣
=

∣∣∣∣ln rFT (t)|T00 −
∫ T0

0

FT (t)
1

t
dt

∣∣∣∣
≤ µT0(| lnT0|+ 1) = O(N−γ lnN). (A.21)

For the third term of (A.19), recall that ρ = aN if ε > aN , then

E[ln(cdxρ
dx)1(X ∈ S2, ε > aN)] = ln(cdxa

dx
N )P (X ∈ S2, ε > aN)

= −O(N−min{1−βdx, 2
dx+2} lnN). (A.22)
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On the other hand, if ε ≤ aN , then for x ∈ S2,

P (B(x, ρ)) ≤ f(x)cdxρ
dx + C1ρ

dx+2

≤ λC1A
2N−γρdx + C1ρ

dx+2

≤ (λC1A
2N−γ + C1a

2
N)ρdx

≤ (λ+ 1)C1A
2N−γρdx .

Therefore

E[ln(ρdx)1(X ∈ S2, ε ≤ aN)]

≥ E[lnP (B(X, ρ))1(X ∈ S2, ε ≤ aN)]− E[ln((λ+ 1)C1A
2N−γ)1(X ∈ S2)]

= E[lnP (B(X, ε))1(X ∈ S2, ε ≤ aN)]− ln((λ+ 1)C1A
2N−γ)P (X ∈ S2)

≥ E[lnP (B(X, ε))1(X ∈ S2)]− ln((λ+ 1)C1A
2N−γ)P (X ∈ S2)

= −O(N−γ lnN)−O(N−γ lnN). (A.23)

Combine (A.22) and (A.23), and note that for sufficiently large N , ln(cdxρ
dx)1(x ∈ S2) ≤

ln(cdxa
d
N) ≤ 0 because aN = AN−β ≤ 1, we have

0 ≤ −E[ln(cdxρ
dx)1(X ∈ S2)] = O(N−γ lnN). (A.24)

Plug (A.24), (A.20) and (A.21) into (A.19), we have

|I3| = O(N−γ lnN). (A.25)

The bound of bias of Kozachenko-Leonenko entropy estimator can be obtained by combining I1,

I2, and I3. Recall that γ is defined as γ = min{2β, 1− βdx}. We can then adjust β to optimize the
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convergence rate:

|E[ĥ(X)− h(X)]| ≤ |I1|+ |I2|+ |I3|

= O
(
N−(1−βdx) lnN

)
+O(N−2β lnN) +O

(
N−min{2β,1−βdx} lnN

)
.

Select β = 1/(dx + 2), then the overall convergence rate of Kozachenko-Leonenko estimator is:

|E[ĥ(X)− h(X)]| ≤ O
(
N−

2
dx+2 lnN

)
. (A.26)

A.1.1 Proof of Lemma A.3

In this section, we prove Lemma A.3 under tail assumption (a) in Theorem 2.1. Define a random

variable T = f(X), with cdf FT . From Lemma A.2, FT (t) ≤ µt for all t > 0. Define another

random variable U = FT (T ). Recall the definition of function V . For any δ > 0,

FT (t+ δ)− FT (t) = P (t < f(X) ≤ t+ δ)

=

∫
t<f(X)≤t+δ

f(x)dx ∈ [t(V (t)− V (t+ δ)), (t+ δ)(V (t)− V (t+ δ))].

The above equation can be converted to differential form by letting δ → 0:

−tdV (t) = dFT (t). (A.27)

Moreover, V (∞) = 0. Therefore

V (t) =

∫ ∞
t

1

ξ
dFT (ξ) =

∫ 1

FT (t)

1

qT (u)
du, (A.28)
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in which qT is the quantile function of T , so that qT (Ft(t)) = t. FT (t) ≤ µt implies qT (u) ≥ u/µ.

Therefore

∫ µt

FT (t)

1

qT (u)
du ≤

∫ µt

FT (t)

1

qT (FT (t))
du =

1

t
(µt− FT (t)) ≤ µ, (A.29)

and

∫ 1

µt

1

qT (u)
du ≤

∫ 1

µt

µ

u
du = µ ln

1

µt
. (A.30)

Combine (A.29) and (A.30), the proof is complete.

A.1.2 Proof of Lemma A.4

The proof is based on Lemma A.2, as well as Assumption (a) in Theorem 2.1.

Proof of (A.15). Recall that γ = min{2β, 1− βdx}. For x ∈ S1,

P (B(x, aN)) ≥ f(x)cdxa
dx
N − C1a

dx+2
N

(a)

≥ 1

2
f(x)cdxa

dx
N . (A.31)

Moreover,

1

2
f(x)cdxa

dx
N

(b)

≥ λC1

2cdx
A2N−γcdxa

dx
N

(c)

≥ (k + 1)N−(γ+βdx) ≥ k + 1

N
. (A.32)

In equations above, (a) comes from (A.18), (b) comes from the definition of S1 in (A.11), (c) comes

from (A.14).

Given the condition that one of N samples (sample i) falls at x, the number of points that

falls in the ball B(x, aN) from the other (N − 1) sample points follows binomial distribution

Binomial(N − 1, P (B(x, aN))). Denote

n(x, aN) =
∑
j 6=i

1(x(j) ∈ B(x, aN)) (A.33)
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as the number of points that fall in the ball B(x, aN) except point x itself. Based on Chernoff

inequality, for all x ∈ S1, denote N ′ = N − 1, then according to (A.32), if N > k, then

N ′P (B(x, aN)) > k. Hence

P (ε > aN |x) ≤ P (n(x, aN) < k))

≤ e−N
′P (B(x,aN ))

(
eN ′P (B(x, aN))

k

)k
= exp

[
−1

2
N ′f(x)cdxa

dx
N

](
eN ′

2k
f(x)cdxa

dx
N

)k
, (A.34)

in which the last step comes from (A.31), and the fact that e−t(et/k)k is a decreasing function over

t if t > k. Therefore

P (ε > aN ,X ∈ S1) ≤
∫
S1

exp

[
−1

2
N ′f(x)cdxa

dx
N

](
eN ′

2k
f(x)cdxa

dx
N

)k
f(x)dx

=

∫
S1

exp

[
−1

2
f(x)cdxA

dxN ′N−βdx
] [

eN ′

k

1

2
f(x)cdxA

dN−βdx
]k
f(x)dx

(a)

≤
( e
k

)k 2Kk+1

cdxA
dxN ′N−βdx

≤ C2N
−(1−βdx), (A.35)

in which (a) uses (A.5) in Lemma A.2, with m = k + 1 and b = 1
2
cdxA

dN ′N−βdx .

Proof of (A.16):

P (ε > aN ,X ∈ S2) ≤ P (X ∈ S2)

= P

(
f(X) <

λC1

cdx
A2N−γ

)
≤ λµC1

cdx
A2N−γ, (A.36)

in which we use (A.4) in Lemma A.2 for the last step.

Based on (A.35) and (A.36), as well as the definition of γ in (A.13), we have

P (ε > aN) ≤ C3N
−min{1−βdx,2β}, (A.37)

106



for some constant C3.

A.2 Proof of Proposition 2.2

In this section, we prove that there exist distributions that satisfy Assumptions (a), (b) in Theorem

2.1, such that the original Kozachenko-Leonenko estimator without truncation is not consistent. We

will construct two distributions whose entropy are the same, but the difference of the expectation

of the estimated result using original Kozachenko-Leonenko estimator does not converge to zero.

For simplicity, we first discuss the case of k = 1 and d = 1.

To begin with, we pick an arbitrary function g that satisfies the following conditions:

(1) g(x) is supported on [−1/2, 1/2], i.e. g(x) = 0 for x /∈ [−1/2, 1/2];

(2) |g′′(x)| ≤M , ∀x ∈ R, in which M is the constant in Assumption (a) of Theorem 2.1;

(3)

∫ 1
2

− 1
2

g(x)dx =
90

π4
; (A.38)

(4) g(x) ≥ 0 everywhere.

Let X1 be a random variable with pdf

f1(x) =
∞∑
j=1

1

λ2
j

g(λj(x− aj)), (A.39)

in which j ∈ N+,

an =
n−1∑
j=1

2

λj
+

1

λn
, (A.40)

and

λj = j
4
3 . (A.41)
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The choice of an here guarantees that regions Sj := (aj − 1/(2λj), aj + 1/(2λj)) for j =

1, . . . , n are mutually disjoint. Using (A.38) and (A.41), it is easy to check that f1 is a valid pdf.

We now verify that it satisfies assumptions (a) and (b) in Theorem 2.1.

For (a), we need to show that f ′′1 (x) ≤ M . With the selection rule of an specified in (A.40),

g(λj(x− aj)) can be non-zero only for one j. As a result, for any x, there exist j ∈ N+ such that

|f ′′1 (x)| =
∣∣∣∣ 1

λ2
j

d2

dx2
g(λj(x− aj))

∣∣∣∣ = |g′′(λj(x− aj))| ≤M. (A.42)

Therefore Assumption (a) in Theorem 2.1 holds.

For (b), we need to show that there is a constant C such that

∫
f1(x)e−bf1(x)dx ≤ C/b. (A.43)

Note that g(x)e−bg(x) ≤ 1
eb
, with equality when g(x) = 1/b. Recall that g is supported at

[−1/2, 1/2], thus

∫ ∞
−∞

g(x)e−bg(x)dx ≤ 1

eb
. (A.44)

From (A.39), for any x ∈ R, g(λj(x − aj)) is nonzero only for one j. With this observation,

we have

∫
f1(x)e−bf1(x)dx =

∞∑
j=1

∫
1

λ2
j

g(λj(x− aj)) exp

[
−b 1

λ2
j

g(λj(x− aj))
]
dx (A.45)

=
∞∑
j=1

1

λ3
j

∫
g(t) exp

[
− b

λ2
j

g(t)

]
dt (A.46)

≤
∞∑
j=1

1

λ3
j

λ2
j

eb
=

1

eb

∞∑
j=1

j−
4
3 . (A.47)
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Since
∑∞

j=1 j
− 4

3 <∞, there exists a constant C, such that

∫
f1(x)e−bf1(x)dx ≤ Cb−1, (A.48)

Hence Assumption (b) holds.

We then define another random variable X2:

X2 = X1 + δj, if X1 ∈ Sj, j ∈ N+ (A.49)

in which δj = 2j
4 . Then h(X2) = h(X1), since the probability mass for X2 is just being moved

around, but otherwise the distributions are the same.

Now we compare ĥ0(X2) and ĥ0(X1). Here we assume that X11, . . . , X1N are N samples

generated from f1(x), and X21, . . . , X2N are generated by X2 = X1 +
∑∞

j=1 δj1(X1i ∈ Sj).

Recall the expression of original Kozachenko-Leonenko estimator in (2.1), we have

ĥ0(X2)− ĥ0(X1) =
1

N

N∑
i=1

(ln ε2(i)− ln ε1(i)) , (A.50)

in which ε1(i) and ε2(i) are the 1-NN distances of X1i among {X11, . . . , X1N} \ {X1i}, and that

of X2i among {X21, . . . , X2N} \ {X2i}, respectively.

Note that ε2(i) ≥ ε1(i) always holds. As a result, ĥ0(X2) ≥ ĥ0(X1). In particular, if X1i is the

unique point in Sj , then ε2(i)− ε1(i) ≥ δj − δj−1 ≥ δj/2.
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Then for any positive integer m,

ĥ0(X2)− ĥ0(X1)
(a)

≥ 1

N

N∑
i=1

[
ln
ε2(i)

ε1(i)
1(X1i ∈ Sm, nm = 1)

]
(A.51)

≥ 1

N

N∑
i=1

[
ln

(
1 +

δm
2ε1(i)

)
1(X1i ∈ Sm, nm = 1)

]
(A.52)

(b)

≥ 1

N

N∑
i=1

[
ln

(
1 +

δm
2L

)
1(X1i ∈ Sm, nm = 1)

]
(A.53)

=
1

N
ln

(
1 +

δm
2L

)
1(nm = 1). (A.54)

In (a), nm =
∑N

k=1 1(X1k ∈ Sm) is the number of samples in Sm. In (b), we define L = lim
n→∞

an,

which is finite according to the definition of an in (A.40), thus ε1(i) ≤ L. Then

E[ĥ0(X2)]− E[ĥ0(X1)] ≥ 1

N
ln

(
1 +

δm
2L

)
P (nm = 1). (A.55)

Define pm as the probability mass of set Sm, then

pm =

∫ am+λm

am−λm
f1(x)dx (A.56)

=

∫ am+λm

am−λm

1

λ2
m

g(λm(x− am))dx (A.57)

=

∫
1

λ3
m

g(t)dt =
90

π4m4
. (A.58)

Let

m =

[(
90N

π4

) 1
4

]
, (A.59)

then Npm → 1 as N →∞, thus

lim
N→∞

P (nm = 1) = lim
N→∞

Npm(1− pm)N−1 (A.60)

= lim
N→∞

Npm lim
N→∞

(1− pm)N−1 = e−1. (A.61)
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Since we have assumed that δm = 2m
4 , from (A.55), we know that

lim
N→∞

E[ĥ0(X2)]− E[ĥ0(X1)] 6= 0. (A.62)

However, the real entropy are equal, i.e. h(X2) = h(X1). Therefore for at least one pdf out of f1

and f2, the original Kozachenko-Leonenko estimator is not consistent.

The above result can be generalized to any fixed k. For any fixed k, ε2(i) ≥ ε1(i) always holds,

and ε2(i) − ε1(i) ≥ δj if there are less than or equal to k points in Sj . We can then follow similar

steps above to obtain the same result.

A.3 Proof of Theorem 2.3: the variance of Kozachenko-

Leonenko entropy estimator

In this section, we prove Theorem 2.3 under Assumptions (c) and (d). Recall that in (2.2),

ρ(i) = min{aN , ε(i)}, i = 1, . . . , N , in which ε(i) is the distance between x(i) and its k-th

nearest neighbor. In order to obtain a bound of the variance of Kozachenko-Leonenko entropy

estimator, we let x′(1) be a sample that is independent of x(1), . . . ,x(N) and is generated

using the same underlying pdf. Denote ρ′(i) = min{aN , ε′(i)}, i = 1, . . . , N , in which ε′(i)

is the k-th nearest neighbor distances based on x′(1),x(2), . . . ,x(N), i.e. the first sample is

replaced by another i.i.d sample, while other samples remain the same. Furthermore, denote

ρ′′(i) = min{aN , ε′′(i)}, i = 2, . . . , N , in which ε′′(i) is the nearest neighbor distances based

on x(2), . . . ,x(N). Then denote

ĥ′(X) = −ψ(k) + ψ(N) + ln cdx +
dx
N

N∑
i=1

ln ρ′(i), (A.63)
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which is the Kozachenko-Leonenko estimator based on x′(1),x(2), . . . ,x(N). Then according to

Efron-Stein inequality,

Var[ĥ(X)] ≤ N

2
E[(ĥ− ĥ′)2]

=
N

2
E

(dx
N

N∑
i=1

ln ρ(i)− dx
N

N∑
i=1

ln ρ′(i)

)2
 .

Denote

U(i) = ln
(
N(ρ(i))dxcdx

)
, i = 1, . . . , N ;

U ′(i) = ln
(
N(ρ′(i))dxcdx

)
, i = 1, . . . , N ;

U ′′(i) = ln
(
N(ρ′′(i))dxcdx

)
, i = 2, . . . , N, (A.64)

then

Var[ĥ(X)] ≤ N

2
E

 1

N2

(
N∑
i=1

U(i)−
N∑
i=2

U ′′(i) +
N∑
i=2

U ′′(i)−
N∑
i=1

U ′(i)

)2


=
1

2N
E

( N∑
i=1

U(i)−
N∑
i=2

U ′′(i) +
N∑
i=2

U ′′(i)−
N∑
i=1

U ′(i)

)2


(a)

≤ 1

N
E

( N∑
i=1

U(i)−
N∑
i=2

U ′′(i)

)2
+

1

N
E

( N∑
i=1

U ′(i)−
N∑
i=2

U ′′(i)

)2


(b)

≤ 2

N
E

( N∑
i=1

U(i)−
N∑
i=2

U ′′(i)

)2
 ,

in which (a) is based on Cauchy inequality, (b) uses the fact that x(1) and x′(1) are i.i.d. Note that

ρ(i) and ρ′′(i) are equal if x(1) is out of the k-th nearest neighbor of x(i). Denote

S = {i ∈ {2, . . . , N}|ρ(i) 6= ρ′′(i)}, (A.65)

112



then we use the following lemma:

Lemma A.5. (Lemma 20.6 in [10] and Lemma 11 in [34]) If ‖x(i)− x(1)‖ are different for

i = 2, . . . , N , then

|S| ≤ kγdx , (A.66)

in which γdx is the minimum number of cones of angle π/6 that cover Rdx .

For continuous distribution, ‖x(i)− x(1)‖ are different for different i, with probability 1. As a

result, we can claim that |S| ≤ kγdx with probability 1.

Var[ĥ(X)] ≤ 2

N
E

[
U(1) +

∑
i∈S

(U(i)− U ′′(i))

]2

≤ 2

N
(2|S|+ 1)E

[
U2(1) +

∑
i∈S

U2(i) +
∑
i∈S

(U ′′(i))2

]
, (A.67)

in which the last inequality is based on Cauchy inequality. Now we bound the right hand side of

(A.67).

E

[∑
i∈S

U2(i)

]
= E

[
N∑
i=2

U2(i)1(i ∈ S)

]
(a)
=

N∑
i=2

E[U2(i)]P (i ∈ S)

(b)
= (N − 1)E[U2(1)]P (i ∈ S)

(c)

≤ kE[U2(1)]. (A.68)

In (a), we need to show that 1(i ∈ S) is independent with U(i). Since U(i) is totally determined

by ρ(i), it suffices to show that P (i ∈ S|ρ(i)) = P (i ∈ S) for i = 2, . . . , N . For simplicity, we

only show that P (N ∈ S|ρ(N)) = P (N ∈ S). For other points (i = 2, . . . , N − 1), the proof

is similar. We denote x(j)(N) as the j-th nearest neighbor of x(N). Since x(1), . . . ,x(N) are

i.i.d, x(1)(N), . . . ,x(N−1)(N) are actually a random permutation of x(1), . . . ,x(N − 1). Denote
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σ : {1, . . . , N−1} → {1, . . . , N−1} as the random permutation rule, such that x(i) = x(σ(i))(N).

Also note that

ρ(N) = min
{∥∥x(k)(N)− x(N)

∥∥ , aN} ,
hence

P (N ∈ S|ρ,x(N)) = P (ρ(N) 6= ρ′′(N)|x(N),x(k)(N))

= E
[
P (ρ(N) 6= ρ′′(N)|x(N),x(1)(N), . . . ,x(N−1)(N))|x(N),x(k)(N)

]
= E[P (σ(1) ∈ {1, . . . , k})|x(N),x(k)(N)]

=
k

N − 1
. (A.69)

Find expectation over X(N), we then get P (N ∈ S|ρ) = k/(N − 1), which does not depend on

ρ. The proof is complete.

In (b), we use the fact that U(i) are identically distributed for all i. In (c), we use (A.69).

We can get similar result for E
[∑

i∈S U
′′2(i)

]
. Hence,

Var[ĥ(X)] ≤ 2

N
(2kγdx + 1)

[
(k + 1)E[U2(1)] + kE[U ′′

2
(1)]
]
.

Now it remains to bound E[U2(1)] and E[U ′′2(1)]. From now on, we omit the index for

convenience. According to the definition of U in (A.64),

E[U2] = E[(lnNρdxcdx)
2]

= E

[(
ln(NP (B(X, ε)))− ln

P (B(X, ε))

f(X)cdxρ
dx
− ln f(X)

)2
]

≤ 3

[
E
[
(ln(NP (B(X, ε))))2

]
+ E

[(
ln
P (B(X, ε))

f(X)cdxρ
dx

)2
]

+ E[(ln f(X))2]

]
.

We have the following lemma:
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Lemma A.6. The following equation holds generally, without any assumptions:

lim
N→∞

E[(lnNP (B(X, ε)))2] = ψ′(k) + ψ2(k). (A.70)

Lemma A.7. Under assumption (c) and (d) in Theorem 2.3, with 0 < β < 1/dx,

lim
N→∞

E

[(
ln
P (B(X, ε))

f(X)cdxρ
dx

)2
]

= 0. (A.71)

Proof. Please see Appendix A.3.1 for the proof of Lemma A.6, and Appendix A.3.2 for the proof

of Lemma A.7.

With these two lemmas, we can bound E[U2]. Similar result holds for E[U ′′2]. Therefore

according to (A.70),

lim
N→∞

N Var[ĥ(X)] ≤ 6(2kγdx + 1)(2k + 1)

[
ψ′(k) + ψ2(k) +

∫
f(x)(ln f(x))2dx

]
.

According to Assumption (d),
∫
f(x)(ln f(x))2dx < ∞. Therefore the right hand side is a

constant, hence

Var[ĥ(X)] = O(N−1). (A.72)

A.3.1 Proof of Lemma A.6

Define V = NP (B(X, ε)). Since P (B(x, ε)) is equal in distribution to the k-th order statistics of

uniform distribution for any x, we can derive the pdf of V when the sample size is N [23]:

fN(v) =
(N − 1)!

(k − 1)!(N − k − 1)!

( v
N

)k−1 (
1− v

N

)N−k−1 1

N
. (A.73)
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As a result,

lim
N→∞

fN(v) =
vk−1

(k − 1)!
e−v. (A.74)

Therefore

lim
N→∞

E[(lnV )2] = lim
N→∞

∫
(ln v)2fN(v)dv

(a)
=

∫
(ln v)2 lim

N→∞
fN(v)dv

=

∫
(ln v)2 vk−1

(k − 1)!
e−vdv

=
Γ′′(k)

Γ(k)

(b)
= ψ′(k) + ψ2(k).

In (a), we exchange the order of integration and limit based on Lebesgue dominated convergence

theorem. Note that

fN(v) ≤ vk−1

(k − 1)!

(
1− v

N

)N−k−1

≤ vk−1

(k − 1)!
exp

[
−vN − k − 1

N

]
, (A.75)

thus for sufficiently large N , fN(v) ≤ g(v), in which

g(v) =
vk−1

(k − 1)!
exp

[
−1

2
v

]
. (A.76)

Obviously
∫

(ln v)2g(v)dv < ∞. Therefore the condition of Lebesgue dominated convergence

theorem is satisfied.

In (b), we use the definition of digamma function ψ(t) = Γ′(t)
Γ(t)

. The proof is complete.
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A.3.2 Proof of Lemma A.7

The proof is based on Assumptions (c) and (d) in Theorem 2.3, using monotone convergence

theorem. We begin with Cauchy’s inequality:

E

[(
ln
P (B(X, ε))

f(X)cdxρ
dx

)2
]
≤ 2E

[(
ln
P (B(X, ρ))

f(X)cdxρ
dx

)2
]

+ 2E

[(
ln
P (B(X, ε))

P (B(X, ρ))

)2
]
.

Therefore it suffices to prove

lim
N→∞

E

[(
ln
P (B(X, ρ))

f(X)cdxρ
dx

)2
]

= 0, (A.77)

and

lim
N→∞

E

[(
ln
P (B(X, ε))

P (B(X, ρ))

)2
]

= 0. (A.78)

We define the following two functions:

gN(x) = inf{f̃(x, r)|r ≤ aN},

hN(x) = sup{f̃(x, r)|r ≤ aN}. (A.79)

in which ‖·‖ is the same norm used in the Kozachenko-Leonenko estimator. For sufficiently

large N , aN < r0. According to assumption (c),(d) in Theorem 2.3, E[(ln gN(x))2] < ∞ and

E[(lnhN(x, r))2] <∞.

Proof of (A.77): Since ρ ≤ aN , we know that

gN(x) ≤ inf{f(x′)| ‖x− x′‖ ≤ ρ} ≤ hN(x),
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hence for any x with f(x) > 0,

gN(x)

f(x)
≤ P (B(x, ρ))

f(x)cdxρ
dx
≤ hN(x)

f(x)
.

Therefore

E

[(
ln
P (B(X, ρ))

f(X)cdxρ
dx

)2
]
≤ E

[
max

{(
ln
gN(X)

f(X)

)2

,

(
ln
hN(X)

f(X)

)2
}]

≤ E

[(
ln
gN(X)

f(X)

)2

+

(
ln
hN(X)

f(X)

)2
]

→ 0 as N →∞, (A.80)

in which the last step holds, because according to assumption (c), (d) in Theorem 2.3, f is

continuous, thus both gN(x) and hN(x) converges to f(x). Moreover, E[(ln gN(x))2] ≤ ∞ and

E[(lnhN(x))2] ≤ ∞. Therefore we can use monotone convergence theorem.

Proof of (A.78): To prove (A.78), we need the following lemma.

Lemma A.8. Under Assumptions (c) and (d) in Theorem 2.3, with 0 < β < 1/dx, there exist two

finite positive constants C1 and C2, such that

E

[(
ln
P (B(x, ε))

P (B(x, ρ))

)2
∣∣∣∣∣x
]
≤ C1 + C2 (ln gN(x))2 . (A.81)

Proof.

E

[(
ln
P (B(x, ε))

P (B(x, ρ))

)2
∣∣∣∣∣x
]

= P (ε > aN |x)E

[(
ln
P (B(x, ε))

P (B(x, ρ))

)2
∣∣∣∣∣x, ε > aN

]
≤ P (ε > aN |x)(lnP (B(x, aN)))2. (A.82)

According to the definition of gN , P (B(x, aN)) ≥ gN(x)cdxa
dx
N . For N ≥ 2, define

u = (N − 1)gN(x)cdxa
dx
N ≥

1

2
NgN(x)cdxa

dx
N =

1

2
AdxcdxgN(x)N1−βdx . (A.83)
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Recall that in Theorem 2.3, we have assumed β < 1/dx, i.e. 1− βdx > 0. Thus

P (B(x, aN)) ≥ gN(x)cdxN
−βdx

≥ gN(x)cdxA
dx

(
2u

AdxcdxgN(x)

)− βdx
1−βdx

= C3u
− βdx

1−βdx g
1

1−βdx
N (x),

for some constant C3. If u ≤ k, then

(A.82) ≤ (lnP (B(x, aN)))2 ≤
[
ln

(
C3k

− βdx
1−βdx g

1
1−βdx
N (x)

)]2

. (A.84)

If u > k, then according to Chernoff inequality, P (ε > aN |x) ≤ (eu/k)k exp(−u). Hence

(A.82) ≤
(eu
k

)k
e−u

(
lnC3 −

βdx
1− βdx

lnu+
1

1− βdx
ln gN(x)

)2

. (A.85)

Consider that (eu/k)k(lnu)2 and (eu/k)k lnu are bounded function over u, there are two universal

constants C1 and C2, such that for both u ≤ k and u > k,

(A.82) ≤ C1 + C2(ln gN(x))2. (A.86)

The proof is complete.

We now prove (A.78). According to Lemma A.8 and Assumption (d), for sufficiently large N ,

aN < r0, thus

∫
E

[(
ln
P (B(x, ε))

P (B(x, ρ))

)2
∣∣∣∣∣x
]
f(x)dx ≤

∫
(C1 + C2(ln gN(x))2f(x)dx <∞. (A.87)

119



According to Lebesgue dominated convergence theorem,

lim
N→∞

E

[(
ln
P (B(X, ε))

P (B(X, ρ))

)2
]

= lim
N→∞

∫
E

[(
ln
P (B(x, ε))

P (B(x, ρ))

)2
∣∣∣∣∣x
]
f(x)dx

=

∫
lim
N→∞

E

[(
ln
P (B(x, ε))

P (B(x, ρ))

)2
∣∣∣∣∣x
]
f(x)dx = 0,

in which the last step is because (A.85) converges to 0 as u→∞, which is the same as N →∞.

A.4 Proof of Theorem 2.4: minimax lower bound of entropy

estimators

In this section, we prove the minimax lower bound for entropy estimators under Assumptions (a),

(b) in Theorem 2.1. Minimax lower bound for functional estimation is usually calculated using Le

Cam’s method [82]. Define

R(N) = inf
ĥ

sup
f∈FM,C

E[(ĥ(X)− h(X))2]. (A.88)

In our proof, we show the following two results separately:

R(N) &
1

N
; (A.89)

and

R(N) & N−
4

dx+2 (lnN)−
4dx+4
dx+2 . (A.90)

Proof of (A.89).

(A.89) is the parametric convergence rate. Let a be an arbitrary vector such that ‖a‖ > 2. We
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construct two distributions:

f1(x) =
2

3
g(x) +

1

3
g(x− a), (A.91)

f2(x) =
2− δ

3
g(x) +

1 + δ

3
g(x− a), (A.92)

in which g satisfies three conditions:

(G1) g(x) is supported at B(0, 1), i.e. g(x) = 0 for ‖x‖ > 1;

(G2) The Hessian of g is bounded, i.e. ‖∇2g‖op ≤M ;

(G3)
∫
B(0,1)

g(x)dx = 1.

(G4) g(x) ≥ 0 everywhere.

If M is sufficiently large, then such g exists. As a result, B(0, 1) and B(a, 1) are disjoint. For

these two distributions, we have ‖∇2f1‖op ≤ M and ‖∇2f2‖op ≤ M . Moreover, since te−bt ≤

1/(eb) for all t, and the volume of the support sets of f1 and f2 are no more than 2V (B(0, 1)) =

2cdx , we have

∫
fi(x)e−bfi(x)dx ≤ 2cdx

eb
, i = 1, 2. (A.93)

Therefore, for sufficiently large M and C, we have f1 ∈ FM,C and f2 ∈ FM,C . The entropy

functionals are

h(f1) = h(g) +H

(
1

3

)
, (A.94)

h(f2) = h(g) +H

(
1 + δ

3

)
, (A.95)

in which H(p) = −p ln p − (1 − p) ln(1 − p) is the entropy function for discrete binary random

variable.

From Le Cam’s lemma [82],
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R(N) ≥ 1

4
(h(f1)− h(f2))2e−ND(f1||f2). (A.96)

Note that H ′(p) = ln((1− p)/p), H ′(1/3) = ln 2, thus there exists an δ0, such that for all δ < δ0,

h(f2)− h(f1) ≥ ln 2

2
δ. (A.97)

In addition,

D(f1||f2) =
2

3
ln

2

2− δ
+

1

3
ln

1

1 + δ
≤ δ2. (A.98)

Let δ = 1/
√
N , then for sufficiently large N , δ < δ0, we have

R(N) ≥ 1

4

(
1

2
ln 2

)2

δ2e−1, (A.99)

thus

R(N) &
1

N
. (A.100)

Proof of (A.90).

The proof of (A.90) follows [90] closely. [90] derived the minimax convergence rate of entropy

estimation for discrete random variables with large alphabet size. Motivated by the proof in [90],

we provide a minimax lower bound for entropy estimation for continuous random variables. The

basic idea is to convert the minimax bound of continuous entropy estimation to a discrete one.

In the following proof, we still let g be a function that satisfies condition (G1)-(G3), but f1 and

f2 are defined differently comparing with the proof of (A.89). The notations in the following proof

are basically consistent with those in [90], although some of them are changed to avoid confusion.
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To begin with, we define a set F0:

F0 =

{
f

∣∣∣∣f(x) = (1− α)g(x) +
m∑
i=1

ui
mDdx

g

(
x− ai
D

)
, 0 < α < 1,

1

m

m∑
i=1

ui = α, 1 < mDdx < C1,
ui

mDdx+2
< 1

}
, (A.101)

in which C1 is a constant, α and m increase with sample size N , D decreases with N . ai, i =

1, . . . ,m are selected such that ‖ai‖ > 1 for all i ∈ {1, . . . ,m}, and ‖ai − aj‖ > D for all

i, j ∈ {1, . . . ,m}. Note that for any f ∈ F0,
∫
f(x)dx = 1, therefore F0 can be viewed as a set of

pdfs. Moreover, for any f ∈ F0, we have

∫
f(x)e−bf(x)dx ≤ 1

eb
(1 +mDdx)cdx ≤

1 + C1

eb
cdx . (A.102)

Therefore, if C ≥ cdx(1 + C1)/(eb), f ∈ FM,C , and thus F0 ⊆ FM,C .

Define

R1(N) = inf
ĥ

sup
f∈F0

E[(ĥ(N)− h(X))2], (A.103)

in which ĥ(N) denotes the estimation of h(X) with N samples. Since F0 ⊆ FM,C , we have

R(N) ≥ R1(N). (A.104)

To derive a lower bound to R1(N), we still use Le Cam’s method [82]. This method requires

a bound of the total variation between two distributions, which is hard to calculate directly. To

simplify this problem, we use Poisson sampling technique here. Such a method has been used in

[84, 90] for the minimax lower bound of entropy estimation for discrete random variables. Define

R2(N) = inf
ĥ

sup
f∈F0

E[(ĥ(N ′)− h(X))2], (A.105)
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in which N ′ ∼ Poi(N). Comparing with the definition of R1 in (A.103), we use N ′ to replace N ,

such that the number of samples is random. R2(N) is easier to calculate than R1(N), because N ′

follows Poisson distribution, hence for any disjoint intervals I1 and I2, denote n(I1), n(I2) as the

number of samples falling in I1 and I2, then both n(I1) and n(I2) follows Poisson distribution with

parameter NP (I1) and NP (I2), respectively. Moreover, n(I1) and n(I2) are independent. Such

independence significantly simplifies the calculation of total variation distance. However, we need

to show that R2(N) is a reasonable approximation to R1(N), so that the convergence rate derived

for R2(N) can be used to bound R1(N) too. Intuitively, for large N , N ′ concentrates around N ,

therefore R1(N) and R2(N) converges with the same rate. The formal statement is provided in the

following lemma.

Lemma A.9.

R1(N) ≥ R2(2N)− 1

4
(1 + lnC1)2e−(1−ln 2)N . (A.106)

Proof. Please see Appendix A.4.1 for detailed proof.

The second term in (A.106) converges exponentially to zero as N increases, hence we can

claim that R1(N) and R2(N) converges with same convergence rate.

Now define Fε, which depends on ε > 0:

Fε =

{
f

∣∣∣∣f(x) = (1− α)g(x) +
m∑
i=1

ui
mDdx

g

(
x− ai
D

)
, 0 < α < 1,∣∣∣∣∣ 1

m

m∑
i=1

ui − α

∣∣∣∣∣ < ε, 1 < mDdx < C1,
ui

mDdx+2
< 1

}
. (A.107)

Comparing the definition of F0 in (A.101), now we allow (
∑m

i=1 ui)/m to deviate slightly from α.

As a result, f ∈ Fε is not necessarily a pdf, since it is not normalized. However, we can extend the

definition of entropy h(f) = −
∫
f(x) ln f(x)dx to an arbitrary function f , without the constraint

124



∫
f(x)dx = 1. Define

R3(N, ε) = inf
ĥ

sup
f∈Fε

E[(ĥ(N ′)− h(f))2], (A.108)

in which ĥ(N ′) is the estimation of functional h(f) with N ′ samples, N ′ ∼ Poi(N
∫
f(x)dx). As

a result, for any interval I , let n(I) be the number of samples in I , we have n(I) ∼ Poi(NP (I)),

in which P (I) =
∫
I
f(x)dx. For two disjoint intervals I1 and I2, n(I1) and n(I2) are independent.

Lemma A.10. There exists a constant C2, such that

R2(N(1− ε)) ≥ 1

3
R3(N, ε)− ε2C2

2 − (1 + ε)2 ln(1 + ε). (A.109)

Proof. Please see Appendix A.4.2 for detailed proof.

This lemma shows that R2(N) and R3(N) have the same convergence rate if ε is carefully

selected. With Lemmas A.9 and A.10, the problem of finding R(N) can be converted to giving a

bound to R3(N, ε). Using Le Cam’s method, we can get the following result, which is similar to

Lemma 2 in [90].

Lemma A.11. Let U,U ′ be two random variables that satisfy the following two conditions:

(1) U,U ′ ∈ [0, λ], in which

λ < min
{m
e
,mDdx+2

}
; (A.110)

(2) E[U ] = E[U ′] = α ≤ 1.

Define

∆ =

∣∣∣∣E [U ln
1

U

]
− E

[
U ′ ln

1

U ′

]∣∣∣∣ . (A.111)
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Let ε = 4λ/
√
m, then

R3(N, ε) ≥ ∆2

16

[
31

32
−

64λ2
(
ln m

λ

)2

m∆2
−mTV

(
E
[

Poi
(
NU

m

)]
,E
[

Poi
(
NU ′

m

)])
− 16λ2

m∆2
(dx lnD + h(g))2

]
, (A.112)

in which TV denotes the total variation distance.

Proof. The proof follows the proof of Lemma 2 in [90] closely, but since we are dealing with

continuous distributions, there are several different details. The most important difference is that

the bound in [90] holds for all discrete distributions without constraints, while we have to construct

two functions f1, f2 ∈ F . We provide the detailed proof in Appendix A.4.3.

In the following proof, we use some steps from [90] directly.

To use Lemma A.11, we construct a particular pairs of (U,U ′). Our construction follows [90].

Given η ∈ (0, 1), and any two random variables X,X ′ ∈ [η, 1] that have matching moments to

L-th order, construct U and U ′ in the following way:

PU(du) =
(

1− E
[ η
X

])
δ0(du) +

α

u
PαX/η(du), (A.113)

PU ′(du) =
(

1− E
[ η
X ′

])
δ0(du) +

α

u
PαX′/η(du), (A.114)

in which δ0 denotes the distribution such that if T ∼ δ0, then P (T = 0) = 1. Define λ = α/η.

These distributions are supported on [0, λ]. Then from Lemma 4 in [90],

E
[
U ln

1

U
− U ′ ln 1

U ′

]
= α

(
E
[
ln

1

X

]
− E

[
ln

1

X ′

])
, (A.115)

and E[U j] = E[U ′j]. In particular, E[U ] = E[U ′] = α. When X and X ′ are properly selected,

according to eq.(34) in [90],

∣∣∣∣E [ln 1

X

]
− E

[
ln

1

X ′

]∣∣∣∣ = 2 inf
p∈PL

sup
x∈[η,1]

| lnx− p(x)|, (A.116)
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in which PL is the set of polynomials with degree L.

According to Lemma 5 in [90], there are two constants c, c′, such that for any L ≥ L0,

inf
p∈PL

sup
x∈[cL−2,1]

| lnx− p(x)| ≥ c′. (A.117)

Based on the definition of ∆ in (A.111), as well as (A.115), (A.116) and (A.117), let η = cL−2,

then

∆ = 2αc′, (A.118)

in which c, c′ are constants in (A.117).

Recall that we have lower bounded R3(N, ε) in (A.112) in Lemma A.11. To calculate the total

variation distance in (A.112), we use the following lemma.

Lemma A.12. ([90], Lemma 3) Let V and V ′ be random variables on [0, A]. If E[V j] = E[V ′j],

j = 1, . . . , L, and L > 2eM , then

TV(E[Poi(V )],E[Poi(V ′)]) ≤
(

2eA

L

)L
. (A.119)

Substitute V , V ′ in (A.119) with NU/m and NU ′/m. Let A = Nλ/m, then recall that η =

cL2,

TV
(
E
[

Poi
(
nU

m

)]
,E
[

Poi
(
nU ′

m

)])
≤
(

2eNλ

mL

)L
=

(
2eNα

mηL

)L
=

(
2eNαL

cm

)L
.

Let L, α changes with m, N in the following way:

L = 2 blnmc , (A.120)

α =
cm

2e2NL
, (A.121)
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then as long as

(lnm)4(lnN)2

m
→∞ as N →∞, (A.122)

the second, third and fourth term in the bracket in (A.112) converges to zero. For the second term,

λ2
(
ln m

λ

)2

m∆2

(a)
=

α2

η2

(
ln mη

α

)2

m(2αc′)2

(b)
=

1
η2

(
ln 2e2N

L

)2

m(2c′)2
∼ (lnm)4

m

((
ln

N

lnm

)2

+ 1

)
→ 0 as m→∞.

Here (a) uses (A.118) and λ = α/η. (b) comes from (B.155).

For the third term,

mTV
(
E
[

Poi
(
nU

m

)]
,E
[

Poi
(
nU ′

m

)])
= me−2blnmc → 0 as m→∞. (A.123)

In addition, it is straightforward to show that the fourth term in the bracket of (A.112) also

converges to zero. Using these bounds for each term, we have

R3(N, ε) & ∆2 ∼ α2 ∼
( m

N lnm

)2

, (A.124)

in which ε = 4λ/
√
m, according to Lemma A.11.

Note that m can not be arbitrarily large. According to (A.107) and (A.110), we have two

constraints: 1 < mDdx < C1 and λ < mDdx+2. The first constraints yield m ∼ D−dx . For

the second one, we have

λ

mDdx+2
=

α

mDdx+2η
∼ 1

mDdx+2

m

N lnm
(lnm)2 =

lnm

NDdx+2
. (A.125)

Hence we can let D ∼ N−
1

dx+2 (lnN)
1

dx+2 , and m ∼ D−dx ∼ N
dx
dx+2 (lnN)−

dx
dx+2 , then these two

conditions are satisfied, and (A.124) becomes

R3(N, ε) & N−
4

dx+2 ln−
4dx+4
dx+2 N. (A.126)
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Note that

ε =
4λ√
m
∼ α

η
√
m
∼ mL2

N
√
m lnm

∼
√
m lnm

N
, (A.127)

in which we use λ = α/η, η = cL−2, as well as (B.151) and (B.155).

From (A.109), it can be shown that R2(N) converges with the same rate as R3(N, ε). In

addition, consider (A.106) and (B.135), we get

R(N) & N−
4

dx+2 ln−
4dx+4
dx+2 N. (A.128)

The proof of (A.90) is complete.

Combine (A.89) and (A.90), we get

R(N) & N−
4

dx+2 ln−
4dx+4
dx+2 N +

1

N
. (A.129)

The proof of Theorem 2.4 is complete.

A.4.1 Proof of Lemma A.9

Let N ′ ∼ Poi(2N), then

R2(2N) = inf
ĥ

sup
f∈F0

E[(ĥ(N ′)− h(X))2] (A.130)

≤ inf
ĥ
E
[

sup
f∈F0

E[(ĥ(N ′)− h(X))2|N ′]
]

(A.131)

= E
[
inf
ĥ

sup
f∈F0

E[(ĥ(N ′)− h(X))2|N ′]
]

(A.132)

= E[R1(N ′)] (A.133)

= E[R1(N ′)|N ′ ≥ N ]P (N ′ ≥ N) + E[R1(N ′)|N ′ < N ]P (N ′ < N).

(A.134)
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R1(N) is a non-increasing function of N , because if N1 < N2, given N2 samples, one can always

randomly use N1 samples for entropy estimation, thus R1(N2) ≤ R1(N1) always holds. Therefore

E[R1(N ′)|N ′ ≥ N ] ≤ R1(N). (A.135)

For the second term in (A.134), recall that N ′ ∼ Poi(2N), use Chernoff inequality, we get

P (N ′ < N) ≤ e−(1−ln 2)N . (A.136)

From the definition of F0, we know that

inf
f∈F0

h(f) = h(g) = −
∫
g(x) ln g(x)dx, (A.137)

and

sup
f∈F0

h(f) = h(g) +H(α) + α ln(mDdx) ≤ h(g) + 1 + lnC1. (A.138)

Therefore for any N ,

R1(N) ≤ 1

4
(1 + lnC1)2, (A.139)

since we can always let ĥ(N) = ( sup
f∈F0

h(f) + inf
f∈F0

h(f))/2. Based on (A.135), (A.136), (A.139)

and (A.134),

R2(2N) ≤ R1(N) +
1

4
(1 + lnC1)2e−(1−ln 2)N . (A.140)

The proof is complete.
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A.4.2 Proof of Lemma A.10

For any f ∈ Fε, which is not necessarily normalized,

h(f) = −
∫
f(x) ln f(x)dx (A.141)

=

(∫
f(x)dx

)
h

(
f∫

f(x)dx

)
−
(∫

f(x)dx

)
ln

∫
f(x)dx. (A.142)

Based on the definition of Fε, we have

∣∣∣∣∫ f(x)dx− 1

∣∣∣∣ < ε. (A.143)

For any estimator ĥ,

E
[
(ĥ(N ′)− h(f))2

]
= E

[(
ĥ(N ′)−

∫
f(x)dxh

(
f∫

f(x)dx

)
−
∫
f(x)dx ln

∫
f(x)dx

)2
]

= E
[(
ĥ(N ′)− h

(
f∫

f(x)dx

)
+

(
1−

∫
f(x)dx

)
h

(
f∫

f(x)dx

)
−
∫
f(x)dx ln

∫
f(x)dx

)2
]

≤ 3E

[(
ĥ(N ′)− h

(
f∫

f(x)dx

))2
]

+ 3

(
1−

∫
f(x)dx

)2

h2

(
f∫

f(x)dx

)
+3

(∫
f(x)dx

)2(
ln

∫
f(x)dx

)2

, (A.144)
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in which the last step uses Cauchy inequality. Define f ∗ = f/
∫
f(x)dx, then f ∗ is a valid pdf, and

we can check that f ∗ ∈ F0. Recall that N ′ ∼ Poi
(
N
∫
f(x)dx

)
, and

∫
f(x)dx > 1− ε,

R3(N, ε) = inf
ĥ

sup
f∈Fε

E[(ĥ(N ′)− h(f))2] (A.145)

≤ 3inf
ĥ

sup
f∗∈F0

E
[
(ĥ(N ′)− h(f ∗))2

]
+ 3sup

f∈Fε

(
1−

∫
f(x)dx

)2

h2(f ∗)

+3sup
f∈Fε

(∫
f(x)dx

)2(
ln

∫
f(x)dx

)2

, (A.146)

≤ 3R2((1− ε)N) + 3ε2C2
2 + 3(1 + ε)2(ln(1 + ε))2, (A.147)

in which

C2 = sup
f∈Fε

h(f ∗) = sup
f∗∈F0

h(f ∗) ≤ h(g) + lnC1 + 1, (A.148)

with the last step in (A.148) comes from (A.138). The proof is complete.

A.4.3 Proof of Lemma A.11

Define

f1(x) = (1− α)g(x) +
m∑
i=1

Ui
mDdx

g

(
x− ai
D

)
, (A.149)

f2(x) = (1− α)g(x) +
m∑
i=1

U ′i
mDdx

g

(
x− ai
D

)
, (A.150)

in which Ui, i = 1, . . . ,m are i.i.d copy of U , and U ′i are corresponding i.i.d copy of U ′.

Since Ui ∈ [0, λ] and we have restricted λ in (A.110), so that Ui < mDdx+2 always

holds. Recall the definition of Fε in (A.107), f1, f2 satisfy all the requirements of Fε except

|(
∑m

i=1 Ui)/m− α| < ε and |(
∑m

i=1 U
′
i)/m− α| < ε.

Note that now h(f1) and h(f2) are both random variables because Ui and U ′i are random. We
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define the following random events:

E =

{∣∣∣∣∣ 1

m

m∑
i=1

Ui − α

∣∣∣∣∣ ≤ ε, |h(f1)− E[h(f1)]| ≤ ∆

4

}
, (A.151)

E ′ =

{∣∣∣∣∣ 1

m

m∑
i=1

U ′i − α

∣∣∣∣∣ ≤ ε, |h(f2)− E[h(f2)]| ≤ ∆

4

}
. (A.152)

Then by Chebyshev’s inequality,

P (Ec) ≤ P

(∣∣∣∣∣ 1

m

m∑
i=1

−α

∣∣∣∣∣ > ε

)
+ P

(
|h(f1)− E[h(f1)]| > ∆

4

)
(A.153)

≤ Var[U ]

mε2
+

16

∆2
Var[h(f1)]. (A.154)

For the first term, recall that we have the constraint 0 ≤ U ≤ λ < m/e. Hence

Var[U ] ≤ 1

4
λ2. (A.155)

Moreover, ε2 = 16λ2/m, therefore

Var[U ]

mε2
≤ λ2

4mε2
=

1

64
. (A.156)

For the second term, note that

h(f1) = −
∫

(1− α)g(x) ln [(1− α)g(x)] dx

−
m∑
i=1

∫
Ui

mDdx
g

(
x− ai
D

)
ln

(
Ui

mDdx
g

(
x− ai
D

))
dx

= −
m∑
i=1

Ui
m

ln
Ui
m
−

m∑
i=1

(
ln

1

Ddx
− h(g)

)
Ui
m
. (A.157)
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Since Ui ≤ λ < m/e, Ui/m < 1/e, therefore

Var

[
Ui
m

ln
Ui
m

]
≤ E

[(
Ui
m

ln
Ui
m

)2
]
<

(
λ

m
ln
λ

m

)2

, (A.158)

and

Var

[
Ui
m

]
≤ λ2

4m2
. (A.159)

Then using Cauchy inequality,

Var[h(f1)] ≤ 2 Var

[
m∑
i=1

Ui
m

ln
Ui
m

]
+ 2

(
ln

1

Ddx
+ h(g)

)2

Var

[
m∑
i=1

Ui
m

]
(A.160)

≤ 2λ2

m

(
ln
λ

m

)2

+ 2 (dx lnD + h(g))2 λ2

4m
. (A.161)

Plug (A.155) and (A.161) into (A.154), we get

P (Ec) ≤ 1

64
+

32λ2

m∆2

(
ln
λ

m

)2

+
8λ2

m∆2
(dx lnD + h(g))2. (A.162)

The same bound can be proved for P (E
′c):

P (E
′c) ≤ 1

64
+

32λ2

m∆2

(
ln
λ

m

)2

+
8λ2

m∆2
(dx lnD + h(g))2. (A.163)

Construct two prior distributions: π∗1 is the distribution of samples according to f1 conditional on

E, and π∗2 is the distribution of samples according to f2 conditional on E ′.

Recall (A.157), we can get similar result for h(f2):

h(f2) = −
m∑
i=1

U ′i
m

ln
U ′i
m
−

m∑
i=1

(
ln

1

Ddx
− h(g)

)
U ′i
m
. (A.164)
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Consider that E[U ] = E[U ′], we have

|E[h(f1)]− E[h(f2)]| ≥
∣∣∣∣E [U ln

1

U

]
− E

[
U ′ ln

1

U ′

]∣∣∣∣ ≥ ∆. (A.165)

By the definition of π∗1 and π∗2 , as well as the definition of E and E ′, under π∗1 and π∗2 ,

|h(f1)− h(f2)| ≥ ∆

2
. (A.166)

Now calculate the total variation distance between these two distributions. Total variation distance

satisfies triangle inequality. Hence

TV(π∗1, π
∗
2) ≤ TV(π∗1, π1) + TV(π1, π2),TV(π2, π

∗
2)

≤ P (Ec) + TV(π1, π2) + P (E ′
c
)

≤ TV(π1, π2) +
1

32
+

64λ2

m∆2

(
ln
λ

m

)2

+
16λ2

m∆2
(dx lnD + h(g))2.

Now we bound the total variation distance between π1 and π2. Recall that f1 is constructed in

(A.149). Then

∫
B(ai,h)

f1(x)dx =

∫
Ui

mDdx
g

(
x− ai
D

)
dx =

Ui
m
, (A.167)

and thus the number of samples in B(ai, h) follows Poisson distribution with mean nUi/m.

Therefore, TV(π1, π2) can be expanded as

TV(π1, π2) ≤ mTV
(
E
[

Poi
(
nU

m

)]
,E
[

Poi
(
nU ′

m

)])
. (A.168)
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According to Le Cam’s lemma,

R3(N, ε) ≥ ∆2

16

[
31

32
−mTV

(
E
[

Poi
(
nU

m

)]
,E
[

Poi
(
nU ′

m

)])
− 64λ2

m∆2

(
ln
λ

m

)2

− 16λ2

m∆2
(dx lnD + h(g))2

]
. (A.169)

The proof of Lemma A.11 is complete.

A.5 Proof of Theorem 4: the bias of KSG mutual information

estimator

In this section, we analyze the convergence rate of the bias of KSG mutual information estimator,

under Assumption 2.1. In the following proof, constants C1, C2, . . . are different from those in

Appendix A.1. Define B(z, r) = {u| ‖u− z‖ < r}. According to Assumption 2.1, the joint pdf is

smooth everywhere. We have the following lemma, whose proof is the same as Lemma A.1.

Lemma A.13. Under Assumption 2.1(d), there exists constant C1, C ′1, so that

|P (B(z, r))− f(z)cdzr
dz | ≤ C1r

dz+2, (A.170)

|P (BX(x, r))− f(x)cdxr
dx| ≤ C ′1r

dx+2, (A.171)

|P (BY (y, r))− f(y)cdyr
dy | ≤ C ′1r

dy+2. (A.172)

For KSG estimator, we fix β = 2/(dz + 2), therefore the definition of aN in (2.3) becomes

aN = AN−
2

dz+2 . (A.173)

Recall that the KSG mutual information estimator is Î(X;Y) = 1
N

∑N
i=1 J(i), in which

J(i) = ψ(N) + ψ(k)− ψ(nx(i) + 1)− ψ(ny(i) + 1). (A.174)
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Since J(i) are identically distributed for all i, we only need to analyze |E[J(i)]− I(X;Y)| for one

i. Hence, from now on, we omit i for notation convenience.

We conduct the following decomposition based on ε:

|E[(J − I(X;Y))]| ≤ |E[(J − I(X;Y))1(ε > aN)]|

+|E[(J − I(X;Y))1(ε ≤ aN)]|. (A.175)

To bound the first term of (A.175), note that nx(i) ≥ k, therefore J ≤ ψ(N) + ψ(k)− 2ψ(k + 1).

According to the property of digamma function, ψ(N) < lnN . Therefore J < lnN . Then

|E[(J − I(X;Y))1(ε > aN)]| ≤ (lnN + I(X;Y))P (ε > aN). (A.176)

P (ε > aN) can be bounded using Lemma A.4 with β = 2/(dz + 2). According to (A.16), we have

P (ε > aN) ≤ C2N
− 2
dz+2 . (A.177)

With (A.177) and (A.176), we know that

|E[(J − I(X;Y))1(ε > aN)]| = O
(
N−

2
dz+2 lnN

)
. (A.178)

To bound the second term of (A.175), we define Jx, Jy, Jz as

Jz = −ψ(k) + ψ(N) + ln cdz + dz ln ρ, (A.179)

Jx = −ψ(nx + 1) + ψ(N) + ln cdx + dx ln ρ, (A.180)

Jy = −ψ(ny + 1) + ψ(N) + ln cdy + dy ln ρ, (A.181)

in which cdx is the volume of unit norm ball in the X space, cdy is for the Y space, and cdz is for

the joint space Z. ρ is defined in the same way as (A.1), i.e. ρ = min{ε, aN}.
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Recall the definition of J in (A.174), we have

J = Jx + Jy − Jz, (A.182)

therefore the second term of (A.175) can be decomposed as:

|E[(J − I(X;Y))1(ε ≤ aN)]|

≤ |E[(Jz − h(Z))1(ε ≤ aN)]|+ |E[(Jx − h(X))1(ε ≤ aN)]|

+|E[(Jy − h(Y))1(ε ≤ aN)]|. (A.183)

Intuitively, here we design three truncated estimators for h(X), h(Y) or h(Z). To give a bound of

the first term, we apply the result of Theorem 2.1 to random variable Z:

|E[Jz − h(Z)]| = O
(
N−

2
dz+2 lnN

)
. (A.184)

In addition, recall that ρ = aN if ε > aN , we have

|E[(Jz − h(Z))1(ε > aN)]| = | − ψ(k) + ψ(N) + ln cdz + dz ln aN − h(Z)|P (ε > aN)

= O
(
N−

2
dz+2 lnN

)
. (A.185)

Hence using the triangular inequality,

|E[(Jz − h(Z))1(ε ≤ aN)]| = O
(
N−

2
dz+2 lnN

)
. (A.186)

The following lemma gives a bound on the second and third term.
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Lemma A.14. Under Assumption 2.1 (a)-(e),

|E[(Jx − h(X))1(ε ≤ aN)]| = O
(
N−

2
dz+2 lnN

)
+O

(
N−

dy
dz

)
, (A.187)

|E[(Jy − h(Y))1(ε ≤ aN)]| = O
(
N−

2
dz+2 lnN

)
+O

(
N−

dx
dz

)
. (A.188)

Proof. Please see Appendix A.5.1 for detailed proof.

Plugging these three bounds in Lemma A.14 into (A.183), we know that

|E[(J − I(X;Y))1(ε ≤ aN)]| = O
(
N−

2
dz+2 lnN

)
+O

(
N−

min{dx,dy}
dz

)
. (A.189)

Combining (A.189) and (A.178), and recall that E[Î(X;Y)] = E[J ], we can conclude that

E[Î(X;Y)− I(X;Y)] = O
(
N−

2
dz+2 lnN

)
+O

(
N−

min{dx,dy}
dz

)
. (A.190)

A.5.1 Proof of Lemma A.14

The proof is based on Assumption 2.1. (A.187) and (A.188) can be proved using the similar steps.

Here we only prove (A.187), and omit (A.188) for brevity.

We decompose the left hand side of (A.187) as following.

|E[(Jx − h(X))1(ε ≤ aN)]|

≤ |E[(ln f(X) + h(X)))1(ε ≤ aN ,X ∈ SX1 )]

+|E[(Jx − h(X))1(ε ≤ aN ,X ∈ SX2 )]|

+|E[(Jx + ln f(X))1(ε ≤ aN ,X ∈ SX1 )]|, (A.191)

in which SX1 is defined as

SX1 =

{
x

∣∣∣∣|f(x) ≥ 6C ′1A
2

cdx
N−

2
dz+2

}
(A.192)
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with C ′1 is the constant in (A.171), and SX2 = Rdx \ SX1 is the complement set of SX1 . According

to (A.4),

P (X ∈ SX2 ) ≤ 6C ′1A
2µ

cdx
N−

2
dz+2 . (A.193)

We now analyze these three terms separately.

The first term of (A.191)

Intuitively, the first term describes how accurate it is to only estimate the expectation of ln f(X)

when ε is not very large and x is not in the tail. We decompose this term in the following way:

|E[(ln f(X) + h(X))1(ε ≤ aN ,X ∈ SX1 )]|

≤ |E[(ln f(X) + h(X))1(X ∈ SX1 )]|+ |E[(ln f(X) + h(X))1(ε > aN ,X ∈ SX1 )]|.

The first term can be bounded using (A.21), with γ = min{1− βdz, 2β} = 2/(dz + 2):

|E[(ln f(X) + h(X))1(X ∈ SX1 )]| = |E[(ln f(X) + h(X))1(X ∈ SX2 )]

= O
(
N−

2
dz+2 lnN

)
, (A.194)

in which the first step holds because E[ln f(X) + h(X)] = 0.

For the second term, from Assumption (f) and the definition of SX1 in (A.192), we have the

following upper and lower bound of f(x) in SX1 :

C4N
− 2
dz+2 ≤ f(x) ≤ Cf . (A.195)
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Hence

|E[(ln f(X) + h(X))1(ε > aN ,X ∈ SX1 )]| = O (lnNP (ε > aN))

= O
(
N−

2
dz+2 lnN

)
. (A.196)

Combine (A.194) and (A.196), we get

|E[(ln f(X) + h(X))1(ε ≤ aN ,X ∈ SX1 )]| = O
(
N−

2
dz+2 lnN

)
. (A.197)

The second term of (A.191)

The second term describes the accuracy of estimation in the tail region. Recall that nx ≥ k, thus

|E[(Jx − h(X))1(ε ≤ aN ,X ∈ SX2 )]|

≤ (ψ(N + 1)− ψ(k + 1))P (X ∈ SX2 ) + |h(X)|P (X ∈ SX2 )

+
∣∣E[ln(cdxρ

dx)1(ε ≤ aN ,X ∈ SX2 )]
∣∣

≤ (lnN + |h(X)|)6µC ′1A
2

cdx
N−

2
dz+2 +

dx
dz
|E[ln(cdzρ

dz)1(ε ≤ aN ,X ∈ SX2 )]|

+

∣∣∣∣ln cdx − dx
dz

ln cdz

∣∣∣∣ 6µC ′1A
2

cdx
N−

2
dz+2 . (A.198)

According to (A.22) and (A.23), we use γ = 2/(dz+2), then the second term in (A.198) is bounded

by

dx
dz
|E[ln(cdzρ

dz)1(ε ≤ aN ,X ∈ SX2 )]| = O
(
N−

2
dz+2 lnN

)
.

Plugging the equation above into (A.198), we have

|E[(Jx − h(X))1(ε ≤ aN ,x ∈ SX2 )]| = O
(
N−

2
dz+2 lnN

)
+O

(
N−

2
dz+2 lnN

)
+O

(
N−

2
dz+2

)
= O

(
N−

2
dz+2 lnN

)
. (A.199)
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The third term of (A.191)

The remaining part of this section focuses on the third term. We begin with the following lemmas:

Lemma A.15. For ∀z(i) ∈ {z| ‖Hf (z)‖op ≤ Cd}, the distribution of nx(i) satisfies nx(i) − k ∼

Binom(N − k − 1, p) with p being

p =
P (BX(x, ε))− P (BZ(z, ε))

1− P (BZ(z, ε))
. (A.200)

Proof. We refer to Theorem 8 in [34] for detailed proof.

From (A.200), we can give an upper and lower bound of p:

P (BX(x, ε))− P (BZ(z, ε)) ≤ p ≤ P (BX(x, ε)). (A.201)

Lemma A.16. For any z and ε, from nx − k ∼ Binom(N − k − 1, p), there exists two constants

a and b that depend only on k, such that

|E[ψ(nx + 1)|z, ε]− ln(pN)| ≤ a

N
+

b

Np
, (A.202)

in which p is the parameter of the binomial distribution defined in Lemma A.15.

Proof. Please see Appendix A.5.2 for detailed proof.

Lemma A.17. Under Assumption 2.1 (d) and (e), for sufficiently large N, for all x ∈ SX1 and

r < aN , in which SX1 is defined in (A.192),

1

2
f(x)cdxr

dx ≤ p ≤ 3

2
f(x)cdxr

dx , (A.203)

in which p is defined in Lemma A.15.
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Proof. To avoid confusion, here we use fZ(z) to denote the pdf of Z.

|p− f(x)cdxr
dx| ≤ |p− P (BX(x, r))|+ |P (BX(x, r))− f(x)cdxr

dx|

≤ P (B(z, r)) + C ′1r
dx+2

≤ fZ(z)cdzr
dz + C1r

dz+2 + C ′1r
dx+2.

Using this, we have

|p− f(x)cdxr
dx|

f(x)cdxr
dx

=
fZ(z)

f(x)
cdyr

dy +
C1r

dx+2

f(x)cdx
+

C ′1r
2

f(x)cdx

≤ Cecdya
dy
N +

C1a
dx+2
N

6C ′1A
2N−

2
dz+2

+
C ′1a

2
N

6C ′1A
2N−

2
dz+2

, (A.204)

in which we use Assumption 2.1 (e) that gives a bound of the conditional pdf, and the definition of

SX1 in (A.192).

Recall the definition of aN in (2.3), the third term in (A.204) equals 1/6. In addition, the first

and second term converges to zero with the increase ofN . Hence for sufficiently largeN , these two

terms will also be less than 1/6. Then the right hand side of (A.204) can not exceed 1/2. Therefore

Lemma A.17 holds.
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The third term of (A.191) can be further expanded as following

|E[(Jx + ln f(X1))1(0 < ε ≤ aN ,X1 ∈ S1)]|
(a)
=

∣∣EzEεEnx [(−ψ(nx + 1) + ψ(N) + ln(cd1ρ
dx) + ln f(X1))1(0 < ε ≤ aN ,X1 ∈ S1)]

∣∣
≤ EzEε

∣∣Enx [(−ψ(nx + 1) + ψ(N) + ln(cd1ρ
dx) + ln f(X1))1(0 < ε ≤ aN ,X1 ∈ S1)]

∣∣
=

∫
S1

∫ aN

0

∣∣(−Enxψ(nx + 1) + ψ(N) + ln(cd1r
dx) + ln f(x1))

∣∣ fε|z(r)f(z)drdz

≤
∫
S1

∫ aN

0

∣∣− ln(pN) + lnN + ln(cd1r
dx) + ln f(x1)

∣∣ fε|z(r)f(z)drdz

+

∫
S1

∫ aN

0

|[−Enxψ(nx + 1) + ln(pN) + ψ(N)− lnN | fε|z(r)f(z)drdz (A.205)

(b)

≤
∫
S1

∫ aN

0

∣∣− ln p+ ln f(x1)cd1r
dx)
∣∣ fε|z(r)f(z)drdz +

a+ γ0

N

+

∫
S1

∫ aN

0

b

Np
fε|z(r)f(z)drdz, (A.206)

in which (a) uses the definition of Jx in (A.180); (b) gives a bound to the second term of (A.205)

using Lemma A.16, as well as the following property of digamma function: lnN − γ0
N
≤ ψ(N) <

lnN , in which γ0 is the Euler-Mascheroni constant.

Now we bound the first term in (A.206), and then bound the third term.

Bound of the first term in (A.206):

We need the following two additional lemmas.

Lemma A.18. Under Assumption 2.1(e), for sufficiently large N and r ≤ aN ,

P (B(z, r))

p
≤ 2Cecdyr

dy , (A.207)

in which Ce is the bound of the conditional pdf in the Assumption 2.1 (e).
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Proof. According to the Assumption 2.1 (e), the conditional pdf is bounded by Ce.

P (B(z, r)) =

∫
B(z,r)

f(x′)f(y′|x′)dy′dx′

=

∫
max{‖x′−x‖,‖y′−y‖≤r}

f(x′)f(y′|x′)dy′dx′

≤
∫

max{‖x′−x‖,‖y′−y‖≤r}
f(x′)Cedy

′dx′

≤ Cecdyr
dy

∫
‖x′−x‖≤r

f(x′)dx′

= Cecdyr
dyP (BX(x, r)).

For sufficiently large N , Cecdya
dy
N ≤ 1

2
, then according to (A.201),

P (B(z, r))

p
≤ P (B(z, r))

P (BX(x, r))− P (B(z, r))
≤

Cecdyr
dy

1− Cecdyrdy
≤ 2Cecdyr

dy . (A.208)

The proof of Lemma A.18 is complete.

Lemma A.19. Under Assumption 2.1 (a),(c) and (d), for any d′ < dz,

E[ρd
′
] = O

(
N−

d′
dz

)
. (A.209)

Proof. Please see Appendix A.5.3 for detailed proof.

With these two lemmas, the first term in (A.206) can be bounded by:

∫
SX1

∫ aN

0

∣∣− ln p+ ln f(x)cdxr
dx
∣∣ fε|z(r)f(z)drdz

(a)

≤
∫
SX1

∫ aN

0

∣∣p− f(x)cdxr
dx
∣∣ ( 1

2p
+

1

2f(x)cdxr
dx

)
fε|z(r)f(z)drdz

(b)

≤
∫
SX1

∫ aN

0

(P (B(z, r)) + C ′1r
dx+2)

(
1

2p
+

1

2f(x)cdxr
dx

)
fε|z(r)f(z)drdz

(c)

≤
∫
SX1

∫ aN

0

C ′1r
2 3

2f(x)cdx
fε|z(r)f(z)drdz +

∫
SX1

∫ aN

0

P (B(z, r))
5

4p
fε|z(r)f(z)drdz.
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For each term, we have

∫
SX1

∫ aN

0

C ′1r
2 3

2f(x)cdx
fε|z(r)f(z)drdz ≤

∫
SX1

C ′1a
2
N

3

2f(x)cdx
f(z)dz (A.210)

=

∫
SX1

C ′1a
2
N

3

2cdx
dx (A.211)

(d)
= C ′1

3

2cdx
A2N−

2
dz+2mX(SX1 ) (A.212)

(e)
= O

(
N−

2
dz+2 lnN

)
. (A.213)

Furthermore, using Lemma A.18,

∫
SX1

∫ aN

0

P (B(z, r))
5

4p
fε|z(r)f(z)drdz ≤

∫
SX1

∫ aN

0

5

2
Cecdyr

dyfε|z(r)f(z)drdz

≤ 5

2
CecdyE

[
ρdy
] (f)

= O
(
N−

dy
dz

)
. (A.214)

Here, (a) uses the inequality | lnx− ln y| ≤ |x− y|
∣∣∣ 1

2x
+ 1

2y

∣∣∣ for x, y > 0. This inequality comes

from logarithmic mean inequality [18]:

lnx− ln y ≤ x− y
√
xy
≤ (x− y)

(
1

2x
+

1

2y

)
. (A.215)

(b) uses Lemma A.13 and Lemma A.15:

|p− f(x)cdxr
dx| ≤ |p− P (BX(x, r))|+ |P (BX(x, r))− f(x)cdxr

dx|

≤ P (B(z, r)) + C ′1r
dx+2. (A.216)

(c) uses Lemma A.17. In (d), mX(SX1 ) is the volume of SX1 . (e) comes from Lemma A.3:

mX(SX1 ) = V

(
6C ′1A

2

cdx
N−

2
dz+2

)
≤ µ

1 + ln
1

6C′1µA
2

cdx
N−

2
dz+2

 = O(lnN). (A.217)

(f) comes from Lemma A.19.
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Combine (A.213) and (A.214), we have

∫
SX1

∫ aN

0

∣∣− ln p+ ln[f(x)cdxr
dx ]
∣∣ fε|z(r)f(z)drdz

= O
(
N−

2
dz+2 lnN

)
+O

(
N−

dy
dz

)
. (A.218)

Bound of the third term in (A.206).

We bound the third term of (A.206) using Lemma A.18 again.

∫
SX1

∫ aN

0

b

Np
fε|z(r)f(z)drdz

≤
∫
SX1

∫ aN

0

b

NP (B(z, r))
2Cecdyr

dyfε|z(r)f(z)drdz

≤
∫
SX1

∫ aN

0

b

NP (B(z, r))
2Cecdyr

dyfε|z(r)f(z)drdz

+

∫
SX1

∫ ∞
aN

b

NP (B(z, r))
2Cecdya

dy
N fε|z(r)f(z)drdz

=
2Cecdyb

N
E
[

1

P (B(Z, ε))
ρdy
]

(a)

≤
2Cecdyb

N
E
[

1

P (B(Z, ε))

]
E[ρdy ]

(b)
= O

(
N−

dy
dz

)
. (A.219)

To show (a), we need to prove that 1
P (B(Z,ε))

and ρdy are negatively correlated. According to the

law of total covariance,

Cov

(
1

P (B(Z, ε))
, ρdy

)
= E

[
Cov

(
1

P (B(Z, ε))
, ρdy |Z

)]
+ Cov

(
E
[

1

P (B(Z, ε))
|Z
]
,E
[
ρdy |Z

])
. (A.220)

Recall the definition of ρ in Lemma A.19, ρ is a non-decreasing function in r, and for any given z,

1
P (B(z,ε))

is a non-increasing function in r. Thus Cov
(

1
P (B(z,ε))

, ρdy |Z
)
≤ 0. For the second term,

recall that according to order statistics [23], condition on all Z = z, P (B(Z, ε)) ∼ B(k,N − k),
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thus

E
[

1

P (B(Z, ε))
|Z = z

]
=
N − 1

k − 1
, (A.221)

which is a constant with respect to z. Thus Cov
(
E
[

1
P (B(z,ε))

|Z
]
,E[ρdy |Z]

)
= 0. Plug this into

(A.220), we have that Cov
(

1
P (z,ε)

, ρdy
)
≤ 0, therefore (a) holds.

In (b), we calculate two expectations separately, according to (A.221) and Lemma A.19.

Combining (A.218) and (A.219), we get

|E[(Jx − h(X))1(ε ≤ aN ,x ∈ SX1 )]| = O
(
N−

2
dz+2 lnN

)
+O

(
N−

dy
dz

)
. (A.222)

Substituting the three terms in (A.191) with (A.197), (A.199) and (A.222) respectively, the

proof of (A.187) in Lemma A.14 is complete, i.e. we have

|E[(Jx − h(X))1(ε ≤ aN)]| = O
(
N−

2
dz+2 lnN

)
+O

(
N−

dy
dz

)
. (A.223)

A.5.2 Proof of Lemma A.16

In this section, we prove Lemma A.16 with nx − k ∼ Binomial(N − k − 1, p).

(1) Upper bound.

E[ψ(nx + 1)|z, ε] ≤ E[ln(nx + 1)|z, ε] ≤ ln(E[nx|z, ε] + 1) = ln((N − k − 1)p+ k + 1).

(2) Lower bound. Use Taylor expansion,

E[ψ(nx + 1)|z, ε] ≥ E[lnnx|z, ε] = lnE[nx|z, ε]−
1

2
E
[

1

ξ2
(nx − E[nx|z, ε])2|z, ε

]
,
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in which ξ is between nx and E[nx|z, ε]. Thus

E
[

1

ξ2
(nx − E[nx|z, ε])2|z, ε

]
≤ 1

E[nx|z, ε]2
E
[
(nx − E[nx|z, ε])2|z, ε

]
+E

[
1

n2
x

(nx − E[nx|z, ε])2|z, ε
]
.

Since nx − k ∼ Binomial(N − k − 1, p), we have Var[nx|z, ε] = (N − k − 1)p(1 − p) and

Var[1/nx|z, ε] = O(1/Np). Combine the upper and lower bound, there exist two constants a and

b such that

|E[φ(nx + 1)|z, ε]− ln(Np)| ≤ a

N
+

b

Np
. (A.224)

The proof is complete.

A.5.3 Proof of Lemma A.19

In this section, we give a bound to E[ρd
′
], d′ < dz, under Assumption 2.1 (c), (d). To begin with,

we prove the following lemma.

Lemma A.20. Under Assumption 2.1 (c), for any integer d′ < dz,

∫
f(z)1− d′

dz dz ≤ µ
d′
dz

1− d′

dz

, (A.225)

for some constant µ.

Proof. Similar to the Lemma A.2, we can prove that P (f(Z) ≤ t) ≤ µt for some constant µ and
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all t > 0, based on Assumption 2.1 (c). Thus

E
[
f−

d′
dz (Z)

]
=

∫ ∞
0

P
(
f−

d′
dz (Z) > t

)
dt

=

∫ µ
d′
dz

0

P
(
f(Z) < t−

dz
d′
)
dt+

∫ ∞
µ
d′
dz

P
(
f(Z) < t−

dz
d′
)
dt

≤ µ
d′
dz +

∫ ∞
µ
d′
dz

µt−
dz
d′ dt =

µ
d′
dz

1− d′

dz

. (A.226)

Now bound E[ρd
′
]:

E[ρd
′
] =

∫
E[ρd

′|Z = z]f(z)dz. (A.227)

Here we divide the support into z ∈ S ′1 and z ∈ S ′2. S ′1 and S ′2 are defined as following:

S ′1 =

{
z|f(z) ≥ 2C1

cdz
a2
N

}
, (A.228)

S ′2 =

{
z|f(z) <

2C1

cdz
a2
N

}
, (A.229)

in which aN = AN−β , β = 2/(dz + 2). According to (A.4) in Lemma A.2,

P (Z ∈ S ′2) = P

(
f(Z) <

2C1

cdz
A2N−2β

)
≤ 2µC1

cdz
A2N−

2
dz+2 . (A.230)

For z ∈ S ′1, from order statistics [23], conditional on any z, P (B(z, ε)) ∼ B(k,N − k), in

which B denotes the Beta distribution. Hence

E[P (B(Z, ρ))|Z = z] ≤ E[P (B(Z, ε))|Z = z] =
k

N
. (A.231)

Moreover, from the definition of S ′1 in (A.228) and Lemma A.13, we have P (B(z, ρ)) ≥
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f(z)cdzρ
dz/2, thus

E[ρdz |Z = z] ≤ 2k

Ncdzf(z)
. (A.232)

Therefore for all d′ < dz,

E[ρd
′ |Z = z] ≤

(
2k

Ncdzf(z)

) d′
dz

. (A.233)

For z ∈ S ′2,

E[ρd
′ |Z = z] ≤ ad

′

N = Ad
′
N−

d′
dz+2 . (A.234)

Plugging (A.233) and (A.234) into (A.227),

E[ρd
′
] ≤

(
2k

Ncdz

) d′
dz
∫
f 1− d′

dz (z)dz + Ad
′
N−

d′
dz+2P (Z ∈ S ′2) (A.235)

= O
(
N−

d′
dz

)
+O

(
N−

d′+2
dz+2

)
= O

(
N−

d′
dz

)
, (A.236)

The proof of Lemma A.19 is complete.

A.6 Proof of Theorem 2.7, Theorem 2.8 and Proposition 2.9

In this section, we analyze Kozachenko-Leonenko estimator and KSG estimator under heavy tail

conditions (2.23), with τ < 1.

A.6.1 Proof of Theorem 2.7 and Theorem 2.8

Since the proof steps are very similar to the case of τ = 1, which is proven in Appendix A.1 and

Appendix A.5, we only show some important steps where the proof is different from the previous
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sections. 1. Lemma A.3 is replace by: for all t > 0,

V (t) ≤ τ

1− τ
µtτ−1. (A.237)

Proof. Under original assumptions, qT (u) ≥ µ/u. Under new assumption, we can similarly get

qT (u) ≥ (u/µ)(1/τ). Then

V (t) =

∫ 1

FT (t)

1

qT (u)
du ≤

∫ 1

FT (t)

(µ
u

) 1
τ
du ≤ τ

1− τ
µtτ−1. (A.238)

The remaining steps are the same.

2. (A.5) in Lemma A.2 is replaced by:

∫
fm(x)e−bf(x)dx ≤ Km

bm+τ−1
. (A.239)

Proof. Divide the support into two regions, with f(x) > t and f(x) ≤ t.

∫
fm(x)e−bf(x)dx =

∫
f(x)>t

fm(x)e−bf(x)dx +

∫
f(x)≤t

fm(x)e−bf(x)dx

≤
∫
f(x)>t

(m
b

)
e−mdx +

∫
f(x)≤t

tm−1f(x)dx

= V (t)
(m
b

)m
e−m + tm−1µtτ

.
tτ−1

bm
+ tτ+m−1. (A.240)

Note that the above derivation holds for arbitrary t > 0. Let t = 1/b, then the proof is complete.

3. Lemma A.4 is replaced by: there exist constants C2 and C3, for sufficiently large N ,

P (ε > aN ,X ∈ S1) ≤ C2N
−τ(1−βdx), (A.241)

P (ε > aN) ≤ C3N
−τ min{1−βdx, 2

dx+2
}. (A.242)
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The proof follows the same steps as the proof of original Lemma A.4 in Appendix A.1.2.

4. Lemma A.19 is replaced by:

E[ρd
′
] = O

(
N−

d′
dz

)
+O

(
N−

d′+2τ
dz+2 lnN

)
. (A.243)

Proof. We define S ′1, S ′2 in the same way as (A.228) and (A.229). Define C = 2C1A
2/cdx . Then

(A.225) in Lemma A.20 is replaced by:

∫
S′1

f 1− d′
dz dz = E[f−

d′
dz (Z)1(f(Z) > CN−2β)]

=

∫ C
− d
′
dz N

2β d
′
dz

0

P
(
f−

d′
dz (Z) > t

)
dt

=

∫ µ
d′
dz

0

P
(
f(Z) < t−

dz
d′
)
dt+

∫ C
− d
′
dz N

2β d
′
dz

µ
d′
dz

P
(
f(Z) < t−

dz
d′
)
dt

≤ µ
d′
dz +

∫ C
− d
′
dz N

2β d
′
dz

µ
d′
dz

µt−
dz
d′ dt

=


O(1) if τdz > d′

O(lnN) if τdz = d′

O
(
N

2β
(
d′
dz
−τ
))

if τdz < d′.

= O(1) +O
(
N

2β
(
d′
dz
−τ
)

lnN

)
. (A.244)

The remaining steps follow Appendix A.5.3.

A.6.2 Proof of Proposition 2.9
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We now derive the range τ such that assumption (2.23) holds under moment assumption E[|X|α] <

∞. Using Hölder inequality,

∫
f 1−τ (x)dx =

∫
(1 + |x|α)1−τf 1−τ (x)

1

(1 + |x|α)1−τ dx (A.245)

≤
(∫

(1 + |x|α)f(x)dx

)τ (∫ (
1

1 + |x|α

) 1−τ
τ

dx

)τ

. (A.246)

The first factor is finite because E[|X|α] < ∞. If τ < α/(α + dx), then α(1 − τ)/τ > dx, the

second factor is also finite. Then
∫
f 1−τ (x)dx <∞. As a result,

P (f(X) < t) = P (f−τ (X) > t−τ ) ≤ tτE[f−τ (X)] := µ1t
τ , (A.247)

in which µ1 is a constant. The proof is complete.

A.7 Proof of some statements

A.7.1 Proof that Assumption (a), (b) in Theorem 2.1 implies Assumption (c)

(d) in Theorem 2.3

In this section, we prove that Assumption (a), (b) in Theorem 2.1 implies Assumption (c) (d) in

Theorem 2.3. It is obvious that (a) implies (c). Now we prove (d) using on (a) and (b).

We first show that f(x) must be bounded. From Lemma A.1, we have P (B(x, r)) ≥

f(x)cdxr
dx − C1r

dx+2. Moreover, P (B(x, r)) ≤ 1 always holds. Hence for any r > 0,

f(x) ≤ 1 + C1r
dx+2

cdxr
dx

. (A.248)
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Therefore f must be bounded. We then show that E[(ln f(X))2] ≤ ∞:

E[(ln f(X))21(f(X) ≤ 1)] =

∫ ∞
0

P
(

ln f(X) < −
√
t
)
dt

=

∫ ∞
0

P
(
f(X) ≤ e−

√
t
)
dt <∞, (A.249)

in which P(f(X) ≤ e−
√
t)dt can be bounded using Lemma A.2. Since f is bounded, we also have

E[(ln f(X))21(f(X) > 1)] <∞. Therefore E[(ln f(X))2] <∞.

Based on the above fact, we now prove Assumption (d) in Theorem 2.3. For any x, define

rc(x) =
√
dxf(x)cdx/(dx + 2)C1. We discuss two cases:

(1) If r ≤ rc, then according to Lemma A.2,

P (B(x, r)) ≥ f(x)cdxr
dx

(
1− C1r

2

f(x)cdx

)
≥ f(x)cdxr

dx

(
1− C1r

2
c

f(x)cdx

)
≥ 2

dx + 2
f(x)cdxr

dx .

Therefore, we have f̃(x, r) ≥ (2/(dx + 2))f(x) in this case.

(2) If rc < r < r0, then

P (B(x, r)) ≥ P (B(x, rc)) ≥
2

dx + 2
f(x)cdxr

dx
c =

2

dx + 2
f(x)cdx

(
dxf(x)cdx
(dx + 2)C1

) dx
2

.

Therefore we have f̃(x, r) ≥ Cf 1+dx/2(x). Combine case (1) and (2), we have

inf
r
f̃(x, r) ≥ min

{
2

dx + 2
f(x), Cf 1+dx/2(x)

}
. (A.250)

Hence

∫
f(x)

(
ln inf

r
f̃(x, r)

)2

dx ≤
∫
f(x)

(
ln

2

dx + 2
f(x)

)2

dx +

∫
f(x)

(
lnCf 1+dx/2(x)

)2
dx <∞,

which holds since
∫
f(x)(ln f(x))2 < ∞. Moreover, from Lemma A.1, we also have

P (B(x, r)) ≤ f(x)cdxr
dx + C1r

dx+2. Therefore sup
r
f̃(x, r) ≤ f(x) + (C1/cdx)r

2
0, which ensures
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that ∫
f(x)

(
ln sup

r
f̃(x, r)

)2

dx <∞.

The proof is complete.

A.7.2 Proof of properties of joint pdf satisfying (2.20)

In this section, we show that under the Assumption 3 in [34], the joint pdf f(x,y) is bounded away

from zero, and must have a bounded support. Recall that z = (x,y), the Assumption (c) in [34]

says that for any b > 1,

∫
f(z) exp(−bf(z))dz ≤ Cce

−C0b. (A.251)

With (A.251), for any t ≥ 0, we have

P (f(Z) < t) = P (exp(−bf(Z)) ≥ exp(−bt)) ≤ ebtE[e−bf(Z)] ≤ Cce
−b(C0−t),

in which the first inequality comes from Markov’s inequality. Note that the above steps hold for

any b > 1, we can let b to be arbitrarily large. Hence, if 0 ≤ t < C0, then

P (f(Z) < t) = 0.

For any random variable U , P (U < t) is left continuous in t. Hence we have

P (f(Z) < C0) = 0. (A.252)

For all the points on which f(z) is continuous, we have f(z) = 0 or f(z) ≥ C0. Otherwise,

if 0 < f(z) < C0, there must be a neighbor B(z, r) on which the pdf is in between 0 and C0,

which violates (A.252). According to the Assumption (d) in [34], the Hessian of f(z) is bounded

almost everywhere, which implies that f(z) is continuous almost everywhere, and thus f(z) = 0
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or f(z) ≥ C0 almost everywhere. As a result, f(z) is essentially bounded away from zero, and

must have a bounded support.
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Appendix B

Appendix of Chapter 3

B.1 Proof of Theorem 3.1

In the following steps, cd is the volume of unit ball, depending on the norm we use, and ψ is

the digamma function, ψ(u) = d ln Γ(u)/du, with Γ being the Gamma function. Moreover, since

E[ln νi] and E[ln εi] are the same for different i, we omit the index i for convenience. According to

(3.2),

E[D̂(f ||g)]−D(f ||g) =
d

N
E[ln ν − ln ε] + ln

M

N − 1

−E[ln f(X)] + E[ln g(X)]

= − [−ψ(k) + ψ(N) + ln cd + dE[ln ε] + E[ln f(X)]]

+ [−ψ(k) + ψ(M + 1) + ln cd

+dE[ln ν] + E[ln g(X)]]

+ lnM − ψ(M + 1)− ln(N − 1) + ψ(N)

:= −I1 + I2 + I3, (B.1)
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in which

I1 = −ψ(k) + ψ(N) + ln cd

+dE[ln ε] + E[ln f(X)], (B.2)

I2 = −ψ(k) + ψ(M + 1) + ln cd

+dE[ln ν] + E[ln g(X)], (B.3)

I3 = lnM − ψ(M + 1)− ln(N − 1) + ψ(N). (B.4)

In the following, we provide details on how to bound I2. I1 can then be bounded using similar

method.

To begin with, we denote Pg(S) as the probability mass of S under pdf g, i.e. Pg(S) =∫
S
g(x)dx. We have the following lemma.

Lemma B.1. According to Assumption 4.4 (f), which requires that ‖∇2f‖op and ‖∇2g‖op are both

bounded by C0, there exists a constant C1, such that, if B(x, r) ⊂ Sg, we have

|Pg(B(x, r))− cdrdg(x)| ≤ C1r
d+2.

Proof.

|Pg(B(x, r))− g(x)cdr
d| =

∣∣∣∣∫
B(x,r)

(g(u)− g(x))du

∣∣∣∣
≤

∣∣∣∣∫
B(x,r)

∇g(x)(u− x)du

+

∫
B(x,r)

C0(u− x)T (u− x)du

∣∣∣∣
≤ C0r

2V (B(x, r))

= C0cdr
d+2, (B.5)

in which the first inequality uses Assumption 4.4 (f).
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From order statistics [23], E[lnPg(B(x, r))] = ψ(k)− ψ(M + 1), therefore

I2 = −E
[
ln
Pg(B(X, ν))

cdνdg(X)

]
. (B.6)

Define

S1 = {x|B(x, aM) ⊂ Sg}, (B.7)

S2 = Sg \ S1, (B.8)

in which aM = A(lnM/M)1/d, and A = (2/(Lgcd))
1/d. From (B.6), we observe that the bias is

determined by the difference between the average pdf in B(x, ν) and the pdf at its center g(x).

S1 is the region that is relatively far from the boundary. For all x ∈ S1, with high probability,

B(x, ν) ⊂ Sg. In this case, the bias is caused by the non-uniformity of density. With the increase

of sample size, the effect of such non-uniformity will converge to zero. S2 is the region near to

the boundary, in which the probability that B(x, ν) 6⊂ S is not negligible, hence P (B(x, ν)) can

deviate significantly comparing with cdνdg(x). Therefore, the bias in this region will not converge

to zero. However, we let the size of S2 converge to zero, so that the overall bound of the bias

converges.
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For sufficiently large M ,

∣∣∣∣E [(ln
Pg(B(X, ν))

cdνdg(X)

)
1(X ∈ S1)

]∣∣∣∣
≤

∣∣∣∣E [(ln
Pg(B(X, ν))

cdνdg(X)

)
1(X ∈ S1, ν ≤ aM)

]∣∣∣∣
+

∣∣∣∣E [(ln
Pg(B(X, ν))

cdνdg(X)

)
1(X ∈ S1, ν > aM)

]∣∣∣∣
(a)

≤
∣∣∣∣E [ln(1− C1ν

2

cdg(X)

)
1(ν ≤ aM ,X ∈ S1)

]∣∣∣∣
+ ln

Ug
aLg

P(X ∈ S1, ν > aM)

(b)

≤ 2C1

cdLg
a2
M + ln

Ug
aLg

( e
k

)k (2 lnM)k

M2

∼
(

lnM

M

) 2
d

. (B.9)

In step (a), we use Lemma B.1, Assumption 4.4 (b) and Assumption 4.4 (e). In step (b),

the first term uses the fact that for sufficiently large M , aM will be sufficiently small, hence

C1ν
2/(cdg(x)) ≤ C1a

2
M/(cdg(x)) < 1/2. The second term of step (b) comes from the Chernoff

bound, which indicates that for all x ∈ S1 and sufficiently large M ,

P(ν > aM |x) ≤ e−MPg(B(x,aM ))

(
eMPg(B(x, aM))

k

)k
≤ e−MLgcda

d
M

(
eMLgcda

d
M

k

)k
=

( e
k

)k (2 lnM)k

M2
. (B.10)
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Moreover,

∣∣∣∣E [ln Pg(B(X, ν))

cdνdg(X)
1(X ∈ S2)

]∣∣∣∣ ≤ ln
Ug
aLg

P(X ∈ S2)

≤ ln
Ug
aLg

UgV (S2)

≤ ln
Ug
aLg

UgHgaM

∼
(

lnM

M

) 1
d

. (B.11)

In this equation, V (S2) is the volume of S2, and we use the fact that V (S2) ≤ HgaM according to

the definition of S2 and Assumption 4.4 (c). Based on (B.9) and (B.11),

|I2| .
(

lnM

M

) 1
d

. (B.12)

Similarly, we have |I1| . (lnN/N)(1/d), and according to the definition of digamma function ψ,

|I3| . 1/M + 1/N . Therefore

|E[D̂(f ||g)]−D(f ||g)| .
(

ln min{M,N}
min{M,N}

) 1
d

. (B.13)

B.2 Proof of Theorem 3.2

In this section, we derive the bound of the bias for distributions that satisfy Assumption 4.5. These

distributions are smooth everywhere and the densities can approach zero. Based on Assumption 4.5

(b) and (c), which requires that the Hessian of f and g are bounded by C0, and P(f(X) ≤ t) ≤ µtγ ,

and P(g(X) ≤ t) ≤ µtγ , we show the following lemmas, whose proofs can be found in Appendix

B.2.1, B.2.2, and B.2.3, respectively.

Lemma B.2. There exist constants Uf and Ug such that f(x) ≤ Uf and g(x) ≤ Ug for all x.
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Lemma B.3. There exists a constant C2, such that

E[| ln ‖X‖ |1(g(X) ≤ t)] ≤ C2t
γ ln(1/t)

for sufficiently small t, in which X follows a distribution with pdf f .

Lemma B.4. For sufficiently small t,

∫
g(x)>t

f(x)

g(x)
dx ≤

 µ
(

1 + ln 1
µt

)
if γ = 1

µ
1−γ t

γ−1 if γ < 1.
(B.14)

Similar to the proof of Theorem 3.1, we decompose the bias as E[D̂(f ||g)]−D(f ||g) = −I1 +

I2 + I3. Then

|I2| =
∣∣∣∣E [ln Pg(B(X, ν))

cdνdg(X)

]∣∣∣∣ . (B.15)

Divide Sg into two parts.

S1 =

{
x|g(x) >

2C1

cd
a2
M

}
, (B.16)

S2 = Sg \ S1, (B.17)

in which aM = AM−β , A = (k/C1)(1/(d+2)). β will be determined later. C1 is the constant in

Lemma B.1.
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We first consider the region S1.

∣∣∣∣E [ln Pg(B(x, ν))

cdνdg(X)
1(X ∈ S1, ν ≤ aM)

]∣∣∣∣
(a)

≤
∣∣∣∣E [ln(1− C1a

2
M

cdg(X)

)
1(X ∈ S1, ν ≤ aM)

]∣∣∣∣
(b)

≤
∣∣∣∣E [2C1a

2
M

cdg(X)
1(X ∈ S1)

]∣∣∣∣
. a2

M

∫
g(x)>

2C1
cd

a2M

f(x)

g(x)
dx

(c)

.

 M−2βγ if γ < 1

M−2β lnM if γ = 1,
(B.18)

in which (a) comes from Lemma B.1. For (b), note that according to (B.16),C1a
2
M/(cdg(x)) < 1/2

for x ∈ S1, and | ln(1− u)| ≤ 2u for any 0 < u ≤ 1/2. (c) uses Lemma B.4.

For ν > aM , note that according to Lemma B.1,

Pg(B(x, aM)) ≥ cda
d
Mg(x)− C1a

d+2
M ≥ 1

2
cda

d
Mg(x). (B.19)

Based on this fact, if β ≤ 1/(d+ 2), we show the following two lemmas:

Lemma B.5. There exists a constant C3, such that

P(ν > aM ,X ∈ S1) ≤ C3M
−γ(1−βd). (B.20)

Proof. Please see Appendix B.2.4 for detailed proof.

Lemma B.6. There exists a constant C4, such that

E
[
ln

ν

aM
1(ν > aM ,X ∈ S1)

]
≤ C4M

−γ(1−βd) lnM. (B.21)

Proof. Please see Appendix B.2.5 for detailed proof.

164



Then

∣∣∣∣E [ln Pg(B(X, ν))

cdνdg(X)
1(X ∈ S1, ν > aM)

]∣∣∣∣
≤ |E[lnPg(B(X, aM))1(X ∈ S1, ν > aM)]|

+|E[ln(cda
d
M)1(X ∈ S1, ν > aM)]|

+|E[ln g(X)1(X ∈ S1, ν > aM)]|

+d

∣∣∣∣E [ln ν

aM
1(ν > aM ,X ∈ S1)

]∣∣∣∣ . (B.22)

Note that

1 ≥ Pg(B(x, aM))

≥ cda
d
Mg(x)− C1a

d+2
M

≥ C1a
d+2
M

= C1A
d+2M−β(d+2). (B.23)

Therefore

|E[lnPg(B(X, aM))1(X ∈ S1, ν > aM)]| .M−γ(1−βd) lnM. (B.24)

The second and the third terms in (B.22) satisfy the same bound. The last term can be bounded

using Lemma B.6. Hence

∣∣∣∣E [ln Pg(B(X, ν))

cdνdg(X)
1(X ∈ S1, ν > aM)

]∣∣∣∣ .M−γ(1−βd) lnM. (B.25)
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Now we consider x ∈ S2.

∣∣∣∣E [ln Pg(B(X, ν))

cdνdg(X)
1(X ∈ S2)

]∣∣∣∣
≤ |E[lnPg(B(X, ν))1(X ∈ S2)]|+ |E[ln g(X)1(X ∈ S2)]|

+| ln cd|P(X ∈ S2) + d|E[ln ν1(X ∈ S2)]|. (B.26)

From order statistics [23], |E[lnPg(B(x, ν))|x]| = |ψ(k) − ψ(M)| ≤ lnM . According to

Assumption 4.5 (b), the first three terms in (B.26) can be bounded by:

|E[lnPg(B(X, r))1(X ∈ S2)]| . lnMP(X ∈ S2)

∼ lnMa2γ
M ∼M−2βγ lnM, (B.27)

|E[ln g(X)1(X ∈ S2)] = E
[
ln

1

g(X)
1

(
g(X) ≤ 2C1

cd
a2
M

)]
=

∫ ∞
0

P
(

ln
1

g(X)
1

(
g(X) ≤ 2C1

cd
a2
M

)
> t

)
dt

≤
∫ ln

cd
2C1a

2
M

0

P
(
g(X) ≤ 2C1

cd
a2
M

)
dt

+

∫ ∞
ln

cd
2C1a

2
M

P
(
g(X) < e−t

)
dt

≤ µ

(
2C1

cd
a2
M

)γ
ln

cd
2C1a2

M

+

∫ ∞
ln

cd
2C1a

2
M

µe−γtdt

= µ

(
2C1

cd
a2
M

)γ (
ln

cd
2C1a2

M

+
1

γ

)
∼ M−2βγ lnM, (B.28)

and

| ln cd|P(X ∈ S2)| .M−2βγ. (B.29)
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The last term in (B.26) can be bounded using the following lemma, whose proof can be found

in Appendix B.2.6.

Lemma B.7. There exist two constants C5 and C6, such that for sufficiently large M ,

|E[ln ν|x]| ≤ C5 lnM + C6| ln ‖x‖ |. (B.30)

Using this lemma, we have

|E[ln ν1(X ∈ S2)]| ≤ |E[(C5 lnM + C6| ln ‖X‖ |)1(X ∈ S2)]|

. a2γ
M ln

1

aM

∼ M−2βγ lnM. (B.31)

Therefore

∣∣∣∣E [ln Pg(B(X, ν))

cdνdg(X)
1(X ∈ S2)

]∣∣∣∣ .M−2βγ lnM. (B.32)

Combining (B.18), (B.25) and (B.32), we get

|I2| .M−2βγ lnM +M−γ(1−βd) lnM. (B.33)

Since the above bound holds for arbitrary β ≤ 1/(d+ 2), we just let β = 1/(d+ 2), then

|I2| .M− 2γ
d+2 lnM. (B.34)

Similarly, we have |I1| . N−
2γ
d+2 lnN , and according to the definition of digamma function, |I3| .

1/M + 1/N . Hence

|E[D̂(f ||g)]−D(f ||g)| . (min{M,N})−
2γ
d+2 ln min{M,N}. (B.35)
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B.2.1 Proof of Lemma B.2

We only show that there exists a constant Ug such that g(x) ≤ Ug holds for all x. The proof of the

upper bound Uf of density f will be exactly the same. From Lemma B.1,

Pg(B(x, r)) ≥ g(x)cdr
d − C1r

d+2. (B.36)

Since Pg(B(x, r)) ≤ 1, we have

g(x) ≤ 1 + C1r
d+2

cdrd
(B.37)

for all r > 0. Define Ug as the right hand side of (B.37) given r = (d/(2C1))1/(d+2), i.e.

Ug =
1 + d

2

cd

(
d

2C1

) d
d+2

, (B.38)

then g(x) ≤ Ug for all x.

B.2.2 Proof of Lemma B.3

From Hölder inequality, For any p, q such that p > 1, q > 1, and 1/p+ 1/q = 1,

E [ln ‖x‖ |1(g(X) ≤ t)] ≤ (E [| ln ‖x‖ |p])
1
p (E [1(g(X) ≤ t)q])

1
q . (B.39)

From Assumption 4.5 (b),

E[1(g(X) ≤ t)q] = P(g(X) ≤ t) ≤ µtγ. (B.40)
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Moreover, from Assumption 4.5 (d), P(‖X‖ > t) ≤ K/ts, then

E[| ln ‖X‖ |p] =

∫ ∞
0

P (| ln ‖X‖ |p > u) du

=

∫ ∞
0

[
P
(
‖X‖ > eu

1
p

)
+ P

(
‖X‖ < e−u

1
p

)]
du

≤
∫ ∞

0

Ke−su
1
p
du+

∫ ∞
0

Ugcde
−du

1
p
du

v=su
1
p

=
1

sp

∫ ∞
0

Kpe−vvp−1dv +

∫ ∞
0

Ugcdpe
−dvvp−1dv

=

(
K

sp
+
Ugcd
dp

)
p!. (B.41)

Using Stirling’s formula p! ≤ epp+1/2e−p, we have

E[ln ‖X‖1(g(X) ≤ t)] ≤ e
1
pp1+ 1

2p e−1

(
K

sp
+
Ugcd
dp

) 1
p

(µtγ)1− 1
p

≤ p1+ 1
2p

(
K

sp
+
Ugcd
dp

) 1
p

(µtγ)1− 1
p

≤ pe
ln p
2p

[(
K

sp

) 1
p

+

(
Ugcd
dp

) 1
p

]
(µtγ)1− 1

p

∼ ptγ(1− 1
p), (B.42)

which holds for all p > 1. For sufficiently small t, let p = ln(1/t), then the right hand side of

(B.42) becomes etγ ln(1/t).
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B.2.3 Proof of Lemma B.4

∫
g(x)>t

f(x)

g(x)
dx = E

[
1

g(X)
1(g(X) > t)

]
=

∫ ∞
0

P
(

1

g(X)
1(g(X) > t) > u

)
du

=

∫ 1
t

0

P
(
g(X) <

1

u

)
du

≤


µ

1−γ t
γ−1 if γ < 1

µ+ µ ln 1
µt

if γ = 1.
(B.43)

B.2.4 Proof of Lemma B.5

For all x ∈ S1,

Pg(B(x, aM)) ≥ g(x)cda
d
M − C1a

d+2
M

≥ C1a
d+2
M

= C1A
d+2M−β(d+2)

= kM−β(d+2)

≥ k

M
, (B.44)

in which we used (B.16) and Lemma B.1. Hence, according to (B.19) and Chernoff inequality,

P(ν > aM |x) ≤ e−MPg(B(x,aM ))

(
eMPg(B(x, aM))

k

)k
≤ e−

1
2
Mg(x)cda

d
M

(
eMg(x)cda

d
M

2k

)k
:= φ(x). (B.45)
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Moreover, define a = Mcda
d
M/2, then

P(ν > aM ,X ∈ S1)

=
( e
k

)k
E
[
e−ag(X)(ag(X))k

]
≤

( e
k

)k
E
[
e−

1
2
ag(X)

]
sup
t>0

e−
1
2
ttk

= 2kE
[
e−

1
2
ag(X)

]
= 2k

∫ ∞
0

P
(
e−

1
2
ag(X) > u

)
du

= 2k
∫ ∞

0

P
(
g(X) <

2

a
ln

1

u

)
du

= 2k+γµ

∫ 1

0

(
ln

1

u

)γ
du

= 2k+γµΓ(γ + 1)

(
1

2
McdA

dM−βd
)−γ

. (B.46)

The proof is complete.

B.2.5 Proof of Lemma B.6

From Assumption 4.5 (d), P(‖Y ‖ > r) ≤ K/rs. Hence Pg(B
c(0, r)) ≤ K/rs, in which

Bc(0, r) = Rd \ B(0, r). Denote ν0 as the kNN distance of x = 0 among Y1, . . . ,YM . Then

for sufficiently large M and r > (2K)1/s, we have Pg(Bc(0, r)) ≥ 1/2, hence

P(ν0 > r) = P (n(Bc(0, r)) > M − k)

≤ P
(
n(Bc(0, r)) >

1

2
M

)

≤ e−M
K
rs

(
eM K

rs

1
2
M

) 1
2
M

≤
(

2eK

rs

) 1
2
M

. (B.47)
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Denote nY (S) as the number of samples from {Y1, . . . ,YM} that are in S. Then for any given x,

and r ≥ (2K)1/s + ‖x‖, since nY (B(x, t)) ≥ nY (B(0, t− ‖x‖)),

P(ν > r|x) ≤
(

2eK

(r − ‖x‖)s

) 1
2
M

. (B.48)

Let

t0 = max

{
ln

2 ‖x‖
aM

,
1

s
ln

21+seK

asM

}
. (B.49)

It can be checked that aMet0 ≥ (2K)1/s + ‖x‖, therefore

E
[
ln

ν

aM
1(ν > aM)|x

]
=

∫ ∞
0

P(ν > aMe
t|x)dt

=

∫ t0

0

P(ν > aMe
t|x)dt+

∫ ∞
t0

P(ν > aMe
t|x)dt

≤
∫ t0

0

P(ν > aM |x)dt+

∫ ∞
t0

(
2eK

(aMet − ‖x‖)s

) 1
2
M

dt

(a)

≤ φ(x)t0 +

∫ ∞
t0

(
21+seK

asMe
st

) 1
2
M

dt

= φ(x)t0 +

(
21+seK

asM

) 1
2
M

2

M
e−

1
2
sMt0

(b)

≤ φ(x)t0 +
2

M
. (B.50)

In (a), we use (B.45) and the definition of t0, which implies that ‖x‖ ≤ aMe
t/2. (b) uses the fact

that est0 ≥ 21+seK/asM . Hence

E
[
ln

ν

aM
1(ν > aM ,X ∈ S1)

]
≤ E[φ(X)t0] +

2

M
. (B.51)
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It remains to bound E[φ(X)t0]. For any T > 0,

E[φ(X)t0] ≤ E[φ(X)t01(t0 ≤ T )] + E[φ(X)t01(t0 > T )]

≤ TE[φ(X)] + E[t01(t0 > T )]. (B.52)

In Lemma B.5, we have shown that E[φ(X)] ≤ C3M
−γ(1−βd). For the second term,

E[t01(t0 > T )]

≤ E
[(

ln
2 ‖X‖
aM

+
1

s
ln

21+seK

asM

)
1

(
‖X‖ > 1

2
aMe

T

)]
≤

∫ ∞
0

P
(

ln
2 ‖X‖
aM

1

(
X >

1

2
aMe

T

)
> u

)
du

+
1

s
ln

21+seK

asM
P
(
‖X‖ > 1

2
aMe

T

)
≤

∫ T

0

P
(
‖X‖ > 1

2
aMe

T

)
du

+

∫ ∞
T

P
(
‖X‖ > 1

2
heu
)
du

+
2sK

asMe
sT

ln
21+seK

asM

≤ 2sK

asMe
sT s

[
sT + 1 + ln

21+seK

asM

]
. (B.53)

Let T = (1/s) lnM , then

E[φ(X)t0] .M−γ(1−βd) lnM. (B.54)

Hence

E
[
ln

ν

aM
1(ν > aM ,X ∈ S1)

]
.M−γ(1−βd) lnM. (B.55)
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B.2.6 Proof of Lemma B.7

|E[ln ν1(ν < 1)|x]|

=

∫ ∞
0

P(ν < e−t|x)dt

(a)

≤
∫ ∞

0

P
(
Pg(B(x, ν)) < Ugcde

−dt) dt
(b)

≤
∫ 1

d
ln M

k

0

dt+

∫ ∞
1
d

ln M
k

(
eMUgcde

−dt

k

)k
dt

=
1

d
ln
M

k
+

(eUgcd)
k

kd
. (B.56)

In (a), we use Lemma B.2. (b) uses Chernoff bound. Moreover, let t0 = max{ln(2 ‖x‖), (1/s) ln(21+seK), 0},

then

E[ln ν1(ν > 1)|x]

=

∫ ∞
0

P(ν > et|x)dt

≤
∫ t0

0

dt+

∫ ∞
t0

(
2eK

(et − ‖X‖)s

) 1
2
M

dt

= t0 +

∫ ∞
t0

(
21+seK

est

) 1
2
M

dt

= t0 + (21+seK)
1
2
M 2

sM
e−

1
2
sMt0

≤ max

{
ln(2 ‖x‖), 1

s
ln(21+seK), 0

}
+

2

sM

≤ | ln(2 ‖x‖)|+ 1

s
| ln(21+seK)|+ 2

sM
. (B.57)

Combining (B.56) and (B.57), the proof is complete.
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B.3 Proof of Theorem 3.3

From (3.2), we have

Var[D̂(f ||g)] = Var

[
d

N

N∑
i=1

ln νi −
d

N

N∑
i=1

ln εi

]

≤ 2 Var

[
d

N

N∑
i=1

ln εi

]
+ 2 Var

[
d

N

N∑
i=1

ln νi

]
:= 2I1 + 2I2. (B.58)

We bound I1 and I2 separately.

Bound of I1. I1 is the variance of Kozachenko-Leonenko entropy estimator [49], which

estimates h(f) = −
∫
f(x) ln f(x)dx. Here we use similar proof procedure as was already

used in the proof of Theorem 2 in our recent work [99]. [99] has analyzed a truncated

Kozachenko-Leonenko entropy estimator, which means that εi is truncated by an upper bound

aN . The variance of this estimator is actually equal to Var[(d/N)
∑N

i=1 ln ρi], in which

ρi = min{ε, aN}. It was shown in [99] that if aN ∼ N−β with 0 < β < 1/d, then

Var[(d/N)
∑N

i=1 ln ρi] = O(N−1). In this section, we prove the same convergence bound for

the estimator without truncation, i.e. Var[(d/N)
∑N

i=1 ln εi].

Let X′1 be a sample that is i.i.d with X1,X2, . . . ,XN . Recall that εi is the k-th nearest neighbor

distance of Xi among X1,X2, . . . ,XN . If we replace X1 with X′1, then the kNN distances will

change. Denote ε′i as the k-th nearest neighbor distance based on X′1,X2, . . . ,XN . Then use

Efron-Stein inequality [82],

Var

[
d

N

N∑
i=1

ln εi

]
≤ N

2

( d

N

N∑
i=1

ln εi −
d

N

N∑
i=1

ln ε′i

)2
 . (B.59)

Define Ui = ln(Ncdε
d
i ) and U ′i = ln(Ncd(ε

′
i)
d) for i = 1, . . . , N . Moreover, define ε′′i as the k

nearest neighbor distances based on X2, . . . ,XN , and U ′′i = ln(Ncd(ε
′′
i )
d), i = 2, . . . , N . Follow

175



the steps in Appendix C of [99], we have

Var

[
d

N

N∑
i=1

ln εi

]
≤ 2

N
(2kγd + 1)

[
(k + 1)E[U2

1 ] + kE[(U ′′1 )2]
]
, (B.60)

in which γd is a constant that depends on dimension d and the norm we use. For example, if we

use `2 norm, then γd is the minimum number of cones with angle π/6 that cover Rd.

Now we bound E[U2
1 ] and E[(U ′′1 )2]. Define ρ = min{ε, aN}, in which aN ∼ N−β , 0 <

β < 1/d. Note that we truncate the estimator for the convenience of analysis, although we are

now analyzing an estimator without truncation. The deviation caused by such truncation will be

bounded later. In the following proof, we omit the index for convenience. E[U2] can be bounded

by

E[U2] = E[(ln(Nεdcd))
2]

= E
[(

ln(NPf (B(X, ε)))− ln
Pf (B(X, ε))

f(X)cdρd

+d ln
ε

ρ
− ln f(X)

)2
]

≤ 4E[(ln(NPf (B(X, ε))))2]

+4E

[(
ln
Pf (B(X, ε))

f(X)cdρd

)2
]

+4d2E

[(
ln
ε

ρ

)2
]

+ 4E[(ln f(X))2], (B.61)

in which Pf (S) is the probability mass of S under a distribution with pdf f , i.e. Pf (S) =∫
S
f(x)dx.

According to Assumption 3.3 (b), E[(ln f(X))2] =
∫
f(x) ln2 f(x)dx < ∞. Moreover,

Lemma 6 and Lemma 7 in [99] have shown that

lim
N→∞

E[(ln(NPf (B(X, ε))))2] = ψ′(k) + ψ2(k), (B.62)
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and

lim
N→∞

E

[(
ln
Pf (B(X, ε))

f(X)cdρd

)2
]

= 0. (B.63)

It remains to show that E[ln2(ε/ρ)]→ 0:

E

[(
ln
ε

ρ

)2
]

= E

[(
ln

ε

aN

)2

1(ε > aN)

]
≤ 2E[ln2 ε1(ε > aN)] + 2E[ln2 aN1(ε > aN)]

≤ 2E[ln2 ε1(aN < ε ≤ 1)] + 2E[ln2 ε1(ε > 1)]

+2 ln2 aNP(ε > aN)

≤ 4 ln2 aNP(ε > aN) + 2E[ln2 ε1(ε > 1)]. (B.64)

For sufficiently large N , aN < r0. From Assumption 3.3 (b), for sufficiently small t,

P(f̃(x, aN) < t) ≤ P

((
ln inf

r<r0
f̃(x, r)

)2

> ln2 t

)

= o

(
1

ln2 t

)
, (B.65)

in which we use small o notation, since for any variable U such that U ≥ 0 and E[U ] < ∞,

177



uP (U > u)→ 0 as u→∞. Since β < 1/d, pick δ such that 0 < δ < 1− βd, then

P(ε > aN)

≤ P
(
Pf (B(X, aN)) <

2k

N1−δ

)
+P
(
Pf (B(X, ε)) ≥ 2k

N1−δ , ε > aN

)
(a)

≤ P
(
f̃(x, aN) <

2k

N1−δcdadN

)
+ e−2kNδ

(
2ekN δ

k

)k
(b)
= o

(
1

(lnN)2

)
. (B.66)

In (a), we use the definition of f̃ in (3.12) for the first term, and use Chernoff inequality for the

second term. (b) holds because N1−δadN ∼ N1−δ−dβ . 1 − δ − βd > 0, thus N1−δ−dβ → ∞. Then

we can get (B.66) using (B.65).

Moreover, we can show the following Lemma:

Lemma B.8.

lim
N→0

E[ln2 ε1(ε > 1)] = 0. (B.67)

Proof. Please see Appendix B.3.1.

Based on (B.64), (B.66) and Lemma B.8, E[ln2(ε/ρ)]→ 0. Therefore (B.61) becomes

lim
N→∞

E[U2] ≤ 4

[
ψ′(k) + ψ2(k) +

∫
f(x) ln2 f(x)dx

]
. (B.68)

Similar results hold for E[(U ′′)2]. Hence (B.60) becomes

Var

[
d

N

N∑
i=1

ln εi

]
= O

(
1

N

)
. (B.69)

Bound of I2. Let Y′1 be a sample that is i.i.d with Y1, . . . ,YM . Define ν ′i as the k-th nearest

neighbor distance of Xi among {Y′1,Y2, . . . ,YM} for i = 1, . . . , N . Let X′1 be a sample that
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is i.i.d with X1, . . . ,XN , and define ν ′′1 as the k-th nearest neighbor distance of X′1 among

{Y1, . . . ,YM}. Then from Efron-Stein inequality,

I2 = Var

[
d

N

N∑
i=1

ln νi

]

≤ M

2
E

( d

N

N∑
i=1

ln νi −
d

N

N∑
i=1

ln ν ′i

)2


+
N

2
E

[(
d

N
ln ν1 −

d

N
ln ν ′′1

)2
]

=
Md2

2N2
E

( N∑
i=1

(ln νi − ln ν ′i)

)2


+
d2

2N
E[(ln ν1 − ln ν ′′1 )2]

:= I21 + I22. (B.70)

To bound the right hand side of (B.70), we first make the following definitions:

Definition 1. Define two sets S1 ⊂ Rd, S ′1 ⊂ Rd:

S1 := {x|Y1 is among the k neighbors of x in

{Y1, . . . ,YM}} ,

S ′1 := {x|Y′1 is among the k neighbors of x in

{Y1, . . . ,YM}} .

Definition 2. Define two events:

E1 : max

{
max
i∈[N ]
‖Xi‖ ,max

i∈[M ]
‖Yi‖ , ‖Y′1‖

}
> (M +N + 1)

5
s ;

E2 : min

{
min
i∈[N ]

νi,min
i∈[N ]

ν ′i

}
< (M +N)−

k+5
dk . (B.71)
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We also denote E = E1 ∪ E2.

The following lemma shows that the probabilities that these events happen are low.

Lemma B.9. The probabilities of E1, E2 are bounded by:

P(E1) ≤ k

(M +N + 1)4
, (B.72)

P(E2) ≤
(
eUgcd
k

)k
(M +N)−4. (B.73)

Proof. Please see Appendix B.3.2.

These bounds show that P(E) . (M +N)−4. Moreover, we show the following lemma:

Lemma B.10. There exists a constant C1 such that for sufficiently large M we have

E[ln4 ν] < C1 ln4M. (B.74)

Proof. Please see Appendix B.3.3.

Based on Lemma B.9 and Lemma B.10,

E

( N∑
i=1

(ln νi − ln ν ′i)

)2

1(E)


≤ NE

[(
N∑
i=1

(ln νi − ln ν ′i)
2

)
1(E)

]

≤ 2NE

[
N∑
i=1

(ln2 νi + ln2 ν ′i)1(E)

]
= 4N2E[ln2 ν1(E)]

≤ 4N2

√
E[ln4 ν]P(E)

.
N2 ln2M

(M +N)2
. (B.75)

If E does not happen, then ‖Xi‖, ‖Yi‖, ‖Y′1‖ are all upper bounded by (M + N + 1)(5/s).

Thus νi and ν ′i are all upper bounded by 2(M + N + 1)(5/s). Besides, from (B.71), they are both
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lower bounded by (M + N)−
k+5
dk . Define nX(S1) and nX(S ′1) as the number of samples among

{X1, . . . ,XN} in S1 and S ′1, respectively, then there are at most nX(S1) +nX(S ′1) points such that

νi 6= ν ′i. If Xi falls outside S1 and S ′1, then νi = ν ′i since both Y1 and Y′1 are not among the k

neighbors of Xi in {Y1, . . . ,YM}. Hence

E

( N∑
i=1

(ln νi − ln ν ′i)

)2

1(Ec)


≤ E

( N∑
i=1

(ln νi − ln ν ′i)1(νi 6= ν ′i)

)2

1(Ec)


≤ E

[(
N∑
i=1

(
5

s
ln(2(M +N + 1))

+
k + 5

dk
ln(M +N)

)
1(νi 6= ν ′i)

)2

1(Ec)

]

≤
(

5

s
+
k + 5

dk

)2

ln2(2M + 2N + 2)

E[(nX(S1) + nX(S ′1))2]

≤ 2

(
5

s
+
k + 5

dk

)2

ln2(2M + 2N + 2)

(E[n2
X(S1)] + E[n2

X(S ′1)]). (B.76)

Now it remains to bound E[n2
X(S1)] and E[n2

X(S ′1)]. We have the following lemma:

Lemma B.11.

E[n2
X(S1)] ≤

[
4(k + 1)2 +

16

(1− ln 2)2

]
γ2
dN(N − 1)

(M − 1)2
+
kN

M
,

E[n2
X(S ′1)] ≤

[
4(k + 1)2 +

16

(1− ln 2)2

]
γ2
dN(N − 1)

(M − 1)2
+
kN

M
.

(B.77)

Proof. Please see Appendix B.3.4.
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Combining (B.75), (B.76) and Lemma B.11, we have

I21 .

(
1

M
+

1

N

)
ln2(M +N). (B.78)

Then I22 can be bounded by:

I22 =
1

2N
E[(ln(Ncdν

d
1 )− ln(Ncd(ν

′
1)d))2]

≤ 1

N

[
E[(ln(Mcdν

d
1 ))2] + E[(ln(Mcd(ν

′
1)d))2]

]
=

2

N
E[(ln(Mcdν

d
1 ))2]. (B.79)

Similar to the analysis from (B.61) to (B.68), we can show that the limit of E[(ln(Mcdν
d
1 ))2] can

also be bounded by the right hand side of (B.68). Therefore

I22 .
1

N
, (B.80)

I2 = I21 + I22 .

(
1

M
+

1

N

)
ln2(M +N), (B.81)

and

Var[D̂(f ||g)] ≤ 2I1 + 2I2

.

(
1

M
+

1

N

)
ln2(M +N). (B.82)

B.3.1 Proof of Lemma B.8

Similar to (B.48), we can show that for any given x, and t ≥ (2K)1/s + ‖x‖,

P(ε > t|x) ≤
(

2eK

(t− ‖x‖)s

) 1
2

(N−1)

. (B.83)
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Then

E[ln2 ε1(ε > 1)] =

∫ ∞
0

P
(
ln2 ε1(ε > 1) > t

)
dt

=

∫ ∞
0

P(ε > e
√
t)dt. (B.84)

Therefore if (1/2)e
√
t ≥ (2K)1/s,

P(ε > e
√
t)

≤ P
(
‖X‖ > 1

2
e
√
t

)
+ P

(
‖X‖ < 1

2
e
√
t, ε > e

√
t

)

≤ k(
1
2
e
√
t
)s +

(
2eK(

e
√
t − 1

2
e
√
t
)s
) 1

2
(N−1)

= 2sKe−
1
2
st + (21+seK)

1
2

(N−1)e−
1
2
s(N−1)t. (B.85)

Define

φ(t) =

 1 if t ≤ max
{

ln2(21+ 1
sK

1
s ), 2

s
ln(21+seK)

}
2sKe−

1
2
st + e−

1
4
st if t > max

{
ln2(21+ 1

sK
1
s ), 2

s
ln(21+seK)

}
.

It can be shown that P(ε > e
√
t) ≤ φ(t). Since φ(t) is integrable in (0,∞), according to Lebesgue

dominated convergence theorem,

lim
N→∞

E[ln2 ε1(ε > 1)] =

∫ ∞
0

lim
N→∞

P(ε > e
√
t)dt = 0. (B.86)

B.3.2 Proof of Lemma B.9

Proof of (B.72). According to Assumption 3.3 (c), for i = 1, . . . , N ,

P(‖Xi‖ > t) ≤ E[‖Xi‖s]
ts

≤ K

ts
. (B.87)
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Similar bound holds for ‖X′1‖ and Yi, i = 1, . . . ,M . Let t = (M + N + 1)(5/s), and using the

union bound, we get (B.72).

Proof of (B.73). Since g is bounded by Ug, we have Pg(B(x, r)) ≤ Ugcdr
d for any x and r > 0.

Let r0 = (M +N)−
k+5
dk , then for sufficiently large M , we have

Ugcdr
d
0 < Ugcd(M +N)−

k+5
k <

k

M
, (B.88)

as Ug, cd and k are fixed.

Hence using Chernoff inequality,

P(νi < r0) ≤ exp[−MUgcdr
d
0]

(
eMUgcdr

d
0

k

)k
≤

(
eMUgcdr

d
0

k

)k
. (B.89)

Then (B.73) can be obtained by calculating the union bound.

B.3.3 Proof of Lemma B.10

Define

t1 = max

{
ln4(2 ‖x‖), 1

s4
ln4(21+seK)

}
, (B.90)

and

t2 =

(
2

d
ln
MUgcd
k

)4

, (B.91)
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then

E[ln4 ν|x] =

∫ ∞
0

P
(
ln4 ν > t|x

)
dt

=

∫ ∞
0

P
(
ν > et

1
4 |x
)
dt+

∫ ∞
0

P
(
ν < e−t

1
4 |x
)
dt. (B.92)

∫ ∞
0

P
(
ν > et

1
4 |x
)
dt ≤

∫ t1

0

dt+

∫ ∞
t1

(
2eK

(et
1
4 − ‖x‖)s

) 1
2
M

dt

(a)

≤ t1 +

∫ ∞
t1

(
21+seK

est
1
4

) 1
2
M

dt

u=t
1
4

= t1 + (21+seK)
1
2
M

∫ ∞
t
1
4
1

e−
1
2
sMu4u3du

λ=sM/2

≤ t1 + (21+seK)
1
2
M(

1

λ
t
3
4
1 +

3

λ2
t
1
2
1 +

6

λ3
t
1
4
1 +

6

λ3

)
e−λt

1
4
1

= t1 + (21+seK)
1
2
M(

1

λ
t
3
4
1 +

3

λ2
t
1
2
1 +

6

λ3
t
1
4
1 +

6

λ4

)
exp

[
−1

2
M ln(21+seK)

]
≤ t1 +

(
1

λ
t
3
4
1 +

3

λ2
t
1
2
1 +

6

λ4
t
1
4
1 +

6

λ4

)
(b)

≤ ln4(2 ‖x‖) +
1

s4
ln4(21+seK) + δM

. ln4 ‖x‖+ 1. (B.93)

In (a), we use ‖x‖ < et
1
4 /2. This is true because of the definition of t1 in (B.90). In (b), we use

(B.90) again, and δM is a sequence decreasing with M .
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Now we bound the second term in (B.92). Using Chernoff inequality,

∫ ∞
0

P
(
ν < e−t

1
4

)
dt

≤
∫ ∞

0

P
(
P (B(x, ν)) < Ugcde

−dt
1
4

)
dt

=

∫ t2

0

dt+

∫ ∞
t2

(
eMUgcd exp[−dt 14 ]

k

)k

dt

. ln4M. (B.94)

Thus

E[ln4 ν] . 1 + ln4M + E[ln4 ‖X‖] ∼ ln4M, (B.95)

in which the last step uses (B.41).

B.3.4 Proof of Lemma B.11

Define Pf (S) =
∫
S
f(x)dx for any set S, then nX(S1) follows binomial distribution with

parameter N and Pf (S1), thus

E[n2
X(S1)|Pf (S1)] = N(N − 1)P 2

f (S1) +NPf (S1). (B.96)

From Assumption 3.3 (d), f(x) ≤ Cg(x), thus

E[P 2
f (S1)] ≤ C2E[P 2

g (S1)], (B.97)

E[Pf (S1)] ≤ CE[Pg(S1)]. (B.98)

It remains to bound E[P 2
g (S1)] and E[Pg(S1)]. Recall that S1 is defined as the set in which the

k nearest neighbors include Y1. Since Y1, . . . ,YM are all random, for any x, Y1 is among the k
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nearest neighbors of x with probability k/M , thus

E[Pg(S1)] =
k

M
. (B.99)

Recall that γd is defined as the minimum number of cones with angle π/6 that can cover Rd.

Now we pick any y ∈ Rd, and divide Rd into γd cones with angle π/6, such that y is the vertex of

all the cones. These cones are named as Cj , j = 1, . . . , γd, and then ∪γdj=1Cj = Rd. Define rj as the

distance from Y1 to its k-th nearest neighbor among {Y2, . . . ,YM} ∩ Cj . If there are less than k

samples in Cj , then let rj =∞. Define

G1 = ∪γdj=1B(Y1, rj) ∩ Cj. (B.100)

Then we show that S1 ⊆ G1. Since ∪γdj=1Cj = Rd, for any x, x ∈ Cj for some j ∈ {1, . . . , γd}. If

x ∈ Cj and x /∈ G1, then in B(Y1, rj) ∩ Cj , there are already at least k points, Yil , l = 1, . . . , k,

among Y1, . . . ,YM . Then ‖Yil −Y1‖ < rj for l = 1, . . . , k, while ‖x−Y1‖ ≥ rj . Denote θ as

the angle between vector Yil −Y1 and x −Y1. Since Yil ∈ Cj and x ∈ Cj , we have θ < π/3,

and thus

‖Yil − x‖2 = ‖x−Y1‖2 + ‖Yil −Y1‖2

−2 ‖x−Y1‖ ‖Yil −Y1‖ cos θ

< ‖x−Y1‖2 + ‖Yil −Y1‖2

−‖x−Y1‖ ‖Yil −Y1‖

< ‖x−Y1‖2 , (B.101)

which indicates that ‖Y1 − x‖ > ‖Yil − x‖ for l = 1, . . . , k. Yil , l = 1, . . . , k are all closer to x

than Y1, therefore Y1 can not be one of the k nearest neighbors of x, i.e. x /∈ G1. Recall that x is
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arbitrarily picked outside G1, thus S1 ⊂ G1. Therefore

E[P 2
g (S1)] ≤ E[P 2

g (G1)]

= E
[
P 2
g (∪γdj=1B(Y1, rj) ∩ Cj)

]
≤ E

( γd∑
j=1

Pg (B(Y1, rj) ∩ Cj)

)2
 . (B.102)

Define

nj =
M∑
i=2

1(Yi ∈ Cj), (B.103)

then given nj , if nj ≥ k,

Pg(B(Y1, rj) ∩ Cj)
Pg(Cj)

∼ B(k, nj − k + 1), (B.104)

in which B denotes the Beta distribution. Hence

E[Pg(B(Y1, rj) ∩ Cj)|nj,Y1] =
k

nj + 1
Pg(Cj),

E[P 2
g (B(Y1, rj) ∩ Cj)|nj,Y1]

=
k(k + 1)

(nj + 1)(nj + 2)
P 2
g (Cj).

(B.105)

If nj < k, then rj =∞, and

E[Pg(B(Y1, rj) ∩ Cj)|nj,Y1] = Pg(Cj),

E[P 2
g (B(Y1, rj) ∩ Cj)|nj,Y1] = P 2

g (Cj). (B.106)
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Combine these two cases, we have

E[Pg(B(Y1, rj) ∩ Cj)|nj,Y1]

= min

{
k

nj + 1
, 1

}
Pg(Cj), (B.107)

E[P 2
g (B(Y1, rj) ∩ Cj)|nj,Y1]

= min

{(
k + 1

nj + 1

)2

, 1

}
P 2
g (Cj). (B.108)

Now we bound the right hand side of (B.107) and (B.108).

E
[{

k

nj + 1
, 1

}]
= P

(
nj ≥

1

2
(M − 1)Pg(Cj)

)
k

1
2
(M − 1)Pg(Cj)

+P
(
nj <

1

2
(M − 1)Pg(Cj)

)
≤ 2k

(M − 1)Pg(Cj)

+e−(M−1)Pg(Cj)

(
e(M − 1)Pg(Cj)
1
2
(M − 1)Pg(Cj)

) 1
2

(M−1)Pg(Cj)

=
2k

(M − 1)Pg(Cj)
+ e−

1
2

(1−ln 2)(M−1)Pg(Cj). (B.109)

Similarly,

E

[
min

{(
k + 1

nj + 1

)2

, 1

}]

≤ 4(k + 1)2

(M − 1)2Pg(Cj)
+ e−

1
2

(1−ln 2)(M−1)Pg(Cj). (B.110)

Hence

E[Pg(B(Y1, rj) ∩ Cj)|Y1] ≤ 2k

M − 1
+ Pg(Cj)e

− 1
2

(1−ln 2)(M−1)Pg(Cj)

≤ 2k

M − 1
+

2

(1− ln 2)(M − 1)
, (B.111)
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E[P 2
g (B(Y1, rj) ∩ Cj)|Y1]

≤ 4(k + 1)2

(M − 1)2
+ P 2

g (Cj)e
− 1

2
(1−ln 2)(M−1)Pg(Cj)

≤ 4(k + 1)2

(M − 1)2
+

16

(1− ln 2)2(M − 1)2
. (B.112)

From (B.107) and (B.108),

E

( γd∑
j=1

Pg(B(Y1, rj) ∩ Cj)

)2


= γdE[P 2
g (B(Y1, rj) ∩ Cj)|Y1]

+γd(γd − 1)E[Pg(B(Y1, rj) ∩ Cj)|Y1]

+E[Pg(B(Y1, rl) ∩ Cl)|Y1]

≤
[
4(k + 1)2 +

16

(1− ln 2)2

]
γ2
d

(M − 1)2
. (B.113)

Therefore, from (B.96), (B.97), (B.98), (B.102) and (B.99),

E[n2
X(S1)]

= N(N − 1)E[P 2
f (S1)] +NE[Pf (S1)]

=

[
4(k + 1)2 +

16

(1− ln 2)2

]
γ2
dN(N − 1)

(M − 1)2
+
kN

M
.

(B.114)

Using similar steps, it can be shown that E[n2
X(S ′1)] satisfies the same upper bound.

B.4 Extension of the Variance Analysis

Proof of (3.20). Define

λ(t) = sup
S:Pg(S)≤t

Pf (S). (B.115)
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The proof of (3.20) follows similar steps as the proof in Appendix B.3, except that according to

Assumption (d’), (B.97) and (B.98) become the following:

E[P 2
f (S1)] ≤ E[λ2(Pg(S1))]

≤ C2
δE[P 2−2δ

g (S1)]

≤ C2
δ (E[P 2

g (S1)])1−δ, (B.116)

and similarly,

E[Pf (S1)] ≤ Cδ(E[Pg(S1)])1−δ. (B.117)

Follow the remaining steps, (3.20) can be proved.

Proof of the fact that two Gaussian distributions with same variances and different means

satisfy assumption (d’). It is enough to prove that (3.19) holds for sufficiently small t. Without

loss of generality, assume f centers at ae1, in which e1 is the unit vector in the first dimension, and

g centers at 0. Then

f(x)

g(x)
= e−

1
2
a2eax1 , (B.118)

which increases with x1. To maximize Pf (S) given Pg(S) ≤ t, S should be {x|x1 ≥ φ−1(1−t)}, in

which φ is the cumulative distribution function of standard one dimensional Gaussian distribution.

Denote Z as a random variable following one dimensional standard Gaussian distribution, then for
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sufficiently small t,

λ(t) = P(Z > φ−1(1− t)− a)

= t
P(Z > φ−1(1− t)− a)

P(Z > φ−1(1− t))
(a)

≤ t
(φ−1(1− t))2 + 1

(φ−1(1− t))2 − aφ−1(1− t)

exp

[
−1

2
a2 + aφ−1(1− t)

]
(b)

≤ t1−δtδ exp

[
−1

2
a2 + a

√
2 ln

1

t

]
(c)

≤ Cδt
1−δ, (B.119)

for some Cδ. In (a), we use a property of Gaussian distribution, i.e. for all u > 0,

1√
2π

u

u2 + 1
e−

1
2
u2 < P(Z > u) <

1√
2π

1

u
e−

1
2
u2 . (B.120)

In (b), we use another inequality P(Z > u) ≤ e−u
2/2, which yields φ−1(1− t) ≤

√
2 ln(1/t). For

(c), note that tδ exp
[
−a2/2 + a

√
2 ln(1/t)

]
is continuous on a closed interval [0, 1], and thus has

a maximum value.

B.5 Proof of Theorem 3.5

In this section, we show the minimax convergence rate of KL divergence estimator for distributions

with bounded support and densities bounded away from zero. The proof can be divided into proving

the following three bounds separately:
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Ra(N,M) &
1

M
+

1

N
, (B.121)

Ra(N,M) & N−
2
d(1+ 2

ln lnN ) ln−2N ln−(2− 2
d)(lnN), (B.122)

Ra(N,M) & M− 2
d(1+ 2

ln lnM ) ln−2M ln−(2− 2
d)(lnM). (B.123)

Proof of (B.121).

Let X be supported on [0, 1]d, and

f1(x) =


3
2

if 0 ≤ x1 ≤ 1
2

1
2

if 1
2
< x1 ≤ 1,

f2(x) =


3
2

+ δ if 0 ≤ x1 ≤ 1
2

1
2
− δ if 1

2
< x1 ≤ 1,

(B.124)

and g(x) = 1. Then

D(f1||g) =

∫
f1(x) ln

f1(x)

g(x)
dx =

3

4
ln

3

2
+

1

4
ln

1

2
, (B.125)

D(f2||g) =

(
3

4
+

1

2
δ

)
ln

(
3

2
+ δ

)
+

(
1

4
− 1

2
δ

)
ln

(
1

2
− δ
)

=
3

4
ln

3

2
+

1

4
ln

1

2
+

(
1

2
ln 3

)
δ +O(δ2). (B.126)

Therefore, for sufficiently small δ, D(f2||g)−D(f1||g) ≥ (ln 3)δ/4. Moreover,

D(f1||f2) = −3

4
ln

(
1 +

2

3
δ

)
− 1

4
ln(1− 2δ). (B.127)

By Taylor expansion, it can be shown that ln(1 + 2δ/3) ≥ 2δ/3 − δ2/9, and ln(1 − 2δ) ≥
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−2δ + 2δ2, thus

D(f1||f2) ≤ 2

3
δ2. (B.128)

Therefore, from Le Cam’s lemma [82],

Ra(N,M)

≥ 1

4
(D(f1||g)−D(f2||g))2 exp[−ND(f1||f2)]

≥ 1

4

(
1

4
ln 3

)2

δ2 exp

[
−2

3
Nδ2

]
. (B.129)

Let δ = 1/
√
N , then

Ra(N,M) &
1

N
. (B.130)

Similarly, let

g1(x) =


3
2

if 0 ≤ x1 ≤ 1
2

1
2

if 1
2
< x1 ≤ 1,

g2(x) =


3
2

+ δ if 0 ≤ x1 ≤ 1
2

1
2
− δ if 1

2
< x1 ≤ 1,

f(x) = 1, (B.131)

for x ∈ [0, 1]d. Then it can be shown that

Ra(N,M) &
1

M
. (B.132)

The proof of (B.121) is complete.

Proof of (B.122).
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The proof has similar idea with [90] and [99]. To begin with, define

Fa = {(f, g)|f(x) = (1− α)Qa(x)

+
m∑
i=1

ui
mDd

Qa

(
x− ai
D

)
,

g(x) = (1− α)Qa(x) +
m∑
i=1

α

mDd
Qa

(
x− ai
D

)
,

1

m

m∑
i=1

ui = α, 1 < mDd−1 < C1,

ui
mDd

∈ {0} ∪ (c, 1)
}
,

(B.133)

in which Qa(x) = 1/vd for x ∈ B(0, 1), vd is the unit ball volume, thus
∫
Qa(x)dx = 1. C1 and c

are two constants. α ∈ (0, 1) and D decrease with N , while m increases with N . ai, i = 1, . . . , n

are selected such that ‖ai − aj‖ > 2D for all i, j ∈ {1, . . . ,m} and i 6= j. It can be checked that

both f and g integrate to 1. The condition ui/(mDd) ∈ {0}∪(c, 1) is designed such that the density

in the support is bounded away from zero, i.e. if f(x) > 0, then f(x) ≥ c. Moreover, the surface

area of the support is sd(1 + mDd−1), in which sd is the surface area of unit ball, and sd = dvd.

With the condition 1 < mDd−1 < C1, the surface area of the supports of f and g are both upper

bounded by sdC1. Therefore, for sufficiently large Hf , Hg, Uf , Ug and sufficiently small Lf and

Lg, Fa ∈ Sa. Define

Ra1(N,M) = inf
D̂

sup
(f,g)∈Fa

E
[
(D̂(N,M)−D(f ||g))2

]
. (B.134)

Recall that Ra(N,M) is defined as the minimax mean square error over Sa, hence

Ra(N,M) ≥ Ra1(N,M). (B.135)

To derive a lower bound ofRa1(N,M), we use Le Cam’s method again, with Poisson sampling.
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Define

Ra2 = inf
D̂

sup
(f,g)∈Fa

E
[
(D̂(N ′,M)−D(f ||g))2

]
, (B.136)

in which N ′ ∼ Poi(N), Poi is the Poisson distribution. Then we have the following lemma:

Lemma B.12.

Ra1(N,M) ≥ Ra2(2N,M)− 1

4
exp[−(1− ln 2)N ]. (B.137)

Proof. Please refer to Appendix B.5.1 for details.

Furthermore, define

F ′a = {(f, g)|f(x) = (1− α)Qa(x)

+
m∑
i=1

ui
mDd

Qa

(
x− ai
D

)
,

g(x) = (1− α)Qa(x) +
m∑
i=1

α

mDd
Qa

(
x− ai
D

)
,∣∣∣∣∣ 1

m

m∑
i=1

ui − α

∣∣∣∣∣ < ε, 1 < mDd−1 < C1,

ui
mDd

∈ {0} ∪ (c(1 + ε), 1− ε)
}
.

(B.138)

Comparing with the definition of Fa in (B.133), the only difference is that we now allow

(1/m)
∑m

i=1 ui to deviate slightly from α. As a result, f is not necessarily a pdf, since

it is not normalized. However, we extend the definition of KL divergence D(f ||g) =∫
f(x) ln(f(x)/g(x))dx here. Define

Ra3(N,M, ε)

= inf
D

sup
(f,g)∈F ′a

E[(D̂(N ′,M)−D(f ||g))2], (B.139)
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in whichN ′ ∼ Poi(N
∫
f(x)dx). Then the number of samples falling on any two disjoint intervals

are mutually independent. Ra2 can be lower bounded by Ra3 with the following lemma:

Lemma B.13. If ε < α/2, then

Ra2((1− ε)N,M)

≥ 1

2
Ra3(N,M)− 3ε2

(
ln2 α

mDdvd
+ ln2 α +

9

4

)
.

(B.140)

Proof. Please refer to Appendix B.5.2 for details.

With Lemma B.12 and Lemma B.13, the problem of bounding Ra(N,M) can be converted

to bounding Ra3(M,N, ε). We then show the following lemma, which is slightly modified from

Lemma 11 in [99].

Lemma B.14. Let U , U ′ be two random variables that satisfy the following conditions:

1) U,U ′ ∈ [ηλ, λ], in which λ ≤ (1− ε)mDd, 0 < η < 1, and ηλ ≥ c(1 + ε)mDd;

2) E[U ] = E[U ′] = α.

Define

∆ =

∣∣∣∣E [U ln
1

U

]
− E

[
U ′ ln

1

U ′

]∣∣∣∣ . (B.141)

Let

ε = 4λ/
√
m, (B.142)
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then

Ra3(N,M, ε) ≥ ∆2

16

[
31

32
−

64λ2
(
ln m

λ

)2

m∆2

−mTV
(
E
[

Poi
(
NU

m

)]
,E
[

Poi
(
NU ′

m

)])
− 16λ2

m∆2
(d lnD + h(Qa))

2

]
, (B.143)

in which h(Qa) = ln vd is the differential entropy of Qa.

Proof. The proof is exactly the same as the proof of Lemma 11 in [99]. Condition (1) is different

from the corresponding condition in [99], but such difference does not affect the proof.

We construct U , U ′ as following. Let X,X ′ ∈ [η, 1] have matching moments to the L-th order,

and let

PU(du) =
(

1− E
[ η
X

])
δ0(du) +

α

u
PαX/η(du),

PU ′(du) =
(

1− E
[ η
X ′

])
δ0(du) +

α

u
PαX′/η(du),

in which δ0 denotes the distribution that puts all the mass on u = 0. Now we assume α ≤ (1 −

ε)mDdη. Let λ = α/η, then U,U ′ are supported in [0, λ], and condition (1) in Lemma B.14 is

satisfied. Then from Lemma 4 in [90],

∆ = E
[
U ln

1

U
− U ′ ln 1

U ′

]
= α

(
E
[
ln

1

X

]
− E

[
ln

1

X ′

])
, (B.144)

and E[U j] = E[U ′j] for j = 1, . . . , L. In particular, E[U ] = E[U ′] = α. When X and X ′ are

properly selected, according to eq.(34) in [90],

∣∣∣∣E [ln 1

X

]
− E

[
ln

1

X ′

]∣∣∣∣ = 2 inf
p∈PL

sup
x∈[η,1]

| lnx− p(x)|, (B.145)
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in which PL is the set of all polynomials with degree L.

According to eq.(5) and (6) in page 445 in [81], for a > 1, L→∞,

inf
p∈PL

sup
t∈[−1,1]

| ln(a− t)− p(t)| = 1 + o(1)

L
√
a2 − 1(a+

√
a2 − 1)L

.

Let x = 1− (t+ 1)/(a+ 1), and η = (a− 1)/(a+ 1), then the above equation can be transformed

to the following one:

inf
p∈PL

sup
x∈[η,1]

| lnx− p(x)| = 1 + o(1)

L
√

4η
1−η

(
1+η
1−η +

√
4η

1−η

)L , (B.146)

i.e. there exist two constants c1(η) and c2(η) that depend on η, such that

inf
p∈PL

sup
x∈[η,1]

| lnx− p(x)| ≥ c1(η)

LcL2 (η)
. (B.147)

Hence

∆ ≥ 2αc1(η)

LcL2 (η)
. (B.148)

To bound the total variation term in (B.143), we use the following lemma.

Lemma B.15. ([90], Lemma 3) Let Z,Z ′ be random variables on [0, A]. If E[V j] = E[V ′j] for

j = 1, . . . , L, and L > 2eA, then

TV (E[Poi(Z)],E[Poi(Z ′)]) ≤
(

2eA

L

)L
. (B.149)

Substitute Z,Z ′ with NU/m and NU ′/m, and let A = Nλ/m, we get

TV
(
E
[

Poi
(
NU

m

)]
,E
[

Poi
(
NU ′

m

)])
≤

(
2eNλ

mL

)L
≤
(

2eNDd

L

)L
,

(B.150)
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in which the last step holds because λ ≤ (1− ε)mDd.

Let L,D,m change in the following way:

L =

⌊
ln lnN

ln c2(η)

⌋
, (B.151)

D =

(
L

2e

) 1
d

N−
1
d(1+ 1

L), (B.152)

and from (B.133),

m ∼ D−(d−1) ∼ L−(1− 1
d)N(1− 1

d)(1+ 1
L), (B.153)

and

λ ∼ mDd ∼ L
1
dN−

1
d(1+ 1

L), (B.154)

α = λη ∼ L
1
dN−

1
d(1+ 1

L). (B.155)

Then

∆ ≥ 2αc1(η)

LcL2 (η)
&

α

lnN ln lnN
. (B.156)

Note that the second, third and fourth term in the bracket at the right hand side of (B.143) converge

to zero. In particular, for the second term,

λ2
(
ln m

λ

)2

m∆2
∼ (lnN)4

m
→ 0. (B.157)

For the third term,

mTV
(
E
[

Poi
(
NU

m

)]
,E
[

Poi
(
NU ′

m

)])
≤

(
2eNDd

L

)L
m =

m

N
→ 0, (B.158)
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and it is straightforward to show that the fourth term also converges to zero. Therefore, from

Lemma B.14,

Ra3(N,M, ε) & ∆2 & L
2
dN−

2
d(1+ 1

L) 1

ln2N ln2 lnN
. (B.159)

Pick η such that c2(η) = e2. According to condition 1) in the statement of Lemma B.14, this is

possible if c is sufficiently small. Then

Ra3(N,M, ε)

& N−
2
d(1+ 2

ln lnN ) ln−2N ln−(2− 2
d)(lnN). (B.160)

From Lemma B.13, and note that from (B.142),

ε2 =
16λ2

m2
∼ m2D2d

m
∼ Dd+1, (B.161)

which converges sufficiently fast, thus Ra2(N(1 − ε)) can also be lower bounded with the right

hand side of (B.160). From (B.135) and (B.137),

Ra(N,M) & N−
2
d(1+ 2

ln lnN ) ln−2N ln−(2− 2
d)(lnN). (B.162)

Proof of (B.123).
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Define

Ga = {(f, g)|f(x) = (1− α)Qa(x)

+
m∑
i=1

α

mDd
Qa

(
x− ai
D

)
,

g(x) = (1− α)Qa(x) +
m∑
i=1

vi
mDd

Qa

(
x− ai
D

)
,

1

m

m∑
i=1

vi = α, 1 < mDd−1 < C1,
ui
mDd

∈ (c, 1)

}
.

(B.163)

Then for any (f, g) ∈ Ga,

D(f ||g) =
m∑
i=1

α

m
ln
α

vi
= α lnα− α

m

m∑
i=1

ln vi. (B.164)

Define

Ra4(N,M) = inf
D̂

sup
(f,g)∈Ga

E[(D̂(N,M)−D(f ||g))2], (B.165)

then for sufficiently large Ug and sufficiently low Lg, we have Ra(N,M) ≥ Ra4(N,M).

We use Poisson sampling again. Define

Ra5(N,M) = inf
D̂

sup
(f,g)∈Ga

E[(D̂(N,M ′)−D(f ||g))2], (B.166)

in which M ′ ∼ Poi(M). Then we have the following lemma.

Lemma B.16.

Ra4(N,M) ≥ Ra5(N, 2M)− 1

4
α2 ln2 c exp[−(1− ln 2)M ].

(B.167)
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Proof. Please refer to Appendix B.5.3.

Define

G ′a = {(f, g)|f(x) = (1− α)Qa(x)+
m∑
i=1

α

mDd
Qa

(
x− ai
D

)
,

g(x) = (1− α)Qa(x) +
m∑
i=1

vi
mDd

Qa

(
x− ai
D

)
,∣∣∣∣∣ 1

m

m∑
i=1

vi − α

∣∣∣∣∣ < ε, 1 < mDd−1 < C1,

ui
mDd

∈ (c(1 + ε), 1− ε)
}
,

(B.168)

and

Ra6(N,M) = inf
D̂

sup
(f,g)∈G′a

E[(D̂(N,M ′)−D(f ||g))2], (B.169)

in which M ′ ∼ Poi
(
M
∫
g(x)dx

)
. Then the following lemma lower bounds Ra5 with Ra6:

Lemma B.17. If ε < α/2, then

Ra5(N, (1− ε)M) ≥ 1

2
Ra6(N,M)− 4ε2. (B.170)

Proof. Please refer to Appendix B.5.4.

Now we bound Ra6(N,M, ε) with the following lemma.

Lemma B.18. Let V, V ′ be two random variables that satisfy the following conditions:

(1) V, V ′ ∈ [ηλ, λ], in which λ ≤ (1− ε)mDd, 0 < η < 1 and ηλ ≥ c(1 + ε)mDd;

(2) E[V ] = E[V ′] = α.
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Define

∆ = |E[lnV ]− E[lnV ′]|. (B.171)

Let ε = λ/
√
m, then

Ra6(N,M, ε)

≥ α2∆2

16

[
1

2
− 8 ln2 c

m∆2

−mTV
(
E
[

Poi
(
MV

m

)]
,E
[

Poi
(
MV ′

m

)])]
.

(B.172)

Proof. Please refer to Appendix B.5.5.

Now we use eq.(34) in [90] again, which shows that there exist V, V ′ ∈ [ηλ, λ] that have

matching moments up to L-th order, such that

|E[lnV ]− E[lnV ′]| = 2 inf
p∈PL

sup
z∈[η,1]

| ln z − p(z)|. (B.173)

The remaining proof follows the proof of (B.122). L,D,m, λ and α take the same value as the

equations from (B.151) to (B.155), and then we can get similar bound as (B.122), replacing N

with M .
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B.5.1 Proof of Lemma B.12

Let N ′ ∼ Poi(2N), then

Ra2(2N,M)

= inf
D̂

sup
(f,g)∈Fa

E
[
(D̂(N,M)−D(f ||g))2

]
≤ inf

D̂
E

[
sup

(f,g)∈Fa
E
[
(D̂(N,M)−D(f ||g))2|N ′

]]

= E

[
inf
D̂

sup
(f,g)∈Fa

E
[
(D̂(N,M)−D(f ||g))2|N ′

]]
= E[Ra1(N ′,M)]

= E[Ra1(N ′,M)|N ′ ≥ N ]P(N ′ ≥ N)

+E[Ra1(N ′,M)|N ′ < N ]P(N ′ < N),

(B.174)

in which the inequality in the second step comes from Jensen’s inequality. Note that Ra1(N,M)

is a nonincreasing function of N , because if N1 < N2, given N2 samples {X1, . . . ,XN2}, one

can always pick N1 samples for the estimation, thus Ra1(N1,M) ≥ Ra1(N2,M) always holds.

Therefore

E[Ra1(N ′,M)|N ′ ≥ N ] ≤ Ra1(N,M). (B.175)

Moreover, since N ′ ∼ Poi(2N), use Chernoff inequality, we get

P(N ′ < N) ≤ exp[−(1− ln 2)N ]. (B.176)

Now it remains to bound E[Ra1(N ′,M)|N ′ ≤ N ]. Note that we can always let the estimator
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be

D̂(f ||g) =
1

2

(
sup

(f,g)∈Fa
D(f ||g) + inf

(f,g)∈Fa
D(f ||g)

)
, (B.177)

hence

E[Ra1(N ′,M)|N ′ < N ] ≤ 1

4

(
sup

(f,g)∈Fa
D(f ||g)− inf

(f,g)∈Fa
D(f ||g)

)2

. (B.178)

From the definition of Fa in (B.133), for all (f, g) ∈ Fa,

D(f ||g) =

∫
f(x) ln f(x)dx−

∫
f(x) ln g(x)dx

= −h(f)−
∫
f(x) ln g(x)dx, (B.179)

and

∫
f(x) ln g(x)dx =

∫ m∑
i=1

ui
mDd

Qa

(
x− ai
D

)
ln

α

mDdvd
dx

=

(
1

m

m∑
i=1

ui

)
ln

α

mDdvd

= α ln
α

mDdvd
, (B.180)

which is the same for all (f, g) ∈ Fa. In addition,

h(f) = −
∫
f(x) ln f(x)dx

= −(1− α) ln
1

vd
− 1

m

m∑
i=1

ui ln
α

mDdvd

= (1− α) ln vd + α ln(mDdvd)−
1

m

m∑
i=1

ui lnui.

(B.181)
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Hence,

E[Ra1(N ′,M)|N ′ < N ]

≤

(
sup

(f,g)∈Fa
h(f)− inf

(f,g)∈Fa
h(f)

)2

=
1

4

[
sup

{
1

m

m∑
i=1

ui lnui|ui > 0,
1

m

m∑
i=1

ui = α

}

− inf

{
1

m

m∑
i=1

ui lnui|ui > 0,
1

m

m∑
i=1

ui = α

}]2

=
1

4
α2 ln2 α

<
1

4
. (B.182)

From (B.174), (B.175), (B.176) and (B.182),

Ra2(2N,M) ≤ Ra1(N,M) +
1

4
exp[−(1− ln 2)N ]. (B.183)

B.5.2 Proof of Lemma B.13

Recall that in (B.138),

f(x) = (1− α)Qa(x) +
1

q

m∑
i=1

ui
mDd

Qa

(
x− ai
D

)
, (B.184)

and |(1/m)
∑m

i=1 ui − α| < ε. Define

q =

∑m
i=1 ui
mα

, (B.185)

and

f ∗(x) = (1− α)Qa(x) +
1

q

m∑
i=1

ui
mDd

Qa

(
x− ai
D

)
. (B.186)
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Then from (B.138), |q − 1| < ε/α,
∫
f ∗(x)dx = 1, and f ∗ ∈ Fa. Hence

Ra3(N,M, ε) = inf
D̂

sup
(f,g)∈F ′a

E
[
(D̂(N,M)−D(f ||g))2

]
≤ 2inf

D̂
sup

(f,g)∈Fa
E
[
(D̂(N,M)−D(f ∗||g))2

]
+ 2 sup

(f,g)∈Fa
(D(f ||g)−D(f ∗||g))2

≤ 2Ra2((1− ε)N,M) + 2 sup
(f,g)∈Fa

(D(f ||g)−D(f ∗||g))2 . (B.187)

Now we bound the second term.

|D(f ||g)−D(f ∗||g)| ≤ |h(f)− h(f ∗)|+
∣∣∣∣∫ f(x) ln g(x)−

∫
f ∗(x) ln g(x)dx

∣∣∣∣ .
(B.188)

According to (B.181),

|h(f)− h(f ∗)|

=
1

m

∣∣∣∣∣
m∑
i=1

ui lnui −
m∑
i=1

ui
q

ln
ui
q

∣∣∣∣∣
=

1

m

∣∣∣∣∣q
m∑
i=1

ui
q

(
ln
ui
q

+ ln q

)
−

m∑
i=1

ui
q

ln
ui
q

∣∣∣∣∣
≤ 1

m

∣∣∣∣∣(q − 1)
m∑
i=1

ui
q

ln
ui
q

∣∣∣∣∣+
1

m

∣∣∣∣∣
m∑
i=1

ui ln q

∣∣∣∣∣
(a)

≤ |1− q||α lnα|+ α|q ln q|
(b)

≤ ε ln
1

α
+ α

(
1 +

ε

α

)
ln
(

1 +
ε

α

)
(c)

≤ ε ln
1

α
+

3

2
ε, (B.189)
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in which (a) is obtained by maximizing |
∑m

i=1(ui/q) ln(ui/q)| under the restriction (1/m)
∑m

i=1(ui/q) =

α, (b) comes from |q − 1| < ε/α, and (c) uses ε < α/2. Moreover,

∣∣∣∣∫ f(x) ln g(x)dx−
∫
f ∗(x) ln g(x)dx

∣∣∣∣
=

∣∣∣∣∣
(

1

m

m∑
i=1

ui − α

)
ln

α

mDdvd

∣∣∣∣∣
≤ ε

∣∣∣∣ln α

mDdvd

∣∣∣∣ . (B.190)

Hence

|D(f ||g)−D(f ∗||g)| ≤ ε

∣∣∣∣ln α

mDdvd

∣∣∣∣+ ε ln
1

α
+

3

2
ε. (B.191)

Therefore

Ra3(N,M, ε) ≤ 2Ra2((1− ε)N,M) + 6ε2
(

ln2 α

mDdvd
+ ln2 α +

9

4

)
.

B.5.3 Proof of Lemma B.16

Similar to the proof of Lemma B.12,

Ra5(N, 2M) ≤ Ra4(N,M) + exp[−(1− ln 2)M ]E[Ra4(N,M ′)|M ′ < M ],
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and

E[Ra4(N,M ′)|M ′ < M ]

≤ 1

4

(
sup

(f,g)∈Ga
D(f ||g)− inf

(f,g)∈Ga
D(f ||g)

)2

=
1

4

(
α

m
sup

{
m∑
i=1

ln vi|vi ∈ (cmDd,mDd),
1

m

m∑
i=1

vi = α

}

− α
m

inf

{
m∑
i=1

ln vi|vi ∈ (cmDd,mDd),
1

m

m∑
i=1

vi = α

})
≤ 1

4
α2 ln2 c. (B.192)

The proof is complete.

B.5.4 Proof of Lemma B.17

Similar to the proof of Lemma B.13, consider that

g(x) = (1− α)Qa(x) +
1

mDd

m∑
i=1

viQa

(
x− ai
D

)
, (B.193)

define q = (
∑m

i=1 vi)/(mα), and

g∗(x) = (1− α)Qa(x) +
1

q

m∑
i=1

vi
mDd

Qa

(
x− ai
D

)
. (B.194)

Similar to (B.187),

Ra6(N,M, ε) ≤ 2Ra5(N, (1− ε)M) + 2 sup
(f,g)∈G′a

(D(f ||g)−D(f ||g∗))2 ,
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and

|D(f ||g)−D(f ||g∗)| =

∣∣∣∣f(x) ln
g(x)

g∗(x)
dx

∣∣∣∣
= α| ln q|

≤ 2ε, (B.195)

in which the last step holds since |q − 1| < ε/α and ε < α/2. The proof is complete.

B.5.5 Proof of Lemma B.18

Let g1, g2 be two random functions:

g1(x) = (1− α)Qa(x) +
m∑
i=1

Vi
mDd

Qa

(
x− ai
D

)
,

g2(x) = (1− α)Qa(x) +
m∑
i=1

V ′i
mDd

Qa

(
x− ai
D

)
.

Define two events:

E =

{∣∣∣∣∣ 1

m

m∑
i=1

Vi − α

∣∣∣∣∣ ≤ ε, |D(f ||g1)− E[D(f ||g1)]| ≤ 1

4
α∆

}
, (B.196)

E ′ =

{∣∣∣∣∣ 1

m

m∑
i=1

V ′i − α

∣∣∣∣∣ ≤ ε, |D(f ||g2)− E[D(f ||g2)]| ≤ 1

4
α∆

}
, (B.197)

then

P

(∣∣∣∣∣ 1

m

m∑
i=1

Vi − α

∣∣∣∣∣ > ε

)
≤ Var[V ]

mε2
≤ λ2

4mε2
=

1

4
. (B.198)

Consider that | lnV | ∈ (ln(1/λ), ln(1/(ηλ))), we have

Var[lnV ] ≤ 1

4
ln2 η ≤ 1

4
ln2 c, (B.199)
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hence for i = 1, 2,

P
(
|D(f ||gi)− E[D(f ||gi)]| >

1

4
α∆

)
≤ 16

α2∆2
Var[D(f ||gi)]

=
16

α2∆2m
Var[α lnV ]

≤ 4 ln2 c

m∆2
. (B.200)

Therefore

max{P (Ec), P (E ′c)} ≤ 1

4
+

4 ln2 c

m∆2
. (B.201)

According to (B.164),

|E[D(f ||g1)]− E[D(f ||g2)]| = α|E[lnV ]− E[lnV ′]|

= α∆. (B.202)

From the definition of E, E ′ in (B.196) and (B.197), if E,E ′ happen, then

|D(f ||g1)−D(f ||g2)| ≤ 1

2
α∆. (B.203)

Denote π∗1 as the distribution of samples according to g1 conditional onE, and π∗2 as the distribution

according to g2 conditional on E ′. Then under π∗1 , π∗2 ,

TV(π∗1, π
∗
2) ≤ TV(π1, π2) + P (Ec) + P (E ′c), (B.204)

and

TV(π1, π2) ≤ mTV
(
E
[

Poi
(
MV

m

)]
,E
[

Poi
(
MV ′

m

)])
.
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Then according to Le Cam’s lemma,

Ra6(N,M, ε) ≥ 1

4

(
1

2
α∆

)2

(1− TV(π∗1, π
∗
2))

≥ α2∆2

16

[
1

2
− 8 ln2 c

m∆2

−mTV
(
E
[

Poi
(
MV

m

)]
,E
[

Poi
(
MV ′

m

)])]
. (B.205)

The proof is complete.

B.6 Proof of Theorem 3.6

Similar to Theorem 3.5, the proof can be divided into proving the following three bounds:

Rb(N,M) &
1

M
+

1

N
; (B.206)

Rb(N,M) & N−
2γ
d+2 (lnN)−

4d+8−4γ
d+2 ; (B.207)

Rb(N,M) & M− 2γ
d+2 (lnM)−

4d+8−4γ
d+2 . (B.208)

Proof of (B.206).

Let

g(x) =
1√
2π

exp

[
−1

2
x2

1

]
, (B.209)

in which x1 is the value of the first coordinate of x, and

fi(x) =
1√

2πσi
exp

[
− x2

1

2σ2
i

]
, i = 1, 2, (B.210)
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in which σ2
2 = 1/2, and σ1 = (1 + δ)σ2. Then

D(f1||g) =
1

2
(σ2

1 − 1)− lnσ1, (B.211)

D(f2||g) =
1

2
(σ2

2 − 1)− lnσ2, (B.212)

(B.213)

and

D(f1||f2) =
1

2

(
σ2

1

σ2
2

− 1

)
− ln

σ1

σ2

= δ +
1

2
δ2 − ln(1 + δ)

≤ δ2. (B.214)

From Le Cam’s lemma,

Rb(N,M)

≥ 1

4
(D(f2||g)−D(f1||g))2 exp[−ND(f1||f2)]

≥ 1

4

(
ln(1 + δ)− 1

4
(2δ + δ2)

)2

exp[−Nδ2]

≥ 1

4

(
1

2
δ − 3

4
δ2

)2

exp[−Nδ2]. (B.215)

Let δ = 1/
√
N , for sufficiently large N , Rb(N,M) ≥ 1/(32N). Similarly, let

f(x) =
1√
2π

exp

[
−1

2
x2

1

]
, (B.216)

and

gi(x) =
1√

2πσi
exp

[
− x2

1

2σ2
i

]
, i = 1, 2, (B.217)
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in which σ1 = (1 + δ)σ2, then we can get Rb(N,M) & 1/M . Hence

Rb(N,M) &
1

N
+

1

M
. (B.218)

Proof of (B.207).

To begin with, we construct Qb(x) that satisfies the following conditions:

(G1) Qb(x) is supported on B(0, 1), i.e. Qb(x) = 0 for ‖x‖ > 1;

(G2) ‖∇2Qb‖ ≤ C0 for some constant C0;

(G3)
∫
B(0,1)

Qb(x)dx = 1;

(G4) Qb(x) ≥ 0 for all x.

Let

Qm = sup
x
Qb(x). (B.219)

Define

Fb =

{
(f, g)|f(x) = (1− α)Qb(x) +

m∑
i=1

ui
mDd

Qa

(
x− ai
D

)
,

g(x) = (1− α)Qb(x) +
m∑
i=1

α

mDd
Qb

(
x− ai
D

)
,

1

m

m∑
i=1

ui = α, 1 < mDd+2(1−γ) < C1,
ui

mDd+2
< 1

}
. (B.220)

In (B.220), there are two conditions that are different from the definition of Fa in (B.133):

1 < mDd+2(1−γ) < C1, and ui/(mDd+2) < 1. The first one is designed so that the distribution
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satisfies the tail assumption (Assumption 2 (b)). For t ≤ 1,

P(f(X) ≤ t) ≤

 tvd +mtvdD
d if t ≤ D2Qm

tvd + α if t > D2Qm

≤ tvd +mDd+2(1−γ)Q1−γ
m vdt

γ

≤ µtγ, (B.221)

in which µ = vd(1 + C1Q
1−γ
m ).

Follow the analysis in [99], we can still get eq.(100) in [99], i.e.

R(N,M) &
( m

N lnm

)2

. (B.222)

Let

D ∼ N−
1
d+2 (lnN)

1
d+2 , (B.223)

then

m ∼ D−d−2(1−γ) ∼ N
d+2(1−γ)
d+2 (lnN)−

d+2(1−γ)
d+2 . (B.224)

Hence

Rb(N,M) & N−
4γ
d+2 (lnN)−

4d+8−4γ
d+2 . (B.225)
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Proof of (B.208). Define

Gb = {(f, g)|f(x) = (1− α)Qb(x)

+
m∑
i=1

α

mDd
Qb

(
x− ai
D

)
,

g(x) = (1− α)Qb(x) +
m∑
i=1

vi
mDd

Qb

(
x− ai
D

)
,

1

m

m∑
i=1

vi = α, 1 < mDd+2(1−γ) < C1,

vi
mDd+2

< 1, vi ≥ C2α
}
, (B.226)

in which C1 and C2 are two constants. Comparing with the definition of Fb in (B.220), we add a

new condition vi ≥ C2α, to ensure that f/g is always bounded by 1/C2. Similar to Theorem 3.5,

Let V, V ′ ∈ [C2α, λ], λ = α/η, λ ≤ mDd+2. Moreover, we still define ∆ as was already defined

in (B.171). Then from Lemma B.18,

R(N,M) & α2∆2

[
1

2
− 8 ln2 c

m∆2
−mTV

(
E
[

Poi
(
MV

m

)]
,E
[

Poi
(
MV ′

m

)])]
,

and from (B.150),

TV
(
E
[

Poi
(
NU

m

)]
,E
[

Poi
(
NU ′

m

)])
≤

(
2eMλ

mL

)L
≤
(

2eMα

mLη

)L
. (B.227)

From Lemma 5 in [90], there exists two constants c, c′ such that

∆ = inf
p∈PL

sup
z∈[cL−2,1]

| ln z − p(z)| ≥ c′. (B.228)

Let L = 2blnmc, λ = m lnm/e2M , and α = m/(M lnm),

then

Rb(N,M) &
( m

M lnm

)2

. (B.229)
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With the restriction 1 < mD1+2(1−γ) < C1 and λ ≤ mDd+2, we have

D ∼M− 1
d+2 ln

1
d+2 M, (B.230)

m ∼ D−d−2(1−γ) ∼M
d+2(1−γ)
d+2 (lnM)−

d+2(1−γ)
d+2 , (B.231)

hence

Rb(N,M) &M− 4γ
d+2 (lnM)−

4d+8−4γ
d+2 . (B.232)
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Appendix C

Appendix of Chapter 4

C.1 Proof of Proposition 4.1 (B)

Here, we prove that if the conditions in Proposition 4.1 (B) are satisfied, then with Assumption

1 (d), Assumption 1(c) is also satisfied. For presentation simplicity, in the following proof, we

assume that `2 norm is used. According to the definition of function η, we have

|η(B(x, r))− η(x)| =
∣∣∣∣ 1

P(B(x, r))

∫
B(x,r)

f(u)η(u)du− 1

P(B(x, r))

∫
B(x,r)

f(u)η(x)du

∣∣∣∣ .(C.1)

By Taylor expansion, we have η(u) = η(x) +∇η(x)T (u− x) + 1
2
(u− x)T∇2η(ξ(u))(u− x) for

some ξ(u) that is in between u and x. Hence

|η(B(x, r))− η(x)|

=

∣∣∣∣ 1

P(B(x, r))

∫
B(x,r)

f(u)

(
∇η(x)T (u− x) +

1

2
(u− x)T∇2η(ξ(u))(u− x)

)
du

∣∣∣∣ .
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Note that due to symmetry, we have
∫
B(x,r)

f(x)∇η(x)T (u− x)du = 0. Then for any r < D′,

∫
B(x,r)

f(u)∇η(x)T (u− x)du

=

∫
B(x,r)

(f(u)− f(x))∇η(x)T (u− x)du

≤
∫
B(x,r)

(
sup

v∈B(x,D′)

‖∇η(x)‖ ‖∇f(v)‖
f(x)

)
f(x) ‖u− x‖2 du

≤ C0r
2f(x)V (B(x, r)). (C.2)

In addition,

∫
B(x,r)

1

2
f(u)(u− x)T∇2η(ξ(u))(u− x)du ≤ 1

2
CH

∫
B(x,r)

f(u) ‖u− x‖2 du

≤ 1

2
CHr

2P(B(x, r)). (C.3)

Therefore,

|η(B(x, r))− η(x)| ≤ 1

P(B(x, r))

(
C0r

2f(x)V (B(x, r)) +
1

2
CHr

2P(B(x, r))

)
≤

(
C0

Cd
+

1

2
CH

)
r2,

in which the last step uses Assumption 1 (d).

C.2 Proof of Theorem 4.2: Convergence rate of the standard

kNN classification

C.2.1 Upper Bound

In this section, we prove the convergence rate of an upper bound of the excess risk of the standard

kNN classification under Assumption 1. Recall that R and R∗ are defined as R = P(g(X) 6= Y ),
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R∗ = P(g∗(X) 6= Y ), in which

g(x) = sign(η̂(x)), (C.4)

g∗(x) = sign(η(x)), (C.5)

and η̂(x) is defined in (4.11).

Hence we have

R−R∗ = E [P(g(X) 6= Y |X = x)− P(g∗(X) 6= Y |X = x)]

= E[1(g(X) 6= g∗(X))|η(X)|]. (C.6)

We divide the support into four regions:

S1 = {x|f(x) ≥ N−δ, |η(x)| > 2∆}; (C.7)

S2 = {x|f(x) ≥ N−δ, |η(x)| ≤ 2∆}; (C.8)

S3 =

{
x|C0

k

N
< f(x) < N−δ

}
; (C.9)

S4 =

{
x|f(x) ≤ C0

k

N

}
, (C.10)

in which ∆ and δ are two parameters that will be determined later, and C0 = 2/(CdvdD
d).

Then we can rewrite the excess risk as

R−R∗ =
4∑
i=1

E [1(g(X) 6= g∗(X))|η(X)|1(X ∈ Si)] := I1 + I2 + I3 + I4, (C.11)

in which 1(·) is the indication function. In the following, we bound these four terms separately.

Firstly, for I2 we have

I2 = E[1(g(X) 6= g∗(X))|η(X)|1(f(X) ≥ N−δ, |η(X)| ≤ 2∆)]

≤ P(|η(X)| ≤ 2∆)2∆ ≤ Ca(2∆)α+1, (C.12)
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in which the last inequality uses Assumption 1 (a).

Secondly, for I4, we have

I4 = E
[
1(g(X) 6= g∗(X))|η(X)|1

(
f(X) < C0

k

N

)]
≤ P

(
f(X) ≤ C0

k

N

)
≤ Cb

(
C0

k

N

)β
, (C.13)

in which we use Assumption 1 (b).

Now it remains to bound I1 and I3.

Bound of I1. Define

aN =

(
2k

Cdvd
N δ−1

) 1
d

, (C.14)

in which vd is the volume of the ball with unit radius, depending on the distance metric we use. For

example, if we use Euclidean distance, then vd = π
d
2 /Γ(d

2
+1), in which Γ is the Gamma function,

Γ(u) =

∫ ∞
0

tu−1e−tdt, u > 0. (C.15)

From now on, we assume that

lim
N→∞

kN δ−1 = 0. (C.16)

(C.16) will be checked after we finish the proof. With (C.16), for sufficiently large N , aN < D.

According to Assumption 1 (d), for all x ∈ S1,

P(B(x, aN)) ≥ Cdf(x)vda
d
N = Cdf(x)vd

2k

Cdvd
N δ−1 ≥ 2k

N
, (C.17)

in which the last inequality uses the definition of S1 (C.7). Denote ρ as the distance from the test
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point x to its (k + 1)-th nearest neighbor, then according to Chernoff inequality, for all x ∈ S1,

P(ρ > aN |x) ≤ e−NP(B(x,aN ))

(
eNP(B(x, aN))

k

)k
≤ e−2k(2e)k = e−k(1−ln 2). (C.18)

Recall the definition of g and g∗ in (C.4) and (C.5), if sign(η̂(x)) 6= sign(η(x)), then we must have

|η̂(x)− η(x)| > |η(x)|. Therefore, for all x ∈ S1, the misclassification probability is bounded by

P(g(x) 6= g∗(x))

≤ P(ρ > aN |x) + P(ρ ≤ aN , |η̂(x)− η(x)| > |η(x)||x)

≤ e−k(1−ln 2) + P(ρ ≤ aN , |η̂(x)− η(B(x, ρ))| > |η(x)| − |η(x)− η(B(x, ρ))||x),

(C.19)

in which the last inequality uses (C.18) and triangular inequality. For the second term, according

to Assumption 1 (c), and let ∆ = Cca
p
N :

|η(B(x, ρ))− η(x)| ≤ Ccρ
p ≤ Cca

p
N := ∆. (C.20)

Recall that η̂(x) = 1
k

∑k
i=1 Y

(i). Here Y (i) are not independent. However, we can show that the

Hoeffding’s inequality still holds. We provide a proof in Appendix C.11, Lemma C.7. Based on

Lemma C.7 in Appendix C.11, (C.19) and (C.20), we have for all x ∈ S1,

P(g(x) 6= g∗(x)) ≤ e−k(1−ln 2) + 2e−
1
2
k(η(x)−∆)2+ , (C.21)

in which we define U+ = max{U, 0}. Then for all x ∈ S1, we have

η(x)−∆ >
1

2
η(x). (C.22)
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Plug (C.22) into (C.21), then I1 can be bounded as following:

I1 = E[1(g(X) 6= g∗(X))|η(X)|1(X ∈ S1)]

≤ e−k(1−ln 2) + 2E[|η(X)|e−
1
8
k|η(X)|2 ]. (C.23)

The first term of (C.23) decays exponentially. For the second term, using Assumption 4.1(a),

E[|η(X)|e−
1
8
k|η(X)|2 ] =

1√
k
E
[(√

k|η(X)|e−
1
16
k|η(X)|2

)
e−

1
16
k|η(X)|2

]
≤ 2

√
2e−

1
2

√
k

E
[
e−

1
16
k|η(X)|2

]
=

2
√

2e−
1
2

√
k

∫ 1

0

P
(
e−

1
16
k|η(X)|2 > t

)
dt

=
2
√

2e−
1
2

√
k

∫ 1

0

P

(
|η(X)| < 4

√
ln(1/t)

k

)
dt

≤ 2
√

2e−
1
2

√
k

∫ 1

0

Ca

(
4

√
ln(1/t)

k

)α

dt. (C.24)

Therefore this term decays with O
(
k−

α+1
2

)
. Combine two terms in (C.23), we get

I1 = O
(
k−

α+1
2

)
. (C.25)

Bound of I3. According to the definition of I3 in (C.11),

I3 = E
[
1(g(X) 6= g∗(X))|η(X)|1

(
C0

k

N
< f(X) < N−δ

)]
≤ E

[
|η̂(X)− η(X)|1

(
C0

k

N
< f(X) < N−δ

)]
, (C.26)

in which the inequality holds because g(x) = sign(η̂(x)) and g∗(x) = sign(η(x)).

Define rN(x) as:

rN(x) =

(
2k

NCdvdf(x)

) 1
d

. (C.27)
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In S3, f(x) > C0k/N , thus it can be shown that rN(x) ≤ D always holds if x ∈ S3. Then

according to Assumption 4.1(d), P(B(x.rN(x))) ≥ Cdf(x)vdr
d
N(x) = 2k/N , and

P(ρ > rN(x)) ≤ e−NP(B(x,rN (x)))

(
eNP(B(x, rN(x)))

k

)k
≤ e−(1−ln 2)k. (C.28)

To give a bound of I3, note that

E[|η̂(x)− η(x)|] ≤
√

E[(η̂(x)− η(x))2]

=
√

Var[η̂(x)] + (E[η̂(x)− η(x)])2

≤
√

Var[η̂(x)] + |E[η̂(x)]− η(x)|. (C.29)

For the first term in (C.29), define Ui as a random variable drawn from f(·|X ∈ B(x, ρ)), for

i = 1, . . . , k. U1, . . . , Uk are conditionally i.i.d given ρ. Then

Var

[
1

k

k∑
i=1

Y (i)

∣∣∣∣∣ ρ
]

(a)
= Var

[
1

k
E

[
k∑
i=1

Y (i)

∣∣∣∣∣ ρ,X(1), . . . ,X(N)

]]
+ E

[
Var

[
1

k

k∑
i=1

Y (i)

∣∣∣∣∣ ρ,X(1), . . . ,X(N)

]]
(b)

≤ Var

[
1

k

k∑
i=1

η(X(i))

∣∣∣∣∣ ρ
]

+
1

k

= Var

[
1

k

k∑
i=1

η(Ui)

∣∣∣∣∣ ρ
]

+
1

k

(c)
=

1

k
Var[η(U1)|ρ] +

1

k

≤ 2

k
, (C.30)

in which (a) uses the total law of variance. In (b), note that Y (i) are conditionally independent given

ρ and the position of testing point and all training samples, and the conditional variance of Y (i) is

no more than 1. (c) uses the fact that U1, . . . , Uk are conditionally i.i.d given ρ.
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For the second term in (C.29),

|E[η̂(x)]− η(x)|

≤ P(ρ > rN(x)) |E[η̂(x)|ρ > rN(x)]− η(x)|+ P(ρ ≤ rN(x)) |E[η̂(x)|ρ ≤ rN(x)]− η(x)|

≤ 2P(ρ > rN(x)) + |E[η(B(x, ρ))|ρ ≤ rN(x)]− η(x)|

≤ 2e−k(1−ln 2) + Cc

(
2k

NCdvdf(x)

) p
d

. (C.31)

Therefore, using Lemma C.6 in Appendix C.11, we have

I3 =

∫
S3

E|η̂(x)− η(x)|f(x)dx

≤
∫
S3

[√
2

k
+ 2e−k(1−ln 2) + Cc

(
2k

NCdvdf(x)

) p
d

]
f(x)dx

=


O
(
k−

1
2N−βδ

)
+O

((
k
N

)β) if β < p
d

O
(
k−

1
2N−βδ

)
+O

((
k
N

) p
d lnN

)
if β = p

d

O
(
k−

1
2N−βδ

)
+O

(
N−βδ(kN δ−1)

p
d

)
if β > p

d
.

(C.32)

Combine I1, I2, I3 and I4, the excess risk can be expressed as

R−R∗ = O
(
k−

α+1
2

)
+O

(
∆α+1

)
+O

((
k

N

)β)
+ I3, (C.33)

in which I3 is expressed in (C.32). Moreover, according to (C.14), (C.20), we have ∆ ∼

(kN δ−1)p/d.

Adjust δ as well as the growth rate of k over N , we get the following results.

The optimal growth rate of k is

k ∼

 N
2β

2β+α+1 if β ≤ p
d

N
2pβ

βd+p(α+2β) if β > p
d

. (C.34)
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The corresponding convergence rate is:

R−R∗ =


O
(
N−

β(α+1)
2β+α+1

)
if β < p

d

O
(
N−

β(α+1)
2β+α+1 lnN

)
if β = p

d

O
(
N−

pβ(α+1)
βd+p(α+2β)

)
if β > p

d
.

(C.35)

The proof of an upper bound of the excess risk of the standard kNN classification is complete.

C.2.2 Lower Bound

We prove the following statements separately:

sup
(f,η)∈S

(R−R∗) & k−
1+α
2 ; (C.36)

sup
(f,η)∈S

(R−R∗) &

(
k

N

)β
; (C.37)

sup
(f,η)∈S

(R−R∗) & sup
0≤δ≤1

min
{
N−βδ(kN δ−1)

p
d , (kN δ−1)

p(α+1)
d

}
. (C.38)

Proof of (C.36). Let X be uniformly distributed in A ∪B, and let η(x) = a > 0 for all x ∈ A,

η(x) = 1 for all x ∈ B, in which A and B are two disjoint sets.

Then for any x ∈ A,

P (g(x) 6= g∗(x)) = P(g(x) = −1) = P

(
1

k

k∑
i=1

Y (i) < 0

)
. (C.39)

If a ∼ 1/
√
k, then P(g(x) 6= g∗(x))→ c > 0.

Note that according to Assumption 4.1(a), P(|η(X)| ≤ a) ≤ Caa
α. Thus P(A) ≤ Caa

α. Now

we set a ∼ 1/
√
k, and let P(A) = Caa

α, then

R−R∗ = E[1(g(X) 6= g∗(X))|η(X)|] ≥ aP(A)P(g(X) 6= g∗(X)) ∼ a1+α. (C.40)

Substitute a in (C.40) with 1/
√
k, the proof of (C.36) is complete.
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Proof of (C.37). Construct (n+ 1) cubes I1, . . . , In+1:

Ij = {x|4j − 1 < x1 < 4j + 1, x2, . . . , xd ∈ [−1, 1]} . (C.41)

Let random variable X be supported in these cubes. Within each cube, the distribution is uniform.

Let m be the pdf value in the first n cubes. n and m will change with k and N . For the (n + 1)-th

cube, the pdf should be (1− 2dnm)/2d, so that the total probability mass of all (n+ 1) cubes is 1.

For any k and N , let m = k/(3× 2dN).

Let η(x) = (−1)j for x ∈ Ij . For x /∈ ∪n+1
j=1 Ij , η(x) can be set arbitrarily as long as it satisfies

Assumption 4.1(c) with constant Cc. It can be shown that for j = 3, . . . , n − 2, if 2k/3N <

P(B(x, ρ)) < 4k/3N , then B(x, ρ) contains more than 2 and less than 4 cubes among I1, . . . , In.

In this case, the average value of η in B(x, ρ), i.e. η(B(x, ρ)), has opposite sign with η(x). As a

result, if for a specific test point x, 2k/3N < P(B(x, ρ)) < 4k/3N , P(g(x) 6= g∗(x)|P(B(x, ρ)) =

P(sign(η̂(x) 6= sign(η(x))) > 1/2. Hence,

P(g(x) 6= g∗(x)) ≥ 1

2
P
(

2k

3N
< P(B(x, ρ)) <

4k

3N

)
. (C.42)

It can be shown that P(2k/3N < P(B(x, ρ)) < 4k/3N)→ 1 as k →∞. Thus we have P(g(x) 6=

g∗(x))→ 1/2 for all x ∈ I3, . . . , In−2. Then

R−R∗ = E[1(g(X) 6= g∗(X))|η(X)|] & P(X ∈ I3 ∪ . . . ∪ In−2) ∼ nm. (C.43)

Assumption (b) requires that P(f(X) ≤ m) ≤ Cbm
β , thus

R−R∗ & mβ ∼
(
k

N

)β
. (C.44)

The proof of (C.37) is complete.

Proof of (C.38). Construct (n + 1) cubes in similar way as the previous step, i.e. the proof of
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(C.37). However, now we use adaptive cube size. Let

L =
1

2

(
kN δ−1

) 1
d (C.45)

for some 0 ≤ δ ≤ 1. Then construct (n+ 1) cubes I1, . . . , In+1 as following:

Ij = {x|(4j − 1)L < x1 < (4j + 1)L, x2, . . . , xd ∈ [−L,L]} . (C.46)

Let the distribution be uniform within each cube, and the pdf in I1, . . . , In are the same and denoted

as m. Similar to the proof of (C.37), m, n change with k and N . Here we let m = (1/3)N−δ. Then

P(X ∈ Ij) = 2dmLd = k/(3N) for j = 1, . . . , n. Moreover, let

η(x) =
1

4
(−1)j

(
kN δ−1

) p
d (C.47)

for x ∈ Ij . For x /∈ Ij , η(x) need to be set to satisfy Assumption 4.1(c) with constant Cc. To

show that such η exists, define η0(x) as the η constructed in the previous step, i.e. proof of (C.37).

Then let η(x) = Lpη0(x/L), then as long as |η0(B(x, r)) − η0(x)| ≤ Ccr
p for any x and r > 0,

|η(B(x, r))− η(x)| ≤ Ccr
p also holds for any x and r > 0.

The remaining proof is similar to the proof of (C.37). For x ∈ Ij , j = 3, . . . , n− 2,

P(g(x) 6= g∗(x)) >
1

2
P
(

2k

3N
< P(B(x, ρ)) <

4k

3N

)
. (C.48)

Then

R−R∗ = E[1(g(X) 6= g∗(X))|η(X)|]

& P(X ∈ I3 ∪ . . . ∪ In−2)(kN δ−1)
p
d

∼ nm
(
kN δ−1

) p
d . (C.49)

According to Assumptions 4.1 (a) and (b), P
(
|η(X| ≤

(
kN δ−1

) p
d

)
≤ Ca

(
kN δ−1

) pα
d , and
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P(f(X) ≤ m) ≤ Cbm
β , thus nm . min{(kN δ−1),mβ}. Since we have already set m =

(1/3)N−δ,

R−R∗ & min

{
N−βδ

(
kN δ−1

) p
d ,
(
kN δ−1

) p(α+1)
d

}
. (C.50)

The above equation holds for any 0 ≤ δ ≤ 1. Hence (C.38) holds.

Based on (C.36), (C.37), (C.38), we get

inf
k

sup
(f,η)∈S

(R−R∗) = Ω
(
N−min{ β(α+1)

2β+α+1
,

pβ(α+1)
βd+p(α+2β)}

)
. (C.51)

C.3 Proof of Theorem 4.3: Minimax convergence rate of clas-

sification

The minimax lower bound of the convergence rate is defined as inf
g

sup
(f,η)∈S

(R− R∗). To obtain this

bound, a common approach is to find an appropriate finite subset of S, so that the problem can be

reduced to a hypothesis testing problem. The minimax rate among this subset can then be used as

a lower bound of the minimax rate over the whole class S. A detailed introduction of this type of

method can be found in [82].

In our proof, the construction of the finite subset S∗ of S is based on Assouad cube method,

which has been used in [5] and [31].

Let f(x) be supported on (n0 + 1) balls, in which n0 will be determined later:

f(x) = m

n0∑
j=1

1(x ∈ B(aj, L)) +m01(x ∈ B(a0, L0)), (C.52)

in which L and L0 depend on the sample size N . m, m0 are also two parameters that need to be

determined later.
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We require that ‖ai − aj‖ > r0 for all i 6= j, in which

r0 = max

{(
2

Cc

) 1
p

, 2

}
L, (C.53)

in which Cc is the constant in Assumption 1 (c). We arrange a0, . . . , an0 in the following way.

Define

rM = inf{r|P(B̄(0, r), r0) ≥ n0}, (C.54)

in which B̄(0, r) is the closure of B(0, r), and P denotes the packing number. Since B̄(0, r) is a

closed set, we know that the packing number should be right continuous in r. As a result, we have

P(B̄(0, rM), r0) = n0. We can then pick a1, . . . , an0 , so that the pairwise distances between them

are no less than r0. Besides, we pick a0 such that ‖a0‖ > rM +L0. Under this condition,B(a0, L0)

does not intersect with any other n0 balls B(aj, r0).

We also let a0 to be sufficiently far away from aj, j = 1, . . . , n0. Furthermore, define

ηv(x) =

n0∑
j=1

v(j)Lp1(x ∈ B(aj, L)), (C.55)

in which v ∈ {−1, 1}n0 . To ensure that (C.52) is a normalized pdf, we have the following

constraints:

n0mvdL
d +m0vdL

d
0 = 1, (C.56)

in which, as defined before, vd is the volume of the unit radius ball.

Recall that S is the set of all pdfs and regression functions that satisfy Assumption 1 (a)-(d).

We have the following lemma:

Lemma C.1. (f, ηv) satisfies Assumption 1(a)-(d) for ∀v ∈ {−1, 1}n0 if: (1) n0mvdL
d ≤ CaL

pα;

(2) n0mvdL
d ≤ Cbm

β; (3) L ≤ 1.
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Proof. Please see Appendix C.3.1 for proof.

Define

S∗ = {(f, ηv)|v ∈ {−1, 1}n0}, (C.57)

where f and ηv satisfy the requirements in Lemma C.1, then S∗ ⊂ S. For an arbitrary classifier g,

sup
(f,η)∈S

(R−R∗) ≥ sup
(f,η)∈S∗

(R−R∗). (C.58)

To bound the right hand side of (C.58), we use the following lemma.

Lemma C.2. (Modified from [4], Lemma 5.1)

sup
(f,η)∈S∗

(R−R∗) ≥ 1− Lp
√
Nω

2
n0ωL

p, (C.59)

in which ω is the probability mass of B(aj, L) for j = 1, . . . , n0:

ω = P(B(aj, L)) = mvdL
d. (C.60)

Proof. Lemma C.2 is similar to the Assouad lemma for classification ([4], Lemma 5.1), except

that some details are different. In Appendix C.3.2, we provide a simplified proof.

Therefore, according to Lemma C.2,

sup
(f,η)∈S∗

(R−R∗) ≥ 1

2
(1− Lp

√
Nω)n0ωL

p & (1− vdm
1
2L

d
2

+pN
1
2 )n0mL

d+p, (C.61)

in which the second step comes from (C.60).

We then select a proper rule to let m, n0, L to vary with N . From Lemma C.1, we get the
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following bounds:

mn0L
d = O(L2α), (C.62)

mn0L
d = O(mβ), (C.63)

L = O(1). (C.64)

In addition, we need to ensure that in the right hand side of (C.61), the expression in the bracket

is larger than a positive constant, i.e. 1− vdm
1
2L

d
2

+pN
1
2 > C > 0, then

NmL2p+d = O(1). (C.65)

Based on these constraints, we can get a lower bound of the minimax convergence rate.

Construct 1: Let L ∼ N−
β

βd+p(α+2β) , and m ∼ N−
2α

βd+p(α+2β) , then

R−R∗ ∼ n0mL
d+p & N−

pβ(α+1)
βd+p(α+2β) . (C.66)

Construct 2: Let L ∼ 1, m ∼ N−1, then

R−R∗ & N−β. (C.67)

Combine these two bounds, we get

sup
(f,η)∈S∗

(R−R∗) & N−min{ pβ(α+1)
βd+p(α+2β)

,β}. (C.68)

We can check that when β ≤ 1, both constructions (1) and (2) satisfy the conditions from (C.62)

to (C.64). The proof is complete.
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C.3.1 Proof of Lemma C.1

In this section, we prove Lemma C.1. In particular, we prove that the Assumption 1 (a)-(d) are

satisfied under conditions specified in the Lemma.

For (a). According to condition (1), we have

P(0 < |η(X)| ≤ t) =

 0 if t < Lp

n0mvdL
d if t ≥ Lp.

(C.69)

If n0mvdL
d ≤ CaL

pα, then P(0 < |η(X)| < t) ≤ Cat
α.

For (b). According to condition (2), we have

P(f(X) < t) =


0 if t ≤ m;

n0mvdL
d if m < t ≤ m0;

1 if t > m0.

(C.70)

If n0mvdL
d ≤ Cbm

β and m0 > C
− 1
β

b , then P(f(X) < t) ≤ Cbt
β .

For (c). As Assumption 1 (c) holds only for x with f(x) > 0, we only need to discuss the case

where B(x, r) ∩ B(aj, L) 6= ∅ for some j, or B(x, r) ∩ B(a0, L0) 6= ∅, i.e., among all (n0 + 1)

balls, B(x, r) intersects with at least one ball.

To prove Assumption 1 (c), we discuss two cases:

Case 1: r > r0. According to (C.55), |η(x)| ≤ Lp. Recall that η(B(x, r)) is the average of

η(x) in B(x, r), therefore |η(B(x, r))| ≤ Lp. If r > r0, then Ccrp > Ccr
p
0 ≥ 2Lp. Therefore

|η(B(x, r))− η(x)| ≤ Ccr
p holds.

Case 2: r ≤ r0. In this case, it is obvious that B(x, r) intersects with at most one ball among

the (n0 + 1) balls. Therefore the density is uniform, and |η(B(x, r))− η(x)| = 0.

For (d). Now we pick D < min{rM , L0}, and show that there exists a constant Cd, such that

for any x with f(x) > 0, P(B(x, r)) ≥ f(x)Cdvdr
d for any r < D. Despite that quantities such as

r0, L, L0,m and n0 change with the sample size N , to ensure that our derivation of minimax lower
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bound is effective, we must give a universal constant Cd, independent of sample sizeN . Obviously,

inf
u∈B(c,r)

V (B(u, r) ∩B(c, r))/rd is a constant for all r and c. We use v′d to define this constant.

We discuss two cases: 1) x ∈ B(a0, L0); and 2) x ∈ B(aj, L) for some j ∈ {1, . . . , n0}.

For the first case, recall that the choice of D ensures that L0 > D. Furthermore, the density is

uniform in B(a0, L0). Then for any r < D,

P(B(x, r)) = f(x)V (B(x, r) ∩B(a0, L0))

(a)

≥ f(x)
rd

Ld0
V (B(x, L0) ∩B(a0, L0))

≥ f(x)
rd

Ld0
inf

u∈B(a0,L0)
V (B(u, L0) ∩B(a0, L0))

≥ f(x)rdv′d, (C.71)

in which (a) holds because r < D < L0, hence

r

L0

[B(x, L0) ∩B(a0, L0)] = B(x, r) ∩B(a0, r) ⊂ B(x, r) ∩B(a0, L0). (C.72)

For the second case, if f(x) > 0 and r < 4r0, then according to the definition of r0 in (C.53),

B(aj, L) ⊂ B(x, r0) for some j. Hence

P(B(x, 4r0)) ≥ f(x)vdL
d. (C.73)

Then for r < 4r0,

P(B(x, r)) ≥
(
r

4r0

)d
P(B(x, 4r0))

≥ f(x)vd
Ld

4drd0
rd

≥ f(x)vdr
d 1

4d
(

max

{(
2
Cc

) 1
p
, L

})d . (C.74)

235



If r ≥ 4r0, define n′:

n′ =

n0∑
j=1

1(B(aj, L) ⊂ B(x, r)). (C.75)

Then

n′ ≥ P(B(x, r − 2r0) ∩B(0, rM), r0). (C.76)

, in which the right hand side is the packing number of B(x, r − 2r0) using balls with radius r0.

We prove (C.76) by contradiction. Suppose (C.76) is not true, then we can add at least one

more ball with radius r0 in B(x, r − r0). However, according to (C.54), the n0 balls B(aj, r0),

j = 1, . . . , n0 already form a maximum packing in B(x, rM). Therefore (C.76) holds. Hence for

all r < rM ,

P(B(x, r)) = f(x)vdL
dn′

≥ f(x)vdL
dP(B(x, r − 2r0) ∩B(0, rM), r0)

(a)

≥ f(x)vdL
dV (B(x, r − 2r0) ∩B(0, rM))

V (B(0, r0))

≥ f(x)vdL
dV
(
B
(
0, 1

2
r
))
∩B(−x, rM))

vdrd0
(b)

≥ f(x)
Ld

rd0

rd

2drdM
inf

u∈B(0,rM )
V (B(0, rM) ∩B(u, rM))

= f(x)rdv′d
1

2d
(

max

{(
2
Cc

) 1
p
, L

})d , (C.77)

in which (a) uses the lower bound of packing number [87]. For (b), recall that for case 2, x ∈

236



B(aj, L) ⊂ B(0, rM), hence ‖x‖ < rM . Therefore

inf
u∈B(0,rM )

rd

2drdM
V (B(0, rM) ∩B(u, rM)) = inf

u∈B(0,r/2)
V (B (0, r/2) ∩B (u, r/2))

≤ inf
u∈B(0,rM )

V (B (0, r/2) ∩B (u, rM))

≤ V (B (0, r/2) ∩B (−x, rM)) . (C.78)

(C.71), (C.74) and (C.77) show that there exists an universal constant Cd so that Assumption 1 (d)

is satisfied.

Now we have shown that Assumption 1 (a)-(d) are all satisfied, hence the proof of Lemma C.1

is complete.

C.3.2 Proof of Lemma C.2

Our proof is similar to the proof of Lemma 5.1 in [4]. To begin with, we give a bound of the

excess risk at a specific point x ∈ B(a1, L). Define Pv(·) as the probability under η = ηv. Denote

N1 as the number of training samples that falls in B(a1, L). N1 follows Binomial distribution

Binom(N,ω), in which ω is defined in (C.60), and Binom denotes Binomial distribution. Then

sup
(f,η)∈S∗

(P(g(x) 6= Y )− P(g∗(x) 6= Y ))

(a)

≥ sup
v(1)∈{−1,1},v(2)=...=v(n0)=0

(Pv(g(x) 6= Y )− Pv(g∗(x) 6= Y ))

(b)
= sup

v(1)∈{−1,1},v(2)=...=v(n0)=0

LpPv(g(x) 6= v(1))

= sup
v(1)∈{−1,1},v(2)=...=v(n0)=0

LpE[Pv(g(x) 6= v(1)|N1)]

(c)

≥ sup
v(1)∈{−1,1},v(2)=...=v(n0)=0

LpE

[
1− TV

(
Binom

(
N1,

1−Lp
2

)
,Binom

(
N1,

1+Lp

2

))
2

]
.

(C.79)

Here, (a) holds because v(1) ∈ {−1, 1},v(2) = . . . = v(n0) = 0 is more restrictive than S∗

defined in (C.57). (b) comes from (C.6). (c) gives a lower bound of the error probability of binary
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hypothesis testing problem [82], in which TV denotes the total variation distance between two

distributions. The total variation distance between two Binomial distributions is bounded by

TV (Binom(N, p1),Binom(N, p2))

≤ H(B(N, p1), B(N, p2))

=

√√√√2

[
1−

(
1− H2(Bern(p),Bern(1− p))

2

)N]
, (C.80)

in which H is the Hellinger distance and Bern denotes Bernoulli distribution. Then we use (C.80)

to bound the total variation distance:

TV

(
Binom

(
N1,

1− Lp

2

)
,Binom

(
N1,

1 + Lp

2

))
≤

√
2
[
1− (

√
1− L2p)N1

]
≤
√
N1L

p. (C.81)

Plugging (C.81) into (C.79) and considering that E[
√
N1] ≤

√
E[N1] =

√
Nω, we have

sup
(f,η)∈S∗

(P(g(x) 6= Y )− P(g∗(x) 6= Y )) ≥ Lp
1−
√
NωLp

2
. (C.82)

For x ∈ B(aj, L) for j = 2, . . . , n0, we can obtain the same bound. Hence

sup
(f,η)∈S∗

(R−R∗) = sup
(f,η)∈S∗

(P(g(X) 6= Y )− P(g∗(X) 6= Y ))

≥
n0∑
j=1

P(X ∈ B(aj, L))Lp
1−
√
NωLp

2

= n0ωL
p1−

√
NωLp

2
. (C.83)

The proof of Lemma C.2 is complete.
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C.4 Proof of Theorem 4.5: Convergence rate of the adaptive

kNN classification

In this section, we prove the convergence rate of the adaptive kNN classifier. To begin with, define

h(x) =
f

1
1−q (x)

P
q

1−q (B(x, A))
. (C.84)

In this section, without loss of generality, we will assume D ≥ A, as the assumption D ≥ A

does not impose further restrictions on the distribution of X. This can be seen from the fact that,

if D < A, P(B(x, r)) ≥ Cdf(x)V (B(x, D)) ≥ Cd (D/A)d f(x)V (B(x, r)) for D ≤ r ≤ A, we

can use Cd(D/A)d to replace Cd, and use A to replace D.

According to Assumption 4.1(d), the following relation holds between P(B(x, A)), f(x) and

h(x):

P(B(x, A)) ≥ CdvdA
df(x) ≥ (CdvdA

d)
1

1−qh(x). (C.85)

Moreover, According to Assumption 2,

P(h(X) < t) = P
(

f(X)

Pq(B(X, A))
< t1−q

)
≤ C ′bt

β. (C.86)

(C.85) and (C.86) will be used frequently in the proof. Now we divide the support into four

regions:

S1 = {x|h(x) ≥ N−δ, |η(x)| > 2∆}, (C.87)

S2 = {x|h(x) ≥ N−δ, |η(x)| ≤ 2∆}, (C.88)

S3 = {x|C0N
−1 < h(x) < N−δ}, (C.89)

S4 = {x|h(x) ≤ C0N
−1}, (C.90)
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in which 0 < δ < 1. δ and ∆ will be determined later, and

C0 = 2(K + 1)
1

1−q (CdvdA
d)−

1
1−q . (C.91)

Recall that

R−R∗ = E[1(g(X) 6= g∗(X))|η(X)|]. (C.92)

Define

Ii = E[1(g(X) 6= g∗(X))|η(X)|1(X ∈ Si)], (C.93)

for i = 1, 2, 3, 4. Then we have

R−R∗ =
4∑
i=1

Ii. (C.94)

Now we bound I1, I2, I3 and I4 separately.

Bound of I1. Define ρ as the distance from test point x to its (k + 1)-th nearest neighbor. In

addition, define rn(x) as

rn(x) = inf

{
r

∣∣∣∣ P(B(x, r))

P(B(x, A))
=

2k + 2

n

}
. (C.95)

If the density is positive everywhere, then the distance r that satisfies P(B(x, r))/P(B(x, A)) =

(2k + 2)/n is unique. Otherwise r may not be unique, in which case we define rn(x) to be the

infimum. For both cases, since the distribution of X is continuous, we have

P(B(x, rn(x)))

P(B(x, A))
=

2k + 2

n
. (C.96)

We have the following lemma, which gives an lower bound of n and upper bound of ρ that hold
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with high probability.

Lemma C.3. We have

P
(
n ≤ 1

2
NP(B(x, A))

)
≤ exp

[
−1

2
(1− ln 2)NP(B(x, A))

]
. (C.97)

Furthermore, if n ≥ NP(B(x, A))/2, then for all x ∈ S1,

P(ρ > rn(x)|n) ≤ exp[−(1− ln 2)(k + 1)]. (C.98)

Proof. According to Chernoff inequality,

P
(
n ≤ 1

2
NP(B(x, A))

)
≤ e−NP(B(x,A))(2e)

1
2
NP(B(x,A)) = exp

[
−1

2
(1− ln 2)NP(B(x, A))

]
.

Hence, (C.97) is true.

Now we prove (C.98). Recall (4.13), k is determined by k = bKnqc + 1, thus k/n ∼ nq−1,

thus for sufficiently large N , k/n < 1 and hence rn(x) ≤ A. If we know that a sample is already

in B(x, A), then the conditional probability of that point falling in B(x, rn(x)) is

P (X ∈ B(x, rn(x))|X ∈ B(x, A)) =
P(B(x, rn(x)))

P(B(x, A))
. (C.99)

Define n′ =
∑N

i=1 1(Xi ∈ B(x, rn(x))). According to (C.99), n′ follows Binomial distribution

conditional on n, i.e. n′|n ∼ Binomial(n,P(B(x, rn(x)))/P(B(x, A))). Using Chernoff inequality

again,

P(ρ > rn(x)|n) = P(n′ ≤ k|n)

≤ exp

[
−nP(B(x, rn(x)))

P(B(x, A))

](
enP(B(x,rn(x)))

P(B(x,A))

k + 1

)k+1

= e−(2k+2)(2e)k+1

= exp[−(1− ln 2)(k + 1)], (C.100)
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in which the second last step comes from (C.96). The proof of (C.98) is complete.

Now we bound I1.

I1 = E[1(g(X) 6= g∗(X))|η(X)|1(X ∈ S1)] ≤ P1 + P2 + I ′1, (C.101)

in which P1, P2 and I ′1 are defined as

P1 := P
(
n ≤ 1

2
NP(B(X, A))

)
, (C.102)

P2 := P
(
n >

1

2
NP(B(X, A)), ρ > rn(X)

)
, (C.103)

I ′1 := E
[
1(g(X) 6= g∗(X))|η(X)|1

(
X ∈ S1, n >

1

2
NP(B(X, A)), ρ ≤ rn(x)

)]
. (C.104)

According to (C.97) and Assumption 1(d),

P1 = E
[

P
(
n ≤ 1

2
NP(B(X, A))

∣∣∣∣X)]
≤ E

[
exp

[
−1

2
(1− ln 2)CdvdA

dNf(X)

]]
. (C.105)

P2 can be bounded by

P2 ≤ E
[

P(ρ > rn(X)|n)

∣∣∣∣n > 1

2
NP(B(X, A))

]
(a)

≤ E
[
exp[−(1− ln 2)(k + 1)]

∣∣∣∣n > 1

2
NP(B(X, A))

]
(b)

≤ E
[
exp[−(1− ln 2)Knq]

∣∣∣∣n > 1

2
NP(B(X, A))

]
(c)

≤ E
[
exp

[
−(1− ln 2)K2−q(CdvdA

d)qN qf q(X)
]]
. (C.106)

Here, (a) comes from (C.98). (b) comes from (4.13), which implies that k > Knq. (c) comes from
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Assumption 1 (d).

Use Lemma C.6 to be shown in Appendix C.11, we know that P1 and P2 can both be bounded

by O(N−β).

Now we bound I ′1. For any test point x ∈ S1, if ρ ≤ rn(x) and n > NP (B(x, A))/2, then

P(B(x, rn(x))) =
2k + 2

n
P(B(x, A)) ≤ C1N

−(1−q)Pq(B(x, A)), (C.107)

in which the second step uses k > Knq and n > NP(B(x, A))/2.

In addition, from Assumption 1(d), P(B(x, rn(x))) ≥ Cdvdr
d
n(x)f(x), hence

rn(x) ≤
[
C1

Cdvd
N−(1−q) Pq(B(x, A))

f(x)

] 1
d

≤
[
C1

Cdvd
N−(1−q) 1

h1−q(x)

] 1
d

≤
[
C1

Cdvd
N−(1−q)(1−δ)

] 1
d

:= aN , (C.108)

in which the second step comes from the definition of S1 in (C.87).

Using Lemma C.7 that will be proved in Section C.11, and Assumption 1(c), we have

|E[η̂(x)|ρ]− η(x)| = η(B(x, ρ))− η(x) ≤ Ccρ
p ≤ Ccr

p
n(x) ≤ Cca

p
N . (C.109)

Recall that in the definition (C.87), we let |η(x)| > 2∆ for all x ∈ S1. Now we define ∆ as

∆ = Cca
p
N , (C.110)
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then there exists a constant C2, such that for ρ ≥ rn(x) and n > NP(B(x, A))/2,

P(g(x) 6= g∗(x)|ρ, n) = P(sign(η̂(x)) 6= sign(η(x)|ρ)

≤ P(|η̂(x)− η(x)| > |η(x)||ρ)

≤ P(|η̂(x)− E[η̂(x)|ρ]| > |η(x)| − |E[η̂(x)|ρ]− η(x)||ρ)

≤ P(|η̂(x)− E[η̂(x)|ρ]| > |η(x)| −∆|ρ)

(a)

≤ 2 exp

[
−1

2
k(|η(x)| −∆)2

]
(b)

≤ 2 exp

[
−1

8
kη2(x)

]
(c)

≤ 2 exp

[
−1

8
Knqη2(x)

]
(d)

≤ 2 exp
[
−C2N

q(1−δ)η2(x)
]
. (C.111)

(a) uses Hoeffding’s inequality. For (b), note that in S1, |η(x)| > 2∆, hence η(x) −∆ > η(x)/2.

(c) comes from (4.13). (d) uses (C.85): n > NP(B(x, A))/2 & Nh(x) & N1−δ. Hence (C.104)

can be bounded using the same method as was already used in the derivation of (C.24):

I ′1 ≤ 2E
[
|η(X)| exp

[
−C2N

q(1−δ)η2(X)
]
1(X ∈ S1)

]
= O

(
N−

α+1
2
q(1−δ)

)
.

(C.112)

Recall (C.101) and the fact that P1 and P2 are both bounded by O(N−β),

I1 = O
(
N−

α+1
2
q(1−δ)

)
+O(N−β). (C.113)
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Bound of I2. From (C.93),

I2 = E[1(g(X) 6= g∗(X))|η(X)|1(X ∈ S2)]

≤ E[|η(X)|1(|η(X)| < 2∆)]

≤ 2∆P(|η(X)| ≤ 2∆)

(a)
= O(∆α+1)

(b)
= O(a

p(α+1)
N )

(c)
= O

(
N−

p(α+1)
d

(1−q)(1−δ)
)
, (C.114)

in which (a) comes from Assumption 1(a), (b) comes from (C.110), and (c) comes from (C.108).

Bound of I3. Define

φ(x, n) := E[|η̂(x)− η(x)||n], (C.115)

then

I3 = E[1(g(X) 6= g∗(X))|η(X)|1(X ∈ S3)]

≤ E[|η̂(X)− η(X)|1(X ∈ S3)] = E[φ(X, n)1(X ∈ S3)].

Then we give a bound of φ(x, n).

Case 1): If n ≤ 1
2
NP(B(x, A)), we bound it with

φ(x, n) ≤ E[|η̂(x)||n] + |η(x)| ≤ 2. (C.116)

Case 2): If n > 1
2
NP(B(x, A)), then according to (C.85), (4.13), (C.91) and (C.89), which requires

that h(x) > C0/N , it can be shown that k ≤ n. Recall that λ is defined in (4.29). Then use Lemma

C.9 in Appendix C.11,

φ(x, n) ≤
√

E[(η̂(x)− η(x))2] ≤
√
CMh

−λ(x)N−λ. (C.117)
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With (C.116) and (C.117), I3 can be bounded by:

I3 ≤ 2P
(
X ∈ S3, n ≤

1

2
NP(B(X, A))

)
+
√
CME[h−λ(X)1(X ∈ S3)]N−λ. (C.118)

In the derivation about I1, we have shown that the first term decays withO(N−β). The second term

can be bounded using Lemma C.6. If β 6= λ, the bound of I3 can be expressed as

I3 = O
(
N−λ(1−δ)−δβ)+O(N−β). (C.119)

If β = λ, then I3 = O(N−β lnN).

Bound of I4.

I4 = E[1(g(X) 6= g∗(X))|η(X)|1(X ∈ S4)] ≤ P(X ∈ S4) = O(N−β). (C.120)

Recall the expression of R−R∗ in (C.94), and combine (C.113), (C.114), (C.119) and (C.120), if

β 6= λ,

R−R∗ = O
(
N−

α+1
2
q(1−δ)

)
+O

(
N−

p
d

(α+1)(1−q)(1−δ)
)

+O
(
N−λ(1−δ)−δβ)+O(N−β)

= O(N−(α+1)λ(1−δ)) +O
(
N−λ(1−δ)−δβ)+O(N−β). (C.121)

The first and the second terms contain δ. To optimize the overall convergence rate, let δ =

aα/(aα + β), then

R−R∗ = O
(
N−

λβ(α+1)
λα+β

)
+O(N−β) = O

(
N−min{β,λβ(α+1)

λα+β }
)
. (C.122)

Now consider β = λ. In this case, R−R∗ = O(N−β lnN).

The optimal convergence rate. From (4.29), the maximal λ is p/(d + 2p), which is attained

if q = 2p/(d+ 2p). Then the optimal convergence rate is
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Ropt −R∗ =

 O
(
N−min{ pβ(α+1)

βd+p(α+2β)
,β}
)

if β 6= p
d+2p

O(N−β lnN), if β = p
d+2p

. (C.123)

C.5 Proof of Theorem 4.7: Convergence rate of the standard

kNN regression with bounded η

C.5.1 Upper bound

For any test point x, define ρ as the distance from x to its (k + 1)-th nearest neighbor among the

training dataset. Then

E[(g(x)− η(x))2|ρ] = (E[g(x)|ρ]− η(x))2 + Var[g(x)|ρ]

= (η(B(x, ρ))− η(x))2 + Var

[
1

k

k∑
i=1

Y (i)

∣∣∣∣∣ ρ
]
, (C.124)

in which the last step comes from (C.203) in Lemma C.7.

Define the following two events:

Event 1: f(X) > 2k/(NCdvdD
d) and ρ < D;

Event 2: f(X) ≤ 2k/(NCdvdD
d) or ρ ≥ D.

Define a random variable E, E = 1 when event 1 occurs, and E = 2 when event 2 occurs.

Case 1. If Event 1 happens, then according to Assumption 1(c), (η(B(x, ρ))− η(x))2 ≤ C2
dρ

4.

For the second term in (C.124), we use similar steps as (C.30). In the derivation in (C.30), we

used |η(x)| ≤ 1 and Var[Y (i)|ρ,X(1), . . . ,X(N)] ≤ 1. Here these two bounds are replaced by M

and Ca, respectively. Hence

Var

[
1

k

k∑
i=1

Y (i)

∣∣∣∣∣ ρ
]
≤ M2 + Ca

k
, (C.125)
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Therefore for all x that satisfies f(x) > 2k/(NCdvdD
d),

E[(g(x)− η(x))2|x, ρ ≤ D]

≤ C2
dE[ρ4|ρ < D,x] +

Ca +M2

k
.

≤ C2
dE

[
P

2p
d (B(x, ρ))

(Cdvdf(x))
2p
d

∣∣∣∣∣P(B(x, ρ)) ≤ P(B(x, D))

]
+
Ca +M2

k
,

in which the last step uses Assumption 1 (d).

Using Lemma C.8 to be shown in Section C.11, we know that there exists a constant C1 such

that

E[(g(x)− η(x))2)1(ρ < D)] ≤ C1

(
k

N

) 2p
d

f−
2p
d (x) +

Ca +M2

k
. (C.126)

Hence if β 6= 2p/d,

E[(g(X)− η(X))21(E = 1)]

≤ C1

(
k

N

) 2p
d

E
[
f−

2p
d (X)1

(
f(X) >

2k

NCdvdDd

)]
+
Ca +M2

k

= O

((
k

N

) 2p
d

)
+O

((
k

N

)β)
+O

(
1

k

)
. (C.127)

Here, in the last step, we Lemma C.6 shown in Section C.11. If β = 2p/d,

E[(g(X)− η(X))21(E = 1)] = O

((
k

N

)β
ln
N

k

)
+O

(
1

k

)
. (C.128)

Case 2. If Event 2 happens, then according to Assumption 4, |η(x)| ≤ M for any x. Hence the

first term in (C.124) is bounded by (η(B(x, ρ))− η(x))2 ≤ 4M2. For the second term in (C.124),
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note that for any i ∈ {1, . . . , k},

Var[Y (i)|ρ] = E[Var[Y (i)|X(i), ρ]] + Var[E[Y (i)|ρ,X(i)]]

≤ Ca + Var[η(X(i))|ρ]

≤ Ca +M2. (C.129)

Using Cauchy inequality, Var
[

1
k

∑k
i=1 Y

(i)
∣∣∣ ρ] ≤ Ca +M2, and thus

E[(g(x)− η(x))2|ρ] ≤ Ca + 5M2. (C.130)

Now we can give an overall bound of the loss function under case 2:

E[(g(X)− η(X))21(E = 2)]

≤ (Ca + 5M2)

(
P
(
f(X) ≤ 2k

NCdvdDd

)
+ P

(
f(X) >

2k

NCdvdDd
, ρ ≥ D

))
.

(C.131)

From Assumption 1 (b), the first term in the bracket in (C.131) decays withO((k/N)β). Moreover,

if f(x) > 2k/(NCdvdD
d), then P(B(x, D)) > 2k/N , and (C.18) still holds here. Therefore, the

second term in the bracket in (C.131) decays faster than any polynomial. With this observation,

and combine with (C.128), we have

R−R∗ = E[(g(X)− η(X))2] =

 O
((

k
N

)min{β, 2p
d
}
)

+O
(

1
k

)
if β 6= 2p

d
,

O
((

k
N

)β
ln N

k

)
+O

(
1
k

)
if β = 2p

d
.

(C.132)

The fastest rate is attained if

k ∼

 N
2p
d+2p if β ≥ 2p

d
,

N
β
β+1 if β < 2p

d
.

(C.133)
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The corresponding optimal convergence rate is

R−R∗ =

 O
(
N−min{ 2p

d+2p
, β
β+1}

)
if β 6= 2p

d
,

O
(
N−

β
β+1 lnN

)
if β = 2p

d
.

(C.134)

C.5.2 Lower bound

We prove the following statements separately:

sup
(f,η)∈S

(R−R∗) &
1

k
; (C.135)

sup
(f,η)∈S

(R−R∗) &

(
k

N

) 2p
d

; (C.136)

sup
(f,η)∈S

(R−R∗) &

(
k

N

)β
. (C.137)

Proof of (C.135). Given arbitrary distribution with pdf f(X), let Y ∼ N (0, σ2), in which

σ2 ≤ Ca, Ca is the constant in Assumption 4.1. Then η(x) = 0 everywhere, and

R−R∗ = E[(η̂(X)− η(X))2] = Var[η(X)] = Var

[
1

k

k∑
i=1

Y (i)

]
=
σ2

k
. (C.138)

Hence, (C.135) holds.

Proof of (C.136).

For simplicity, in the following proof, we assume that we are using max norm in kNN

regression.

Construct the following distribution. Let X = (X1, . . . , Xd) ∼ Uniform([−1, 1]d), and

η(x) = η1(x1) =

 x2
1 + 2x1 if x1 < 0

−x2
1 + 2x1 if x1 ≥ 0

(C.139)
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Note that ‖∇2η‖ = 2 for x1 6= 0. Then define

I∆ = {x| − 1 + ∆ < x1 < −∆ or ∆ < x1 < 1−∆}. (C.140)

For this distribution,

R−R∗ = E[(η̂(X)− η(X))2]

≥ E
[
(E[η̂(X)|X]− η(X))21(X ∈ I∆)

]
. (C.141)

For any x, we have E[η̂(X)] = E[η(B(x, ρ))], since ‖∇2η(x)‖ = 2 almost everywhere,

|E[η̂(x)− η(x)]| = |E[η(B(x, ρ))]− η(x)|

=

∣∣∣∣∣E
[∫ x1+ρ

x1−ρ (η1(x′1)− η1(x1))dx′1

2ρ

]∣∣∣∣∣
=

∣∣∣∣E [ 1

2ρ

∫ ρ

−ρ

1

2
η
′′
(x1)t2dt

]
1(ρ ≤ ∆)

∣∣∣∣
≥ E

[
1

3
ρ21(ρ ≤ ∆)

]
− 2P(ρ > ∆). (C.142)

Note that with max norm, for uniform distribution, P(B(x, ρ)) = 2df(x)ρd if B(x, ρ) does not

exceed [−1, 1]d. Here f(x) = 1/2d, hence P(B(x, ρ)) = ρd if B(x, ρ) ⊂ [−1, 1]d. Hence

E[ρ21(ρ ≤ ∆)] = E[P
p
d (B(x, ρ))1(ρ ≤ ∆)]

= E[P
p
d (B(x, ρ))]− E[P

p
d (B(x, ρ))1(ρ > ∆)]

≥
Γ
(
k + 1 + p

d

)
Γ(k + 1)

Γ(N + 1)

Γ
(
N + 1 + p

d

) − P(ρ > ∆), (C.143)

in which the last step uses the fact that P(B(x, ρ)) follows Beta(k+1, N−k) distribution. Therefore

|E[η̂(x)]− η(x)| ≥ 1

3

Γ
(
k + 1 + p

d

)
Γ(k + 1)

Γ(N + 1)

Γ
(
N + 1 + p

d

) − 7

3
P(ρ > ∆). (C.144)
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Since P(ρ > ∆) decays exponentially, |E[η̂(x)]− η(x)| ∼ (k/N)p/d, therefore

R−R∗ ∼
(
k

N

) 2p
d

P(X ∈ I∆) ∼
(
k

N

) 2p
d

. (C.145)

Hence (C.136) holds.

Proof of (C.137). Construct (n + 1) cubes I1, . . . , In+1. X is supported by these cubes, and

is uniformly distributed within each cube. Let m be the pdf value in the first n cubes. For the

remaining cube, the density is (1 − 2dnm)/2d. This ensures that the total probability mass of all

(n+ 1) cubes is 1. m and n change with k and N . The precise definition of each cube Ij is

Ij = {x|4j − 1 < x < 4j + 1, x2, . . . , xd ∈ [−1, 1]} (C.146)

for j = 1, . . . , n+ 1. Similar to the proof of (C.136), define

Ij∆ = {x|4j − 1 + ∆ < x1 < 4j −∆

or 4j + ∆ < x1 < 4j + 1−∆, x2, . . . , xd ∈ [−1, 1]} . (C.147)

In I(n+1)∆, let η(x) = 0. Otherwise, let

η(x) = η1(x1) =

 (x1 − 4j)2 + 2(x1 − 4j) if 4j − 1 ≤ x1 < 4j

−(x1 − 4j)2 + 2(x1 − 4j) if 4j ≤ x ≤ 4j + 1.
(C.148)

Then

R−R∗ = E
[
(η̂(X)− η(X))2

]
≥

n∑
j=1

E[(E[η̂(X)|X]− η(X))21(X ∈ Ij∆)]

= nE[(E[η̂(X)|X]− η(X))21(X ∈ I1∆)]. (C.149)
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Ensure that in I1∆, P(B(x,∆)) = 2(k + 1)/N , i.e. m2d∆d = 2(k + 1)/N , then for x ∈ I1∆,

P(ρ > ∆) = P
(

P(B(x, ρ)) >
2(k + 1)

N

)
≤ e−(1−ln 2)(k+1), (C.150)

which decays exponentially.

The remaining steps are similar to the proof of (C.136). Since P(B(x, ρ)) = m2dρd, for x ∈

I1∆,

|E[η̂(x)]− η(x)|

=
1

3
E[ρ21(ρ ≤ ∆)]− 2P(ρ > ∆)

=
1

12m
p
d

E
[

P
p
d (B(x, ρ))1

(
P(B(x, ρ)) ≤ 2(k + 1)

N

)]
− 2P(ρ > ∆). (C.151)

Note that P(ρ > ∆) decays exponentially, P(B(x, ρ)) ∼ Beta(k + 1, N − k − 1), therefore there

exists a constant c, such that |E[η̂(x)]− η(x)| ≥ c for x ∈ I1∆. Hence

R−R∗ ≥ nc2P(X ∈ I1∆). (C.152)

Consider that the distribution should satisfy Assumption 4.1(b),

P(f(X) ≤ m) = nP(X ∈ I1) ≤ Cbm
β = Cb

(
2(k + 1)

2d∆dN

)β
. (C.153)

Therefore, by using an appropriate n, let nP(X ∈ I1∆) ∼ nP(X ∈ I1) ∼ (k/N)β , then

R−R∗ ∼
(
k

N

)β
. (C.154)

Hence (C.137) holds. The proof is complete.
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C.6 Proof of Theorem 4.8: Minimax convergence rate of re-

gression with bounded η

The proof of the minimax convergence rate for the regression is similar to the proof for the

classification. Define f(x), r0, L0, ηv(x), rM , and S∗ in the same way as (C.52), (C.53), (C.54),

(C.55) and (C.57). Then (f, ηv) satisfies Assumptions 3 and 4 if n0mvdL
d ≤ Cbm

β , and L ≤ M .

Let the noise ε be normally distributed with variance Ca, in which Ca is the constant in Assumption

3 (a), i.e., Y = η(X) + ε, ε ∼ N (0, Ca).

Now we follow the proof of Lemma C.2 shown in Appendix C.3.2.

For x ∈ B(a1, L), define N1 as the number of training samples falling in B(a1, L), then

sup
(f,η∈S∗)

E[(g(x)− η(x))2] ≥ sup
v(1)∈{−1,1},v(2)=...=v(n0)=0

E[(g(x)− η(x)))2]

(a)

≥ L2pP(v̂(1) 6= v(1))

= L2pE[P(v̂(1) 6= v(1)|N1)]

(b)

≥ 1

2
L2pE[1− TV (P+, P−)]

(c)

≥ 1

2
L2pE

[
1−

√
1

2
D(P+||P−)

]

=
1

2
L2pE

[
1−

√
N1

2
D(N (Lp, Ca)||N (−Lp, Ca))

]

=
1

2
L2p

(
1− Lp√

Ca
E[
√
N1]

)
(d)

≥ 1

2
L2p

(
1− Lp√

Ca

√
Nω

)
. (C.155)

In (a), we define v̂(1) = 1 if g(x) > 0, and −1 otherwise. If v̂(1) 6= v(1), then g(x) and η(x)

have different signs. According to the construction of ηv in (C.55), |g(x) − η(x)| > Lp. Hence

(a) holds. In (b), TV denotes the total variation distance, and P+ denotes the joint distribution

of N1 independent random variables, which is normal with mean Lp and variance Ca, while P−

is defined in the same way as P+ except that the mean of the normal distribution becomes −Lp.
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(c) uses Pinsker’s inequality [82]. In (d), ω is the probability mass of B(aj, L) for j = 1, . . . , n0,

ω = mvdL
d, in which vd is the volume of unit ball.

For x ∈ B(aj, L) for j = 2, . . . , n0, we can also get the same bound. Therefore

sup
(f,η)∈S∗

(R−R∗) ≥ 1

2
n0ωL

2p

(
1− Lp

Ca

√
Nω

)
. (C.156)

Assumption 3 includes a tail assumption, i.e., Assumption 1 (b), under which we have n0ω ≤

Cbm
β . The proof of this statement can be found in the proof of Lemma C.1 (2) in Appendix C.3.1.

Moreover, from Assumption 4, L ≤ M . To ensure that the expression in the above bracket is

positive, i.e., 1−Lp
√
Nω/Ca > 0, we need to ensure that NωL2p ≤ Ca. Consider that ω ∼ mLd,

these above arguments show that (1) n0mL
d = O(mβ); (2) L = O(1); (3) n0mL

d+2p = O(1). We

then get the following lower bounds on the excess risk:

(1) Pick L ∼ N−
1

d+2p , m ∼ 1, and n0 ∼ N
d

d+2p , then

sup
(f,η)∈S∗

(R−R∗) & N−
2p
d+2p . (C.157)

(2) Pick m ∼ N−1, L ∼ 1, n0 ∼ N1−min{β,1}, then

sup
(f,η)∈S∗

(R−R∗) & N−min{β,1}. (C.158)

Combine (C.157) and (C.158), we get

sup
(f,η)∈S∗

(R−R∗) & N−min{ 2p
d+2p

,β}. (C.159)

The proof is complete.
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C.7 Proof of Theorem 4.9: Convergence rate of the adaptive

kNN regression with bounded η

Without loss of generality, we assume D ≥ A, since we have shown that this assumption does not

impose further restrictions on the distribution of X in Section C.4.

Define h(x) in the same way as (C.84). Recall that k is selected adaptively according to (4.13),

since 0 < q < 1, for any constant K, there exists a critical value nc, so that when n ≥ nc, k ≤ n,

which means that the k-th nearest neighbor must fall in B(x, A). We then discuss the following

two cases:

Case 1: h(x) > N−1, n > NP(B(x, A))/2, and n > nc;

Case 2: h(x) ≤ N−1 or n ≤ NP(B(x, A))/2 or n ≤ nc.

Now we discuss these two cases separately. Similar to the proof of the standard kNN regression,

we still define a binary random variable E, in which E = 1 if case 1 happens and E = 2 if case 2

happens.

Case 1. For kNN regression, g(x) = η̂(x). Therefore E[(g(x) − η(x))2|n] can be bounded by

Lemma C.9 of Appendix C.11 when n > nc. From (C.86), for any t > 0, P(h(X) < t) ≤ C ′bt
β .

Use Lemma C.6,

E[(g(X)− η(X))21(E = 1)] ≤ C2N
−2λE[h−2λ(X)1(h(X) > N−1)]

=

 O(N−β) +O(N−2λ) if β 6= 2λ

O(N−β lnN) if β = 2λ.
(C.160)

Case 2. Similar to (C.131), we have E[(g(x)− η(x))2|n] ≤ Ca + 2M2, hence

E[(g(X)− η(X))21(E = 2)]

≤ (Ca + 2M2)

[
P(h(X) ≤ N−1) + P

(
n ≤ 1

2
P(B(X, A))

)
+ P(n ≤ nc)

]
.

Now we bound these three probabilities. According to (C.86), the first term can be bounded by
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O(N−β). The second term was defined as P1 in (C.102), and it has been proved in Appendix C.4

that P1 = O(N−β). It remains to bound P(n ≤ nc). n ≤ nc happens only if at least one of the

following two events happen: (1) n ≤ P(B(X, A))/2; (2)P(B(X, A))/2 ≤ nc. The probability of

these two events are both bounded by O(N−β), therefore P(n ≤ nc) is bounded by O(N−β). As a

result, E[(g(X)− η(X))21(E = 2)] = O(N−β).

Combine Case 1 and Case 2, we have

E[(g(X)− η(X))2] =

 O(N−β) +O(N−2λ) if β 6= 2λ

O(N−β lnN) if β = 2λ.
(C.161)

Now we calculate the optimal convergence rate. Recall that 2λ defined in (4.29),

2max
q
λ = max

q

[
min

{
q,

2p

d
(1− q)

}]
=

2p

d+ 2p
, (C.162)

with the maximum attained at q∗ = 2p/(d+ 2p). Then the optimal convergence rate is:

E[(g(X)− η(X))2] =

 O(N−min{β, 2p
d+2p}) if β 6= 2p

d+2p

O(N−β lnN) if β = 2p
d+2p

.
(C.163)

C.8 Proof of Theorem 4.10: No regression method is uniformly

consistent without the new tail assumption

In this section, we prove that no regressor can be uniformly consistent with Assumption 1 and 5

(e) but not 5 (b’). This indicates that Assumption 5 (b’) is necessary.

Given the constants Ca, . . . , Cd,M,L, let S be the set of pairs (f, η) that satisfy the

assumptions. For simplicity, we let β = 1 and L = 1. Other cases can be proved similarly. We

first discuss one dimensional problems, and then generalize to arbitrary fixed dimension.
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Define

S∗ = {(f, ηv)|v ∈ {−1, 1}}, (C.164)

with

f(x) =

 1− 1
m

if −1 < x < 0

1
m

if m < x < m+ 1
(C.165)

and

η1(x) =

 0 if −1 < x < 0

m if m < x < m+ 1,
η−1(x) =

 0 if −1 < x < 0

−m if m < x < m+ 1.
(C.166)

In addition, define a variable

v̂ = sign
(∫ m+1

m

g(x)dx

)
. (C.167)

Recall that

R−R∗ = E[(g(X)− η(X))2] = E
[∫

(g(x)− η(x))2f(x)dx

]
. (C.168)

To give a lower bound of R, we have the following lemma.

Lemma C.4. If v̂ and v have different sign, then
∫

(g(x)− η(x))2f(x)dx ≥ m.

Proof.

∫
(g(x)− η(x))2f(x)dx ≥

∫ m+1

m

(g(x)− η(x))2 1

m
dx

=

∫ m+1

m

(g2(x)− 2g(x)η(x) + η2(x))
1

m
dx

= m+

∫ m+1

m

g2(x)
1

m
dx− 2v

∫ m+1

m

g(x)dx. (C.169)
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Note that
∫ m+1

m
g2(x) 1

m
dx ≥ 0, and −v

∫
g(x)dx ≥ 0, because v and v̂ have different sign. These

facts imply that
∫

(g(x)− η(x))2f(x)dx ≥ m.

With Lemma C.4, we let V follow distribution P(V = 1) = P(V = −1) = 1/2, and define n

as the number of training samples that fall in [m,m+ 1], then

sup
(f,η)∈S∗

(R−R∗) ≥ EV [R−R∗] ≥ P(V 6= V̂ )m
(a)

≥ 1

2
P(n = 0)m =

1

2

(
1− 1

m

)N
m,(C.170)

in which (a) is true because if there are no points falling in [m,m+ 1], then for any detector v̂, the

conditional error probability given n = 0 is 1/2.

(C.170) shows that if we pick a δ > 0, then for givenN , we can find am, such that sup
(f,η)∈S

R > δ.

To generalize the above analysis to arbitrary fixed dimension, we only need to let f(x1) to

replace f(x) in (C.165). Then let X2, . . . , Xd follow uniform distribution in [0, 1] and X1, . . . , Xd

be independent. In this case, we can still get (C.170). Hence we claim that no regression method

can be uniformly consistent without Assumption 5 (b’).

C.9 Proof of Theorem 4.11: Convergence rate of the standard

kNN regression with unbounded η

Note that from Assumption 5 (b’), we can show that

P(f(X) < t) = P(e−bf(X) > e−bt) ≤ inf
b
ebtE[e−bf(X)] = inf

b
ebtt−β

′ ≤ etβ
′
, (C.171)

in which we let b = 1/t in the last step. Thus we recovered Assumption 1(b), except that β is

replaced by β′.

We still discuss two cases: Case 1: f(x) > 2k/(NCdvdD
d) and ρ < D; and Case 2: f(x) ≤

2k/(NCdvdD
d) or ρ ≥ D. Similarly, define a random variable E, for which E = 1 for case 1 and

E = 2 for case 2.
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Case 1. The analysis in Appendix C.5 still holds here, because for any x′ ∈ B(x, D), we have

η(x′)− η(x) ≤ L ‖x′ − x‖ ≤ LD. (C.172)

We can then use LD to replace M in Appendix C.5, and we can then get the same upper bound of

the risk up to a constant factor. Hence

E[(g(X)− η(X))21(E = 1)] =

 O
((

k
N

) 2p
d

)
+O

((
k
N

)β′)
+O

(
1
k

)
if β′ 6= 2p

d

O
((

k
N

)β′
ln N

k

)
+O

(
1
k

)
if β′ = 2p

d
.

(C.173)

Case 2. We conduct bias and variance decomposition again.

E[(g(x)− η(x))2|ρ] = (E[g(x)|ρ]− η(x))2 + Var[g(x)|ρ]. (C.174)

For the first term, i.e., the bias term, we have

|E[g(x)|ρ]− η(x)| =

∣∣∣∣∣E
[

1

k

k∑
i=1

η(X(i))

∣∣∣∣∣ ρ
]
− η(x)

∣∣∣∣∣
≤ 1

k

k∑
i=1

|E[η(X(i))|ρ]− η(x)| ≤ Lρ, (C.175)

in which the last step uses |η(X(i))− η(x)| ≤ L
∥∥X(i) − x

∥∥ ≤ Lρ.

Now we give a bound to the variance term:

Var[g(x)|ρ] = Var

[
1

k

k∑
i=1

Y (i)

∣∣∣∣∣ ρ
]

= Var

[
1

k

k∑
i=1

Y (i)

∣∣∣∣∣ ρ,X(1), . . . ,X(k)

]
+ Var

[
1

k

k∑
i=1

η(X(i))

∣∣∣∣∣ ρ
]

≤ Ca
k

+
1

k

k∑
i=1

Var[η(X(i))|ρ]. (C.176)

In the last step, we use Assumption 1 (a) in the first term, and Cauchy inequality in the second
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term. Moreover,

Var[η(X(i))|ρ] ≤ E[(η(X(i))− η(X))2|ρ] ≤ L2E
[∥∥X(i) − x

∥∥2
∣∣∣ ρ] ≤ L2ρ2. (C.177)

Hence

Var[g(x)|ρ] ≤ Ca + L2ρ2. (C.178)

From (C.174), (C.175) and (C.178), we get

E[(g(x)− η(x))2|ρ] ≤ Ca + 2L2ρ2. (C.179)

Let ρ0 be the (k + 1)-th nearest neighbor distance of x = 0. Then there are k points in B(0, ρ0).

Since B(0, ρ0) ⊂ B(x, ‖x + ρ0‖), B(x, ‖x + ρ0‖) contains at least k points. Hence

ρ =
∥∥X(k+1) − x

∥∥ ≤ ‖x‖+ ρ0. (C.180)

From Assumption 5, we know that there exists a constant MX such that E[‖X‖2] < MX < ∞.

Given this, we have the following lemma.

Lemma C.5. For some constant C1 and sufficiently large N , E[ρ2
0] ≤ C1.

Proof. Recall that ρ0 is the (k + 1)-th nearest neighbor distance of x = 0. Since E[‖X‖2] ≤ MX ,

according to Chebyshev inequality, P (‖X‖ > r) ≤ Mx/r
2. Therefore P(Bc(0, r)) ≤ Mx/r

2, in

which Bc(0, r) = Rd \ B(0, r). Denote nr as the number of training samples in Bc(0, r). For any

261



r > r0 >
√

2MX , we have P(Bc(0, r)) < 1/2. Hence for sufficiently large N ,

P(ρ0 > r) = P(nr > N − k)

(a)

≤ P
(
nr >

1

2
N

)
(b)

≤ exp[−NP(Bc(0, r))]

(
eNP(Bc(0, r))

1
2
N

)N
2

≤
(

2e
MX

r2

)N
2

, (C.181)

in which (a) holds because k/N → 0, (b) comes from Chernoff inequality. Therefore

E[ρ2
0] =

∫ ∞
0

P(ρ2
0 > t)dt

=

∫ ∞
0

P(ρ0 >
√
t)dt

=

∫ 2eMX

0

P(ρ0 >
√
t)dt+

∫ ∞
2eMX

P(ρ0 >
√
t)dt

≤ 2eMX +

∫ ∞
2eMX

(
2eMX

t

)N
2

dt

= 2eMX +
2

N − 2
. (C.182)

The proof of Lemma C.5 is complete.

From (C.179), we get

E[(g(x)− η(x))2] ≤ Ca + 2L2E[ρ2|x]

(a)

≤ Ca + 2L2(2 ‖x‖2 + 2E[ρ2
0])

≤ Ca + 4L2(‖x‖2 + C1)

≤ 4L2 ‖x‖2 + C2, (C.183)

for some constant C2. In (a), we used (C.180) and Cauchy inequality.
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Then

E[(g(X)− η(X))21(E = 2)]

≤ E
[
(g(X)− η(X))21

(
f(X) ≤ 2k

NCdvdDd

)]
+E

[
(g(X)− η(X))21

(
f(X) >

2k

NCdvdDd
, ρ > D

)]
. (C.184)

The first term can be be bounded from (C.183):

E
[
(g(X)− η(X))21

(
f(X) ≤ 2k

NCdvdDd

)]
≤ C2P

(
f(X) ≤ 2k

NCdvdDd

)
+ 4L2

∫
1

(
f(x) ≤ 2k

NCdvdDd

)
‖x‖2 f(x)dx

= O

((
k

N

)β′)
,

(C.185)

in which the last step uses (C.171) to bound the first term, and Assumption 4.5(b’) to bound the

second term:

∫
1

(
f(x) ≤ 2k

NCdvdDd

)
‖x‖2 f(x)dx ≤

∫
exp

[
1− NCdvdD

d

2k
f(x)

]
‖x‖2 f(x)dx

= O

((
k

N

)β′)
.

Now we bound the second term in (C.184). In (C.18), we have proved that if f(x) >

2k/(NCdvdD
d), then P(ρ > D|x) ≤ exp[−(1− ln 2)k]. Hence

E
[
(g(X)− η(X))21

(
f(X) >

2k

NCdvdDd
, ρ ≥ D

)]
≤ exp[−(1− ln 2)k]

[
Ca + 2L2

∫
E[ρ2|ρ ≥ D,x]f(x)dx

]
, (C.186)
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which decays faster than any polynomial. Combine (C.185) and (C.186), (C.185) dominates, i.e.

E[(g(X)− η(X))21(E = 2)] = O

((
k

N

)β′)
. (C.187)

Combining Case 1 and Case 2, we have

R−R∗ = E[(g(X)− η(X))2] =

 O
((

k
N

)min{β′, 2p
d
}
)

+O
(

1
k

)
if β′ 6= 2p

d

O
((

k
N

)β′
ln N

k

)
+O

(
1
k

)
if β′ = 2p

d
.

(C.188)

The fastest rate is attained if

k ∼

 N
2p
d+2p if β′ ≥ 2p

d

N
β′
β′+1 if β′ < 2p

d

. (C.189)

The corresponding optimal convergence rate is

R−R∗ =


O
(
N
−min

{
2p
d+2p

, β′
β′+1

})
if β′ 6= 2p

d

O
(
N
− β′
β′+1 lnN

)
if β′ = 2p

d

. (C.190)

C.10 Proof of Theorem 4.12: Convergence rate of the adaptive

kNN regression with unbounded η

In this section, we analyze the convergence rate of the adaptive kNN regression method when the

regression function is not necessarily bounded. To obtain a bound on the convergence rate, we first

consider three different events and then combine them. In particular, we consider:

• Event 1: h(x) > N−1, n > NP(B(x, A))/2 and n > nc.

• Event 2: n > nc, but h(x) ≤ N−1 or n ≤ NP(B(x, A))/2.

• Event 3: n ≤ nc.
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Similar to other sections, we define a random variable E, which will be equal to i if ith event

occurs.

For the first two events, (C.161) in Appendix C.7 still holds, except that since Assumption

4.1(b) is replaced by (C.171), β is now replaced by β′:

E[(g(X)− η(X))21(E = 1 or E = 2)] =

 O(N−β
′
) +O(N−2λ) if β′ 6= 2λ

O(N−β
′
lnN) if β′ = 2λ,

(C.191)

in which λ = min {q/2, (p/d)(1− q)}. Now we analyze Event 3. Note that when n < nc, k may

be larger than n, thus some nearest neighbors may fall outside B(x, D). Note that (C.183) still

holds here. Therefore

E[(g(X)− η(X))21(E = 3)]

=

∫
4L2 ‖x‖2 P(n ≤ nc|x)f(x)dx + C2

∫
P(n ≤ nc|x)f(x)dx. (C.192)

Using similar argument as Appendix C.7, we can show that the second term can be bounded by

O(N−β
′
). Now we bound the first term. If nc ≤ NP(B(x, A))/2, from (C.97),

P(n ≤ nc|x) ≤ exp

[
−1

2
(1− ln 2)NCdvdA

df(x)

]
. (C.193)

If nc > NP(B(x, A))/2, then we just bound P(n ≤ nc|x) with 1. Therefore

∫
‖x‖2 P(n ≤ nc|x)f(x)dx

≤ P
(

P(B(X, A)) ≥ 2nc
N

)∫
‖x‖2 exp

[
−1

2
(1− ln 2)NCdvdA

df(x)

]
dx

+P
(

P(B(X, A)) <
2nc
N

)∫
‖x‖2 f(x)dx. (C.194)

265



Both of two terms in (C.194) can be bounded by O(N−β
′
). Therefore

E[(g(X)− η(X))21(E = 3)] = O(N−β
′
). (C.195)

The overall convergence rate can be bounded by:

E[(g(X)− η(X))2] =

 O(N−β
′
) +O(N−λ) if β′ = λ

O(N−β
′
lnN) if β′ 6= λ.

(C.196)

The optimal convergence rate is attained when q = 4/(4 + d). In this case,

E[(g(X)− η(X))2] =

 O
(
N−min{β′, 2p

d+2p}
)

if β′ 6= 2p
d+2p

O(N−β
′
lnN) if β′ = 2p

d+2p
.

(C.197)

C.11 Technical Lemmas and Proofs

In this appendix, we state and prove some technical lemmas that are used in the proof of theorems.

All of the following lemmas hold for both classification and regression problems.

Lemma C.6. (1) Under Assumption 1 (b), which says that P(f(X) < t) ≤ Cbt
β , for any u > 0

and b > 0,

E[e−bf
u(X)] ≤

CbΓ
(
1 + β

u

)
b
β
u

, (C.198)

in which Γ is the Gamma function defined in (C.15).

(2) For two sequences rN , sN such that rN → 0 and sN → 0 as N → ∞, and rN > sN for

266



sufficiently large N , then for any p > 0, under Assumption 4.1 (b)

E[f−u(X)1(sN < f(X) < rN)] =


O
(
rβ−uN

)
if β > u;

O
(

ln rN
sN

)
if β = u;

O
(
sβ−uN

)
if β < u,

(C.199)

(3) For ∀u > 0, and any sequence {sN} such that sN →∞ as N →∞, then with Assumption

4.1 (b),

E[f−u(X)1(f(X) > sN))] =


O(1) if β > u

O
(

ln 1
sN

)
if β = u

O
(
sβ−uN

)
if β < u.

(C.200)

(4) With Assumption 4.2, the upper bounds of (C.198), (C.199) and (C.200) also holds for

h(X).

Proof. (1) Proof of (C.198):

E[e−bf
u(X)] =

∫ 1

0

P
(
e−bf

u(X) > t
)
dt

=

∫ 1

0

P

(
f(X) <

(
ln 1

t

b

) 1
u

)
dt

≤ Cb

∫ 1

0

(
ln 1

t

b

)β
u

dt

=
CbΓ

(
1 + β

u

)
b
β
u

. (C.201)
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(2) Proof of (C.199):

E[f−u(X)1(sN < f(X) < rN)] =

∫ ∞
0

P
(
f−u(X)1(sN < f(X) < rN) > t

)
dt

=

∫ s−uN

r−uN

P(f−u(X) > t)dt

=

∫ s−uN

r−uN

P(f(X) < t−
1
u )dt

≤
∫ s−uN

r−uN

Cbt
−β
udt, (C.202)

in which the last step comes from Assumption 1(b). We then obtain (C.199) by simple integral for

cases with β > u, β = u and β < u separately.

(3) (C.200) can be proved in similar way as the proof of (C.199). We omit the proof for

simplicity.

(4) (C.86) has the same form as Assumption 4.1(b). Thus the above derivation also holds for

h(X).

Lemma C.7. (1) The expectation of η̂(x) is:

E[η̂(x)|ρ] = η(B(x, ρ)); (C.203)

(2) η̂(x) satisfies the following concentration inequality:

P(|η̂(x)− E[η̂(x)]| > t) ≤ 2e−
1
2
kt2 . (C.204)

Proof. Our proof of Lemma C.7 follows the proof of Lemma 9 in [20]. We pick (Xi, Yi) in the

following way: firstly, pick a point X1 according to the marginal distribution of (k + 1)-th nearest

neighbor of x. Denote ρ as the distance. Then pick k points from conditional distribution f(·|X ∈

B(x, ρ)). Then pick (N − k − 1) points from the conditional distribution f(·|X /∈ B(x, ρ)). The

next step is to randomly permute these N points. The joint distribution of these N points obtained
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in this way are i.i.d, with pdf f(x). Finally, assign all of the N points with label 1 or −1, with

probability P(Yi = 1|Xi) = 1
2
(1 + |η(Xi)|).

Note that the k points picked according to distribution f(·|X ∈ B(x, ρ)) are i.i.d, and the

expectation of the target is η(B(x, ρ)). This yields (C.203). Besides, according to Hoeffding’s

inequality, we get (C.204).

Lemma C.8.

E[P
2p
d (B(x, ρ))] ≤

(
k + 2p

d
+ 1
) 2p
d

N
2p
d

. (C.205)

Proof. Let random variable U = P(B(x, ρ)), using results from the order statistics [23], we know

that U follows Beta distribution: f(u) = (1/Beta(k + 1, N − k))uk(1− u)N−k−1. Hence

E[P
2p
d (B(x, ρ))] = E[U

2p
d ] =

Γ(N + 1)

Γ(N + 2p
d

+ 1)

Γ
(
k + 2p

d
+ 1
)

Γ(k + 1)
≤
(
k + 2p

d
+ 1
) 2p
d

N
2p
d

. (C.206)

Lemma C.9. For adaptive kNN classification or regression, if k ≤ n, then

E[(η̂(x)− η(x))2|n] ≤ CMh
−2λ(x)N−2λ, (C.207)

in which λ = min {p(1− q)/d, q/2}, CM is a constant.

Proof.

E[(η̂(x)− η(x))2|n, ρ] = (E[η̂(x)|n, ρ]− η(x))2 + Var[η̂(x)|n, ρ]. (C.208)

Given n, k is fixed, hence the second term has the same bound as (C.125): Var[η̂(x)|n, ρ] ≤

(Ca + M2)/k. Besides, we have E[η̂(x)|n, ρ] = η(B(x, ρ)). According to Assumption 1 (c),
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|η(B(x, ρ))− η(x)| ≤ Ccρ
p. Therefore

E[(η̂(x)− η(x))2|n] ≤ C2
cE[ρ4|n] +

Ca +M2

k
. (C.209)

We now bound E[ρ4|n]. k ≤ n implies ρ < A. Moreover, given n, the n points in B(x, A) are

conditional i.i.d with pdf f(x)/P(B(x, A)). Use Lemma C.8, we have

E

[
P

2p
d (B(x, ρ))

P
2p
d (B(x, A))

∣∣∣∣∣n
]
≤
(
k + 2p

d
+ 1
) 2p
d

n
2p
d

. (C.210)

We have the following inequality that holds in general: for a, b, c > 0,

(a+ b)c ≤

 2c−1(ac + bc) if c > 1

ac + bc if c ≤ 1.
(C.211)

Hence

(
k + 2p

d
+ 1

n

) 2p
d

=

(
bKnqc+ 2p

d
+ 2

n

) 2p
d

≤ 2max{ 2p
d
−1,0}

(
K

2p
d n−

2p
d

(1−q) +

(
2p

d
+ 2

) 2p
d

n−
2p
d

)
. (C.212)

Furthermore, according to Assumption 1 (d), P(B(x, ρ)) ≥ Cdvdρ
df(x). Using this and (C.212)

in (C.210), we obtain

(Cdvdf(x))
2p
d E[ρ4|n]

≤ 2max{ 2p
d
−1,0}

(
K

2p
d n−

2p
d

(1−q) +

(
2p

d
+ 2

) 2p
d

n−
2p
d

)
P

2p
d (B(x, A)). (C.213)
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Under case 1, n ≥ NP(B(x, A))/2. Plug it into (C.213), and recall (C.85), after some

simplification, we eventually get:

E[ρ4|n] ≤MAh
− 2p
d

(1−q)(x)N−
2p
d

(1−q) +MBh
− 2p
d (x)N−

2p
d , (C.214)

for some constants MA and MB.

Besides, note that the condition of case 1 says that n > NP(B(x, A))/2, therefore using (C.85),

k = bKnqc+ 1 ≥ K

(
1

2
NP(B(x, A))

)q
≥ 2−qKq(CdvdA

d)
q

1−qhq(x)N q. (C.215)

(C.209), (C.214) and (C.215) yields

E[(η̂(x)− η(x))2|n]

≤ C2
c

(
MAh

− 2p
d

(1−q)(x)N−
2p
d

(1−q) +MBh
− 2p
d (x)N−

2p
d

)
+ C1N

−qh−q(x), (C.216)

for some constant C1.

Moreover, when case 1 happens, h(x) > N−1 always holds. Recall that λ is defined as λ :=

min {2(1− q)/d, q/2}, for some constant CM , which satisfies CM ≤ C2
c (MA +MB) + C1,

E[(η̂(x)− η(x))2|n] ≤ CMh
−2λ(x)N−2λ. (C.217)
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consistency of nearest neighbor regression function estimates. The Annals of Statistics,

pages 1371–1385, 1994.

[26] Inderjit S Dhillon, Subramanyam Mallela, and Rahul Kumar. A divisive

information-theoretic feature clustering algorithm for text classification. Journal of

Machine Learning Research, 3(Mar):1265–1287, 2003.

274



[27] Kefan Dong, Yuanhao Wang, Xiaoyu Chen, and Liwei Wang. Q-learning with UCB

exploration is sample efficient for infinite-horizon MDP. arXiv preprint arXiv:1901.09311,

2019.

[28] Gauthier Doquire and Michel Verleysen. A comparison of multivariate mutual information

estimators for feature selection. In Proc. Intl. Conf. on Pattern Recognition Applications

and Methods, pages 176–185, Porto, Portugal, Feb. 2012.
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