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Abstract

In this thesis, we study distributed statistical learning, in which multiple terminals, con-

nected by links with limited capacity, cooperate to perform a learning task. As the links

connecting the terminals have limited capacity, the messages exchanged between the ter-

minals have to be compressed. The goal of this thesis is to investigate how to compress the

data observations at multiple terminals and how to use the compressed data for inference.

We first focus on the distributed parameter estimation problem, in which terminals

send messages related to their local observations using limited rates to a fusion center

that will obtain an estimate of a parameter related to the observations of all terminals. It is

well known that if the transmission rates are in the Slepian-Wolf region, the fusion center

can fully recover all observations and hence can construct an estimator having the same

performance as that of the centralized case. One natural question is whether Slepian-Wolf

rates are necessary to achieve the same estimation performance as that of the centralized

case. In this thesis, we show that the answer to this question is negative. We establish our

result by explicitly constructing an asymptotically minimum variance unbiased estimator

(MVUE) that has the same performance as that of the optimal estimator in the centralized

case while requiring information rates less than the conditions required in the Slepian-

Wolf rate region. The key idea is that, instead of aiming to recover the observations at

the fusion center, we design universal schemes enabling the fusion center to compute a

sufficient statistic using rates outside of the Selpian-Wolf region.

We then examine the optimality of data dimensionality reduction via sufficient statis-

tics compression in distributed parameter estimation problems. The data dimensionality

reduction step is often needed especially if the data has a very high dimension and the



communication rate is not as high as the one characterized above. We show that reduc-

ing the dimensionality by extracting sufficient statistics of the parameter to be estimated

does not degrade the overall estimation performance in the presence of communication

constraints. We establish this result by comparing two system models, one applies the

compression scheme to raw observations, and the other applies the compression scheme

to the extracted sufficient statistics. We prove that both system models have the same

performance measured by the Bayesian risk. We further analyze the optimal estima-

tion performance in the presence of communication constraints and we verify the derived

bound using simulations.

Finally, we study distributed optimization problems, for which we examine the ran-

domized distributed coordinate descent algorithm with quantized updates. In the litera-

ture, the iteration complexity of the randomized distributed coordinate descent algorithm

has been characterized under the assumption that machines can exchange updates with

an infinite precision. We consider a practical scenario in which the messages exchange

occurs over channels with finite capacity, and hence the updates have to be quantized.

We derive sufficient conditions on the quantization error such that the algorithm with

quantized update still converge. We extend our results to the general case of block coor-

dinate descent, and we analyze the convergence rate for the parallel scenario whether the

machines are synchronized or not. We further verify our theoretical results by running

an experiment, where we apply the algorithm with quantized updates to solve a linear

regression problem.
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Chapter 1

Introduction

Increased data sources in the recent years has made it important to find efficient methods

to analyze the data. Statistical learning provides a number of methods that process the

data to estimate an unknown parameter, find a function that relates different data variables,

classify the data points into different categories, and more.

Statistical learning is playing an increasingly important role in multiple areas, such as

artificial intelligence, biology, finance, and marketing. Some examples of learning tasks

are:

• Estimating the location of an object using the received measurements from multiple

sensors.

• Predicting whether a patient will have a heart attack based on clinical variables for

the patient.

• Teaching a robot to read a handwritten ZIP code.

• Predicting the price of a stock based on the company performance and other eco-

nomic variables.

1



To perform a learning task, it is typical to collect measurements related to the task.

These measurements are divided into a training dataset and a test dataset. The training

dataset is used to train a statistical model to solve the learning problem. The model is then

tested using the test dataset to verify its accuracy. Different statistical models go through

the same process until a satisfying test accuracy is reached.

It is often required to analyze the measurements data in a distributed fashion, where

multiple machines cooperate to perform a specific learning task. The data can be dis-

tributed over a number of machines for multiple reasons that include, but are not limited

to:

• The large size of data prohibits locating all data on a single machine, which is the

case for the big data problem.

• The data are collected and hence are naturally distributed over multiple geographi-

cal locations.

• It is required to process the data in parallel to speed up the analysis.

Figure 1.1: The channels connecting the machines are capacity limited.

To solve the problem efficiently, multiple rounds of communication is often required

between the machines in order to perform the learning task. The major challenge for that
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setup is that the communication channels between the machines have limited capacity.

This requires each machine to compress its message before sending it to other machines.

In this thesis, we study how to compress data for statistical inference purpose and how

to perform inference using compressed data.

1.1 Motivation and Literature Review

The key role of distributed statistical learning has motivated many researchers to study the

problem rigorously [1–16]. In this thesis, we focus on two types of distributed statistical

learning, namely distributed parameter estimation and distributed optimization.

1.1.1 Distributed Parameter Estimation

Motivated by applications in sensor networks and other areas, the problem of distributed

estimation has been extensively investigated from various perspective [17–32]. As obser-

vations are distributed over multiple terminals in the distributed setting, the performances

of distributed estimators are no better than those of centralized estimators who have ac-

cess to all observations. The questions we address in this thesis are: 1) to achieve the same

performance as that of the centralized setup, how much information has to be exchanged

in the distributed setting; 2) for a given rate constraints, what is the optimal data reduc-

tion method. In particular, we study the rate requirements for the information exchange,

and whether it is optimal or not to reduce the dimension of the data prior to applying the

compression scheme.

A. Rate Requirements

We consider this problem for the following setup. There are two random variables (X, Y )

with a joint probability mass function (PMF) Pθ(X, Y ) parameterized by an unknown
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parameter θ. Two terminals A and B observe Xn and Y n respectively and send messages

related to their own local observations with limited rates to terminal C, which will then

obtain an estimate of the unknown parameter. It is well known that if the transmission

rates from the terminals are inside the Slepian-Wolf rate region [33], there exists a uni-

versal coding scheme [34] that enables terminal C to fully recover (Xn, Y n). Hence,

once the transmission rates are inside the Slepian-Wolf rate region, the performance of

the best estimator for the distributed setup is the same as that of the best estimator for

the centralized case. In this thesis, we focus on unbiased estimators, and we define the

best centralized estimator as the unbiased estimator that achieves the minimum variance

index, whose precise definition will be provided in Section 2.1, in the centralized setup.

We use the centralized performance to refer to the performance of the best centralized

estimator.

One natural question is: are Slepian-Wolf rates necessary to achieve the same es-

timation performance as that of the centralized case? The answer to this question has

significant implications in the distributed estimation. If the answer is yes, then to obtain

the best estimate of the unknown parameter requires transmission rates to be so high that

they are sufficient to fully recover the observations at the decoder, hence no rate reduc-

tion is possible. On the other hand, if the answer is no, then the observations can be

compressed beyond the limits of source coding for full observation recovery. At a first

glance, the answer to this question should be no as we are only interested in estimating a

parameter related to the observations and are not interested in recovering the observations

themselves. However, all existing related works indicate otherwise. For example, [35]

addressed the same question and suggested that Slepian-Wolf rates might be necessary.

In addition, the performance of the best known estimator by Han and Amari [36] does not

match that of the centralized case when the information rates are outside of the Slepian-

Wolf rate region. Furthermore, [37] showed that, under certain conditions, extracting even
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one bit of information from distributed sources is as hard as recovering full observations

and hence requires the information rates to be in the Slepian-Wolf rate region.

In this thesis, we compare our results to the best known estimator by Han and Amari [36].

In [36], the authors established their estimation algorithm by introducing auxiliary ran-

dom variables and solving the maximum-likelihood equation. They showed that their esti-

mation algorithm achieves a smaller variance than the estimator by Zhang and Berger [38].

B. Dimensionality Reduction

In some cases, where the dimension of the observations is very high and the communi-

cation rate is low, it is necessary to reduce the data dimensionality before applying the

compression scheme [39, 40]. Similar to the concept of transductive inference [41], it is

preferable to solve a simple version of the problem rather than solving the general one.

In this case, one simple version of the problem is to apply the compression scheme after

reducing the dimensionality of the observations, while the general problem is to compress

high dimensional observations.

For distributed parameter estimation, a sufficient statistic contains all relevant infor-

mation of the unknown parameter [42–44]. Hence, it is natural to reduce the dimension of

the observations by extracting a sufficient statistic. One question that follows is whether

this process degrades the estimation performance of the network in the presence of com-

munication constraints. In other words, is it optimal to extract a sufficient statistic from

the observations before applying the compression scheme?

For a set of n observations Xn generated according to the probability distribution

f(X|θ) with θ as the unknown parameter, a sufficient statistic T (Xn) is defined such that

f(Xn|(T (Xn), θ)) = f(Xn|T (Xn)). (1.1)
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Some examples of sufficient statistics are:

• In the coin flip experiment, the number of heads is a sufficient statistic of the coin

bias.

• In digital communications, the output of a matched filter at the receiver side is a

sufficient statistic of the transmitted symbol [45].

The above question has been answered for the centralized scenario and a specific

setup of the decentralized scenario in [17]. The author assumed that the observations are

distributed, such that each machine has all observations about a single random variable.

For that setup, it was shown that sufficiency based data reduction is only optimal if the

observations are conditionally independent or if the data has a specific structure (HCI

structure). In this thesis, we answer the above question for the decentralized scenario,

where each machine has a few observations about all random variables.

1.1.2 Distributed Optimization

Similar to distributed parameter estimation, distributed optimization problems naturally

arise in various scenarios. For example, in solving regression problems, the training

dataset might be too large to be stored in a single machine, or the data might be collected

(and hence is naturally located) at multiple locations. This motivated many researchers

to develop algorithms to solve distributed optimization problems. Distributed algorithms

are also useful to harness parallel processing capabilities of multiple machines.

In distributed optimization, it is essential for machines involved to exchange mes-

sages. As communication links between machines have limited capacity and have signifi-

cantly longer delay, many recent papers focus on developing algorithms that are commu-

nication efficient. In [46], an algorithm was proposed to reduce the amount of necessary
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communication by using the local computation in a primal-dual setting. Another com-

munication efficient algorithm for empirical risk minimization was introduced in [47].

ADMM was considered in [48–50] to handle the communication bottleneck.

Most of the existing studies analyze how many rounds of communications are re-

quired for the convergence of the developed algorithms. In each communication round,

it is typically assumed that machines can exchange messages with an infinite precision.

However, in practice, these data exchanges occur over physical channels that have limited

capacity. As a result, machines cannot exchange messages with an infinite precision and

need to quantize messages before sending them to other machines. A natural question to

ask is whether these distributed algorithms will still converge if the exchanged messages

are quantized. If these algorithms still converge, one can further ask what are the effects

of the quantization on the converge rate.

Figure 1.2: The machines need to quantize their messages.

In this thesis, we answer these questions for a particular optimization algorithm,

namely randomized coordinate descent [51]. This algorithm is easily implementable to

solve distributed optimization problems since each machine can compute a single coordi-

nate of the gradient. In each iteration of the randomized coordinate descent, the algorithm

takes a step in the direction of a randomly chosen coordinate in order to decrease the func-

tion value. This is done by computing the partial derivatives, which is much cheaper com-
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putationally than taking a full gradient step. The iteration complexities of the randomized

coordinate descent algorithms are analyzed in [52,53] under a very general setup. In [54],

a hybrid coordinate descent method (Hydra) was presented to speed up the coordinate

descent algorithm. Asynchronous parallel processing was analyzed in [55] for a number

of optimization algorithms including the randomized coordinate descent.

1.2 Summary of Contributions

1.2.1 On Rate Requirements for Distributed Parameter Estimation

We show that the answer to the question (are Slepian-Wolf rates necessary to achieve the

same estimation performance as that of the centralized case?) is indeed no. We establish

our result by explicitly constructing a distributed estimation algorithm that achieves the

same performance as that of the optimal estimator for the centralized case while using

information rates outside of the Slepian-Wolf region. The main observation is that, to

construct an estimator that has the same performance as that of the centralized case, the

fusion center needs only sufficient statistics not full data. Based on this observation, the

key idea of our algorithm is that, instead of trying to fully recover the source observations,

we design schemes that enable the fusion center to recover sufficient statistics using less

information rates. We study the case, in which each terminal has all observations related

to a single random variable, and we compute a global sufficient statistic efficiently at

the fusion center using compressed versions of the local observations while using rates

outside of the Slepian-Wolf rate region.

To illustrate the idea, we first consider binary symmetric sources (i.e., both Xn and

Y n are binary sequences) parameterized by an unknown parameter θ. For this model, in

our algorithm, we first design a universal coding/decoding scheme that enables terminal

C to compute component-wise module-two sum Zn = Xn ⊕ Y n, which can be achieved

8



using rates outside of the Slepian-Wolf rate region, and then construct an estimator using

Zn. Here ⊕ denotes element-wise xor. We show that our estimator is an asymptotically

minimum variance unbiased estimator (MVUE) [56] and achieves the same variance in-

dex as that of the best estimator in the centralized case. We then generalize our study to

general binary sources models that are not necessarily symmetric anymore. Compared

with the symmetric case, there are two additional challenges: 1) Zn alone is not a suffi-

cient statistic anymore; and 2) We do not have an MVUE to compare the performance to

anymore, as it is not clear whether an MVUE exists and even if it exists its form is model

dependent. To address the first issue, we modify our scheme and ask the transmitters

to send additional information (more specifically, empirical marginal PMF) that requires

diminishing rate. Combining Zn with these additional information, the fusion center can

then construct the empirical joint PMF, which is a sufficient statistic. To address the sec-

ond issue, we show a stronger result that for any centralized estimator, we can construct a

plugin estimator with the same performance by using the only decoded information at ter-

minal C. We further extend our results to a more general class of non-binary sources and

show that our algorithm can also achieve the same performance as that of the best estima-

tor in the centralized case while using transmission rates less than the conditions required

in the Slepian-Wolf rate region. Finally, although our estimation algorithm achieves the

centralized performance at rates less than Slepian-Wolf rates, there is no optimality guar-

antee at very low rates which can be the case for a number of practical applications. To

address this, we propose a practical design of our estimation algorithm and show that it

outperforms the best known estimator by Han and Amari [36] at all rates.

1.2.2 Sufficiency Based Data Reduction

We answer the question of whether it is optimal or not to extract a sufficient statistic from

the observations before applying the compression scheme. We show that the answer is

9



positive. We establish this result by considering a set of n observations Xn
1 related to

the random variable X ∈ X . The observations are distributed between two nodes, such

that node 1 has access to the observations Xn1
1 and node 2 has access to Xn

n1+1. The

observations are independent and identically distributed (i.i.d.) and generated according

to the parametric probability distribution f(X|θ), where θ ∈ Θ is the unknown parameter.

To answer this question, we compare the performance of two system models (a) and

(b), while applying the same compression rate pair (R1, R2) to both models. In system

model (a), node 1 and node 2 compress the observations Xn1
1 and Xn

n1+1 using the en-

coding functions g1(·) ∈ G1 and g2(·) ∈ G2, respectively. The fusion center receives the

compressed messages and applies the decoding function φa to get an estimate θ̂a of the

unknown parameter θ. In (b), an additional step is added to extract the sufficient statistics

T1(Xn1
1 ) and T2(Xn

n1+1) from the observations, then compress them using the encoding

functions h1(·) ∈ H1 and h2(·) ∈ H2, respectively. The fusion center uses the decoding

function φb to get an estimate θ̂b of the unknown parameter.

We show that the two system models have the same estimation performance using

the Bayesian risk as the performance metric. We also analyze the asymptotic optimal

Bayesian performance in the presence of communication constraints. We further verify

our results through simulations as we plot the simulated distortion for system model (b)

and we compare it the asymptotic optimal Bayesian performance.

1.2.3 Distributed Optimization with Quantized Updates

We answer the question of whether distributed optimization algorithms can converge in

the presence of quantization error by first modifying a distributed version of the coordi-

nate descent algorithm to fit the paradigm of capacity limited communication. We then

determine sufficient conditions on the quantization error such that the algorithm converges

to the optimal solution. In particular, we apply our algorithm to an unconstrained mini-
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mization problem of a function f that is L-smooth and m-strongly convex. We show that

for an accuracy level ε and a confidence level ρ, our algorithm converges to the optimal

solution if the quantization error ∆ is upper bounded by a function of ε, ρ, L, m, and d,

where d is the number of features.

We further extend our results to the general case of randomized block coordinate de-

scent, where each machine can update a block of coordinates. We consider two scenarios:

First, the selected machine sends the update for all its coordinates. Second, the selected

machine samples a subset of its coordinates and sends the update for that subset. It is

obvious that the first scenario converges faster than the second, but it requires more com-

putational power per machine.

We also analyze the convergence rate when all machines can send their updates in

parallel. We consider two scenarios: First, all machines are synchronized to process the

same update, which requires the fast machines to wait for the slow ones before they can

process the next update. Second, we consider the asynchronous scenario, where different

machines can process different updates depending on their individual speeds. The con-

vergence analysis of the second scenario can be challenging especially in the presence

of quantization error. Therefore, we analyze a special case of two machines, where ma-

chine 1 is twice as fast as machine 2. We compare both results in the synchronous and

asynchronous scenarios.

We verify the results by running an experiment, where we apply our algorithm to

solve a linear regression problem. The dataset we use is collected from a power plant

and consists of one output and four predictors. We show that our algorithm converges to

the optimal solution if the quantization error is relatively small, which coincides with our

theoretical results.
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Chapter 2

On Rate Requirements for Distributed

Parameter Estimation

In this chapter, we study the rate requirements for distributed parameter estimation schemes

to achieve the optimal centralized performance. The chapter is organized as follows.

We introduce the problem formulation in Section 2.1. In Section 2.2, we establish our

main results for binary symmetric sources, then we generalize it to non-symmetric bi-

nary sources in Section 2.3. We extend our work to a more general class of information

sources in Section 2.4, and to multiple source networks in Section 2.5. We propose a

practical design of our estimation algorithm in Section 2.6. We present the simulation

results in Section 2.7.

2.1 Problem Formulation

Consider two information sources X and Y taking values from the discrete alphabets

X and Y , respectively. (Xn, Y n) = {(Xi, Yi)}ni=1 are n independent and identically

distributed (i.i.d.) observations drawn according to the parametric joint PMF Pθ(X, Y )

12



where θ ∈ Θ is the unknown parameter. We assume that the range of Θ is bounded and

hence θu , max{| inf(Θ)|, | sup(Θ)|} is finite. We consider a distributed setup in which

Xn are observed at terminal A and Y n are observed at terminal B. Using limited rates,

these two terminals send messages related to their own local observations to a fusion

center (terminal C), which will then obtain an estimate θ̂ of θ using these messages. The

setup is illustrated in Fig. 2.1.

Terminal	
  A	
  

Terminal	
  B	
  

Terminal	
  C	
  

Figure 2.1: System Model.

In particular, terminal A employs an encoding function g1 : Xn → g1(Xn), while

terminal B employs an encoding function g2 : Y n → g2(Y n). The code rates are

RX =
log ||g1||

n
,RY =

log ||g2||
n

, (2.1)

where ||gi|| is the cardinality of the encoding function gi.

From g1(Xn) and g2(Y n), the decoder obtains an estimate θ̂ of the unknown parameter

θ using estimator ψ:

θ̂ = ψ(g1(Xn), g2(Y n)). (2.2)

13



To evaluate the quality of the estimator, we use the variance index that is defined as1

Vθ[θ̂] = lim
n→∞

nVarθ[θ̂] = lim
n→∞

nEθ[(θ̂ − E[θ̂])2]. (2.3)

It is desirable to have an estimator that is asymptotically unbiased, i.e., Eθ[θ̂] → θ as

n → ∞, range-preserving, i.e., the range of the estimation function ψ is Θ, and has a

small variance index.

It is well-known that, if the coding rates satisfy (will be called Slepian-Wolf rates in

the sequel)

RX ≥ Hθ(X|Y ), (2.4)

RY ≥ Hθ(Y |X), (2.5)

RX +RY ≥ Hθ(X, Y ), (2.6)

there exists universal source coding schemes [34] (i.e., the coding scheme does not depend

on the value of the unknown parameter θ) such that the decoder can reconstruct Xn and

Y n with a diminishing error probability. Here, Hθ(·) and Hθ(·|·) denote the entropy and

conditional entropy respectively. Hence, if (2.4)-(2.6) are satisfied, we can obtain the

same estimation performance as that of the centralized case.

The question we ask in this chapter is: are Slepian-Wolf rates necessary to achieve the

same estimation performance as that of the centralized case? [35] investigated the same

question and suggested that Slepian-Wolf rates appear to be necessary for achieving the

centralized estimation performance. We show that Slepian-Wolf rates are not necessary.

In particular, we show that there indeed exists a class of PMFs and the corresponding

distributed estimators that require communication rates less than the Slepian-Wolf rates

1Throughout the chapter, we use the subscript θ to emphasize the fact that value of the quantity of
interest depends on the parameter θ.
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while still achieving the same performance as that of the best estimator for the centralized

case.

Throughout the chapter, we use an upper case letter U to denote a random variable,

a lower case letter u to denote a realization of U , and U to denote the discrete alphabet

from which U takes values. For any sequence un = (u(1), · · · , u(n)) ∈ Un, the relative

frequencies (empirical PMF) π(a|un) , n(a|un)/n,∀a ∈ U of the components of un is

called the type of un. Here n(a|un) is the total number of indices t at which u(t) = a.

Chapter 11 of [57] contains a comprehensive overview of useful properties of the type.

2.2 Binary Symmetric Case

In this section, to illustrate our main idea, we first consider the case of binary symmetric

sources with |X | = |Y| = 2 and a joint PMF of (X, Y ) as given in Table 2.1, in which

the unknown parameter θ ∈ Θ = (0, 1). The insights obtained here will be generalized to

more general models in later sections.

X/Y 0 1
0 θ/2 (1− θ)/2
1 (1− θ)/2 θ/2

Table 2.1: The joint PMF of binary symmetric sources.

Note that for this model, neither terminal A nor terminal B alone will be able to

obtain a meaningful estimation of the value of θ, as the marginal distributions of X and

Y are independent of θ. On the other hand, to estimate θ, the fusion center does not

need to know (Xn, Y n) fully. It is easy to check that the component-wise module-two

sum Zn = Xn ⊕ Y n , [X1 ⊕ Y1, · · · , Xi ⊕ Yi, · · · , Xn ⊕ Yn] is a sufficient statistic

for estimating θ. Hence, as long as the fusion center can compute Zn, it can construct

an estimator that has the same performance as that of the centralized case. Based on

this observation, we show that, to estimate θ for this class of PMFs, we can achieve
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the centralized estimation performance using rates that do not satisfy (2.4)-(2.6). We

establish this result using two steps: 1) in the first step, we design a universal encoder at

terminals A and B and universal decoder at terminal C to compute the modulo-two sum

Zn = Xn ⊕ Y n; 2) in the second step, we construct an estimator using Zn and analyze

its performance.

2.2.1 Step 1: Computing Zn

Here, we discuss how to universally compute Zn = Xn ⊕ Y n at terminal C. Towards

this goal, we will use the same linear code at both encoders and use a minimum entropy

decoder at terminal C.

Since the encoders at terminalsA andB are the same, we use the following simplified

notation

f = g1 = g2,

R = RX = RY . (2.7)

The following theorem shows that as long asR ≥ Hθ(X|Y ) = Hθ(Y |X), the decoder

can reconstruct Zn with a diminishing error probability.

Theorem 1. If

R > Hθ(X|Y ) = Hθ(Y |X), (2.8)

there exist universal encoding/decoding functions to reconstruct Zn = Xn ⊕ Y n at ter-

minal C with an exponentially decreasing error probability.

Proof. The proof follows a similar structure as the proofs in [58] and [34]. In particular,

using the ideas in [34], we modify the proof of [58] to make it universal.
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Random Code Generation: We use a linear code f with an encoding matrix A of size

n × nR to map {0, 1}n to {0, 1}nR. Hence ||f || = 2nR. We independently generate

each entry of A using a uniform binary distribution, i.e., each entry of A is 0 or 1 with

probability 0.5.

Encoding: The encoded messages of the realizations xn ∈ {0, 1}n and yn ∈ {0, 1}n are

f(xn) = xnA,

f(yn) = ynA, (2.9)

in which the operations are all in binary field.

Decoding: The decoder first combines the messages into a single message as

f(xn)⊕ f(yn). (2.10)

It follows from the code linearity that

f(xn)⊕ f(yn) = f(xn ⊕ yn) = f(zn). (2.11)

From f(xn ⊕ yn), terminal C uses a minimum entropy decoder to obtain ẑn. In

particular, for each z̄n such that f(z̄n) = f(xn ⊕ yn), the minimum entropy decoder first

calculates the entropy of its type, then picks the one that has the least entropy to be the

decoded sequence. In the following, to simplify the notation, we use Z̄(n) and Z(n) to

denote dummy random variables whose PMFs PZ̄(n) and PZ(n) are the same as the types

of z̄n and zn, respectively. The final decoded message is denoted as

ẑn = φ(f(zn)), (2.12)
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where φ denotes the minimum entropy decoding function.

Error Probability Analysis: A decoding error occurs if and only if there exists a se-

quence ẑn 6= zn such that

f(ẑn) = f(zn) and H(Ẑ(n)) ≤ H(Z(n)). (2.13)

The error probability, averaging over all possible codebooks, is

P (n)
e =

∑
zn∈{0,1}n

Pθ(z
n)Pr(ẑn 6= zn) =

∑
f

Pr(f)P
(n)
e,f , (2.14)

in which Pθ(zn) , Pr(Zn = zn), and P (n)
e,f denotes the error probability if a particular

codebook f is used. By analyzing (2.14), we show that there exists a particular codebook

f ∗ such that P (n)
e,f∗ → 0 exponentially as n→∞ as long as the conditions in the theorem

are satisfied. Detailed analysis can be found in Appendix A. This implies that if we use

f ∗, then the fusion center will be able to compute Zn with an exponentially decreasing

error probability.

Theorem 1 implies that the required rates to decode Zn = Xn⊕Y n with a small error

probability is

RX > Hθ(X|Y ), (2.15)

RY > Hθ(Y |X). (2.16)

This rate region is larger than the Slepian-Wolf region in (2.4)-(2.6), as the condition

RX +RY ≥ Hθ(X, Y ) is not necessary anymore.
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2.2.2 Step 2: Estimation

After obtaining Ẑn, which is equal to Zn with a probability converging to 1 exponentially,

we then design an asymptotically MVUE of θ. Our estimator is

θ̂ =
n(0|Ẑn)

n
, (2.17)

in which the notation n(·|·) is defined in Section 2.1.

Theorem 2. If the conditions in Theorem 1 are satisfied, the estimator in (2.17) is an

asymptotically MVUE and achieves the optimal variance index as that of the centralized

case.

Proof. We establish this result by showing that the estimator (2.17) achieves the same

performance as that of the optimal estimator in the centralized case. Detailed analysis can

be found in Appendix B.

Slepian-­‐Wolf	
  Region	
  

Figure 2.2: Our estimator is optimal at any rate larger than the rate pair indicated by (F),
which is outside of the Slepian-Wolf rate region.

Combining Theorems 1 and 2, we conclude that, in the distributed parameter esti-

mation, the Slepian-Wolf rates are not necessary to achieve the same optimal estimation
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performance as that of the centralized case. Fig. 2.2 illustrates the comparison between

the Slepian-Wolf rate region and the rate pair used in our estimator.

2.3 General Binary Case

In this section, we extend our study to the general binary source models Pθ(X, Y ). Here,

we do not make any particular assumption of the form of Pθ(X, Y ). For example, Pθ(X, Y )

could be a nonlinear function of θ. Similar to the previous section, we assume that

Pθ(X = i, Y = j) > 0 for all θ ∈ Θ and i, j ∈ {0, 1}. Compared with the binary

symmetric source model considered in Section 2.2, there are two additional challenges.

First, the component-wise module-two sum Zn is not a sufficient statistic in general,

hence recovering Zn alone is not enough. Second, unlike the symmetric case in which

we have an MVUE centralized estimator to compare to, we cannot do that anymore as we

are considering general models whose optimal centralized is model specific (and in some

cases, MVUE may not exist). Despite these challenges, we prove the following result:

Theorem 3. For any binary source with a parametric PMF Pθ(X, Y ), where θ ∈ Θ is the

unknown parameter and Θ is a bounded set, there exits an unbiased estimator F̂ based

on Zn = Xn⊕Y n that achieves the centralized performance asymptotically and requires

communication rates of

RX = RY > Hθ(Z). (2.18)

Proof. The proof consists of two main steps: 1) in the first step, we construct a scheme

to enable the fusion center to compute a sufficient statistic with exponentially diminish-

ing error probability; 2) in the second step, we establish an estimator using the computed

statistics and show that the estimator achieves the performance of the centralized estima-
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tor. Detailed analysis can be found in Appendix C.

Depending on the PMF of the binary source, the required sum rate to achieve the

optimal centralized performance 2Hθ(Z) as obtained using our algorithm can be less than

Slepian-Wolf sum rate Hθ(X, Y ). As an example, consider a non-symmetric nonlinear

binary source with the PMF shown in Table 2.2.

X/Y 0 1
0 1/4 + θ2 1/4− θ2

1 1/4− θ 1/4 + θ

Table 2.2: An example of a joint PMF of a non-symmetric binary source with θ ∈ Θ =
(0, 1/4).

Although the joint PMF given in Table 2.2 is not symmetric and nonlinear in θ, the

required rates to obtain an unbiased estimator that achieves the centralized performance

are still lower than Slepian-Wolf rates as shown in Fig. 2.3.

Figure 2.3: The required rates to achieve the optimal centralized performance for the
binary source given in Table 2.2 is lower than Slepian-Wolf rates.
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2.4 Non-Binary Models

In this section, we extend our results for binary models to more general class of non-

binary models. Let X = Y = {0, 1, ...,M − 1} and consider the class of PMFs

Pθ(X = i, Y = j) =


θ
M

, if (i+ j) 6= M − 1

1−θ(M−1)
M

, otherwise,
(2.19)

where θ ∈ Θ = (0, 1
(M−1)

). Note that each information source has a uniform marginal

PMF and setting M = 2 recovers the binary case.

Similar to the binary case, we first use a linear code and minimum entropy decoder to

reconstruct Zn = (Xn + Y n) mod M at the decoder and then design an estimator from

Zn. In this section, we use mod M to denote element-wise mod operation,

In particular, we use a linear code f that maps {0, 1, ...,M−1}n to {0, 1, ...,M−1}k.

The encoded messages of the realizations xn ∈ {0, 1, ...,M−1}n and yn ∈ {0, 1, ...,M−

1}n are

f(xn) = xnA,

f(yn) = ynA, (2.20)

in which the code matrix A has n rows and k columns with each entry taking values from

{0, 1, ...,M − 1}. The coding rate is

R =
k

n
logM. (2.21)

The decoder first combines the encoded messages into a single message as

f(xn) + f(yn) mod M. (2.22)
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The final decoded message is given by

ẑn = φ(f(zn)), (2.23)

where φ the the minimum entropy decoding function. Following the same error probabil-

ity analysis for the binary case, we can show that there exists a codebook f ∗ (and hence

a particular encoding matrix A) that achieves a probability of decoding error P (n)
e,f∗ → 0

exponentially as n→∞ if

R ≥ Hθ(Z) = Hθ(X|Y ) = Hθ(Y |X). (2.24)

Therefore, as long as

RX > Hθ(X|Y ), (2.25)

RY > Hθ(Y |X), (2.26)

we can reconstruct Zn = Xn + Y n mod M at the decoder with an exponentially dimin-

ishing error probability.

After obtaining Ẑn, which is equal to Zn with a probability converging to 1 exponen-

tially, our estimator is

θ̂ =
n− n(M − 1|Ẑn)

n(M − 1)
. (2.27)

Following similar steps as those in the binary case, we can show that, if (2.25)-(2.26)

are satisfied, the estimator in (2.27) is asymptotically unbiased and achieves a variance

index

Vθ[θ̂] =
θ[1− θ(M − 1)]

M − 1
. (2.28)
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We can further show that (2.28) is the best variance index that can be achieved even in

the centralized case. This implies that our algorithm achieves the centralized performance

using rates outside the Slepian-Wolf region.

2.5 Multiple Source Networks

In this section we extend our results to the case of multiple source networks. We consider

a network that consists of N binary information sources (X1, X2, ..., XN). The obser-

vations (Xn
1 , X

n
2 , ..., X

n
N) are (i.i.d.) and drawn according to the parametric joint PMF

Pθ(X1, X2, ..., XN) given by

Pθ(x1, ..., xN) =


θ

2N−1 , if(x1 ⊕ ...⊕ xN) = 0

1−θ
2N−1 , otherwise,

(2.29)

where θ ∈ (0, 1). To establish our estimator, we first use a linear code f that has a rate R,

and a minimum entropy decoder φ to reconstruct Zn = (Xn
1⊕, ...,⊕Xn

N). The encoded

messages for the realizations (xn1 , x
n
2 , ..., x

n
N) are given by

f(xn1 ) = xn1A,

f(xn2 ) = xn2A,

.

.

f(xnN) = xnNA, (2.30)
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where A is a binary matrix that has n rows and nR columns. At the fusion center, the

decoder first combines the encoded messages into a single message f(xn1 )⊕, ...,⊕f(xnN),

then reconstructs ẑn as following

ẑn = φ(f(zn)). (2.31)

Similar to the error probability analysis for the two source case, we can show that there

exists a codebook f ∗, such that ẑn can be reconstructed efficiently with a probability of

decoding error P (n)
e,f∗ → 0 as n→∞ if

R > Hθ(Z)

= Hθ(X1|X2, ..., XN)

.

.

= Hθ(XN |X1, ..., XN−1). (2.32)

Since there is no additional constraints on the sum rates, then Zn can be reconstructed

efficiently at rates less than Slepian-Wolf rates. After obtaining Ẑn, we construct our

estimator as following

θ̂ =
n(0|Ẑn)

n
. (2.33)

Following similar steps to the two source case, we can show that our estimator is

asymptotically unbiased and achieves the minimum variance index given by

Vθ[θ̂] = θ(1− θ). (2.34)
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Hence, our estimator is an asymptotically MVUE using rates outside the Slepian-Wolf

region.

2.6 Practical Approach

In the previous sections, we established an unbiased estimator that achieves the central-

ized performance for a number of information sources, while requires less rates than

Slepian-Wolf rates. For binary symmetric sources and its extension, our estimator achieves

the CRLB within the combined regions of Slepian-Wolf and the dotted region as shown

in Fig. 2.4, where

RX > Hθ(X|Y ),

RY > Hθ(Y |X). (2.35)

Figure 2.4: The low rates inside the dashed region are considered in this section.

Our estimator is optimal if Zn = Xn⊕ Y n is decoded with a vanishing probability of

error. Otherwise, there is no optimality guarantee. In practical applications, the commu-
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nications rates can be lower than our conditions (2.35). Therefore, we modify the design

of our estimation algorithm in this section to ensure a good performance at all rates in-

cluding the low rates inside the dashed region as shown in Fig. 2.4. We start with the

case of binary symmetric sources then we extend the results to the general class of PMFs

as presented in Section 2.4. For binary symmetric sources, we assume that the unknown

parameter θ takes values in (0, t), where t ∈ (0, 0.5) is known.

First, we apply the encoding/decoding scheme introduced in Section 2.2 to encode p

observations (xp, yp) and decode ẑp = xp ⊕ yp , where

p =


n, if R ≥ H(t)

b nR
H(t)
c, otherwise,

(2.36)

where b·c is an operator that maps its argument to the largest previous integer, andH(t) =

−t log t− (1− t) log(1− t). Then, we modify our estimator as following:

θ̂ =
n(0|Ẑp)

p
. (2.37)

The following Theorem states the performance bounds of our estimator.

Theorem 4. If

R ≥ H(t), (2.38)

our estimator is an asymptotically MVUE. Otherwise, our estimator is asymptotically

unbiased and its variance index is bounded as

Vθ[θ̂] ≤
H(t)θ(1− θ)

R
. (2.39)
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Proof. The proof of this theorem can be found in Appendix D.

For the general class of PMFs given in (2.19), we assume that θ takes values in (0, t),

and t ∈ (0, 1
2(M−1)

). We establish our estimator as

θ̂ =
p− n(M − 1|Ẑp)

p(M − 1)
. (2.40)

Following similar steps to the proof of Theorem 4, we have that our estimator is an asymp-

totically MVUE if R ≥ H(t). Otherwise, our estimator is asymptotically unbiased and

its variance index is bounded as

Vθ[θ̂] ≤
H(t)θ[1− θ(M − 1)]

R(M − 1)
. (2.41)

For binary symmetric sources and its extension, we guarantee a worst case perfor-

mance that is a function of the communication rate R. In the following section, we show

that despite of a small performance degradation in the rate region H(θ) ≤ R < H(t)

as compared to our estimator in Section 2.4, we managed to achieve a very good perfor-

mance at low rates.

2.7 Numerical Results

In this section, we use several numerical examples to illustrate the comparison between

our estimators to the best known estimator by Han and Amari [36]. In the simulation, we

fix the unknown parameter θ and change the encoding rates RX and RY such that

RX = RY = R. (2.42)

We conduct the comparison for M = 2 and M = 4, respectively.
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For our estimator in Section 2.4 and M = 2, the variance index of our estimator

is (B.16), while the variance index of the estimator by Han and Amari is calculated in

example 3 of [36]

(Vθ[θ̂])HA '
1

16a2b2

{
1

4
−
(
θ − 1

2

)2

[1− (1− 4a2)(1− 4b2)]

}
, (2.43)

where a and b are functions of RX and RY , whose expressions are given in (14.12) and

(14.13) of [36], respectively.

Figure 2.5: Performance Comparison: M = 2

Fig. 2.5 shows the performance gain, in terms of the variance index, of our estimator

over Han and Amari’s estimator for binary symmetric sources (M = 2) at two different

values of the unknown parameter, θ = 0.05 and θ = 0.9, respectively. The performance

difference is more noticeable at low rates. For θ = 0.05, the Slepian-Wolf sum rate is
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RX +RY = 1.29 bits, while our estimator requires a sum rate of RX +RY = 2R = 0.57

bits. For θ = 0.9, the Slepian-Wolf sum rate is 1.47 bits, while our estimator requires a

sum rate of 0.94 bits. Furthermore, for Han and Amari’s estimator to achieve the central-

ized performance, the required sum-rate is 2 bits for both cases, which is not only much

larger than the sum rate required in our estimator but also much larger than the sum-rate

required by conditions specified in the Slepian-Wolf rate region.

For our estimator in Section 2.4 and M = 4, the variance index of our estimator is

given in (2.28). The performance of Han and Amari’s estimator relies on the choice of

the test channels. The authors did not specify an optimal choice of the test channels in

order to extend example 3 in [36] to the case of M = 4. We find the following mapping

to be a natural extension:

Q =


0, if X ∈ {0, 1}

1, if X ∈ {2, 3},
T =


0, if Y ∈ {0, 1}

1, if Y ∈ {2, 3}.
(2.44)

Notice that (Q, T ) are distributed according to a binary symmetric PMF with an unknown

parameter α = 2θ. Using an estimator θ̂ = α̂
2

leads to the following expression for the

variance index:

(Vθ[θ̂])HA '
1

64a2b2

{
1

4
−
(

2θ − 1

2

)2

[1− (1− 4a2)(1− 4b2)]

}
. (2.45)

Fig. 2.6 compares the variance indices achieved using our estimator and Han and

Amari’s estimator for M = 4 and θ = 0.01. It is clear that our estimator outperforms that

of Han and Amari’s estimator. Furthermore, the performance difference is more notice-

able at low rates. The Slepian-Wolf sum rate is 2.24 bits, while our estimator requires a

sum rate of 0.48 bits.

For our practical estimator in Section 2.6 and M = 2, the variance index of our
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Figure 2.6: Performance Comparison: θ = 0.01, M = 4

estimator is bounded as in (2.41) if R < H(t). Otherwise, it achieves the CRLB. The

variance index of Han and Amari’s estimator is (2.43).

For our practical estimator in Section 2.6 and M = 4, the variance index of our

estimator is bounded as in (D.12) if R < H(t). Otherwise, it achieves the CRLB. The

variance index of Han and Amari’s estimator is (2.45).

Fig. 2.7 and Fig. 2.8 show that our estimator outperforms Han and Amari’s estimator

at all rates. The performance difference is more noticeable at very low rates, which makes

our estimator a good choice for applications with low rate constraints. Our estimator

performs better for smaller values of the range of θ, which is determined by t.
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Figure 2.7: Performance Comparison: θ = 0.05, M = 2, t = 0.5 and 0.1

Figure 2.8: Performance Comparison: θ = 0.01, M = 4, t = 0.16

32



Chapter 3

Sufficiency Based Data Reduction

In this chapter, we examine the optimality of data dimensionality reduction via sufficient

statistics compression in distributed parameter estimation problems for the scenario where

the communication rates are not sufficient to achieve the same inference performance

as that of the centralized case as characterized in Chapter 2. The chapter is organized

as follows. We give a formal statement of the problem in Section 3.1. In Section 3.2

we prove that sufficiency based data reduction is optimal, then we extend our result to

the multiple sources scenario and the discrete case in Section 3.3. In Section 3.4 we

analyze the asymptotic optimal Bayesian performance in the presence of communication

constraints. We verify our results through simulations in Section 3.5.

3.1 Problem Formulation

We study the problem of distributed parameter estimation when the n observations Xn
1

related to the random variable X ∈ X are distributed between two nodes, such that node

1 has access to the observations Xn1
1 and node 2 has access to Xn

n1+1. The observations

are independent and identically distributed (i.i.d.) and generated according to the para-
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metric probability distribution function f(X|θ), where θ ∈ Θ is an unknown parameter

that follows a probability distribution function f(θ). The question we answer is whether

sufficiency based data reduction is optimal or not.

To answer this question, we compare the performance of the two system models (a)

and (b) as shown in Fig. 3.1, while applying the same compression rate pair (R1, R2) to

both models. In system model (a), node 1 and node 2 compress the observations Xn1
1 and

Xn
n1+1 using the encoding functions g1(·) ∈ G1 and g2(·) ∈ G2, respectively. The fusion

center receives the compressed messages and applies the decoding function φa to get an

estimate θ̂a of the unknown parameter θ. In (b), an additional step is added to extract the

sufficient statistics T1(Xn1
1 ) and T2(Xn

n1+1) from the observations, then compress them

using the encoding functions h1(·) ∈ H1 and h2(·) ∈ H2, respectively. The fusion center

uses the decoding function φb to get an estimate θ̂b of the unknown parameter.

Figure 3.1: System models (a) and (b).
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The encoding rates are given by

R1 =
1

n1

log |G1| =
1

n1

log |H1|, (3.1)

R2 =
1

(n− n1)
log |G2| =

1

(n− n1)
log |H2|. (3.2)

According to the definition, a sufficient statistic T (Y ) carries as much information

about the unknown parameter θ as the observation Y . Hence, we have the following

Markov chains

θ − T1(Xn1
1 )−Xn1

1 ,

θ − T2(Xn
n1+1)−Xn

n1+1. (3.3)

The performance metric we use is the Bayesian risk, which is expressed as

Ba = inf
g1,g2,φa

Eθ,X [(θ − θ̂a)2], (3.4)

Bb = inf
h1,h2,φb

Eθ,X [(θ − θ̂b)2]. (3.5)

In the following section, we answer the main question of the chapter for the Bayesian

risk by analyzing the relationship between the pair Ba and Bb. An easy observation about

this relationship is thatBa ≤ Bb, which can be shown by choosing g1(xn1
1 ) = h1(T1(xn1

1 ))

and g2(xnn1+1) = h2(T2(xnn1+1)).

Throughout the chapter, we use an upper case letter U to denote a random variable,

a lower case letter u to denote a realization of U , and U to denote the set from which U

takes values.
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3.2 Data Reduction

Theorem 5. The optimal Bayesian performance can be achieved by compressing the

sufficient statistics extracted from the observations. Hence

Bb = Ba.

Proof. Let (g∗1, g
∗
2, φ

∗
a) be the encoding/decoding functions used to obtain Ba. Therefore

Ba =

∫
Θ

∫
Xn

(θ − φ∗a(g∗1(xn1
1 ), g∗2(xnn1+1)))2f(xn|θ)f(θ)dxndθ

=

∫
Θ

∫
Xn11

∫
Xnn1+1

(θ − φ∗a(g∗1(xn1
1 ), g∗2(xnn1+1)))2f(xn1

1 , x
n
n1+1|θ)

× f(θ)dxn1
1 dx

n
n1+1dθ

=

∫
Θ

∫
Xn11

∫
Xnn1+1

(θ − φ∗a(g∗1(xn1
1 ), g∗2(xnn1+1)))2f(xn1

1 |θ)f(xnn1+1|θ)

× f(θ)dxn1
1 dx

n
n1+1dθ, (3.6)

where the last equality follows from the fact that the observations are (i.i.d.). We have

that

f(xn1
1 |θ)f(θ) = f(xn1

1 )f(θ|xn1
1 )

= f(xn1
1 )f(θ|T1(xn1

1 )), (3.7)

where the second equality follows from (3.3) as explained in Lemma 1 of [1]. By defining

α1(g∗1) as

α1(g∗1) =

∫
Θ

∫
Xnn1+1

(θ − φ∗a(g∗1(xn1
1 ), g∗2(xnn1+1)))2

× f(xnn1+1|θ)f(θ|T1(xn1
1 ))dxnn1+1dθ, (3.8)
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the Bayesian risk can be rewritten as

Ba =

∫
Xn11

α1(g∗1)f(xn1
1 )dxn1

1 . (3.9)

Given xn1
1 ∈ X n1

1 , the encoded message g∗1(xn1
1 ) = s ∈ G1 is chosen to minimize α1.

Hence, for any t ∈ G1, we have that

0 ≥ α1(s)− α1(t)

=

∫
Θ

∫
Xnn1+1

[(θ − φ∗a(s, g∗2(xnn1+1)))2 − (θ − φ∗a(t, g∗2(xnn1+1)))2]

× f(xnn1+1|θ)f(θ|T1(xn1
1 ))dxnn1+1dθ. (3.10)

Condition (E.6) depends on xn1
1 only through T1(xn1

1 ). Therefore s can be chosen op-

timally using information about T1(xn1
1 ), which implies that there exists an encoding

function h∗1(·) ∈ H1, such that h∗1(T1(xn1
1 )) = g∗1(xn1

1 ) and H1 = G1. Similarly, one

can define α2(g∗2) and show that there exists an encoding function h∗2(·) ∈ H2, such that

h∗2(T2(xnn1+1)) = g∗2(xnn1+1) andH2 = G2.

Using the encoding/decoding functions (h∗1, h
∗
2, φ
∗
b = φ∗a) together with the fact that

Ba ≤ Bb, we get that

Bb = Ba. (3.11)

And thus the optimal Bayesian performance can be achieved by compressing the sufficient

statistics extracted from the observations.

This shows that it is optimal to reduce the dimensionality of the observations before

compressing them, which greatly simplifies the design of the compression scheme.
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3.3 Extensions

3.3.1 Multiple Sources

Our result can be extended to the multiple sources scenario, where the n observations

Xn
1 are distributed over M nodes. Node (i + 1) has access to the observations X

n(i+1)

ni+1 ,

i = 0, 1, ...,M − 1, where n0 = 0 and nm = n. In this case, the Bayesian risk can be

expressed as

Ba =

∫
Θ

∫
Xn

(θ − φ∗a(g∗1(xn1
1 ), ..., g∗m(xnnm−1+1)))2f(xn|θ)f(θ)dxndθ

=

∫
Θ

∫
Xn11

...

∫
Xnnm−1+1

(θ − φ∗a(g∗1(xn1
1 ), ..., g∗m(xnnm−1+1)))2f(xn1

1 , ..., x
n
nm−1+1|θ)

× f(θ)dxn1
1 × ...× dxnnm−1+1dθ

=

∫
Θ

∫
Xn11

...

∫
Xnnm−1+1

(θ − φ∗a(g∗1(xn1
1 ), ..., g∗m(xnnm−1+1)))2f(xn1

1 |θ)× ...× f(xnnm−1+1|θ)

× f(θ)dxn1
1 × ...× dxnnm−1+1dθ. (3.12)

By defining α1(g∗1) as

α1(g∗1) =

∫
Θ

∫
Xn2n1+1

...

∫
Xnnm−1+1

(θ − φ∗a(g∗1(xn1
1 ), ..., g∗m(xnnm−1+1)))2f(xn2

n1+1|θ)× ...× f(xnnm−1+1|θ)

× f(θ|T1(xn1
1 ))dxn2

n1+1 × ...× dxnnm−1+1dθ, (3.13)

and following similar steps to the two sources scenario, it can be shown that Ba = Bb.

3.3.2 Discrete Case

In the discrete case, the n observations Xn
1 are distributed over M nodes and generated

according to the parametric probability mass function P (X|θ), and θ ∈ Θ follows a

38



probability distribution function f(θ). The Bayesian risk can be expressed as

Ba =

∫
Θ

∑
Xn

(θ − φ∗a(g∗1(xn1
1 ), ..., g∗m(xnnm−1+1)))2P (xn|θ)f(θ)dθ

=

∫
Θ

∑
Xn11

...
∑

Xnnm−1+1

(θ − φ∗a(g∗1(xn1
1 ), ..., g∗m(xnnm−1+1)))2P (xn1

1 , ..., x
n
nm−1+1|θ)f(θ)dθ

=

∫
Θ

∑
Xn11

...
∑

Xnnm−1+1

(θ − φ∗a(g∗1(xn1
1 ), ..., g∗m(xnnm−1+1)))2P (xn1

1 |θ)× ...× P (xnnm−1+1|θ)

× f(θ)dθ. (3.14)

We have that

P (xn1
1 |θ)f(θ) = P (xn1

1 )f(θ|xn1
1 )

= P (xn1
1 )f(θ|T1(xn1

1 )). (3.15)

By defining α1(g∗1) as

α1(g∗1) =

∫
Θ

∑
Xn2n1+1

...
∑

Xnnm−1+1

(θ − φ∗a(g∗1(xn1
1 ), ..., g∗m(xnnm−1+1)))2P (xn2

n1+1|θ)× ...× P (xnnm−1+1|θ)

× f(θ|T1(xn1
1 ))dθ, (3.16)

and following similar steps to the two sources scenario, it can be shown that Ba = Bb.

3.4 Optimal Bayesian Performance

In this section, we study the optimal Bayesian performance in the presence of communi-

cation constraints.

Theorem 6. Let the observations Xn
1 be generated according to a Gaussian distribution

X ∼ N (θ, 1), where θ ∈ R follows a Gaussian distribution θ ∼ N (0, 1). The n observa-
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tions are distributed evenly between two nodes such that n1 = n2 = n/2. The asymptotic

optimal Bayesian (AOB) performance under 1-bit compression constraint is given by

BAOB−1bit = 1− 2

π
.

Proof. As shown in Theorem 5, it is optimal that nodes 1 and 2 compress the extracted

sufficient statistics T1(X
n/2
1 ) and T2(Xn

(n/2)+1), respectively, then send them to the fusion

center. The fusion center can then establish an optimal Bayesian estimator θ̂ as a func-

tion of the received messages. In this case, the sufficient statistics can be calculated as

following

T1(x
n/2
1 ) =

2
∑n/2

i=1 xi
n

,

T2(xn(n/2)+1) =
2
∑n

i=(n/2)+1 xi

n
. (3.17)

Hence T1(X
n/2
1 ) ∼ N (θ, 2/n), T2(Xn

(n/2)+1) ∼ N (θ, 2/n), and

Pr
(
T1(X

n/2
1 ) ≥ 0

)
|θ
)

= 1− Pr
(
T1(X

n/2
1 ) < 0

)
|θ
)

=

∫ ∞
0

f(T1(x
n/2
1 )|θ)dT1(x

n/2
1 ) = Q(−

√
n

2
θ),

Pr
(
T2(Xn

(n/2)+1) ≥ 0
)
|θ
)

= 1− Pr
(
T2(Xn

(n/2)+1) < 0
)
|θ
)

=

∫ 0

−∞
f(T2(xn(n/2)+1)|θ)dT2(xn(n/2)+1)

= Q(−
√
n

2
θ), (3.18)

where Q(·) is the Q-function. Due to the symmetry of the problem since both nodes

have access to equal number of observations, the encoders at nodes 1 and 2 apply the same

compression scheme. A 1-bit compression scheme h(·) maps the value of the sufficient

statistic T (X) to one of two levels ha or hb with ha ≥ hb. These levels are chosen to
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minimize the quantization error as given by

E[(h(T (X))− T (X))2] =

∫ ∞
−∞

(h(T (x))− T (x))2dT (x)

=

∫
Ta

(ha − T (x))2dT (x)

+

∫
Tb

(hb − T (x))2dT (x), (3.19)

where Ta is the range of values of T (X) mapped to ha, and Tb is the range of values

of T (X) mapped to hb. To minimize the quantization error, a point T (x) is mapped to

its nearest quantization level. Therefore, each of the quantization ranges Ta and Tb is

continuous, and hence the encoding function is given by

h(T (x)) =


ha, if T (x) ≥ ha−hb

2

hb, if T (x) < ha−hb
2

. (3.20)

Notice that the decoder only needs to know whether the value of T (x) is larger or smaller

than the dividing point ha−hb
2

.

At node 1, we have that

f
(
T1(x

n/2
1 )
)

=

∫ ∞
−∞

f
(
T1(x

n/2
1 )
)
|θ
)
f(θ)dθ

= f
(
− T1(x

n/2
1 )
)
. (3.21)

Therefore, f(T1(X
n/2
1 )) is symmetric around 0, and hence the optimal dividing point for

a 1-bit compression scheme is 0. The encoder at node 1 chooses the encoding message as
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following

h1(T1(x
n/2
1 )) =


1, if T1(x

n/2
1 ) ≥ 0

0, if T1(x
n/2
1 ) < 0

. (3.22)

Similarly, the encoder at node 2 chooses the encoding message as following

h2(T2(xn(n/2)+1)) =


1, if T2(xn(n/2)+1) ≥ 0

0, if T2(xn(n/2)+1) < 0

. (3.23)

At the fusion center, we have that

f
(
θ|(T1(x

n/2
1 ) ≥ 0, T2(xn(n/2)+1) ≥ 0)

)
=

Pr
(
T1(X

n/2
1 ) ≥ 0|θ

)
Pr
(
T2(xn(n/2)+1) ≥ 0|θ

)
f(θ)

Pr(T1(X
n/2
1 ) ≥ 0, T2(Xn

(n/2)+1) ≥ 0)

=
[Q(−

√
n
2
θ)]2f(θ)∫∞

−∞[Q(−
√

n
2
θ)]2f(θ)dθ

. (3.24)

Therefore,

lim
n→∞

f
(
θ|(T1(x

n/2
1 ) ≥ 0, T2(xn(n/2)+1) ≥ 0)

)
= 2f(θ) , θ ≥ 0, (3.25)

and

lim
n→∞

E
(
θ|(T1(x

n/2
1 ) ≥ 0, T2(xn(n/2)+1) ≥ 0)

)
=

√
2

π
. (3.26)

Similarly,

lim
n→∞

E
(
θ|(T1(x

n/2
1 ) < 0, T2(xn(n/2)+1) < 0)

)
= −

√
2

π
. (3.27)
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We also have that

f
(
θ|(T1(x

n/2
1 ) ≥ 0, T2(xn(n/2)+1) < 0)

)
=

Pr
(
T1(X

n/2
1 ) ≥ 0|θ

)
Pr
(
T2(xn(n/2)+1) < 0|θ

)
f(θ)

Pr(T1(X
n/2
1 ) ≥ 0, T2(Xn

(n/2)+1) < 0)

=
Q(−

√
n
2
θ)Q(

√
n
2
θ)f(θ)∫∞

−∞Q(−
√

n
2
θ)Q(

√
n
2
θ)f(θ)dθ

. (3.28)

This shows that f
(
θ|(T1(x

n/2
1 ) ≥ 0, T2(xn(n/2)+1) < 0)

)
is symmetric around 0, and hence

E
(
θ|(T1(x

n/2
1 ) ≥ 0, T2(xn(n/2)+1) < 0)

)
= 0. (3.29)

Similarly,

E
(
θ|(T1(x

n/2
1 ) < 0, T2(xn(n/2)+1) ≥ 0)

)
= 0. (3.30)

Therefore, the optimal estimation scheme is given in Fig. 3.2

Figure 3.2: The optimal estimation scheme for Gaussian distribution.
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In this case, the AOB performance is given by

BAOB−1bit = lim
n→∞

E[(θ̂ − θ)2]

= lim
n→∞

∫ ∞
−∞

∫
Xn1

(θ̂ − θ)2f(xn1 |θ)f(θ)dxn1dθ

= lim
n→∞

∫ ∞
−∞

[I1 + I2 + I3]f(θ)dθ, (3.31)

where

I1 = (

√
2

π
− θ)2[Pr

(
T1(X

n/2
1 ) ≥ 0

)
|θ
)
Pr
(
T2(Xn

(n/2)+1) ≥ 0
)
|θ
)
], (3.32)

I2 = (

√
2

π
+ θ)2[Pr

(
T1(X

n/2
1 ) < 0

)
|θ
)
Pr
(
T2(Xn

(n/2)+1) < 0
)
|θ
)
], (3.33)

I3 = θ2[Pr
(
T1(X

n/2
1 ) ≥ 0

)
|θ
)
Pr
(
T2(Xn

(n/2)+1) < 0
)
|θ
)

+ Pr
(
T1(X

n/2
1 ) < 0

)
|θ
)
Pr
(
T2(Xn

(n/2)+1) ≥ 0
)
|θ
)
]. (3.34)

The AOB performance can be rewritten as

BAOB−1bit = lim
n→∞

(∫ ∞
−∞

[(

√
2

π
− θ)2Q2(−

√
n

2
θ) + (

√
2

π
+ θ)2Q2(

√
n

2
θ)

+ 2θ2Q(−
√
n

2
θ)Q(

√
n

2
θ)]f(θ)dθ

)
=

∫ ∞
0

(

√
2

π
− θ)2f(θ)dθ +

∫ 0

−∞
(

√
2

π
+ θ)2f(θ)dθ

= 1− 2

π
. (3.35)

44



This shows that the centralized estimation performance is not attainable at very low

compression rates. However, the AOB performance is achievable through reducing the

dimensionality of the observations prior to applying the compression scheme.

3.5 Simulation Results

In this section, we run two simulations to verify our theoretical results. In both sim-

ulations, the observations Xn
1 are generated according to a Gaussian distribution X ∼

N (θ, 1), and the n observations are distributed evenly between two nodes such that

n1 = n2 = n/2.

We use a 1-bit compression scheme to plot the simulated distortion against the number

of observations, and we compare the results to the AOB performance. The simulated

distortion is calculated as

D = |θ̂ − θ|2. (3.36)

In the first simulation, we assume that θ ∈ R follows a Gaussian distribution θ ∼ N (0, 1),

while in the second simulation, we assume that θ ∈ (−1, 1) follows a uniform distribution

θ ∼ U(−1, 1).

3.5.1 Gaussian Distribution: θ ∼ N (0, 1)

Fig. 3.3 shows that the simulated distortion converges to the AOB performance given

in (3.37) as the number of observations increase, which coincides with our results in

Sections 3.2 and 3.4.
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Figure 3.3: The simulated distortion for Gaussian distribution.

3.5.2 Uniform Distribution: θ ∼ U(−1, 1)

Our results in Section 3.4 can be easily extended to the case of uniform distribution. The

encoders have the same design as in the Gaussian case, while the optimal estimation

scheme is given in Fig. 3.4

In this case, the AOB performance is given by

BAOB−1bit =

∫ 1

0

(0.5− θ)2f(θ)dθ +

∫ 0

−1

(0.5 + θ)2f(θ)dθ

=
1

12
. (3.37)

Similar to the Gaussian case, Fig. 3.5 shows that the simulated distortion converges to

the AOB performance as the number of observations increase.
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Figure 3.4: The optimal estimation scheme for uniform distribution.

Figure 3.5: The simulated distortion for uniform distribution.
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Chapter 4

Distributed Optimization with

Quantized Updates

In this chapter, we analyze the convergence rate for distributed optimization algorithms

in the presence of communication constraints. The chapter is organized as follows. We

give a formal statement of the problem in Section 4.1. In Section 4.2 we introduce our al-

gorithm. We analyze the convergence rate of our algorithm, and we derive sufficient con-

ditions on the quantization error in Section 4.3. We extend our results to the general case

of block coordinate case in Section 4.4. In Section 4.5, we analyze the convergence rate

for the parallel setting, and we compare the two case of synchronous and asynchronous

processing. We verify our results by running an experiment in Section 4.6.

4.1 Problem Formulation

We consider an unconstrained convex minimization problem

min
x∈Rd

f(x), (4.1)
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where x = {x1, x2, ..., xd}, and f(x) is an L-smooth and m-strongly convex function,

such that for all x,y ∈ Rd, we have that

||Of(x)− Of(y)|| ≤ L||x− y||, (4.2)

〈Of(x)− Of(y),x− y〉 ≥ m||x− y||2, (4.3)

where L is the Lipschitz constant and m is the strong convexity parameter. The condition

number of f is defined as g = L/m. As a result of the strong convexity, the function f(x)

has a unique minimum at x∗.

In the distributed coordinate descent algorithm, the data examples related to the prob-

lem are distributed over d nodes such that each node can calculate one coordinate of the

gradient Of(x) as explained in Section 6 of [54]. The algorithm we study in this chapter

is the randomized coordinate descent, in which at each iteration a coordinate is randomly

selected to be updated. There are different ways to randomly select the coordinate. We

focus on the case in which the coordinates are selected with a uniform distribution. The

channels connecting machines are capacity limited with a quantization resolution of ∆,

which means that machine i can only send a quantized version Q
(
∂f(x)
∂xi

)
of its update

∂f(x)
∂xi

, such that

Q

(
∂f(x)

∂xi

)
= y∆, if (y − 1

2
)∆ ≤ ∂f(x)

∂xi
< (y +

1

2
)∆, (4.4)

in which Q(·) is the quantization operator. Let [Of(x)]i ∈ Rd denote a vector that has

only one nonzero element at position i that is equal to ∂f(x)
∂xi

. By applying the quantization

operator to the nonzero element of the vector [Of(x)]i ∈ Rd, we can rewrite (4.4) as

Q([Of(x)]i) = [Of(x)]i − n, (4.5)
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where n ∈ Rd is the quantization noise vector. The noise vector n has only one nonzero

element ni that is bounded as |ni| ≤ ∆/2. Hence,

||n|| ≤ ∆

2
. (4.6)

Throughout the chapter, we use xk and xqk to denote the kth update of x before and after

adding the quantization noise, respectively. An upper case letter S is used for a random

variable, while a lower case letter s is used for a realization of S. We also use ||x|| to

denote the Euclidean norm of the vector x, and we use Q(·) to denote the quantization

operator.

4.2 Quantized Randomized Coordinate Descent

Here, we describe the randomized coordinate descent algorithm with quantized update.

The algorithm starts from an initial point x0, and stops after a predetermined number of

iterations T . Set xq0 = x0. At iteration (j+ 1), a machine sj+1 ∈ {1, 2, ..., d} is randomly

(with a uniform distribution) selected, who calculates [Of(xqj)]sj+1
and then sends the

quantized update Q
(
[Of(xqj)]sj+1

)
, all machines update

xqj+1 = xqj − tdQ([Of(xqj)]sj+1
), (4.7)

where t is the step size.

To facilitate the analysis, we also record the sequence

xj+1 = xqj − td[Of(xqj)]sj+1
. (4.8)
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Algorithm 1: Quantized Randomized Coordinate Descent
1: xq0 = x0

2: for j = 0, 1, ..., (T − 1) do
3: a machine is randomly selected to send its update
4: selected machine sj+1 computes [Of(xqj)]sj+1

5: machine sj+1 communicates Q([Of(xqj)]sj+1
)

6. all machines update xqj+1 = xqj − tdQ([Of(xqj)]sj+1
)

7: end for

Using (4.23), we can show that

xqj = xj + tdnj, j = {1, 2, ..., T}. (4.9)

It is desirable that the algorithm converges within k iterations to an accuracy level of

ε and a confidence level of ρ ∈ (0, 1), such that

Pr(||xk − x∗||2 ≤ ε) ≥ 1− ρ. (4.10)

By applying Markov inequality, the convergence condition in (4.10) is achieved if

E||xk − x∗||2 ≤ ερ. (4.11)

4.3 Convergence Analysis

In this section, we analyze the convergence rate of the quantized randomized coordinate

descent algorithm.

Theorem 7. Given that the quantization error ∆ is bounded as following

∆ ≤ ερL2

2m
(

1

Cmin
− 1), (4.12)

51



the number of iterations required for the quantized randomized coordinate descent algo-

rithm to converge to the optimal solution x∗ is at most

kq =
log(2||x0 − x∗||2/ερ)

log(1/Cmin)

+
log(2||x0 − x∗||2)

log(1/(Cmin + ερ
2

(1− Cmin))
, (4.13)

where

Cmin = 1− 1

g2d
.

Proof. We have that

||xj+1 − x∗||2 = ||xqj − x∗ − td[Of(xqj)]sj+1
||2

= ||xqj − x∗||2 + t2d2||[Of(xqj)]sj+1
||2

− 2td〈[Of(xqj)]sj+1
,xqj − x∗〉. (4.14)

Taking the expectation of both sides with respect to the independent and identically dis-

tributed (i.i.d.) random variables S1, S2, ...Sj+1

E||xj+1 − x∗||2 = E||xqj − x∗||2

+ t2d2E||[Of(xqj)]sj+1
||2

− 2tdE〈[Of(xqj)]sj+1
,xqj − x∗〉.

(4.15)
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Since Esj+1
[Of(xqj)]sj+1

= 1
d
(Of(xqj)), then

E||xj+1 − x∗||2 = E||xqj − x∗||2 + t2dE||Of(xqj)||2

− 2tE〈Of(xqj),x
q
j − x∗〉. (4.16)

By applying inequalities (4.2) and (4.3), and using the fact that Of(x∗) = 0, we have that

||Of(xqj)|| ≤ L||xqj − x∗||, (4.17)

and

〈Of(xqj),x
q
j − x∗〉 ≥ m||xqj − x∗||2. (4.18)

Substituting (4.17) and (4.18) in (4.16), we get that

E||xj+1 − x∗||2 ≤ CE||xqj − x∗||2, (4.19)

whereC = t2L2d−2tm+1. The remaining of the proof can be found in Appendix E.

This shows that the quantization error does not propagate, and hence the algorithm

with quantized updates still converges to the optimal solution given that the error is

bounded.

Note that By setting ∆ = 0 and hence xqj = xj in (4.19), the quantization-free scenario

can be recovered. It follows that the number of iterations required for the quantization-

free algorithm to converge is at most

k =
log(||x0 − x∗||2/ερ)

log(1/Cmin)
, (4.20)
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which coincides with the result obtained in [55].

The main difference between (4.13) and (4.20) is the extra number of iterations re-

quired in the quantization scenario to get ||xkq − x∗||2 below 1 as shown in Fig. 4.7. For

ε = 10−15, ρ = 0.01, Cmin = 0.5, this difference is approximately fixed at around 17

iterations for ||x0 − x∗||2 ranging from 10, 000 to 100, 000.

Figure 4.1: Comparison between kq and k as a function of ||x0 − x∗||2.

4.4 Quantized Block Coordinate Descent

In this section, we extend our results to the general case of randomized block coordinate

descent, where the number of nodes M can take any value between 2 and d. In this case,

node s can update a block Is ⊂ D = {1, 2, ..., d} of the coordinates. We have that

M⋃
i=1

Ii = D,

Ii
⋂

Ij = φ, i 6= j. (4.21)
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Our algorithm can handle this general problem in two ways:

• Algorithm 2: The selected node by the fusion center sends a full update for all its

coordinates.

• Algorithm 3: The selected node samples a smaller set of its coordinates randomly

and sends the update for the sampled set only.

The advantage of algorithm 3 is to reduce the computational cost at the selected node

especially if it has a large block of coordinates. On the other hand, algorithm 2 requires

less number of iterations for the algorithm to converge to the optimal solution. We start

by analyzing algorithm 2.

Algorithm 2: Quantized Block Coordinate Descent - without Sampling
1: xq0 = x0

2: for j = 0, 1, ..., (T − 1) do
3: a machine is randomly selected to send its update
4: selected machine sj+1 computes [Of(xqj)]Isj+1

5: machine sj+1 communicates Q([Of(xqj)]Isj+1
)

6. all machines update xqj+1 = xqj − tMQ([Of(xqj)]Isj+1
)

7: end for

At iteration (j+1), the fusion center randomly chooses node sj+1 ∈ D with a uniform

distribution to send its quantized update Q([Of(xqj)]Isj+1
). We have that

xj+1 = xqj − tM [Of(xqj)]Isj+1
, (4.22)

where the vector of partial derivatives [Of(xqj)]Isj+1
∈ Rd has only nonzero elements at

positions Isj+1
. In this case, the norm of the quantization noise vector n is bounded as

||n|| ≤ ∆
√
l

2
, (4.23)
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where l is the number of nonzero elements in n. Define lm as the maximum block length

lm = maxMi=1 li, where li = |Ii|.

Corollary 1. Given that the quantization error ∆ is bounded as following

∆ ≤ ερL2

2m
√
lm

(
1

C 1min
− 1), (4.24)

the number of iterations required for algorithm 2 to converge to the optimal solution x∗

is at most

kq =
log(2||x0 − x∗||2/ερ)

log(1/C1min)

+
log(2||x0 − x∗||2)

log(1/(C1min + ερ
2

(1− C1min))
. (4.25)

where

C1min = 1− (1/(g2M)).

Proof. The proof of this corollary can be found in Appendix F.

Notice that a small number of nodes M leads to a faster convergence rate at the ex-

pense of a higher computational cost per node. Next, we analyze algorithm 3.

Algorithm 3: Quantized Block Coordinate Descent - with Sampling
1: xq0 = x0

2: for j = 0, 1, ..., (T − 1) do
3: a machine is randomly selected to send its update
4: selected machine sj+1 randomly samples Qsj+1

⊂ Isj+1
to update

5: machine sj+1 computes [Of(xqj)]Qsj+1

6: machine sj+1 communicates Q([Of(xqj)]Qsj+1
)

7. all machines update xqj+1 = xqj − tMQ([Of(xqj)]Qsj+1
)

8: end for
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At iteration (j + 1), the fusion center randomly chooses node sj+1 ∈ D with a uni-

form distribution to send its update. The selected node sj+1 randomly samples a set of

coordinates Qsj+1
⊂ Isj+1

to update.

Let qi denotes the size of the set Qi. For simplicity, we assume that qi takes the

following values

qi =


q, if q < li

li, otherwise
, (4.26)

where q is a constant that can be adjusted as one of the algorithm parameters. This simply

means that node i updates all its coordinates if li ≤ q. Otherwise, the node samples and

updates a subset of its coordinates Qi ⊂ Ii, such that |Qi| = q. In this case, we have that

xj+1 = xqj − tM [Of(xqj)]Qsj+1
, (4.27)

where the vector of partial derivatives [Of(xqj)]Qsj+1
∈ Rd has only nonzero elements at

positions Qsj+1
.

Corollary 2. Given that the quantization error ∆ is bounded as following

∆ ≤ ερL2lm
2mq
√
q

(
1

C 2min
− 1), (4.28)

the number of iterations required for algorithm 3 to converge to the optimal solution x∗

is at most

kq =
log(2||x0 − x∗||2/ερ)

log(1/C2min)

+
log(2||x0 − x∗||2)

log(1/(C2min + ερ
2

(1− C2min))
. (4.29)
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where

C2 = t2L2M − 2tmq

lm
+ 1.

Proof. The proof of this corollary can be found in Appendix G.

Notice that a large value of the ratio q/lm leads to a faster convergence rate at the

expense of a higher computational cost per node. We also observe that reducing the value

of the parameter q results in a tighter upper bound on the quantization error. To explain

this, we notice that a decrease in q means less quantization noise per iteration, but it also

leads to a slower convergence rate, and hence increases the overall quantization noise,

which requires a tighter bound on the quantization error to guarantee the convergence of

the algorithm. This observation is illustrated in Fig. 4.2 for (ε = 10−15, ρ = 0.01, g2 = 2,

m = 1, M = 20, lm = 10).

Figure 4.2: The effect of the parameter q on the quantization condition.
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4.5 Parallel Processing

In this section, we analyze a parallel version of our algorithm in both scenarios, where the

nodes are synchronized or not. In the synchronous scenario, all nodes send their updates

as they finish computing them. The fusion center combines all the updates in a single

message and send it to all nodes in order to compute their next updates. The main disad-

vantage of this scenario is that if there is one slow node, then all other nodes have to wait

for that node before they start computing the next update. In other words, the processing

speed is bounded by the slowest node. On the other hand, in th asynchronous scenario,

the fusion center forwards the individual updates as it receives them. This potentially

leads to different nodes processing different updates, and hence the convergence analysis

is much difficult than the synchronous case. We start by analyzing the convergence rate

for the synchronous scenario.

4.5.1 Synchronous Parallel Processing

Similar to algorithm 3 in Section 4.4, node i updates all its coordinates if li ≤ q. Other-

wise, it samples and updates a subset of the coordinates Qi ⊂ Ii, such that |Qi| = q.

Algorithm 4: Quantized Synchronous Parallel Coordinate Descent
1: xq0 = x0

2: for j = 0, 1, ..., (T − 1) do
3: machine i computes [Of(xqj)]Qj,i , i = 1, 2, ...,M
4: machine i sends its quantized update Q([Of(xqj)]Qj,i), i = 1, 2, ...,M

5: all machines update xqj+1 = xqj − t
∑M

i=1 Q([Of(xqj)]Qj,i)
6: end for

Corollary 3. Given that the quantization error ∆ is bounded as following

∆ ≤ ερL2lm
2mq
√
r

(
1

C smin
− 1), (4.30)
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the number of iterations required for algorithm 4 to converge to the optimal solution x∗

is at most

kq =
log(2||x0 − x∗||2/ερ)

log(1/Csmin)

+
log(2||x0 − x∗||2)

log(1/(Csmin + ερ
2

(1− Csmin))
. (4.31)

where

Cs = t2L2 − 2tmq

lm
+ 1.

and r is defined as r = min{d, qM}, which is the maximum number of coordinates that

can be updated in a single iteration.

Proof. The proof of this corollary can be found in Appendix H.

Notice that the number of nodes M does not affect the convergence rate. Similar

to algorithm 3 in the previous section, a large value of the ratio q/lm leads to a faster

convergence rate at the expense of a higher computational cost per node.

Similar to algorithm 3, decreasing the value of the parameter q results in a tighter

upper bound on the quantization error. For (ε = 10−15, ρ = 0.01, g2 = 2, m = 1,

lm = 10, d = 100, M = 20), the rate of change in the upper bound decreases as q falls

below 5 (qM < d) as shown in Fig. 4.4. Next, we analyze the case of asynchronous

parallel processing.

4.5.2 Asynchronous Parallel Processing

The analysis of algorithm 5 can be difficult especially in the presence of quantization

error. Therefore, we analyze the convergence rate for the special case of two nodes,
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Figure 4.3: Synchronous Parallel processing: the effect of the parameter q on the quanti-
zation condition.

Algorithm 5: Quantized Asynchronous Parallel Coordinate Descent
1: xq0 = x0

2: for j = 0, 1, ..., (T − 1) do
3: machine i computes [Of(xqj)]Qj,i
4: machine i sends its quantized update Q([Of(xqj)]Qj,i)
5: the fusion center updates xqj+1 = xqj − tQ([Of(xqj)]Qj,i)
6: machine i requests the updated value of x from the fusion center
7: end for

where node s1 is twice as fast as node s2, and each node updates a single coordinate. We

also assume stronger conditions on the function smoothness and convexity, such that

||[Of(x)]si ||2 ≤
L2

4
||x− x∗||2, i = 1, 2, (4.32)

and

〈x− x∗, [Of(x)]si〉 ≥
m

2
||x− x∗||2, i = 1, 2. (4.33)
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For j = {0, 2, ...}, both nodes s1 and s2 are processing the same value of the opti-

mization variable xqj . We have that

xqj+1 = xqj − tQ([Of(xqj)]s1) (4.34)

and

xqj+2 = xqj+1 − tQ([Of(xqj+1)]s1)− tQ([Of(xqj)]s2)

= xqj − tQ(Of(xqj))− tQ([Of(xqj+1)]s1) (4.35)

Let

xj+1 = xqj − t([Of(xqj)]s1) (4.36)

and

xj+2 = xqj − t(Of(xqj))− t([Of(xj+1)]s1) (4.37)

Similar to our analysis in Section 4.3, we get that

||xj+1 − x∗||2 ≤ (
t2L2

4
− tm+ 1)||xqj − x∗||2, (4.38)
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and

||xj+2 − x∗||2 ≤ (t2L2 − 2tm+ 1)||xqj − x∗||2

+
t2L2

4
||xj+1 − x∗||2 (4.39)

− 2t〈xj+1 − x∗, [Of(xj+1)]s1〉

≤ C2
a ||x

q
j − x∗||2, (4.40)

where

C2
a = (t2L2 − 2tm+ 1) + (

t2L2

4
− tm+ 1)(

t2L2

4
− tm).

(4.41)

Since

xqj = xj + tnj, (4.42)

where |nj1 | ≤ ∆ and |nj2| ≤ ∆
2

, then

||xqj − x∗||2 ≤ ||xj − x∗||2 +
√

5t∆||xj − x∗||

+
5t2∆2

4
. (4.43)

Following similar steps to the analysis in Section 4.3, the sufficient condition on the quan-

tization error is given by

∆ ≤ ερ

2
√

5t
(

1

Ca
− 1), (4.44)
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and the number of iterations required for convergence is at most

kq =
log(2||x0 − x∗||2/ερ)

log(1/Ca)

+
log(2||x0 − x∗||2)

log(1/(Ca + ερ
2

(1− Ca))
. (4.45)

To compare this result to the synchronous scenario, we use the same step size t =

1/(gL), and we define a time unit (I) as the time needed for node s1 to compute a single

update.

For the synchronous scenario, the upper bound on the quantization error is given by

∆s ≤
ερL2

2m
(

1

C s
− 1), (4.46)

where Cs = 1− 1
g2

, and the number of time units required for convergence is at most

Is =
2 log(2||x0 − x∗||2/ερ)

log(1/Cs)

+
2 log(2||x0 − x∗||2)

log(1/(Cs + ερ
2

(1− Cs))
, (4.47)

while for the asynchronous scenario, the upper bound on the quantization error is given

by

∆a ≤
ερL2

2
√

5m
(

1

C a
− 1), (4.48)

where Ca =
√

(1 + 9
16g4
− 3

4g2
), and the number of time units required for convergence
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is at most

Ia =
log(2||x0 − x∗||2/ερ)

log(1/Ca)

+
log(2||x0 − x∗||2)

log(1/(Ca + ερ
2

(1− Ca))
. (4.49)

In figures 4.4 and 4.5, we plot (∆s,∆a) against 1/g, and (Is, Ia) against 1/g, respec-

tively. We assume that (ε = 10−15, ρ = 0.01, m = 1, ||x0 − x∗||2 = 50, 000).

Figure 4.4: The quantization upper bound in the synchronous and asynchronous scenar-
ios.

Although the quantization upper bound is tighter in the asynchronous scenario com-

pared to the synchronous one as shown in Fig. 4.4, but the convergence speed is faster in

the asynchronous case as shown in Fig. 4.5. This results is intuitive as in the synchronous

scenario, node s1 has to wait for node s2 to finish processing before it works on the next

update, while in the asynchronous scenario, the two nodes are totally independent. Next,

we run an experiment to verify our theoretical results.
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Figure 4.5: The convergence speed in the synchronous and asynchronous scenarios.

4.6 Simulation Results

In this section, we run an experiment to verify that the quantization error does not prop-

agate and hence the convergence is possible. For that purpose, we apply the quantized

randomized coordinate descent algorithm to solve a linear regression problem. The data

set we use is collected from a power plant [59]. It has four predictors (Temperature, Pres-

sure, Humidity, and Exhaust Vacuum) and one output (Electrical Energy). All data is

normalized to have zero mean and a standard deviation of one. The number of observa-

tions is n = 9568.

To solve this problem, it is required to minimize the square loss function

f(x) =
1

2

n∑
i=1

(yi − Ai:x)2, (4.50)

where A is the data matrix, Ai: is the ith row of A, and y is the output vector. Notice that
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the first column of A is a vector of ones, which is added to evaluate for the intercept. The

network consists of five nodes in addition to the fusion center; the first node calculates the

derivative in the direction of the intercept coefficient, while each of the remaining nodes

calculates the derivative in the direction of one predictor coefficient. The algorithm starts

from x0 = [1, 1, 1, 1, 1]T and iterates to reduce the coefficients residual ||xj − x∗||2.

Experiment 1: t = 10−4, ∆ = 105.

First, we plot the coefficients residual against the number of iterations as shown in

Fig. 4.6.

Figure 4.6: Effect of the quantization error (∆ = 105) on the coefficients residual.

Then, we plot the predicted value for an input of all ones A1 = [1, 1, 1, 1, 1] against

the number of iterations as shown in Fig. 2.2.

Figures 4.6 and 4.7 show that the quantized randomized coordinate descent algorithm

diverges if the quantization error ∆ = 105. This result is intuitive since a large quantiza-

tion error is expected to prevent the algorithm from converging to the optimal solution.
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Figure 4.7: Effect of the quantization error (∆ = 105) on the predicted value.

Experiment 2: t = 10−4, ∆ = 103.

First, we plot the coefficients residual against the number of iterations as shown in

Fig. 4.8.

Then, we plot the predicted value for an input of all ones A1 = [1, 1, 1, 1, 1] against

the number of iterations as shown in Fig. 4.9.

Figures 4.8 and 4.9 show that the quantized randomized coordinate descent algorithm

converges for a smaller value of the quantization error ∆ = 103. This verifies that the

quantization error does not propagate and hence the convergence is possible if the quan-

tization error is bounded, which coincides with the result we obtained in Theorem 1.

Notice that the exact bound on the quantization error cannot be computed in this case

as the Lipschitz constant L and the strong convexity parameter m are unknown for the

square loss function.
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Figure 4.8: Effect of the quantization error (∆ = 103) on the coefficients residual.

Figure 4.9: Effect of the quantization error (∆ = 103) on the predicted value.
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Chapter 5

Summary and Future Work

5.1 Summary

We have studied distributed statistical learning in the presence of communication con-

straints. In particular, we have considered the problems of distributed parameter estima-

tion and distributed optimization. For distributed parameter estimation, we have analyzed

the rate requirements for the distributed setup to achieve the optimal centralized perfor-

mance. Then, we have examined the optimality of reducing the dimensionality of the

observation prior to applying the compression scheme for the case when the rate is not

high enough to achieve the centralized performance. For distributed optimization, we

have analyzed the convergence rate for different distributed optimization algorithms in

the presence of quantization error.

In particular, we have first answered the question: Are Slepian-Wolf rates necessary to

achieve the same estimation performance as that of the centralized case? We have showed

that the answer to this question is negative by constructing an asymptotically MVUE for

binary symmetric sources using rates less than the conditions required in the Slepian-

Wolf rate region. We have showed that our estimation algorithm can work for general
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binary sources to achieve the centralized estimation performance. We have also extended

our work to non-binary information sources and multiple source networks by modifying

our estimation algorithm. We have further proposed a practical design of our estimation

algorithm and compared our results to the best known estimator by Han and Amari to

show the superiority of our estimator.

We have then examined the optimality of reducing the dimensionality of the obser-

vations before applying the compression scheme. We have showed that reducing the

dimensionality by extracting sufficient statistics of the parameter to be estimated does not

degrade the overall estimation performance in the presence of communication constraints.

We have established this result by comparing two system models, one applies the com-

pression scheme to raw observations, and the other applies the compression scheme to

the extracted sufficient statistics. We have proved that both system models have the same

performance measured by the Bayesian risk. We have further analyzed the asymptotic op-

timal Bayesian performance in the presence of communication constraints, and we have

verified our results through simulations.

We have finally studied the problem of distributed optimization under communication

constraints. We have modified the randomized coordinate descent algorithm to solve an

unconstrained convex minimization problem in the presence of quantization error. We

have analyzed the convergence rate of our algorithm, and we have derived sufficient con-

ditions on the quantization error to guarantee that the algorithm converges to the optimal

solution. We have extended our results to the general case of block coordinate descent.

We have analyzed the convergence rate for the parallel setting, and we have compared the

two cases of synchronous and asynchronous parallel processing. We have further veri-

fied that the convergence is possible in the presence of quantization error by running an

experiment that solves a linear regression problem.
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5.2 Future Work

The future work of our research can be directed to a number of interesting problems, such

as:

• Obtaining necessary conditions on the required rates for distributed parameter es-

timation. These conditions along with our results will fully identify the optimal

rate region required to achieve the centralized estimation performance. For binary

symmetric sources, the MVUE we have established is unique since it is a function

of a complete statistic

θ̂ =
n(0|Ẑn)

n
. (5.1)

This fact can be used to simplify the problem to finding the optimal rates for com-

puting a specific function, which is the MVUE in our case. It is also possible to

apply some of the information-theoretic tools that are used to obtain the converse

result for the source coding problem.

• Studying the optimality of sufficiency based data reduction for the non-Bayesian

case using the minimax risk

Ma = inf
g1,g2,φa

sup
Θ

EX [(θ − θ̂a)2], (5.2)

Mb = inf
h1,h2,φb

sup
Θ

EX [(θ − θ̂b)2]. (5.3)

In this case, the unknown parameter is deterministic, and hence it is required to

consider the worst case scenario. This complicates the problem as the encoder has

no knowledge of the value of θ that results in the worst performance outcome. It

is possible to solve the problem through establishing the equivalence of the two

system models (a) and (b) at each value of θ. One can argue then that the two
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models have the same worst case performance.

• Considering more practical models for asynchronous parallel processing in solving

the problem of distributed optimization with quantized updates. This problem is

very challenging as there are two sources of noise in this case: 1) the quantization

noise (nQ); 2) the noise introduced from processing inconsistent updates (nA)

xq = x + td(nQ + nA). (5.4)

It is possible to solve the problem by combining the techniques we used in this

study with the ones applied in the convergence analysis of asynchronous random-

ized coordinate descent [55].
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Appendix A

Error Probability Analysis in the Proof

of Theorem 1

To analyze the probability of the decoding error, let z̃n ∈ {0, 1}n denote a sequence such

that

z̃n 6= zn, f(z̃n) = f(zn). (A.1)

Let Z̃(n) be a dummy random variable whose PMF PZ̃(n) is the same as the type

of z̃n. Define P(n)

ZZ̃
as the set of all joint types between any two sequences zn and z̃n.

For any given f (equivalently for a given encoding matrix A), define Nn
f (ZZ̃) as the

number of sequences zn such that there exists another sequence z̃n having the joint type

PZ(n)Z̃(n) ∈ P(n)

ZZ̃
and (A.1) holds.

Since each entry inA is uniformly distributed, then each element in f(zn) is uniformly

distributed if zn is a nonzero sequence. Therefore,

Pr(f(zn) = 0) = (0.5)nR =
1

||f ||
, (A.2)
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in which the probability is computed over all codebooks. This implies that

Pr(f(z̃n) = f(zn)) = Pr(f(z̃n − zn) = 0) =
1

||f ||
. (A.3)

Define TP
Z(n)Z̃(n)

as the set of all sequence pairs (zn, z̃n) that have the joint type

PZ(n)Z̃(n) , TP
Z(n)

as the set of all sequences zn that have the marginal type PZ(n) , and

TP
Z̃(n)|Z(n)

(zn) as the set of all sequences z̃n that have the joint type PZ(n)Z̃(n) with zn.

The sizes of the sets TP
Z(n)

and TP
Z̃(n)|Z(n)

(zn) are bounded as [60]

||TP
Z(n)
|| ≤ 2nH(Z(n)),

||TP
Z̃(n)|Z(n)

(zn)|| ≤ 2nH(Z̃(n)|Z(n))+ε, (A.4)

where ε is an arbitrary small number. Notice that, for any given PZ(n)Z̃(n) , Nn
f (ZZ̃) is a

random variable (random over f ) that can be expressed as

Nn
f (ZZ̃) =

∑
zn∈TP

Z(n)

1
(
∃z̃n 6= zn : f(z̃n) = f(zn),

and (zn, z̃n) ∈ TP
Z(n)Z̃(n)

)
=

∑
zn∈TP

Z(n)

1
(
∃z̃n 6= zn : f(z̃n) = f(zn),

and z̃n ∈ TP
Z̃(n)|Z(n)

(zn)
)
, (A.5)

where 1(·) is the indication function. The expectation of Nn
f (ZZ̃) over all possible code-
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books f is

E[Nn
f (ZZ̃)] =

∑
zn∈TP

Z(n)

E
[
1
(
∃ z̃n 6= zn : f(z̃n) = f(zn),

and z̃n ∈ TP
Z̃(n)|Z(n)

(zn)
)]

≤
∑

zn∈TP
Z(n)

∑
z̃n∈TP

Z̃(n)|Z(n)
(zn)

Pr(f(z̃n) = f(zn)). (A.6)

(A.3), (A.4), and (A.6) imply that

E[Nn
f (ZZ̃)] ≤ 2n(H(Z(n))+H(Z̃(n)|Z(n))+ε)

||f ||
. (A.7)

Applying the Markov’s inequality, we have

Pr

(
Nn
f (ZZ̃) ≥

2n(H(Z(n))+H(Z̃(n)|Z(n))+ε)(||P(n)

ZZ̃
||+ δ)

||f ||

)
≤ 1

||P(n)

ZZ̃
||+ δ

, (A.8)

where ||P(n)

ZZ̃
|| is the total number of possible joint types and δ is an arbitrary small num-

ber. To simplify the notation, let

Bn(ZZ̃) ,
2n(H(Z(n))+H(Z̃(n)|Z(n))+ε)(||P(n)

ZZ̃
||+ δ)

||f ||
. (A.9)

Considering all joint types PZ(n)Z̃(n) simultaneously, the union bound and (A.8) imply

that

Pr
(
Nn
f (ZZ̃) ≤ Bn(ZZ̃), ∀PZ(n)Z̃(n) ∈ P(n)

ZZ̃

)
≥ 1−

||P(n)

ZZ̃
||∑

1

1

||P(n)

ZZ̃
||+ δ

> 0. (A.10)

Since the probability in (A.10) is positive, then there exists a codebook f ∗ that the

76



following equation holds for all joint types PZZ̃ simultaneously

Nn
f∗(ZZ̃) ≤

2n(H(Z(n))+H(Z̃(n)|Z(n))+ε)(||P(n)

ZZ̃
||+ δ)

||f ∗||
. (A.11)

As ||f ∗|| = 2nR and ||P(n)

ZZ̃
|| ≤ (n+ 1)4, we further have

Nn
f∗(ZZ̃) (A.12)

≤ ((n+ 1)4 + δ) 2n(H(Z(n))+H(Z̃(n)|Z(n))+ε−R).

In the following, we will focus on f ∗.

Let P (n)
e,f∗(ZZ̃) denote the portion of error probability associated with a fixed joint type

PZ(n)Z̃(n)

P
(n)
e,f∗(ZZ̃) ,

∑
zn∈TP

Z(n)

Pθ(z
n)1
(
∃z̃n 6= zn : f ∗(z̃n) = f ∗(zn),

and (zn, z̃n) ∈ TP
Z(n)Z̃(n)

)
.

The total decoding error probability P (n)
e,f∗ , when using f ∗, can be expressed as

P
(n)
e,f∗ =

∑
P
Z(n)Z̃(n)

P
(n)
e,f∗(ZZ̃). (A.13)

Let A(n)
ε1 denote the set of marginal types PZ(n) such that |PZ(n)(z = i)− Pθ(z = i)| < ε1

2

for i ∈ {0, 1}, where ε1 is an arbitrarily small number. Using the definition ofA(n)
ε1 , (A.13)

can be rewritten as

P
(n)
e,f∗ =

∑
P
Z(n)Z̃(n) ,PZ(n)∈A

(n)
ε1

P
(n)
e,f∗(ZZ̃) +

∑
P
Z(n)Z̃(n) ,PZ(n)∈Ā

(n)
ε1

P
(n)
e,f∗(ZZ̃)

, S1 + S2, (A.14)
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where Ā(n)
ε1 denotes the complimentary set of A(n)

ε1 . For S2, we have that

P
(n)
e,f∗(ZZ̃) ≤ 2−n(D(P

Z(n) ||Pθ(Z))), (A.15)

whereD(PZ(n) ||Pθ(Z)) is the KullbackLeibler divergence [57] between the marginal type

PZ(n) and the true PMF Pθ(Z) of Z = X ⊕ Y . Using Pinsker’s inequality [61], for

PZ(n) ∈ Ā(n)
ε1 , we have

D(PZ(n)||Pθ(Z)) ≥ 2ε21. (A.16)

Therefore,

S2 ≤
∑

P
Z(n)Z̃(n)

2−2nε21

≤ (n+ 1)4 2−2nε21 . (A.17)

(A.17) implies that S2 → 0 exponentially as n→∞.

For S1, we have that

P
(n)
e,f∗(ZZ̃) ≤ Nn

f∗(ZZ̃) 2−n(H(Z(n))+D(P
Z(n) ||Pθ(Z)). (A.18)

Using (A.12), we further have

P
(n)
e,f∗(ZZ̃) ≤ (A.19)

((n+ 1)4 + δ) 2−n
(
D(P

Z(n) ||Pθ(Z))+R−H(Z̃(n)|Z(n))−ε
)
.

As we use the minimum entropy decoder, we have H(Z̃(n)) ≤ H(Z(n)), which implies
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H(Z̃(n)|Z(n)) ≤ H(Z̃(n)) ≤ H(Z(n)). Therefore,

P
(n)
e,f∗(ZZ̃) (A.20)

≤ ((n+ 1)4 + δ) 2−n
(
D(P

Z(n) ||Pθ(Z))+R−H(Z(n))−ε
)
.

Since PZ(n) ∈ A(n)
ε1 , it is easy to check that

|H(Z(n))−Hθ(Z)| ≤ D(PZ(n) ||Pθ(Z)) + ε2. (A.21)

Here

ε2 = −ε1
2

∑
i

logPθ(z = i), (A.22)

which can be made arbitrarily small as ε1 ↓ 0 for θ ∈ (0, 1).

Therefore,

P
(n)
e,f∗(ZZ̃) ≤ ((n+ 1)4 + δ) 2−n

(
R−Hθ(Z)−ε3

)
, (A.23)

in which ε3 = ε+ ε2.

This implies that S1 → 0 exponentially as n→∞ if

R > Hθ(Z). (A.24)

Therefore, (A.24) is sufficient to guarantee that P (n)
e,f∗ → 0 exponentially as n → ∞.

It is easy to check that Hθ(Z) = Hθ(X|Y ) = Hθ(Y |X). The proof is complete.
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Appendix B

Detailed Analysis in the Proof of

Theorem 2

Optimal Centralized Estimator: First consider the centralized case in whichXn and Y n

are both known perfectly. Let
(
n1

n
, n2

n
, n3

n
, n4

n

)
denote the joint type of the sequences xn

and yn, where (n1, n2, n3, n4) are the frequencies of occurrence of the pairs (0, 0), (1, 1), (0, 1), (1, 0),

respectively. The joint PMF of (xn, yn) is

Pθ(x
n, yn) =

(
θ

2

)(n1+n2)(
1− θ

2

)(n3+n4)

. (B.1)

Consider the centralized estimator

θ̂c =
(n1 + n2)

n
. (B.2)

This estimator is unbiased since

Eθ[θ̂c] = θ. (B.3)
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The variance of the estimator is calculated as

Varθ[θ̂c] =
1

n2
Eθ[(n1 + n2)2]− θ2

=
θ(1− θ)

n
. (B.4)

The variance index is given by

Vθ[θ̂c] = lim
n→∞

nVarθ[θ̂c] = θ(1− θ). (B.5)

The Cramer-Rao lower bound (CRLB) of the centralized case is

CRLB = −1/Eθ
[
∂2 ln[Pθ(x

n, yn)]

∂2θ

]
=

θ(1− θ)
n

= Varθ[θ̂c]. (B.6)

This implies that θ̂c is an MVUE for the centralized case.

Comparison: Now, come back to our decentralized case, for which our estimator is

θ̂ =
n(0|Ẑn)

n
. (B.7)

We will compare the performance of θ̂ with that of the optimal centralized estimator θ̂c.

For the codebook f ∗, define T (n)
e as the set of sequences zns that are incorrectly de-

coded. Therefore,

P
(n)
e,f∗ =

∑
zn∈T (n)

e

Pθ(z
n). (B.8)
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The expected value of our estimator is given by

Eθ[θ̂] =
∑

zn∈{0,1}n
Pr(Ẑn = zn)

n(0|zn)

n
. (B.9)

Note that Pr(Ẑn = zn) is not necessarily equal to Pθ(zn), and the sum of the probability

difference can be bounded as

∑
zn∈{0,1}n

|Pr(Ẑn = zn)− Pθ(Zn = zn)| ≤ 2
∑

zn∈T (n)
e

Pθ(z
n) = 2P

(n)
e,f∗ . (B.10)

We have that

|Eθ[θ̂]− Eθ[θ̂c]| ≤
∑

zn∈{0,1}n
|Pr(Ẑn = zn)− Pθ(Zn = zn)|n(0|zn)

n
.

Since

0 ≤ n(0|zn)

n
≤ 1, (B.11)

then

|Eθ[θ̂]− Eθ[θ̂c]| ≤
∑

zn∈{0,1}n
|Pr(Ẑn = zn)− Pθ(Zn = zn)|

≤ 2P
(n)
e,f∗ , (B.12)

in which the last inequality is due to (B.10).

As P (n)
e,f∗ is shown to converge to zero exponentially fast in Section 2.2.1, we have

lim
n→∞

Eθ[θ̂] = Eθ[θ̂c] = θ. (B.13)

82



This shows that our estimator is asymptotically unbiased. Similarly, we have

|Varθ[θ̂]− Varθ[θ̂c]| ≤ |Eθ[θ̂2]− Eθ[θ̂2
c ]|+ |Eθ[θ̂]− Eθ[θ̂c]|

≤ 4P
(n)
e,f∗ . (B.14)

Hence,

|Vθ[θ̂]− Vθ[θ̂c]| ≤ lim
n→∞

4nP
(n)
e,f∗ . (B.15)

As n→∞, P (n)
e,f∗ → 0 exponentially, we have 4nP

(n)
e,f∗ → 0. Therefore,

Vθ[θ̂] = Vθ[θ̂c] = θ(1− θ). (B.16)

This proves that our estimator is asymptotically unbiased and achieves the same minimum

variance that can be achieved even in the centralized case. Hence, our estimator is optimal.

The proof is complete.
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Appendix C

Detailed Analysis in the Proof of

Theorem 3

Step 1: Computing a Sufficient Statistic

Different from the binary symmetric case considered in Section 2.2, Zn is not a

sufficient statistic for the general binary case anymore. Now, we show the joint type

PX(n)Y (n) =
(
n1

n
, n2

n
, n3

n
, n4

n

)
of the observation sequences (xn, yn) is a sufficient statistic

and show how to compute this statistics at the fusion center using rates (2.18).

Let TP
X(n)Y (n)

be the set of all sequence pairs (xn, yn) that have the joint type PX(n)Y (n) .

The conditional PMF of (Xn, Y n) given the joint type PX(n)Y (n) is

Pθ(x
n, yn|PX(n)Y (n)) =


0, if (xn, yn) /∈ TP

X(n)Y (n)

1
||TP

X(n)Y (n)
|| , otherwise

, (C.1)

which is not a function of θ. Therefore, the joint type PX(n)Y (n) is a sufficient statistic of

θ.

Now we show how to compute this statistic at the fusion center with rates in (2.18).

Encoding: At terminals A and B, we first encode Xn and Y n using the same scheme
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presented in Section 2.2.1. This will enable terminal C to compute Zn. In addition, each

terminal will send the marginal types PX(n) ∈ P(n)
X and PY (n) ∈ P(n)

Y of the sequences xn

and yn, respectively. The number of marginal types can be bounded as [57]

||P(n)
X || = ||P

(n)
Y || ≤ (n+ 1)2. (C.2)

Therefore each of the marginal types can be encoded using the rate 2 log(n+1)
n

, which goes

to zero as n increases. Hence, sending these additional information requires diminishing

additional rates.

Decoding: At terminal C, we first decode Ẑn using the same scheme as discussed in

Section 2.2.1. Once Ẑn is decoded, terminal C will compute the joint type P̂X(n)Y (n) =(
n̂1

n
, n̂2

n
, n̂3

n
, n̂4

n

)
by combining Ẑn along with the additional information PX(n) , PY (n) sent

from terminals A and B respectively. In particular, from these information, we have the

following relationship

n̂1 + n̂2 = n(0|Ẑn), (C.3)

n̂1 + n̂3

n
= PX(n)(x = 0), (C.4)

n̂1 + n̂4

n
= PY (n)(y = 0), (C.5)

4∑
i=1

n̂i = n. (C.6)

From these four equations, we can easily obtain P̂X(n)Y (n) .

Error Probability: Define P (n)
e as

P (n)
e = Pr(P̂X(n)Y (n) 6= PX(n)Y (n)). (C.7)

As shown in Section 2.2.1, Zn can be decoded at the rates given in (2.18) with an expo-
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nentially decreasing probability of error. Furthermore, the marginal types can be perfectly

recovered at asymptotically zero rates, then the joint type PX(n)Y (n) can be computed with

an exponentially decreasing error probability P (n)
e .

Step 2: Estimation

In the binary symmetric case considered in Section 2.2, we have MVUE for the cen-

tralized case and hence we can compare our distributed estimator with this centralized

MVUE. In the general binary model, this approach will not work as we don’t know

whether or not an MVUE exists. Furthermore, even if it exists, the form of MVUE is

model specific. In the following, we show a stronger result that, for any given central-

ized estimator, we can construct an estimator that achieves the same variance index. This

implies that, if the minimum variance unbiased estimator (MVUE) exists in the central-

ized case, we can construct a distributed estimator that achieves the same variance index.

Furthermore, even if MVUE does not exist in the centralized case, we can still construct

a distributed estimator that has the same performance as that of the best estimator in the

centralized case.

First, as PX(n)Y (n) is a sufficient statistic for the centralized case, by Rao-Blackwell

theorem [56], if we want to minimize the variance of unbiased estimators, we can focus on

estimators that are functions of PX(n)Y (n) , namely Fc = F (PX(n)Y (n)), for the centralized

case. For any unbiased Fc, we design the following simple plugin estimator

F̂ = F (P̂X(n)Y (n)). (C.8)

In the following, we compare the performance of Fc and F̂ . We have that

Eθ[F̂ ] =
∑

P
x(n)y(n)

Pr(P̂X(n)Y (n) = Px(n)y(n))F (Px(n)y(n)), (C.9)
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and

|Eθ[F̂ ]− Eθ[Fc]| ≤
∑

P
x(n)y(n)

|Pr(P̂X(n)Y (n) = Px(n)y(n))− Pθ(Px(n)y(n))|

· |F (Px(n)y(n))|. (C.10)

Since F (Px(n)y(n)) ∈ Θ and Θ is bounded, we have |F (Px(n)y(n))| ≤ θu. Furthermore,

following similar steps as that of (B.10), we have

∑
P
x(n)y(n)

|Pr(P̂X(n)Y (n) = Px(n)y(n))− Pθ(Px(n)y(n))| ≤ 2P (n)
e .

As the result, we have

|Eθ[F̂ ]− Eθ[Fc]| ≤ 2P (n)
e θu, (C.11)

hence

lim
n→∞

Eθ[F̂ ] = Eθ[Fc] = θ, (C.12)

as P (n)
e goes to zero exponentially. Similarly,

|Varθ[F̂ ]− Varθ[Fc]| ≤ 2P (n)
e (θ2

u + θu). (C.13)

Therefore,

Vθ[F̂ ] = Vθ[Fc]. (C.14)

This implies that the plugin distributed estimator F̂ achieves the same performance as
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that of the centralized estimator Fc if the rate condition (2.18) is satisfied. The proof is

complete.
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Appendix D

The Proof of Theorem 4

Case 1: R ≥ H(t)

R ≥ H(t)

> Hθ(Z) = Hθ(X|Y ) = Hθ(Y |X). (D.1)

In this case, p = n, and our estimator is given by

θ̂ =
n(0|Ẑn)

n
. (D.2)

As we proved in the previous sections, this estimator is an asymptotically MVUE if R >

Hθ(Z).

Case 2: R < H(t)

In the centralized case, consider the estimator

θ̂c =
(n1 + n2)

p
, (D.3)

where n1 and n2 are the frequency of occurrence of the pairs (0, 0) and (1, 1) in the
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observations (xp, yp), respectively. We have that

Eθ[θ̂c] =
pθ

p
= θ, (D.4)

and

Varθ[θ̂c] =
θ(1− θ)

p
. (D.5)

In the decentralized case, the effective rate per observation is given by

Reff =
nR

p
. (D.6)

Since

p ≤ nR

H(t)
, (D.7)

then

Reff ≥ H(t) > Hθ(Z). (D.8)

For this range of rates, we showed that

lim
n→∞

Eθ[θ̂] = Eθ[θ̂c] = θ. (D.9)

Therefore, our estimator is asymptotically unbiased. We also have that

Vθ[θ̂] = lim
n→∞

nVarθ[θ̂c]

= lim
n→∞

nθ(1− θ)
p

. (D.10)
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It is obvious that

p ≥ nR

H(t)
− 1. (D.11)

Hence,

Vθ[θ̂] ≤
H(t)θ(1− θ)

R
. (D.12)

The proof is complete.
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Appendix E

The Remaining of the Proof of

Theorem 7

We also have that

||xqj − x∗||2 = ||xj − x∗ + tdnj||2

= ||xj − x∗||2 + t2d2||nj||2

+ 2td〈xj − x∗,nj〉

≤ ||xj − x∗||2 + t2d2||nj||2

+ 2td||xj − x∗||||nj||

≤ ||xj − x∗||2 + td∆||xj − x∗||

+
t2d2∆2

4
, (E.1)

where the first inequality follows from Cauchy-Schwarz inequality, and the second in-

equality follows from (4.6).

To proceed with the convergence analysis, we have two different cases.

Case 1 (||x0 − x∗|| ≤ 1):
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In this case, E||xj − x∗|| ≤ 1. Therefore,

E||xj+1 − x∗||2 ≤ CE||xj − x∗||2 + Ctd∆(1 +
td∆

4
). (E.2)

Let k1 denotes the minimum number of iterations required to achieve the convergence

condition. Hence,

E||xk1 − x∗||2 ≤ Ck1||x0 − x∗||2

+ Ctd∆(1 +
td∆

4
)(1 + C + ..+ Ck1−1).

(E.3)

Since C < 1, then

E||xk1 − x∗||2 ≤ Ck1||x0 − x∗||2

+
C

1− C
td∆(1 +

td∆

4
). (E.4)

For the algorithm to converge, let

Ck1||x0 − x∗||2 ≤ ερ

2
, (E.5)

and

C

1− C
td∆(1 +

td∆

4
) ≤ ερ

2
, (E.6)

Case 2 (||x0 − x∗|| > 1):

Let k2 denotes the minimum number of iterations required such that E||xk2−x∗|| ≤ 1.
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For all j ≤ k2, we have that E||xj − x∗|| ≤ E||xj − x∗||2. Therefore,

E||xj+1 − x∗||2 ≤ C(1 + td∆)E||xj − x∗||2

+
Ct2d2∆2

4
. (E.7)

After k2 iterations, we have that

E||xk2 − x∗||2 ≤ (C(1 + td∆))k2||x0 − x∗||2

+
Ct2d2∆2

4(1− C)
. (E.8)

For the algorithm to converge, let

(C(1 + td∆))k2 ||x0 − x∗||2 ≤ 1

2
, (E.9)

and

Ct2d2∆2

4(1− C)
≤ 1

2
. (E.10)

Finally, the total number of iterations required for convergence is given by

kq = k1 + k2. (E.11)

To achieve the fastest convergence rate, the step size t is chosen to minimize C.

Hence,

topt =
1

gLd
, and Cmin = 1− 1

g2d
(E.12)
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From (E.6) and (E.10), a sufficient condition on the quantization error is given by

∆ ≤ ερL2

2m
(

1

Cmin
− 1). (E.13)

From (E.5), (E.9), and (4.12), the number of iterations required for the algorithm to

converge is at most

kq =
log(2||x0 − x∗||2/ερ)

log(1/Cmin)

+
log(2||x0 − x∗||2)

log(1/(Cmin + ερ
2

(1− Cmin))
. (E.14)

The proof is complete.
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Appendix F

The Proof of Corollary 1

Similar to our analysis in Section 4.3, we have that Esj+1
[Of(xqj)]Isj+1

= 1
M

(Of(xqj)).

Therefore,

E||xj+1 − x∗||2 ≤ C1E||xqj − x∗||2. (F.1)

where C1 = t2L2M − 2tm+ 1. We also have that

||xqj − x∗||2 ≤ ||xj − x∗||2 + t2M2||nj||2

+ 2tm||xj − x∗||||nj||

≤ ||xj − x∗||2 + tm∆
√
lm||xj − x∗||

+
t2M2∆2lm

4
, (F.2)

where the second inequality follows from (4.23).

Following the same steps of our analysis in Section 4.3, we get a sufficient condition

on the quantization error to guarantee the convergence of the algorithm that is given by

∆ ≤ ερL2

2m
√
lm

(
1

C 1min
− 1), (F.3)
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where C1min = 1− (1/(g2M)) for a step size topt = 1/(gLM). This condition shows that

for a fixed number of nodes M , the upper bound on the quantization error is tighter for a

larger value of lm. We also get that the number of iterations required for convergence is

at most

kq =
log(2||x0 − x∗||2/ερ)

log(1/C1min)

+
log(2||x0 − x∗||2)

log(1/(C1min + ερ
2

(1− C1min))
. (F.4)

The proof is complete.
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Appendix G

The Proof of Corollary 2

We have that

Esj+1
[Of(xqj)]Qsj+1

=



w1
∂f(xqj )

∂x1

w2
∂f(xqj )

∂x2

.

.

wd
∂f(xqj )

∂x1
,


(G.1)

where wj = qi/Mli if coordinate j is updated by node i. Since

q

Mlm
≤ wj ≤

1

M
, j ∈ {1, 2, ..., d}, (G.2)

then

q

Mlm
||(Of(xqj))|| ≤ Esj+1

||[Of(xqj)]Qsj+1
||

≤ 1

M
||(Of(xqj))||. (G.3)
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Similar to our analysis in Section 4.3, we get that

E||xj+1 − x∗||2 ≤ C2E||xqj − x∗||2. (G.4)

where C2 = t2L2M − 2tmq
lm

+ 1. We also get that

||xqj − x∗||2 ≤ ||xj − x∗||2 + t2M2||nj||2

+ 2tM ||xj − x∗||||nj||

≤ ||xj − x∗||2 + tM∆
√
q||xj − x∗||

+
t2M2∆2q

4
, (G.5)

where the second inequality follows from (4.23) and that the maximum number of updated

coordinates in a single iteration is q.

Following the same steps of our analysis in Section 4.3, the sufficient condition on the

quantization error is given by

∆ ≤ ερL2lm
2mq
√
q

(
1

C 2min
− 1), (G.6)

where C2min = 1 − (q2/(lm
2g2M)) for a step size topt = q/(lmgLM). The effect of the

parameter q on the quantization condition is discussed in Section 2.7. We also get that the

number of iterations required for convergence is at most

kq =
log(2||x0 − x∗||2/ερ)

log(1/C2min)

+
log(2||x0 − x∗||2)

log(1/(C2min + ερ
2

(1− C2min))
. (G.7)

The proof is complete.
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Appendix H

The Proof of Corollary 3

Let Rj+1 denotes the set of updated coordinates at iteration j + 1. Hence

Rj+1 =
M⋃
i=1

Qj,i (H.1)

We have that

xj+1 = xqj − t[Of(xqj)]Rj+1
. (H.2)

The expected value Ej+1[Of(xqj)]Rj+1
can be expressed as in G.1 with

q

lm
≤ wj ≤ 1, j ∈ {1, 2, ..., d}. (H.3)

Hence,

q

lm
||(Of(xqj))|| ≤ Ej+1||[Of(xqj)]Rj+1

||

≤ ||(Of(xqj))||. (H.4)
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Similar to our analysis in the previous sections, we get that

E||xj+1 − x∗||2 ≤ CsE||xqj − x∗||2. (H.5)

where Cs = t2L2 − 2tmq
lm

+ 1. We also get that

||xqj − x∗||2 ≤ ||xj − x∗||2 + t2||nj||2

+ 2t||xj − x∗||||nj||

≤ ||xj − x∗||2 + t∆
√
r||xj − x∗||+ t2∆2r

4
,

(H.6)

The sufficient condition on the quantization error is given by

∆ ≤ ερL2lm
2mq
√
r

(
1

C smin
− 1), (H.7)

where Csmin = 1−(q2/(lm
2g2)) for a step size topt = q/(lmgL). The number of iterations

required for convergence is at most

kq =
log(2||x0 − x∗||2/ερ)

log(1/Csmin)

+
log(2||x0 − x∗||2)

log(1/(Csmin + ερ
2

(1− Csmin))
. (H.8)

The proof is complete.
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