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Abstract

Exploration is a crucial phase in reinforcement
learning (RL). The reward-free RL paradigm, as
proposed by (Jin et al., 2020), offers an efficient
method to design exploration algorithms for risk-
neutral RL across various reward functions with a
single exploration phase. However, as RL appli-
cations in safety critical settings grow, there’s an
increasing need for risk-sensitive RL, which takes
potential risks into consideration for decision-
making. Yet, efficient exploration strategies for
risk-sensitive RL remain underdeveloped. This
study presents a novel risk-sensitive reward-free
framework based on Conditional Value-at-Risk
(CVaR), designed to effectively address CVaR RL
for any given reward function through a single
exploration phase. We introduce an efficient algo-
rithm named CVaR-RF-UCRL, which is shown
to be (ϵ, p)-PAC, with a sample complexity upper
bounded by Õ

(
S2AH4

ϵ2τ2

)
with τ being the risk tol-

erance parameter. We also prove a Ω
(

S2AH2

ϵ2τ

)
lower bound for any CVaR-RF exploration algo-
rithm, demonstrating the near-optimality of our
algorithm. Additionally, we propose the planning
algorithms: CVaR-VI and its more practical vari-
ant, CVaR-VI-DISC. The effectiveness and prac-
ticality of our CVaR reward-free approach are
further validated through numerical experiments.

1. Introduction
In reinforcement learning (RL), agents learn optimal ac-
tions by iteratively interacting with the environment and
leveraging feedback from reward signals. A critical part of
this learning process is exploration, where agents navigate
through states to effectively gather environment information.
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Despite exploration being widely recognized as a vital as-
pect of RL, simple randomized exploration strategies often
fail due to high sample complexity (Li, 2012). While re-
search by (Dann & Brunskill, 2015; Dann et al., 2017; Azar
et al., 2017; Jin et al., 2018) demonstrates that stochastic ex-
ploration can be sample-efficient, applying these algorithms
across different reward functions can lead to inefficiencies.
To address this, (Jin et al., 2020) introduces the concept of
reward-free RL, in which the goal is to approximate the
near optimal policy under any reward function after a single
phase of exploration, enhancing the efficiency and adapt-
ability of the learning process. (Jin et al., 2020) also derives
upper and lower bounds of the sample complexity of the
risk-free approach.

Building on these insights, subsequent studies such
as (Wang et al., 2020; Zhang et al., 2021; Kaufmann et al.,
2021; Ménard et al., 2021; Chen et al., 2022; Miryoosefi
& Jin, 2022) have sought tighter upper bounds and more
practical algorithms. The focus of these existing reward-
free RL research has been predominantly on the risk-neutral
approach, in which the goal is to maximize the average total
(discounted) reward. In practical scenarios especially in
those safety critical scenarios, however, decision-makers of-
ten have risk preferences that aim to mitigate low-probability
but high-impact outcomes. Thus, the need to consider risks
beyond solely optimizing for the average becomes impor-
tant, leading to the development of risk-sensitive RL.

In risk-sensitive RL, the objective function is shaped by
applying risk measures to reward functions (Delage & Man-
nor, 2010; Bäuerle & Ott, 2011; La & Ghavamzadeh, 2013;
Shen et al., 2014; Fei et al., 2020; Prashanth et al., 2022;
Ying et al., 2022), thus is also significantly dependent on
the exploration phase. Various risk measures have been
extensively analyzed and adopted in RL frameworks (Chow
& Ghavamzadeh, 2014; Chow et al., 2015; Tamar et al.,
2015b;a; Chow et al., 2017; Keramati et al., 2020; Ni &
Lai, 2022a;b; Hau et al., 2023). One widely used class
of risk measures is coherent risk measures, which satisfy
a set of natural and desirable properties: 1) monotonicity,
2) translation invariance, 3) subadditivity, 4) positive ho-
mogeneity, ensuring rationality and reliability in capturing
risk preferences (Artzner et al., 1999; Tamar et al., 2015a).
Despite these advancements, efficient exploration, partic-
ularly in contexts without a predefined reward function,
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remains an under-explored area. Existing studies on sam-
ple complexity and algorithm performance in risk-sensitive
RL typically target specific reward functions, potentially
limiting their effectiveness in varied reward settings (Fei
et al., 2021; Bastani et al., 2022; Du et al., 2022; Wang
et al., 2023; Ding et al., 2023). This situation underscores
the urgency for developing efficient exploration methods in
risk-sensitive RL, crucial for its practical deployment and
success in diverse stochastic environments. In this paper,
we study risk-sensitive RL in the reward-free setting, and
aim to answer the following question:

Is it possible to design provably efficient risk-sensitive
reward-free RL algorithm?

In this paper, we design an algorithm with near-optimal
sample complexity to the above question.

Contribution: This paper introduces a CVaR-based risk-
sensitive reward-free RL framework (CVaR-RF RL). For
the exploration phase, we propose CVaR-RF-UCRL to ef-
ficiently explore environments with unknown reward func-
tions. The number of trajectories collected in the explo-
ration phase is upper bounded by Õ

(
S2AH4

ϵ2τ2

)
, where S is

the number of states, A is the action count, H is the horizon
length, ϵ is the targeted accuracy, and τ the risk tolerance
level for CVaR. We also prove a lower bound of Ω

(
S2AH2

ϵ2τ

)
for any CVaR-RF exploration algorithm. Subsequently, we
introduce the CVaR-RF-planning algorithm equipped with
CVaR-VI, which is able to solve CVaR RL for given re-
ward function but without interacting with the environment.
We also propose CVaR-VI-DISC, a discretized version of
CVaR-VI for direct implementation in real-world settings
while maintaining an optimization error within ϵ/3. These
developments ensure the efficiency and applicability of our
CVaR-RF framework in advancing the field of risk-sensitive
RL.

Challenges: 1). Compared to risk-neutral reward-free RL
(Jin et al., 2020), CVaR-RF RL focuses only on the tail
distribution related to the risk tolerance parameter τ . But
in a reward-free setup, we can’t access reward information,
including the reward distribution. Therefore, we must adjust
our exploration strategy based on τ . To address this, we
define an adaptive stopping rule for different τ values during
the exploration phase. Moreover, while the optimal policy
in risk-neutral RL is Markovian, the optimal policy for risk-
sensitive RL is history-dependent, which makes it more
complex. To simplify this, we propose a planning algorithm
with CVaR-VI that can construct a Markovian policy as the
optimal policy for CVaR RL, reducing the added complexity.
2). Compared with CVaR RL (Chow & Ghavamzadeh,
2014; Chow et al., 2015; Tamar et al., 2015b;a; Chow et al.,
2017; Keramati et al., 2020; Ni & Lai, 2022a;b; Hau et al.,
2023), CVaR-RF RL faces challenges due to the absence of

immediate feedback on risks associated with actions during
the exploration phase. In CVaR RL, with rewards given,
the agent doesn’t need to explore every state or action, as
it can immediately adjust its strategy based on the reward.
However, in CVaR-RF RL, where rewards are unknown
during the exploration, it’s necessary to thoroughly explore
the environment by visiting all possible states and actions.
This extensive exploration gathers enough information for
the planning phase, allowing the agent to adjust its strategy
effectively. To facilitate this, we introduce CVaR-RF-UCRL,
a method that efficiently explores all states.

Outline: In Section 2, we introduce the preliminaries es-
sential for the understanding of CVaR-RF RL. Section 3
presents the formal problem statement of CVaR-RF RL. In
Section 4, we present the CVaR-RF-UCRL for exploration
and CVaR-RF-planning algorithms, and present the upper
bound for sample complexity. Section 5 provides our anal-
ysis of the lower bound of sample complexity specifically
for CVaR-RF exploration. Section 6 provides numerical
examples. Section 7 offer concluding remarks.

2. Preliminaries
We explore a tabular Markov decision process (MDP) rep-
resented asM = (S,A, H,P, r). Here, S and A are state
and action spaces with sizes S and A respectively, H is the
number of steps per episode, Ph(·|s, a) is the state transition
probability at step h for action a in state s, and rh(s, a) is a
deterministic reward function mapping state-action pairs to
rewards between 0 and 1. Both transition probabilities and
reward function can vary with each step h. We define ΠH
as the set of history-dependent policies, where each policy
π consists of H functions {πh : S × Hh → ∆A}. Here,
Hh is the history up to step h, and ∆A is the probability
simplex over A. The probability of reaching state s under
policy π is Pπ(s).

In each episode of the MDP, the process starts by choosing
an initial state s1 from an unknown initial distribution P1(·).
At every step h, the agent observes the current state sh from
the state space S , selects an action ah based on the distribu-
tion πh(sh;Hh), earns a reward rh(sh, ah), and then moves
to the next state sh+1 according to the transition probability
Ph(·|sh, ah). The episode ends when the agent reaches the
state sH+1.

We now introduce CVaR, a widely used coherent risk mea-
sure in RL (Rockafellar et al., 2000). For a random variable
X , CVaR at a given risk tolerance τ ∈ (0, 1] is defined as:

CVaRτ (X) := sup
b∈R

(
b− τ−1E[(b−X)+]

)
,

where the notation x+ = max(x, 0). CVaR effectively
quantifies the average outcome in the worst τ -percentile of
scenarios. It is noteworthy that for a continuous variable X ,
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this definition aligns precisely with outcomes less than or
equal to the τ -th quantile, as elucidated by (Acerbi & Tasche,
2002). This τ -th quantile is also identified as Value-at-Risk
(VaR), another well-recognized risk measure. However, VaR
lacks the coherence property, distinguishing it from CVaR.

It is important to note that the reward function in this context
is deterministic, with its cumulative sum ranging between
[0, H]. Given this constraint and acknowledging that the
optimal b aligns with the VaR (see Lemma D.2), and con-
sidering VaRτ ∈ [0, H], we can appropriately restrict the
range of b as follows:

CVaRτ (X) := sup
b∈[0,H]

(
b− τ−1E[(b−X)+]

)
. (1)

Reward-Free RL: The RF-RL framework, as proposed
by (Jin et al., 2020), is structured into two distinct phases:
exploration and planning. In the exploration phase, the
goal is to design algorithms that can efficiently explore
the environment without reward information. Formally, in
the exploration phase, each episode commences with an
exploration policy πt, based solely on data from previous
episodes. An episode ξt captures a sequence of states and
actions (st1, a

t
1, . . . , s

t
H , atH), starting at initial state st1. Ac-

tions are chosen as ath = πt
h(s

t
h), with subsequent states

determined as sth ∼ Ph(s
t
h−1, a

t
h−1). Each trajectory ξt is

added to the dataset Dt. Data collection ends at a random
stopping time tstop, resulting in dataset Dtstop . Based on the
dataset, we are able to get the empirical transition kernel P̂.

In the planning phase, the agent’s exploration strategy is
critically assessed. During this phase, the agent is no longer
permitted to interact with the environment. Instead, a spe-
cific reward function r is given, and the primary goal is
to derive a near-optimal policy tailored to this r using the
dataset Dtstop gathered during the exploration phase. The
efficiency of the exploration approach is quantified based
on the number of trajectories needed to consistently reach
this objective, effectively measuring the algorithm’s ability
to prepare the agent for diverse reward scenarios without
direct interaction with the MDP.

Our Goal: This paper focuses on establishing an efficient
CVaR based reward-free RL framework, including:
1). Develop a CVaR-RF-Exploration algorithm that effi-
ciently explores the environment without requiring any re-
ward function and is adaptive to different τ .
2). Propose a CVaR-RF-Planning algorithm, which com-
putes near-optimal policies based on the dataset acquired
during the exploration phase and a specified reward function,
without further interaction with the environment.
3). Ensure the efficiency and reliability by analyzing the
sample complexity of exploration algorithm and the opti-
mization error of planning algorithm.

3. Problem Statement
To address the inner objective of CVaR outlined in (1),
which depends on the variable b, we consider an aug-
mented MDP, in which an augmented state is defined as
(s, b) ∈ SAug := S × [0, H]. The initial state for a given
b1 ∈ [0, H] is set to (s1, b1). Then, for each timestep
h = 1, . . . ,H , the agent selects action ah based on pol-
icy πh, and updates bh+1 to bh − rh.

For any history-dependent policy π ∈ ΠH, timestep h ∈
[H], state sh ∈ S, budget bh ∈ [0, H], and history H, we
define the value function as:

V π
h (sh, bh;Hh)

= Eπ

(bh − H∑
h′=h

rh′(sh′ , ah′)

)+ ∣∣∣∣sh,Hh

 .

The CVaR objective following policy π, starting at s1, is
then expressed as:

CVaRπ
τ (s1) = max

b1∈[0,H]
{b1 − τ−1V π

1 (s1, b1)},

and the optimal CVaR objective is formulated as:

CVaR⋆
τ (s1) = max

π∈ΠH
max

b1∈[0,H]
{b− τ−1V π

1 (s1, b1)}

= max
b1∈[0,H]

{b1 − τ−1 min
π∈ΠH

V π
1 (s1, b1)}.

(2)

The work of (Bäuerle & Ott, 2011) significantly advances
our understanding by establishing the existence of an op-
timal policy ρ⋆ : SAug → A, which is deterministic
and Markovian within the augmented MDP, denoted by
SAug = S × [0, H]. With a starting point of b1 ∈ [0, H] and
initial state (s1, b1), the process unfolds as follows: for each
h = 1, 2, . . . ,H , the action ah is determined as ρ⋆(sh, bh),
the reward rh as rh(sh, ah), the next state sh+1 evolves
according to P ⋆

h (sh, ah), and the budget bh+1 is updated to
bh − rh. The additional state bh effectively tracks the resid-
ual budget from b1, serving as a comprehensive summary
of historical decisions for the CVaR RL problem.

The adoption of deterministic Markovian policies simplifies
the decision-making process in MDPs, directly associating
states with actions, thereby facilitating implementation and
analytical processes. Consequently, without loss of optimal-
ity, the optimization problem in (2) simplifies to:

CVaR⋆
τ (s1) = max

b1∈[0,H]
{b1 − τ−1 min

ρ∈ΠAug
V ρ
1 (s1, b1)}, (3)

where ΠAug is the class of deterministic Markovian policies.

We now introduce the function definitions and the Bellman
equations for the augmented MDP proposed in (Bellemare
et al., 2023; Wang et al., 2023). For any policy ρ ∈ ΠAug,
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we define:

V ρ
h (sh, bh)

= Eρ

(bh − H∑
h′=h

rh′(sh′ , ah′)

)+ ∣∣∣∣sh, bh
 ,

(4)

and

Qρ
h(sh, bh, ah)

= Eρ

(bh − H∑
h′=h

rh′(sh′ , ah′)

)+ ∣∣∣∣sh, bh, ah
 .

(5)

For notation convenience, we introduce the following defi-
nition:

[PhVh+1] (sh, bh, ah)

= Esh+1∼P(·|sh,ah)[Vh+1(sh+1, bh+1)].

These functions adhere to the following Bellman equations:

V ρ
h (sh, bh) = Eah∼ρh(sh,bh) [Q

ρ
h(sh, bh, ah)] ,

Qρ
h(sh, bh, ah) = [PhVh+1] (sh, bh, ah),

(6)

where bh+1 = bh−rh and V ρ
H+1(s, b) = b+1 := max(0, b1).

Similarly, we define the optimal conditions as:

V ⋆
h (sh, bh) = min

a∈A
Q⋆

h(sh, ah, bh),

ρ⋆h(sh, bh) = argmina∈AQ
⋆
h(sh, bh, ah)],

Q⋆
h(sh, bh, ah) =

[
PhV

⋆
h+1

]
(sh, bh, ah),

(7)

where bh+1 = bh− rh and V ⋆
H+1(s, b) = b+1 = max(0, b1).

Here we introduce a key fact shown in (Wang et al., 2020),
which shows the optimality of ΠAug.

Theorem 3.1. (Optimality) For any b1 ∈ [0, 1],
V ⋆
1 (s1, b1) = V ρ⋆

1 (s1, b1) = infπ∈ΠH
V π
1 (s1, b1).

Theorem 3.1 suggest that we could compute V ⋆
1 and ρ⋆

using dynamic programming (DP) if the true transitions P
were known, following the classical Value Iteration proce-
dure in standard RL. By executing ρ⋆ starting from (s1, b

⋆
1)

where b⋆1 := argmaxb1∈[0,H]{b1−τ−1V ⋆
1 (s1, b1)}, we can

attain the optimal CVaR value.

Based on these arguments, the goal of our paper is to iden-
tify a probably approximately correct (PAC) algorithm for
CVaR-RF RL, characterized by specific performance and
accuracy parameters (ϵ, δ), which is defined as follows:

Definition 3.2. (PAC algorithm for CVaR-RF) A CVaR-
RF exploration algorithm is (ϵ, δ)-PAC with a given risk
tolerance τ if for any reward function r,

P
(
Es1∼P1

[
CVaR⋆

τ (s1; r)− CVaRρ̂
τ (s1; r)

]
≤ ϵ
)
≥ 1−δ.

Here, CVaR⋆
τ (s1; r) is derived by executing optimal policy

ρ⋆ starting from (s1, b
⋆
1) under the true transition probabil-

ities P and the reward function r with optimal initial bud-
get b⋆1 := argmaxb1∈[0,H]{b1 − τ−1V ⋆

1 (s1, b1; r)}. Con-
versely, CVaRρ̂

τ (s1; r) is derived by executing the output
policy in the planning phase ρ̂ starting from (s1, b̂1) under
the empirical transition probabilities P̂ and the reward func-
tion r with the near optimal initial budget obtained in the
planning phase.

4. Main Results
In this section, we first analyze the exploration phase by
assuming the optimization error during the planning phase
is bounded. Inspired by (Fiechter, 1994; Kaufmann et al.,
2021), we propose the CVaR-RF-UCRL, which is an (ϵ, δ)-
PAC algorithm for CVaR-RF exploration, with the sample
complexity upper bounded by Õ(S2AH4/ϵ2τ2). Then, in
the planning phase, we propose a CVaR-RF-planning al-
gorithm, adopting CVaR-VI and CVaR-VI-DISC, which
satisfy the optimization error assumption.

Notation: Consider (sih, a
i
h, s

i
h+1) as the state, action,

and next state observed by an algorithm at step h of
episode i. For any step h ∈ [H] and any state-action pair
(s, a) ∈ S × A, we define nt

h(s, a) =
∑t

i=1 I{(sih, aih) =
(s, a)} as the count of visits to the state-action pair (s, a)
at step h in the first t episodes, and nt

h(s, a, s
′) =∑t

i=1 I{(sih, aih, sih+1) = (s, a, s′)}. The empirical tran-
sitions are defined as:

P̂t
h(s

′|s, a) =

{
nt
h(s,a,s

′)
nt
h(s,a)

, if nt
h(s, a) > 0

1
S , otherwise

.

We denote by V̂ t,ρ
h (sh, bh; r) and Q̂t,ρ

h (sh, bh, ah; r) the
value and action-value functions of a policy π in the MDP
with transition kernels P̂t and reward function r.

4.1. Exploration Phase

We first present a lemma that will be useful for the study
of the objective within the CVaR-RF exploration context.
Prior to delving into this lemma, we make an assumption
regarding the planning phase.
Assumption 4.1. The optimization error during the plan-
ning phase is bounded, i.e.,∣∣∣∣ĈVaR

ρ̂⋆

τ (s1; r)− ĈVaR
ρ̂

τ (s1; r)

∣∣∣∣ ≤ ϵτ/3,

where ĈVaR
ρ̂⋆

τ (s1; r) is derived by executing the opti-
mal policy ρ̂⋆ starting from (s1, b̂

⋆
1) under the empiri-

cal transition probabilities P̂ and the reward function r
with optimal initial budget b̂⋆1 := argmaxb1∈[0,H]{b1 −
τ−1V̂ ⋆

1 (s1, b1; r)}.
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Notice that, Assumption 4.1 focuses on the optimization
error based on same emprical transition probability P̂ and
given r. This assumption is not about the error with re-
spect to the optimal policy for the true underlying MDP.
Theorem 3.1 justifies the existence of an optimal policy ρ̂∗

for MDP specified by P̂ and given reward function (more
technical details could be found in Appendix A.1). Fur-
thermore, there exist many CVaR RL works capable of
generating such a near-optimal policy ρ̂ that satisfies this
assumption, such as (Chow et al., 2015; Tamar et al., 2015b;
Wang et al., 2023). We also propose our algorithms in the
planning phase that satisfy this assumption. Therefore, As-
sumption 4.1 could be immediately satisfied based on these
facts.

The following lemma is useful for subsequent discussions
and analyses related to our primary objective.

Lemma 4.2. An algorithm is (ϵ, δ)-PAC for CVaR-
RF exploration with a given risk tolerance τ if for
any reward function r and for any b1 ∈ [0, H],∣∣∣V ρ

1 (s1, b1; r)− V̂ ρ
1 (s1, b1; r)

∣∣∣ ≤ ϵτ/3.

Proof. Please refer to Appendix A.1 for more details.

For simplifying the exposition of our algorithm, we posit
that the initial state distribution P0 is supported solely on
a singular state s1. This assumption incurs no loss of gen-
erality (Fiechter, 1994). If this is not the case, one might
contemplate an augmented MDP that includes an additional
initial state s0, paired with a unique action a0 yielding a
null reward. Thus, b0 = b1. In this scenario, the transitions
from s0 using a0 are defined as P0(·|s0, a0) = P0.

The error upper bounds in the CVaR-RF-UCRL algorithm
are derived from an upper bound on the estimation error
for each policy ρ, each initial budget b ∈ [0, H] and each
reward function r. The complete procedure is outlined in
Algorithm 1. Before discussing the details of this algorithm,
we introduce the definitions for the estimation error and its
upper confidence bound.

Definition 4.3. For a given policy ρ, reward function r,
and episode t, we define this error for any (sh, bh, ah) ∈
SAug ×A as

êt,ρh (sh, bh, ah; r)

:=
∣∣∣Q̂t,ρ

h (sh, bh, ah; r)−Qρ
h(sh, bh, ah; r)

∣∣∣ .
Definition 4.4. The upper confidence bound Et

h(sh, ah)
for the error, recursively defined as follows: Et

H+1(s,a) =
0 for all (s, a), and for all h ∈ [H], with the convention

1
0 = +∞,

Et
h(sh, ah) = min

{
H,H

√
2β(nt

h(s, a), δ)

nt
h(s, a)

+
∑
s′

P̂t
h(s

′|s, a)max
a

Et
h+1(s

′, a)

}
,

(8)

where β(n, δ) is a threshold function, an input to the algo-
rithm, the choice of which will be discussed later.

It is important to note that the error upper bound only de-
pends on the state s and action a, and is independent of the
policy ρ, initial budget b1 and reward function r. Lemma 4.5
establishes that Et

h(s, a) serves as the upper bound on the
error êt,ρh (s, b, a; r) for any ρ, b, r with a high probability.

Lemma 4.5. With the Kullback-Leibler divergence be-
tween two distributions over S defined as KL(p ∥ q) =∑

s∈S p(s) log p(s)
q(s) , consider the event

E =

{
∀t ∈ N,∀h ∈ [H],∀(s, a),

KL(P̂t
h(·|s, a),Ph(·|s, a)) ≤ β(nt

h(s, a), δ)

nt
h(s, a)

}
,

it is established that for any policy ρ, any reward function r
and any b, êt,ρh (s, b, a; r) ≤ Et

h(s, a) holds on event E .

Proof. Please refer to the Appendix A.2 for more details.

We now introduce the proposed CVaR-RF-UCRL algorithm,
which operates on the principle of uniformly reducing the
estimation error across all budgets, policies and potential
reward functions by adopting a greedy approach based on
the upper bounds Et on these errors. The stopping criterion
for CVaR-RF-UCRL is defined as reaching an error in step
1 that is smaller than ϵτ/3:

• Sampling rule: the exploration policy πt+1 is the
greedy policy with respect to Et(s, a), such that for all
s ∈ S and h ∈ [H]:

πt+1
h (sh) = argmaxaE

t
h(s, a). (9)

• Stopping rule: the algorithm stops at

tstop = inf{t : Et
h(s1, π

t+1
1 (s1)) ≤ ϵτ/3}.

Now, we have the following Lemma showing that CVaR-
RF-UCRL is an algorithm with (ϵ, δ)-PAC.

Lemma 4.6. (Correctness) On the event E , given τ , for any
r ,ρ and b1,

∣∣∣V tstop,ρ
1 (s1, b1; r)− V̂

tstop,ρ
1 (s1, b1; r)

∣∣∣ ≤ ϵτ/3,

which implies CVaR⋆
τ (s1; r)− CVaRρ̂⋆

τ (s1; r) ≤ ϵ.
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Algorithm 1 CVaR-RF-UCRL

1: Given: risk tolerance τ ∈ (0, 1]
2: Initialization: t = 1, D0 = ∅, initialize E0 with (8)

and π1
h with (9)

3: while Et−1
h (s1, π

t
1(s1)) ≥ ϵτ/3 do

4: Observe the initial state st1 ∼ P0

5: for h = 1, . . . ,H − 1, H do
6: Play ath ∼ πt

h(s
t
h)

7: Observe the next state sh+1

8: end for
9: Compute Et according to (8) and πt+1 according

to (9)
10: Dt = Dt−1 ∪ (st1, a

t
1, . . . , s

t
H , atH)

11: t = t+ 1
12: end while
13: Return the dataset Dtstop

Proof. By definition of the stopping rule and the sampling
rule, we have for all a ∈ A, Etstop

1 (s1, a) ≤ ϵ/3. Hence,
by Lemma 4.5 on the event E , for all ρ, b1, r, and all a,
ê
tstop,ρ
1 (s1, b1, a; r) ≤ ϵτ/3. In particular, for all ρ, b1, and r,∣∣∣V tstop,ρ
1 (s1, b1; r)− V̂

tstop,ρ
1 (s1, b1; r)

∣∣∣ ≤ ϵτ/3. The conclu-
sion follows from Lemma 4.2 by choosing ρ to be ρ̂⋆.

We are now able to state our main results for CVaR-RF-
UCRL, which show that with a proper chosen threshold
β(n, δ), CVaR-RF-UCRL achieves (ϵ, δ)-PAC for CVaR
RL. Furthermore, an upper bound on its sample complexity
can be established under these conditions.

Theorem 4.7. (Upper Bound for Sample Complexity) Using
threshold β(n, δ) = log(2SAH/δ) + (S − 1) log(e(1 +
n/(S − 1))), the CVaR-RF-UCRL is (ϵ, δ)-PAC for CVaR-
RF exploration. The number of trajectories collected in the
exploration phase is bounded by Õ

(
S2AH4

ϵ2τ2

)
.

Proof. Please refer to Appendix A.3 for more details.

Compared with the risk-neutral reward-free approaches (Jin
et al., 2020; Kaufmann et al., 2021; Ménard et al., 2021),
the denominator of the bound we obtained is related to the
risk tolerance parameter τ . This is expected since CVaR is
interpreted as the mean of the tail distribution with an area
under the curve equal to τ , it requires more trajectories for
smaller τ values and fewer trajectories for larger τ values.

4.2. Planning Phase

In the planning phase, the reward function is provided, and
the goal is to find a near-optimal policy based on the given
reward function and the dataset generated during the ex-
ploration phase. Following a similar approach to (Jin et al.,

2020), we now introduce our planning algorithm, as outlined
in Algorithm 2.

Algorithm 2 CVaR-RF-Planning

1: Input: a dataset of transition Dtstop , reward function r,
accuracy ϵ, risk tolerance τ .

2: for all (s, a, s′, h) ∈ S ×A× S × [H] do
3: Nh(s, a, s

′) ←
∑

(sh,ah,sh+1)∈D I[sh = s, ah =

a, sh+1 = s′].
4: Nh(s, a)←

∑
s′ Nh(s, a, s

′).
5: P̂h(s

′|s, a) = Nh(s, a, s
′)/Nh(s, a).

6: end for
7: ρ̂, b̂← APPROXIMATE-CVaR-SOLVER(P̂, r, ϵ, τ).
8: return policy ρ̂, and initial budget b̂.

In Algorithm 2 , we first compute the empirical transition
matrix P̂ based on the collected dataset Dtstop . Then, for
each reward function r, we find a near-optimal policy by
employing a APPROXIMATE-CVaR-SOLVER that utilizes
transitions P̂, the given reward function r, an accuracy pa-
rameter ϵ and the given risk tolerance τ . It’s worth noting
that the solver can be any algorithm designed to find an
ϵ/3-suboptimal policy ρ̂ for CVaR RL when both the transi-
tion matrix and the reward are known. One straightforward
approach to achieve this is by using the Value Iteration
algorithm, which iteratively solves the Bellman optimal-
ity equation (6) in a dynamic programming manner. The
greedy policy induced by the resulting Q⋆ yields the opti-
mal optimal policy without errors. We present Algorithm 3,
which generates an optimal policy exactly according to The-
orem 3.1 (Wang et al., 2023). This algorithm satisfies our
Assumption 4.1 about the optimization error.

Algorithm 3 CVaR-VI

1: Input: transition matrix P, reward function r, risk tol-
erance τ

2: for all s ∈ S, b ∈ [0, H] do
3: Set VH+1(s, b) = b+

4: for h = H,H − 1, . . . , 1 do
5: Qh(sh, bh, ah) = [PhVh+1] (sh, bh, ah), where

bh+1 = bh − rh
6: ρ⋆h(sh, bh) = argminaQh(sh, bh, ah)
7: V ⋆

h (sh, bh) = mina Qh(sh, bh, ah)
8: end for
9: end for

10: Calculate b⋆ = argmaxb1∈[0,1]

{
b− τ−1V1(s1, b)

}
11: return policy ρ⋆ and b⋆

4.2.1. DISCRETIZATION

Algorithm 3 faces computational challenges due to the dy-
namic programming step, which requires optimization over

6
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all b ∈ [0, H], involving the maximization of a non-concave
function (Wang et al., 2023). Following the approach pro-
posed in (Bastani et al., 2022; Wang et al., 2023), we in-
troduce a discretization of rewards, which allows the men-
tioned steps to be performed over a finite grid. This offers
computational efficiency while preserving the same statisti-
cal guarantees.

We fix a precision η ∈ (0, 1) and define ϕ(r) = η⌈r/η⌉ ∧ 1.
This rounding function maps r ∈ [0, 1] to an η-net of the in-
terval [0, 1], commonly referred as the grid. The discretized
MDP dis(M) is an exact replica of the true MDPM with
one exception: its rewards are post-processed using ϕ, i.e.,
r(s, a; disc(M)) = ϕ(r(s, a;M)). We now introduce the
CVaR value iteration with discretization algorithm.

Algorithm 4 CVaR-VI-DISC

1: Input: transition matrix P, reward function r, precision
parameter η, risk tolerance τ .

2: Discretize the reward funtion r by

r̂ = ϕ(r) = η⌈r/η⌉ ∧ 1

3: for all s ∈ S, b̂ = n · η, n = 0, 1, . . . do
4: Set V̂H+1(s, b̂) = b̂+ := max(0, b̂)
5: for h = H,H − 1, . . . , 1 do
6: Q̂h(sh, b̂h, ah) =

[
PhV̂h+1

]
(sh, b̂h, ah), where

b̂h+1 = b̂h − r̂h
7: ρ̂⋆h(sh, b̂h) = argminaQ̂h(sh, b̂h, ah)

8: V̂ ⋆
h (sh, b̂h) = mina Q̂h(sh, b̂h, ah)

9: end for
10: end for
11: Calculate b̂⋆ = argmaxb̂

{
b̂− τ−1V̂1(s1, b̂)

}
12: return policy ρ̂⋆ and b̂⋆

4.2.2. COMPUTATIONAL COMPLEXITY

In disc(M), the τ -th quantile of the returns distribution
(the argmax of the CVaR objective) will be a multiple of η.
Therefore, it suffices to compute V1(s1, b1) and maximize
line 9 over the grid. Since b1 transitions by subtracting re-
wards, which are multiples of η, bh will always stay on the
grid. Hence, the entire dynamic programming procedure
only needs to occur on the grid. This approach demonstrates
that CVaR value iteration via discretization is computation-
ally tractable.

Theorem 4.8. The CVaR-VI-DISC has a run time of
O(S2AHη−2) in the discretized MDP. Setting η = ϵτ/3H ,
as suggested in Theorem 4.9, the run time is O(S

2AH3

ϵ2τ2 ).

Proof. Please refer to Appendix for more details.

4.2.3. DISCRETIZATION ERROR

Next, we evaluate the impact of errors resulting from the
discretization step. Following a similar method as previous
works (Wang et al., 2023), we can relate the errors within
disc(M) to equivalent errors within M using a coupling
argument. This leads us to introduce the CVaR-VI-DISC
algorithm, which is tailored for practical applications.

The following theorem guarantees that the optimization er-
ror assumption is met when when Algorithm 4 is employed.

Theorem 4.9. By selecting η ≤ ϵτ/3H , we ensure that

|CVaRρ⋆

τ (s1; r)− CVaRρ̂
τ (s1; r)| ≤ ϵ/3, (10)

where ρ⋆ represents the policy generated by Algorithm 3 and
ρ̂ is the output of Algorithm 4. Consequently, the optimiza-
tion error is bounded by ϵ/3, which satisfies Assumption 4.1.

Proof. Please refer to the Appendix for more details.

4.3. Adaptability to Varying Risk Tolerances

We further introduce an important proposition that under-
scores the adaptability of our exploration process to different
levels of risk tolerance τ :

Proposition 4.10. For any τ ′ ≥ τ , the exploration dataset
obtained through Algorithm 1 at risk tolerance τ contains
the requisite information for conducting CVaR-RF RL with
any higher risk tolerance τ ′. Consequently, the planning
phase is also compatible with any given τ ′ ≥ τ .

Proof. Utilizing Lemma 4.2, we observe that as ϵτ/3 ≤
ϵτ ′/3, the CVaR-RF exploration algorithm configured with
a risk tolerance of τ also satisfies the (ϵ, δ)-PAC criterion for
CVaR-RF RL when operating under a higher risk tolerance
τ ′ ≥ τ . Furthermore, invoking Theorem 4.9, we have that
the stipulated optimization error condition is met since η ≤
η′. This implies that the planning phase remains efficacious
under these adjusted parameters.

5. Lower Bound
In this section, we develop a lower bound of the sample
complexity for CVaR-RF exploration. We present a theorem
that delineates this lower bound, applicable to any algorithm
operating within the CVaR-RF exploration framework.

Theorem 5.1. Consider a universal constant C > 0. For
a given risk tolerance τ ∈ (0, 1], if the number of ac-
tions A ≥ 2, the number of states S ≥ C log2 A + 2,
the horizon H ≥ C log2 S + 1, and the accuracy param-
eter ϵ ≤ min{1/4τ,H/48τ}, then any CVaR-RF explo-
ration algorithm that can output ϵ-optimal policies for an
arbitrary number of adaptively chosen reward functions
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with a success probability δ = 1/2 must collect at least
Ω(S2AH2/τϵ2) trajectories in expectation.

Proof Sketch. Here we highlight the main idea of our lower
bound proof, while the detailed proof can be found in the
Appendix. Our proof is inspired by the lower bound con-
struction in for the reward-free RL (Jin et al., 2020). The
key idea is that any reward-free risk neutral problem can be
transformed into a CVaR-RF RL problem. If a CVaR-RF
exploration algorithm that can output ϵ-optimal policies in
the transformed CVaR-RF RL problem, it can also solve the
original reward-free risk neutral problem. Specifically, for a
MDPM with initial state s1, we consider a new MDPM′

with an initial state s0. For any action a, P(s1|s0, a) = τ ,
P(s′|s0, a) = 1− τ , P(s′|s′, a) = 1, and r(s′, a) = 1. For
any adaptively chosen reward function forM and a policy
π, the CVaR with tolerance τ following policy in the new
MDPM′ is equal to the cumulative rewards in the original
MDPM. (Jin et al., 2020) shows that any reward-free ex-
ploration algorithm that output ϵ-optimal policy from initial
state s1 must collect at least Ω(S2AH2/τϵ2) trajectories in
expectation. Thus, from the initial state s0, the CVaR-RF
exploration algorithm must collect at least Ω(S2AH2/τϵ2)
trajectories in expectation. □

This theorem illustrates that, compared with the lower
bound, the upper bound established in Theorem 4.7 has
by an additional factor of H2 and 1/τ , while being tight
with respect to the parameters S, A, ϵ. If τ is a constant, our
result is nearly minimax-optimal with an additional factor
on H2. An interesting direction of the future work is uti-
lizing the empirical Bernstein inequality to further improve
the sample complexity. The H factor can potentially be
optimized by adopting an approach similar to (Ménard et al.,
2021) by introducing an empirical Bernstein inequality de-
rived from a control of the transition probability. As shown
in (Wang et al., 2023), the Bernstein inequality could also
potentially improve the dependence on τ under a continuity
assumption. Furthermore, compared with the risk-neutral
reward-free RL, our derived lower bound for any CVaR-RF
exploration algorithm includes an additional τ in the de-
nominator. This is because CVaR focuses on the τ worst
outcomes. Additionally, the CVaR setting poses challenges
due to non-Markovianity, requiring more efforts in achiev-
ing a minimax optimal sample complexity bound.

6. Experiments
In this section, we provide numerical examples to evaluate
the proposed CVaR-RF RL framework. In these examples,
we use similar experimental setup as in (Kaufmann et al.,
2021). Our environment is configured as a grid-world con-
sisting of 21×21 states, where each state offers four possible
actions (up, down, left, right), and actions leading to the
boundary result in remaining in the current state. The agent

will move to the correct state with a probability of 0.95.
However, there is an equal probability of 0.05

3 for the agent
to move in any one of the other three directions. Initially,
the exploration algorithm CVaR-RF-UCRL runs without
reward information, collecting n = 30, 000 transitions. The
empirical transition probability P̂ is then estimated. We
use the β(n, δ) threshold from Theorem 4.7 with δ = 0.1
and set a time horizon H of 20. Using the obtained dataset
and P̂, the planning algorithm derives near-optimal policies,
employing CVaR-VI-DISC as the solver.

Reward Setup 1: The first one is similar with (Kaufmann
et al., 2021), where the agent starts at position (10, 10). The
reward structure is primarily set at 0 for most states, except
at (16, 16) where it is 1.0. Here we choose ϵ = 0.1. Then
we executing the output policy of CVaR-VI-DISC in the
same grid-world for K = 10, 000 trajectories and plot the
number of state visits following the policy. For comparison,
we also generate the optimal policy using true transition
probability. Figures 1a displays the number of visits to each
state following the policy generated from P, while Figure 1b
shows for P̂. Additionally, Table 1 presents the CVaR values
under both true and empirical transition probabilities.

(a) Optimal policy (b) CVaR-VI-DISC

Figure 1. Number of state visits following policies generated under
P and P̂ in reward setup 1 with risk tolerance τ = 0.05.

ϵ, τ CVaRP CVaRP̂ Error

0.1, 0.05 4.308 4.258 0.05
0.1, 0.95 4.960 4.954 0.006

Table 1. CVaR values under reward setup 1 with different τ .

These visitation patterns, shown in Figures 1a and 1b, are
notably similar, indicating that the agent tends to favor states
with higher rewards. This behavior is consistent with the
objective of maximizing CVaR. The similarity in patterns
under both true and empirical transition probabilities un-
derscores the reliability of the data collected during the
exploration phase. Moreover, with ϵ = 0.1 and τ = 0.05,
the difference between true and empirical CVaR is −0.05,
which is below the anticipated error threshold of ϵ = 0.1.
Similarly, with ϵ = 0.1 and τ = 0.95, the error is only
0.006, again less than the threshold of 0.1. These results
align with our theoretical analysis.
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Reward Setup 2: We consider a more complex case as
the reward structure is primarily set at 0.5 for most states,
except at (16, 16) where it is 1.0, and a zero-reward zone
marked ’x’ from (12, 10) to (12, 16).

(a) Optimal policy (b) CVaR-VI-DISC

Figure 2. Number of state visits following policies generated under
P and P̂ in reward setup 2 with risk tolerance τ = 0.05.

ϵ, τ CVaRP CVaRP̂ Error

0.1, 0.05 1.852 1.829 0.023
0.1, 0.95 1.993 1.990 0.003

Table 2. CVaR values under reward setup 2 with different τ .

Figure 2 and Table 2 illustrate that CVaR-RF RL effectively
avoids traversing zero-reward regions, and the observed
errors remain within the pre-defined thresholds. These out-
comes are also consistent with the CVaR’s property as the
agent is more risk-averse compared to risk-neutral case.

7. Conclusion
In this paper, we have introduced a novel risk-sensitive
reward-free RL framework based on CVaR (CVaR-RF RL),
which is able to solve CVaR RL for given any reward func-
tion after a singular reward-free exploration phase. We have
proposed CVaR-RF-UCRL as the exploration algorithm and
established upper and lower bounds for the sample com-
plexity. We have developed a CVaR-RF-planning algorithm,
equipped with CVaR-VI and CVaR-VI-DISC to generate
near-optimal Markov policies solely based on the explo-
ration dataset and given reward function. Through our nu-
merical experiments, we have validated the effectiveness
and practicality of this CVaR-RF-RF framework.
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A. Proof of Exploration Phase
A.1. Proof of Lemma 4.2

Recall the definition of value function V for various policy types:

π ∈ ΠH : V π
h (sh, bh;Hh) = Eπ

(bh − H∑
t=h

rt

)+
∣∣∣∣∣∣sh, bh,Hh

 ,

ρ ∈ ΠAug : V ρ
h (sh, bh) = Eρ

(bh − H∑
t=h

rt

)+
∣∣∣∣∣∣sh, bh

 .

Notice that executing ρ, b in the augmented MDP is equivalent to executing policy πρ,b in the original MDP, where
πρ,b
h (sh,Hh) = ρh(sh, b− r1 − . . .− rh−1). Consequently, their V functions should be equivalent.

Therefore, by Lemma D.3, we have

CVaR⋆
τ (s1; r)− CVaRρ̂r

τ (s1; r)

= CVaRπρ⋆,b⋆1

τ (s1; r)− CVaRπρ̂,b̂1

τ (s1; r)

= CVaRπρ⋆,b⋆1

τ (s1; r)− ĈVaR
πρ⋆,b⋆1

τ (s1; r)︸ ︷︷ ︸
Evaluation error I

+ ĈVaR
πρ⋆,b⋆1

τ (s1; r)− ĈVaR
πρ̂⋆,b̂⋆1

τ (s1; r)︸ ︷︷ ︸
≤0 by definition

+ ĈVaR
πρ̂⋆,b̂⋆1

τ (s1; r)− ĈVaR
πρ̂,b̂1

τ (s1; r)︸ ︷︷ ︸
optimization error ≤ϵ/3 by Assumption 4.1

+ ĈVaR
πρ̂,b̂1

τ (s1; r)− CVaRπρ̂,b̂1

τ (s1; r)︸ ︷︷ ︸
Evaluation error II

.

By the triangle inequality, we have∣∣∣CVaR⋆
τ (s1; r)− CVaRρ̂⋆

r
τ (s1; r)

∣∣∣
≤
∣∣∣∣CVaRπρ⋆,b⋆

τ (s1; r)− ĈVaR
πρ⋆,b⋆

τ (s1; r)

∣∣∣∣+ ∣∣∣∣ĈVaR
πρ̂⋆,b̂⋆

τ (s1; r)− CVaRπρ̂⋆,b̂⋆

τ (s1; r)

∣∣∣∣ .
For the evaluation errors, by the definition of CVaR, we have∣∣∣∣CVaRπρ⋆,b⋆1

τ (s1; r)− ĈVaR
πρ⋆,b⋆1

τ (s1; r)

∣∣∣∣ = ∣∣∣∣b⋆1 − τ−1V πρ⋆,b⋆1

1 (s1, b
⋆
1; r)− max

b1∈[0,H]

{
b1 − τ−1V̂ πρ⋆,b⋆1

1 (s1, b1; r)
}∣∣∣∣

≤
∣∣∣b⋆1 − τ−1V πρ⋆,b⋆1

1 (s1, b
⋆
1; r)−

(
b⋆1 − τ−1V̂ πρ⋆,b⋆1

1 (s1, b
⋆
1; r)

)∣∣∣
≤ τ−1

∣∣∣V πρ⋆,b⋆1

1 (s1, b
⋆
1; r)− V̂ πρ⋆,b⋆1

1 (s1, b
⋆
1; r)

∣∣∣ ,
and similarly, ∣∣∣∣ĈVaR

πρ̂,b̂1

τ (s1; r)− CVaRπρ̂,b̂1

τ (s1; r)

∣∣∣∣ ≤ τ−1
∣∣∣V πρ̂,b̂1

1 (s1, b̂1; r)− V̂ πρ̂,b̂1

1 (s1, b̂1; r)
∣∣∣ .

Therefore, if an exploration algorithm that satisfies∣∣∣V ρ
1 (s1, b1; r)− V̂ ρ

1 (s1, b1; r)
∣∣∣ ≤ ϵτ/3,∀ρ ∈ ΠAug,∀b1 ∈ [0, H],

or equivalently, ∣∣∣Qρ
1(s1, b1, ρ(s1, b1); r)− Q̂ρ

1(s1, b1, ρ(s1, b1); r)
∣∣∣ ≤ ϵτ/3,∀ρ ∈ ΠAug,∀b1 ∈ [0, H],

it further ensures
∣∣∣CVaR⋆

τ (s1; r)− CVaRρ̂⋆
r

τ (s1; r)
∣∣∣ ≤ ϵ, which completes the proof.

12
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A.2. Proof of Lemma 4.5

We first consider the case where the initial budget b1 is fixed and for convenience, we omit the index h+ 1 by using (s′, b′).
Referring to the Bellman equations in both the empirical augmented MDP and the true augmented MDP,

Q̂t,ρ
h (sh, bh, ah; r) =

∑
s′

P̂t
h(s

′|s, a)Q̂t,ρ
h+1(s

′, b′, ρ(s′, b′); r),

and Qρ
h(sh, bh, ah; r) =

∑
s′

Ph(s
′|s, a)Qρ

h+1(s
′, b′, ρ(s′, b′); r),

we have

Q̂t,ρ
h (sh, bh, ah; r)−Qρ

h(sh, bh, ah; r)

=
∑
s′

P̂t
h(s

′|s, a)Q̂t,ρ
h+1(s

′, b′, ρ(s′, b′); r)−
∑
s′

Ph(s
′|s, a)Qρ

h+1(s
′, b′, ρ(s′, b′); r)

=
∑
s′

(
P̂t
h(s

′|s, a)− Ph(s
′|s, a)

)
Qρ

h+1(s
′, b′, ρ(s′, b′); r)

+
∑
s′

P̂t
h(s

′|s, a)
(
Q̂t,ρ

h+1(s
′, b′, ρ(s′, b′); r)−Qρ

h+1(s
′, b′, ρ(s′, b′); r)

)
.

Thus, for nt
h(s, a) ≥ 0, we obtain

êt,ρh (sh, bh, ah; r)

= |Q̂t,ρ
h (sh, bh, ah; r)−Qρ

h(sh, bh, ah; r)|
(1)

≤
∑
s′

∣∣∣P̂t
h(s

′|s, a)− Ph(s
′|s, a)

∣∣∣Qρ
h+1(s

′, b′, ρ(s′, b′); r)

+
∑
s′

P̂t
h(s

′|s, a)
∣∣∣Q̂t,ρ

h+1(s
′, b′, ρ(s′, b′); r)−Qρ

h+1(s
′, b′, ρ(s′, b′); r)

∣∣∣
(2)

≤ b1∥P̂t
h(·|s, a)− Ph(·|s, a)∥1 +

∑
s′

P̂t
h(s

′|s, a)êt,ρh+1(s
′, b′, a′; r)

(3)

≤ b1

√
2β(nt

h(s, a), δ)

nt
h(s, a)

+
∑
s′

P̂t
h(s

′|s, a)êt,ρh+1(s
′, b′, a′; r),

where (1) is due to the Pinsker’s inequality; (2) is due to the fact that Qρ
h(sh, bh, ah; r) ≤ b1 (Qρ

h(sh, bh, ah; r) ≤ (bh)
+ ≤ b1

as bh+1 = bh−rh) for all s, a, b, r and the definition of L1 norm; (3) is due to the fact that TV(P,Q) = 1
2∥P (·)−Q(·)∥1 ≤√

1
2KL(P,Q) and the definition of E .

Notice that êt,ρh (sh, bh, ah; r) ≤ b1, then for all nt
h(s, a) ≥ 0, we have

êt,ρh (sh, ah, bh; r) ≤ min

{
b1, b1

√
2β(nt

h(s, a), δ)

nt
h(s, a)

+
∑
s′

P̂t
h(s

′|s, a)êt,ρh+1(s
′, a′, b′; r)

}
.

Notice that b1 ∈ [0, H], in order to find the upper bound of the estimation error over all the initial budgets, we extend the
inequality to

êt,ρh (sh, ah, bh; r) ≤ max
b1∈[0,H]

{
min

{
b1, b1

√
2β(nt

h(s, a), δ)

nt
h(s, a)

+
∑
s′

P̂t
h(s

′|s, a)êt,ρh+1(s
′, a′, b′; r)

}}

≤ min

{
H,H

√
2β(nt

h(s, a), δ)

nt
h(s, a)

+
∑
s′

P̂t
h(s

′|s, a)êt,ρh+1(s
′, a′, b′; r)

}
.
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Now we prove Lemma 4.5 by induction. For H + 1, since

êt,ρH+1(s, a, b; r) = |Q̂
t,ρ
H+1(s, a, b; r)−Qρ

H+1(s, a, b; r)| = max{0, b1} −max{0, b1} = 0

and Et
H+1(s, a) = 0 for all (s, a), the result is true. Assume the result holds for h+1, i.e., êt,ρh+1(s, a, b; r) ≤ Et

h+1(s, a; b1)
for all (s, a), we have

êt,ρh (s, a, b; r) ≤ min

{
H,H

√
2β(nt

h(s, a), δ)

nt
h(s, a)

+
∑
s′

P̂t
h(s

′|s, a)êt,ρh+1(s
′, a′, b′; r)

}

≤ min

{
H,H

√
2β(nt

h(s, a), δ)

nt
h(s, a)

+
∑
s′

P̂t
h(s

′|s, a)max
a∈A

Eh+1(s
′, a)

}
= Et

h(s, a)

holds for h, which complete the proof.

A.3. Proof of Theorem 4.7

Notice that in the exploration phase, we follow the exploration policy π rather than ρ. We begin by introducing some
notations. Let Pπ

h(s, a) represent the probability that the state-action pair (s, a) is reached at the h-th step of a trajectory
under the exploraion policy π. We use the shorthand pht (s, a) = phπt

(s, a) for simplicity. The pseudo-counts n̄t
h(s, a) are

defined as
∑t

i=1 Pi
h(s, a), and we define the event

Ecnt =

{
∀t ∈ N⋆,∀h ∈ [H],∀(s, a) ∈ S ×A : nt

h(s, a) ≥
1

2
n̄t
h(s, a)− βcnt(δ)

}
,

where βcnt(δ) = log(2SAH/δ). Recalling the event E defined in Lemma 4.5, we let F = E ∩ Ecnt and introduce the
following lemma.

By Lemma D.4 and the principle of inclusion-exclusion, we have P(F) = P(E ∩ Ecnt) = P(E) + P(Ecnt)− P(E ∪ Ecnt) ≥
P(E) + P(Ecnt)− 1 = 1− δ. From Lemma 4.6, on the event F , it is shown that CVaR⋆

τ (s1; r)− CVaRρ̂∗

τ (s1; r) ≤ ϵ for all
reward functions r, thereby proving that CVaR-RF-UCRL is (ε, δ)-PAC.

We now proceed to upper bound the sample complexity of CVaR-RF-UCRL on the event F . The first step involves
introducing an average upper bound on the error at step h under policy πt+1, defined as

Qt
h =

∑
(s,a)

Pt+1
h (s, a)Et

h(s, a).

By Lemma D.1, the average errors can be related as follows:

Qh
t ≤ 3H

∑
(s,a)

Pt+1
h (s, a)

[√
β(nt

h(s, a), δ)

nt
h(s, a)

∧ 1

]
+
∑
(s,a)

∑
(s′,a′)

Pt+1
h (s, a)Ph(s

′|s, a)I(a′ = πt+1(s′))Et
h+1(s

′, a′)

≤ 3H
∑
(s,a)

Pt+1
h (s, a)

[√
β(nt

h(s, a), δ)

nt
h(s, a)

∧ 1

]
+Qt

h+1.

For h = 1, observe that Pt+1
1 (s1, a)E

t
1(s1, a) = Et

1(s1, π
t+1
1 (s1))I(πt+1

1 (s1) = a), as the policy is deterministic.
Now, if t < tstop, Et

1(s1, π
t+1
1 (s1)) ≥ ϵ/3 by definition of the stopping rule, hence Q1

t =
∑

a P
t+1
1 (s1, a)E

t
1(s1, a) ≥

(ϵτ/3)
∑

a∈A I(πt+1
1 (s1) = a) = ϵτ/3. Thus, we have

ϵτ

3
≤ 3

H∑
h=1

∑
(s,a)

HPt+1
h (s, a)

[√
β(nt

h(s, a), δ)

nt
h(s, a)

∧ 1

]

for t < tstop. Summing these inequalities for t ∈ {0, . . . , T} where T < tstop gives:

(T + 1)ϵτ ≤ 9

H∑
h=1

H
∑
(s,a)

T∑
t=0

Pt+1
h (s, a)

[√
β(nt

h(s, a), δ)

nt
h(s, a)

∧ 1

]
.
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The next step involves relating the counts to the pseudo-counts, taking into account that the event Ecnt holds.

Using Lemma D.5, it can be stated that, on the event F , for T < tstop, the inequality

(T + 1)ϵτ ≤ 18

H∑
h=1

H
∑
(s,a)

T∑
t=0

Pt+1
h (s, a)

√
β(nt

h(s, a), δ)

nt
h(s, a) ∨ 1

≤ 18
√
β(T + 1, δ)

H∑
h=1

H
∑
(s,a)

T∑
t=0

n̄t+1
h (s, a)− nt

h(s, a)√
n̄t
h(s, a) ∨ 1

,

is derived, where the relation Pt+1
h (s, a) = n̄t+1

h (s, a)− n̄t
h(s, a), as per the definition of pseudo-counts, is used.

Applying Lemma D.6 to bound the sum over t, we get:

(T + 1)ϵτ ≤ 18(1 +
√
2)
√

β(T + 1, δ)

H∑
h=1

H
∑
(s,a)

√
nT+1
h (s, a)

≤ 18(1 +
√
2)
√

β(T + 1, δ)

H∑
h=1

H
√
SA

√∑
s,a

nT+1
h (s, a).

Given that
∑

s,a n
T+1
h (s, a) = T + 1, the inequality simplifies to:

√
T + 1ϵτ ≤ 18(1 +

√
2)
√
SAH2

√
β(T + 1, δ).

For sufficiently large T , this inequality cannot hold, as the left-hand side grows with
√
T , while the right-hand side is

logarithmic. Therefore, tstop is finite and satisfies (applying the inequality to T = tstop − 1):

tstop ≤ Õ
(
H4S2A

ϵ2τ2

)
The conclusion follows from Lemma D.7.

B. Proof of Planning Phase
B.1. Proof of Theorem 4.8

The utilization of discretization in the algorithm significantly impacts its computational tractability, and it is applied in two
main areas:
1. In the dynamic programming step at each timestep h, the algorithm exclusively computes Qh(sh, bh, ah) for all sh, ah
and bh within the grid. This leads to a total runtime of O(SAHη−1Tstep), where Tstep represents the time required for each
step. The time complexity here arises from discretization and is a function of the state space size, action space size, and the
horizon length.
2. When computing b̂, the algorithm searches over the grid to find the solution. Since the returns distribution is supported
on the grid, the τ -quantile of the return distribution (the optimal solution) exists on the grid. This computation has a time
complexity of O(η−1), which is considered a lower-order term compared to the first part.

It’s important to note that the most time-consuming part of the algorithm is the computation of expectations, specifically the
term:

[PhVh+1] (sh, bh, ah) = Esh+1∼P(·|sh,ah)[V
⋆
h+1(sh+1, bh+1)].

In the discretized MDP, this expectation can be computed using only grid elements, implying Tstep = O(Sη−1). As a result,
the overall time complexity of this algorithm is approximately O(SAHη−1Tstep) = O(S2AHη−2).

B.2. Proof of Theorem 4.9

The proof draws inspiration from (Bastani et al., 2022; Wang et al., 2023). To facilitate the discussion, we introduce
the following notation. Let Zρ,M represent the returns from executing ρ in the MDPM. For random variables X,Y ,
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we say Y stochastically dominates X , which is denoted X ⪯ Y . This dominance implies that for any real value t, the
probability that Y is less than or equal to t is greater than or equal to the probability of X being less than or equal to t, i.e.,
∀t ∈ R : Pr(Y ≤ t) ≤ Pr(X ≤ t).
1) From disc(M) toM:

Consider any policy ρ ∈ ΠAug and b ∈ [0, 1] (which we use in disc(M)). Define an adapted policy for use inM as follows:

adapted(ρ, b1)h(sh, r1:h−1) = ρh(sh, b1 − ϕ(r1)− · · · − ϕ(rh − 1)).

The adapted policy simulates the evolution of b in disc(M) by using the history. Let Zρ,b,disc(M) be the returns from running
ρ, b in disc(M). Let Zadopted(ρ,b),M be the returns from running adopted(ρ, b) inM. According to Lemma H.1 in (Wang
et al., 2023), we almost surely have

Zρ,b,disc(M) −Hη ⪯ Zadopted(ρ,b),M ⪯ Zρ,b,disc(M).

Thus, for any x ∈ R, it follows that

Fρ,b,disc(M)(x) ≤ Fadapted(ρ,b),M(x) ≤ Fρ,b,disc(M)(x+Hη)

where Fρ,b,disc(M) is the CDF of Zρ,b,disc(M) and Fadapted(ρ,b),disc(M) is the CDF of Zadapted(ρ,b),M.

Based on these arguments and Theorem H.3 in (Wang et al., 2023), we conclude:

CVaRτ (adapted(ρ, b);M) ≥ CVaRτ (ρ, b; disc(M))− τ−1Hη. (11)

2) FromM to disc(M): Let’s introduce the memory-MDP model as defined in (Wang et al., 2023) first. The memory-MDP
mode augments a standard MDP with a memory generator Mh, which produces memory items mh ∼Mh(sh, ah, rh,Hh)
at each timestep. These memories are stored into the history Hh = (st, at, rt,mt)t∈[h−1]. The process of execut-
ing π in this memory-MDP is as follows: for any h ∈ [H], ah ∼ πh(sh,Hh), sh+1 ∼ P(·|sh, ah), rh = r(sh, ah)
and mh ∼ Mh(sh, ah, rh,Hh). As a result of this process, the augmented MDP with memory has a history
HAug

h = (st, bt, at, rt,mt)t∈[h−1]. This memory-MDP model allows us to capture and model dependencies on past
experiences through the memory items.

Building on the framework presented in (Wang et al., 2023), consider a scenario where we have a policy ρ ∈ ΠAug and
an initial budget b ∈ [0, 1], which we intend to use in the original MDPM. To adapt this policy to run in disc(M), we
introduce a discretized policy, which is history-dependent and incorporates memory. This policy operates in the discretized
MDP disc(M) and is defined as follows:

disc(ρ, b)h(sh,m1:h−1) = ρh(sh, b−m1 − · · · −mh−1).

Indeed, this definition of the discretized policy disc(ρ, b) is designed to ensure that, despite receiving discrete rewards r̂h in
the discretized MDP disc(M), the memory element mh is carefully generated to imitate the reward that would have been
received in the true MDPM.

By applying Lemma H.2 in (Wang et al., 2023), we almost surely have

Zρ,b,M ⪯ Zdisc(ρ,b),disc(M).

Consequently, if we define Fρ,b,M as the CDF of Zρ,b,M and Fdisc(ρ,b),disc(M) as the CDF of Zdisc(ρ,b),disc(M), we can
establish that,

∀x ∈ R : Fdisc(ρ,b),disc(M) ≤ Fρ,b,M.

Based on these observations and utilizing Theorem H.4 in (Wang et al., 2023), we obtain

CVaR⋆
τ (disc(M)) ≥ CVaR⋆

τ (M). (12)

Combining Eq. (11) and Eq. (12), we have

|CVaRρ⋆

τ (s1; r)− CVaRρ̂
τ (s1; r)| ≤ τ−1Hη. (13)

We can satisfy the assumption about the optimization error by selecting η ≤ ϵτ/3H to ensure

|CVaRρ⋆

τ (s1; r)− CVaRρ̂
τ (s1; r)| ≤ ϵ/3.
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C. Proof of Lower Bound
In this section, we prove our lower bound presented in Theorem 5.1. First, we develop the connection between the
reward-free problem and the CVaR-reward-free RL problem.

Lemma C.1. For any MDP M = (S,A, H,P, r) with initial state s1 and any policy π, there exists another MDP
M′ = (S ′,A, H + 1,P′, r′) with initial state s0, we have

CVaRπ,M′

τ (s0) = Eπ

[
H∑

h′=1

rh′(sh′ , ah′)

∣∣∣∣s1,M
]
. (14)

Proof. We set horizon h starting at 0 inM′. We can build such aM′ = (S ′,A, H + 1,P′, r′), where S ′ = S ∪ s0, s
′,

P′(·|s, a) = P(·|s, a) for any s ∈ S and a ∈ A, P′(s1|s0, a) = τ for any a ∈ A, P′(s′|s0, a) = 1 − τ for any a ∈ A,
P′(s′|s′, a) = 1 for any a ∈ A, r′(s, a) = r(s, a) for any s ∈ S and a ∈ A, r(s0, a) = 0 for any a ∈ A, and r(s1, a) = 1
for any a ∈ A.

For any policy π,
∑H

h′=1 rh′(sh′ , ah′) equals to H with probability at least 1− τ . Thus, the τ -VaR following by any policy
π in the transferred MDPM′ is H . We have

CVaRπ,M′

τ (s0) = max
b0∈[0,H]

{b0 − τ−1V π,M′

0 (s0, b0)}

=H − τ−1Eπ

[(
H −

H∑
h′=0

r′h′(sh′ , ah′)

)∣∣∣∣s0,M′

]

=H − τ−1τEπ

[(
H −

H∑
h′=1

r′h′(sh′ , ah′)

)∣∣∣∣s1,M′

]

− τ−1(1− τ)Eπ

[(
H −

H∑
h′=1

r′h′(sh′ , ah′)

)∣∣∣∣s′,M′

]
︸ ︷︷ ︸

=0

=Eπ

[
H∑

h′=1

r′h′(sh′ , ah′)

∣∣∣∣s1,M′

]

=Eπ

[
H∑

h′=1

rh′(sh′ , ah′)|s1,M

]
.

(15)

Now we can prove our lower bound, Theorem 5.1. Here, we restated Theorem 4.1 in (Jin et al., 2020), which show that
any reward-free exploration algorithm that output ϵ-optimal policy must collect at least Ω(S2AH2/τϵ2) trajectories in
expectation.

Theorem C.2. (Theorem 4.1 in (Jin et al., 2020)) Consider a universal constant C > 0. For a given risk tolerance τ ∈ (0, 1],
if the number of actions A ≥ 2, the number of states S ≥ C log2 A, the horizon H ≥ C log2 S, and the accuracy parameter
ϵ ≤ min{1/4τ,H/48τ}, then any reward-free exploration algorithm that can output ϵ-optimal policies for an arbitrary
number of adaptively chosen reward functions with a success probability δ = 1/2 must collect at least Ω(S2AH2/τϵ2)
trajectories in expectation.

Thus, any CVaR-RF exploration algorithm must collect at least Ω(S2AH2/ϵ2) trajectories from the state s1, in expectation,
and then collect at least Ω(S2AH2/τϵ2) trajectories from the initial state s0.

D. Technical Lemmas
D.1. An Essential Lemma for Upper Bound

The following crucial lemma establishes a relationship between the errors at step h and those at step h+ 1.
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Lemma D.1. On the event E , for all h ∈ [H] and (s, a) ∈ S ×A,

Et
h(s, a) ≤ 3H

[√
β(nt

h(s, a), δ)

nt
h(s, a)

∧ 1

]
+
∑
s′∈S

Ph(s
′|s, a)Eh+1(s

′, ρt+1(s′)).

Proof. By the definition of Et
h(s, a) and the greedy policy ρt+1, if nt

h(s, a) > 0,

Et
h(s, a) ≤ H

√
2β(nt

h(s, a), δ)

nt
h(s, a)

+
∑
s′∈S

P̂h(s
′|s, a)Eh+1(s

′, ρt+1(s′)).

By the definition of E and Pinsker’s inequality, we further have∑
s′∈S

P̂h(s
′|s, a)Et

h+1(s
′, ρt+1(s′))

≤
∑
s′∈S

Ph(s
′|s, a)Et

h+1(s
′, ρt+1(s′)) +

∑
s′∈S

(
P̂h(s

′|s, a)− Pt
h(s

′|s, a)
)
Et

h+1(s
′, ρt+1(s′))

≤
∑
s′∈S

Ph(s
′|s, a)Et

h+1(s
′, ρt+1(s′)) + ∥(P̂h(·|s, a)− Pt

h(·|s, a)∥ ·H

≤
∑
s′∈S

Ph(s
′|s, a)Et

h+1(s
′, ρt+1(s′)) +H

√
2β(nt

h(s, a), δ)

nt
h(s, a)

,

where we use the fact that Et
h+1(s

′, ρt+1(s′) ≤ H . Therefore, plugging in this inequality and using 2
√
2 ≤ 3, we have

Et
h(s, a) ≤

∑
s′∈S

Ph(s
′|s, a)Et

h+1(s
′, ρt+1(s′)) + 3H

√
β(nt

h(s, a), δ)

nt
h(s, a)

.

Notice that
Et

h(s, a) ≤ H ≤ 3H ≤ 3H +
∑
s′∈S

Ph(s
′|s, a)Et

h+1(s
′, ρt+1(s′)),

and this is also true for nt
h(s, a) = 0 with 1/0 = +∞, which leads to the conclusion.

D.2. Auxiliary Lemmas

Lemma D.2. VaRα = b⋆ := argmaxb∈R(b− τ−1E[(b−X)+]).

Proof. Recall the definitions of CVaR and VaR, we have CVaRτ (X) = supb
{
b− 1

τ E[(b−X)+]
}
, VaRτ (X) = inf{x ∈

R : P(X ≤ x) ≥ τ}. By Theorem 6.2 in (Acerbi & Tasche, 2002), we have

CVaRτ (X) = E[X|X ≥ VaRτ (X)].

Firstly, we define f(b) = b− 1
τ E[(b−X)+], thus the derivative of f(b) with respect to b is:

f ′(b) = 1− 1

τ
P(X ≥ b).

By setting the derivative equal to zero, we have P(X ≤ b) = 1 − τ . According to the definition of VaR, b is the τ -th
quantile of the distribution of X , which means b = VaRτ (X). Therefore, the critical point b∗ that maximizes f(b) is equal
to VaRτ (X). Now we prove f(b∗) = CVaRτ (X).

f(b∗) = VaRτ (X)− 1

τ
E[(VaRτ (X)−X)+]

= VaRτ (X)− 1

τ

∫ VaRτ (X)

−∞
(VaRτ (X)− x)dF (x)

=
1

τ

∫ ∞

VaRτ (X)

xdF (x) = E[X|X ≥ VaRτ (X)] = CVaRτ (X).
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Lemma D.3. (Lemma F.1 in (Wang et al., 2023)) Given any ρ ∈ ΠAug, h ∈ [H], augmented state (sh, bh), and historyHh,
we have V ρ

h (sh, bh) = V πρ,b

h (sh, bh;Hh) for b = bh + r1 + . . .+ rh−1. Particularly, V ρ
1 (s1, ·) = V πρ,b

1 (s1, ·).

Lemma D.4. (Lemma 10 in (Kaufmann et al., 2021)) Given β(n, δ) = log(2SAH/δ) + (S − 1) log
(
e
(
1 + n

S−1

))
, it

holds that P(E) ≥ 1− δ
2 . Furthermore, P(Ecnt) ≥ 1− δ

2 .

Lemma D.5. (Lemma 7 in (Kaufmann et al., 2021)) On the event Ecnt, for all h ∈ [H] and (s, a) ∈ S ×A,

∀t ∈ N∗,
β(nt

h(s, a), δ)

nt
h(s, a)

∧ 1 ≤ 4
β(n̄t

h(s, a), δ)

n̄t
h(s, a) ∨ 1

.

Lemma D.6. (Lemma 19 in (Auer et al., 2008)) For any sequence of numbers z1, . . . , zn with 0 ≤ zk ≤ Zk−1 =

max
{
1,
∑k−1

i=1 zi

}
,

n∑
k=1

zk√
Zk−1

≤ (1 +
√
2)
√

Zn.

Lemma D.7. (Lemma 15 in (Kaufmann et al., 2021).) Let n ≥ 1 and a, b, c, d > 0. If n∆2 ≤ a+ b log(c+ dn) then

n ≤ 1

∆2

[
a+ b log

(
c+

d

∆4
(a+ b(

√
c+
√
d))2

)]
.
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