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Risk-Sensitive Reinforcement Learning with
φ-Divergence-Risk

Xinyi Ni and Lifeng Lai

Abstract

Standard reinforcement learning (RL) algorithms primarily focus on minimizing the expected sum of costs,
which can be insufficient in contexts where risk sensitivity is crucial. This paper explores the application of a class
of coherent risk measures, termed φ-Divergence-Risk (PhiD-R) in risk-sensitive RL. This class of risk measures not
only includes established measures such as Conditional Value-at-Risk (CVaR) as special cases but also broadens
the horizon for exploring new risk measures. We propose a trajectory-based policy gradient method specifically
tailored for PhiD-R, applicable across all forms of risk measures formed by different φ-divergence. We prove the
asymptotic convergence of our algorithm towards locally optimal policies using multi-time stochastic approximation
techniques. Extensive simulation experiments validate the effectiveness and practicality of our approach.
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I. INTRODUCTION

In the standard risk-neutral reinforcement learning (RL), the goal is to find an optimal policy that
minimizes the expected sum of (discounted) cost [1], [2]. However, in many applications, decision-makers
exhibit a preference for risk-sensitive optimizations, acknowledging the significance of events with small
probability but severe consequences. Rather than focusing solely on the expected value of the sum of costs,
risk-sensitive optimization approaches aim to incorporate risk measures into the objective functions [3]–[14].

A multitude of risk measures have been studied in the literature and successfully applied to RL, such as
Value-at-Risk (VaR), Conditional Value-at-Risk (CVaR), Entropic risk measure and Entropic Value-at-Risk
(EVaR) et al [15]–[25]. One widely used framework for capturing risk is through coherent risk measures,
which are a class of risk measures that satisfy a set of natural and desirable properties: 1) monotonicity,
2) translation invariance, 3) subadditivity, 4) positive homogeneity, ensuring rationality and reliability
in capturing risk preferences [18], [26]. One important property of coherent risk measures is the dual
representation, where they could be interpreted as the mean of a random variable under a probability
distribution that is in an uncertainty set defined in the neighborhood of the true probability distribution [26].

The extensive exploration of risk measures in decision-making contexts often requires adopting specific
algorithms tailored to each measure, potentially reducing decision-making efficiency. While some risk
measures incorporate a risk-tolerance parameter that reflects decision-makers’ preferences to an extent, their
varied methodologies might not capture these preferences accurately due to different risk quantification
approaches. [18] introduce a policy gradient method applicable to a wide range of coherent risk measures.
However, this method assumes a structured form of the measures’ envelope sets in their dual representation.
Although the approach is comprehensive, it involves significant computation complexity, especially in
identifying saddle points across four parameters. This complexity, arising from the specific constraints
within the dual representation, represents a trade-off between generality and computational efficiency in
risk-sensitive reinforcement learning. Realizing these challenges in existing work on risk senstive RL, we
are prompted to explore a critical question:
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Is it possible to develop a class of coherent risk measures that cover popular risk measures and to
design an accompanying algorithm that not only offers decision-makers greater flexibility in selecting risk
measures but also ensures efficiency and robustness?

To address this question, we adopt a new class of risk measures named φ-Divergence-Risk (PhiD-R),
whose uncertainty sets in their dual representations are defined by using φ-divergence [27], to RL problems.
Our choice of this class of risk measures is motiviated by several factors: 1) PhiD-R is coherent and
includes many widely adopted risk measures such as CVaR and EVaR as special cases [27]. 2) φ-divergence
has been thoroughly explored in the machine learning domain, particularly in policy optimization and
robust RL [28]–[33]. This extensive research supports the potential of φ-divergence to foster innovative
developments in risk measures for risk-sensitive RL. 3) Previous work by [16] illustrated that solving
CVaR RL was equivalent to tackling risk-neutral RL when uncertainties in transition probabilities are
defined by specific divergence measures. This finding motivates further exploration into the equivalence of
PhiD-R RL and robust RL, aiming to address the robustness concerns identified. 4) The explicit generalized
representation of PhiD-R in [27] allows for the development of a generalized policy gradient method
applicable to all forms of φ-divergence, which ensures both flexibility and efficiency of the approach.

In this study, we introduce a trajectory-based policy gradient method tailored to solve RL problems
under this new class of risk measures, PhiD. The explicit representation of PhiD-R allows for efficient
gradient estimation. Based on these gradient estimates, we propose specific update rule for each parameter.
By using multi-time stochastic approximation technique [19], [22], [34], we demonstrate that our proposed
method asymptotically converges to locally optimal policies. This approach is highly versatile, applying to
the entire spectrum of φ-divergence, thereby broadening the scope beyond traditional risk measures such
as CVaR. This extension also offers a new approach to address CVaR RL and explores novel approaches
within risk-sensitive RL. Our approach benefits from the coherence property of PhiD-R and the dual
presentation theorem, which ensures that solving PhiD-R RL is equivalent to solving robust RL when
uncertainties in transition probabilities are defined by φ-divergence. This connection between risk and
robustness is particular valuable when decision-makers face scenarios with inherent uncertainty and wish
to incorporate their risk preferences.

Several works are closely related to our studies. [18] proposes a generalized method for solving RL
problems with coherent risk measures, which aligns with PhiD-R, and demonstrates convergence to
local optimality. Our approach also guarantees near-optimality, while providing a simplified solution
for PhiD-R, requiring fewer assumptions and optimized parameters. We build on the well-established
representation of PhiD-R from [27], offering a more efficient and practical method tailored to these risk
measures. In particular, when applied to CVaR RL, our algorithm reduces the number of parameters without
compromising local optimality. Compared to policy gradient-based CVaR RL approaches that extend the
likelihood-ratio method for demonstrating local optimality [17], [35], our work estimates gradients directly
using the explicit representation of PhiD-R. While our methodology and objectives differ from those of
[17], [35], all algorithms achieve convergence to a locally optimal policy. Furthermore, our approach
contrasts with existing policy gradient research on CVaR [19], [36], [37], which is typically limited to the
constrained RL framework. Our method also diverges from [22], which focuses solely on EVaR.

The remainder of this paper is organized as follows. Section II provides background on risk measures,
φ-divergence and the new risk measure class PhiD-R, detailing their definition and drawing upon exiting
properties from [27]. Section III outlines the notations and problem formulation of this work. In Section IV,
we introduce the proposed trajectory-based policy gradient algorithm and establishes its asymptotic
convergence towards local optima, utilizing the multi-time stochastic approximation technique from [34].
Section V presents empirical validation through various experimental setups. Finally, Section VI offers
concluding remarks.
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II. PRELIMINARIES

A. Risk Measures
A risk measure ρ is a mapping from a random variable Z ∈ Z with distribution P to a real value,

providing a mean to assess and quantify the risk associated with the random variable Z. We will particularly
focus on coherent risk measures [26], which satisfies the following properties:
• (P1) Translation invariance: ρ(Z + c) = ρ(Z) + c for any Z ∈ Z and c ∈ R;
• (P2) Subadditivity: ρ(Z1 + Z2) ≤ ρ(Z1) + ρ(Z2) for all Z1, Z2 ∈ Z;
• (P3) Monotonicity: If Z1(w) ≤ Z2(w) for all w ∈ Ω, then ρ(Z1) ≤ ρ(Z2);
• (P4) Positive homogeneity: ρ(λZ) = λρ(Z) for all Z ∈ Z and λ ≥ 0.
Examples of coherent measures include Conditional Value-at-Risk (CVaR) [38] and Entropic Value-at-

Risk (EVaR) [27], while non-coherent measures include Variance, Mean-Standard-Deviation (MSD), and
Value-at-Risk (VaR) [26].

A key feature of coherent risk measures is the dual representation theorem [26], which states that a
coherent risk measure can be expressed as the maximum expected value over a probability distribution Q
within an uncertainty set U around the true distribution P , i.e.,

ρ(Z) = max
Q∈U

EQ[Z].

Different coherent risk measures correspond to different sets U .
We now present several risk measures relevant to this work. Consider a probability space (Ω,F ,P),

where Ω represents the sample space, F is a σ-algebra over Ω, and P is a probability measure over F .
Let Z denote the space of bounded random variables Z : Ω→ R defined on this probability space. In this
work, we focus on the case where the random variable Z is non-negative and bounded within the interval
[Zmin, Zmax]. Let Q and P be two probability measures within this probability space.

CVaR, also referred to as expected shortfall or tail conditional expectation, is defined at a confidence
level α ∈ (0, 1] as follows [38]:

CVaRα(Z) = inf
t∈R

{
t+

1

1− α
EP
[
(Z − t)+

]}
,

where (z)+ = max(z, 0). CVaR captures the expected value of losses that exceed the VaR threshold, which
provides a more comprehensive assessment of tail risks in comparison to VaR alone. An important property
of CVaR is its coherency, and its dual representation is:

CVaRα(Z) = sup
Q∈UCVaR

EQ[Z],

where UCVaR =
{
Q� P : DRN(Q,P ) ∈

[
0, 1

1−α

]}
with the Radon-Nikodym derivative DRN(Q,P ) := Q(ω)

P (ω)
.

We also introduce another significant risk measure, known as EVaR. Suppose that the moment generating
function MZ(t) = EP

[
etZ
]

exists for all t ∈ R+ for the random variable Z. The EVaR at a given
confidence level α is defined as follows [27]:

EVaRα(Z) = inf
t>0

{
t−1 ln(MZ(t))− t−1 ln(1− α)

}
.

It is noteworthy that EVaR is also a coherent risk measure, and its dual representation is:

EVaRα(Z) = sup
Q∈UEVaR

EQ[Z],

where UEVaR = {Q� P : DKL(Q,P ) ≤ − ln(1− α)}, and the KL divergence is defined as DKL(Q,P ) :=∑
ωQ(ω) log Q(ω)

P (ω)
.
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B. φ-Divergence-Risk (PhiD-R)
Building upon the dual representation theorem, which links different choices of the uncertainty sets U

to various risk measures, we extend this framework by constructing risk measures using φ-divergence.
For two probability measures Q and P within the probability space, the φ-divergence is defined as:

Dφ(Q,P ) =
∑
z∈Ω

P (z)φ

(
Q(z)

P (z)

)
, (1)

where φ is a closed and convex function satisfying φ(1) = 0. The choice of the function φ directly
determines the type of divergence, allowing for various risk measures to be modeled. Below, we present
some common choices of φ and their corresponding divergences:
1). Total variation distance: φ(x) = 1

2
|x− 1|.

2). KL divergence: φ(x) = x log x for x ≥ 0.
3). χ2-divergence: φ(x) = (x− 1)2.

We now define the φ-Divergence-Risk (PhiD-R), in which the uncertainty sets U are constructed based
on φ-divergence, following the framework described in [27].

Definition 1. (φ-Divergence-Risk) Let φ be a closed and convex function with φ(1) = 0, and β > 0. The
φ-divergence risk measure with divergence level β for a random variable Z ∈ Z is defined as

PhiD-Rφ,β[Z] := sup
Q∈U

EQ[Z],

where U = {Q� P : Dφ(Q,P ) ≤ β} with Dφ being defined in (1).

The definition via dual representation ensures two key outcomes: (1) PhiD-R is a coherent risk measure,
as validated by Theorem 3.2 in [27]; and (2) building on insights from [15], solving PhiD-R RL aligns with
robust RL, where uncertainties in transition probabilities are characterized by φ-divergence. Furthermore,
Theorem 5.1 in [27] provides an explicit representation of PhiD-R, which plays a crucial role in developing
the policy gradient method discussed in the following sections.

Theorem 1 (Theorem 5.1 of [27]). For any Z ∈ Z , the φ-divergence risk measure has the following
representation:

PhiD-Rφ,β[Z] = inf
ν>0,ω∈R

{
ν

[
ω + EP

(
φ∗
(
Z

ν
− ω + β

))]}
, (2)

where φ∗ is the conjugate of φ (the Legendre–Fenchel transform).

It is important to note that the class of φ-divergence risk measures encompasses widely used risk measures
in risk-sensitive RL, such as CVaR and EVaR, as special cases. For instance, by selecting φ(x) = 0 for
0 ≤ x ≤ 1

1−α and +∞ otherwise, we recover CVaR, with φ∗(x) = 1
1−α max{0, x}. Additionally, by setting

β = 0, we obtain

PhiD-Rφ,β[Z] = inf
t∈R

{
t+

1

1− α
EP
[
(Z − t)+

]}
,

which exactly corresponds to the definition of CVaR as mentioned earlier.
Similarly, by selecting φ(x) = x log x for x ≥ 0, we recover EVaR, with φ∗(x) = ex−1. By setting

β = − ln(1− α) [27], we derive

PhiD-Rφ,β[Z] = inf
ν>0

{
ν lnEP

(
e
Z
ν

)
− ν ln(1− α)

}
,

which corresponds to the representation formula for EVaR.
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III. PROBLEM STATEMENT

We consider a Markov decision process (MDP) defined by a tuple (X ,A, C, P, P0, γ). Here, X represents
the state space, A denotes the action space, and C(x, a) ∈ [0, Cmax] represents a bounded deterministic
cost. The transition probability distribution is denoted as P (·|x, a), and P0 represents the initial state
probability distribution, where x0 is set deterministically as P0(x) = I{x0 = x}. The discounting factor is
denoted as γ ∈ [0, 1]. Each state x ∈ X is associated with an action set A(x). We consider a stationary
policy π(·|x), parameterized by a κ-dimensional vector θ in the policy gradient method. The policy space
is defined as π(·|x, θ), x ∈ X , θ ∈ Θ ⊆ Rκ, where Θ is assumed to be a convex compact set.

The total discounted costs incurred by an agent following policy π, starting at state x, is denoted
as Jθ(x). It is defined as the sum of the discounted costs encountered over a time horizon T , with γ
representing the discount factor and C(xk, ak) denoting the cost at state xk when action ak is taken

Jθ(x) =
T−1∑
k=0

γkC(xk, ak)|x0 = x, π(·|·, θ).

Our goal is to solve PhiD-R RL by minimizing the objective function

min
θ

PhiD-Rφ,β

(
Jθ(x0)

)
(3)

for a given divergence level β ≥ 0. This optimization problem seeks to find the optimal policy θ∗ that
minimizes the risk-sensitive objective. By incorporating the representation (2) of the φ-divergence risk
measure, the optimization problem can be reformulated as follows:

min
θ,ν,ω

L(ν, ω, θ) := ν

[
ω + EP

(
φ∗
(
Jθ(x0)

ν
− ω + β

))]
. (4)

While similar formulations have been explored in the literature on risk measures and optimization, our
application of this reformulation to the context of RL is novel. Our main idea to solve the optimization
problem (4) is to adopt a gradient descent method, which will be detailed in the subsequent section. Before
presenting our algorithm and providing convergence analysis, we first state Assumption 1, which is a
typical assumption found in the literature related to policy gradient methods.

Assumption 1. For any x ∈ X and a ∈ A(x), π(a|x, θ) is continuously differentiable in Θ and ∇θπ(a|x, θ)
is a Lipschitz function in θ for every (x, a) ∈ X ×A. Moreover, the ratio ∇θπ(a|x, θ)/π(a|x, θ) is bounded
for all θ ∈ Rκ and every (x, a) ∈ X ×A.

IV. TRAJECTORY-BASED POLICY GRADIENT

In this section, we introduce a trajectory-based policy gradient algorithm that descends in ν, µ, and θ
based on the gradients of L(ν, ω, θ) with respect to ν, ω, and θ, respectively.

During each iteration, the algorithm generates N trajectories by executing the current policy π.
Subsequently, these trajectories are utilized to estimate the gradients. Using these gradient estimates,
the parameters ν, ω, and θ are updated with stepsizes that satisfy specific conditions to be discussed in
the sequel.

Let ξ = {x0, a0, . . . , xT−1, aT−1, xT} represent a single trajectory, where xT denotes the terminal state.
The corresponding cost function is given by

J(ξ) =
T−1∑
k=0

γkC(xk, ak)

and the probability of generating such a trajectory is

Pθ(ξ) = P0(x0)
T−1∏
k=0

π(ak|xk, θ)P (xk+1|xk, ak).
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We also have

∇θ logPθ(ξ) =
T−1∑
k=0

∇θ log π(ak|xk, θ) =
T−1∑
k=0

∇θπ(ak|xk, θ)/π(ak|xk, θ),

whenever Pθ(ξ) 6= 0 and π(ak|xk, θ) ∈ (0, 1].
With the trajectory representation established, we can now proceed to derive the estimated form of these

gradients. The derivation details could be found in Appendix A.
Gradient estimate w.r.t ν

∇̂νL(ν, ω, θ) = ω +
∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
−
∑
ξ

Pθ(ξ)
J(ξ)

ν

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

.

Gradient estimate w.r.t ω

∇̂ωL(ν, ω, θ) = ν − ν
∑
ξ

Pθ(ξ)
∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

.

Gradient estimate w.r.t θ

∇̂θL(ν, ω, θ) = ν
∑
ξ

Pθ(ξ)∇θ logPθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
.

However, these estimates are not immediately usable due to the presence of the unknown transition
probability P (xk+1|xk, ak) in the expression of Pθ(ξ). To address this, we use empirical mean to estimate
the sample mean. Moreover, it is important to note that when Pθ(ξ) 6= 0, the gradients ∇θPθ(ξ) and
∇θ logPθ(ξ) can be expressed as Pθ(ξ)∇θ logPθ(ξ), and the latter is only dependent on π without any
reliance on the unknown transition probability P (xk+1|xk, ak). By utilizing these insights and generating
N trajectories per iteration, we obtain the gradient estimates as:
Gradient estimate w.r.t ν

∇̃νL(ν, ω, θ) = ω +
∑
ξ

1

N
φ∗
(
J(ξ)

ν
− ω + β

)
−
∑
ξ

1

N

J(ξ)

ν

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

. (5)

Gradient estimate w.r.t ω

∇̃ωL(ν, ω, θ) = ν − ν
∑
ξ

1

N

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

. (6)

Gradient estimate w.r.t θ

∇̃θL(ν, ω, θ) = ν
∑
ξ

1

N
∇θ logPθ(ξ)φ∗

(
J(ξ)

ν
− ω + β

)
. (7)

Based on these gradient estimates and let ξj,k denote the j-th trajectory generated at iteration k and
properly chosen step sizes ζ1(k), ζ2(k) and ζ3(k), we design the following update rules for parameter
ν, ω, θ that will be utilized in our algorithm.
ν-update

νk+1 = ΓN

[
νk − ζ1(k)∇̃νL(ν, ω, θ)

∣∣
ν=νk,ω=ωk,θ=θk

]
= ΓN

[
νk − ζ1(k)

(
ωk +

N∑
j=1

1

N
φ∗
(
J(ξj,k)

νk
− ωk + β

)
−

N∑
j=1

1

N

J(ξj,k)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

νk
−ωk+β

)]
.

(8)
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ω-update

ωk+1 = ΓR

[
ωk − ζ2(k)∇̃ωL(ν, ω, θ)

∣∣
ν=νk,ω=ωk,θ=θk

]
= ΓR

[
ωk − ζ2(k) ·

(
νk − νk

N∑
j=1

1

N

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

νk
−ωk+β

)]
.

(9)

θ-update

θk+1 = ΓΘ

[
θk − ζ3(k)∇̃θL(ν, ω, θ)

∣∣
ν=νk,ω=ωk,θ=θk

]
= ΓΘ

[
θk − ζ3(k)

(
νk

N∑
j=1

1

N
∇θ logPθ(ξj,k) · φ∗

(
J(ξj,k)

νk
− ωk + β

))]
.

(10)

The projections introduced in the update rules, i.e., ΓN (ν) = argminν∈[Vmin,Vmax]||ν − ν̂||22, ΓR(ω) =

argminω∈[Wmin,Wmax]||ω − ω̂||22, ΓΘ(θ) = argminθ∈Θ||θ − θ̂||22, are employed to enforce the updated values
to remain within specified bounds, thereby ensuring the convergence of the policy gradient algorithm
for PhiD-R. Additionally, we adopt a common assumption regarding the stepsizes utilized in the update
rules (8) (9) (10).

Assumption 2. The stepsizes ζ1(k), ζ2(k) and ζ3(k)satisfy∑
k

ζ1(k) =
∑
k

ζ2(k) =
∑
k

ζ3(k) =∞, (11)

∑
k

ζ2
1 (k),

∑
k

ζ2
2 (k),

∑
k

ζ2
3 (k) <∞, (12)

ζ1(k) = o(ζ2(k)), ζ2(k) = o(ζ3(k)). (13)

The first two conditions in Assumption 2 are common in RL problems. The third condition assumes
that the stepsizes satisfy the standard requirements of stepsizes in multi-scale stochastic approximation
algorithms. Moreover, from Eq (13), we observe that the update frequencies for ν, ω, and θ occur at
different timescales, with ν updating at the fastest timescale ζ1(k), ω updating at a second fast timescale
ζ2(k), and θ updating at the slowest timescale ζ3(k).

Algorithm 1 outlines the proposed trajectory-based policy gradient method for PhiD-R. Line 5 details
the collection of N trajectories by following the current parameterized policy with θk and line 5 updates
the parameters. Lines 9 to 13 describe adjustments to the selected ranges for ν and ω. If no adjustments
are needed, the iteration ceases, resulting in the local optimal θ.

Theorem 2 provides theoretical guarantees for Algorithm 1, establishing its convergence to a locally
optimal policy for the optimization problem (4).

Theorem 2. (Local Optimality) Under Assumptions 1 and 2, as k →∞, the policy sequence generated by
Algorithm 1 converges almost surely to a locally optimal policy θ∗.

Proof Sketch. Our proof is inspired by [15]. Initially, we treat the updates (νk, ωk, θk) as a multi-time scale
discrete stochastic approximation, under the condition that the stepsizes satisfy Assumption 2. We prove
that the sequences (νk, ωk, θk) converge to the solutions of the corresponding continuous-time systems,
each with varying convergence rates. Subsequently, we apply Lyapunov analysis to demonstrate that the
sequences (νk, ωk, θk) further converge to local asymptotically stable points denoted as (ν∗, ω∗, θ∗). Finally,
we establish that the attained points (ν∗, ω∗, θ∗) serve as local optimal solutions for the optimization
problem (3). More details can be found in Appendix B.



8

Algorithm 1 PhiD-R RL: A Trajectory-based Policy Gradient Method

1: Given: divergence level β, parameterized policy π(·|·, θ), tolerance parameters εν , εω.
2: Initialization: choose ν = ν0, ω = ω0, θ = θ0 and initial state x0.
3: while TRUE do
4: for k = 0, 1, 2, . . . do
5: Generate N trajectories {ξj,k}Nj=1 by following policy πθk starting from the initial state x0.
6: Update (ν, ω, θ) by

νk+1 = ΓN

[
νk − ζ1(k)

(
ωk +

N∑
j=1

1

N
φ∗
(
J(ξj,k)

νk
− ωk + β

)

−
N∑
j=1

1

N

J(ξj,k)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

νk
−ωk+β

)]
,

ωk+1 = ΓR

[
ωk − ζ2(k) ·

(
νk − νk

N∑
j=1

1

N

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

νk
−ωk+β

)]
,

θk+1 = ΓΘ

[
θk − ζ3(k)

(
νk

N∑
j=1

1

N
∇θ logPθ(ξj,k) · φ∗

(
J(ξj,k)

νk
− ωk + β

))]
.

7: end for
8: if νk lies within the εν-neighborhood of the boundary then
9: Extend the boundary for ν

10: else if ωk lies within the εω-neighborhood of the boundary then
11: Extend the boundary for ω
12: else
13: Return (ν, ω, θ) and terminate
14: end if
15: end while

More specifically, we use the multi-time scale stochastic approximation approach discussed in [34]. In
two-time scale stochastic approximation, for sequences (xi, yi), consider the following update process:

xn+1 = xn + a(n)
[
h(xn, yn) +M

(1)
n+1

]
, (14)

yn+1 = yn + b(n)
[
g(xn, yn) +M

(2)
n+1

]
, (15)

where h and g are two Lipschitz continuous functions, M (1)
n+1, M (2)

n+1 are two Martingale differences w.r.t
the increasingσ-field Fn = σ(xm, ym,M

(1)
m ,M

(2)
m ,m ≤ n) for n ≥ 0. The martingale differences satisfy

E[||M (i)
n+1||2|Fn] ≤ K(1 + ||xn|| + ||yn||)2 for i = 1, 2. Additionally, the step sizes a(n) and b(n) are

positive scalars satisfying
∑

n a(n) =
∑

n b(n) =∞,
∑

n a
2(n),

∑
n b

2(n), and b(n) = o(a(n)). Notably,
the equation (15) can be equivalently expressed as: yn+1 = yn + a(n) b(n)

a(n)

[
g(xn, yn) +M

(2)
n+1

]
.

Given that b(n) exhibits a faster convergence to zero compared to a(n), it is natural to consider the
ordinary differential equations (ODEs) ẋ(t) = h(x, y) and ẏ(t) = 0. By applying Theorem 2 in Chapter
6 of [34], it can be demonstrated that as n→∞, (xn, yn) converges to (λ(y∗), y∗) almost surely to the
point λ(y∗) represents a globally asymptotically stable equilibrium of the o.d.e. ẋ = h(x, y), where λ is a
Lipschitz continuous function, and y∗ is a globally asymptotically equilibrium of the o.d.e ẏ = g(λ(y), y).
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In our work, the sequence (νn, ωn, θn) can be represented as a three-time scale stochastic approximation
problem, which can be decomposed into two two-time scale problems. The chosen stepsizes adhere to
the conditions outlined in Assumption 2. Consequently, the convergence behavior of the sequence can be
characterized as follows:
1). The ω and θ can be viewed as constants when analyze convergence for νn.
2). In the analysis of ωn’s convergence, θ can be treated as a constant, and ν can be seen as the converged
value ν∗(θ).
3). Similarly, in the convergence analysis of θn, both ν and ω are represented by their respective converged
values ν∗(θ) and ω∗(θ).

By leveraging the insights derived from the two-time scale stochastic approximation, we obtain that (ν, ω)
converges to (ν∗, ω∗). Utilizing contraction arguments, we subsequently prove that this point corresponds
to a local minimum for the objective function L(ν, ω, θ. Following a similar approach, we further establish
the convergence of θn, ultimately leading to the overall convergence of the sequence (ν, ω, θ) towards a
local optimal point (ν∗, ω∗, θ∗).

V. EXPERIMENTS

In this section, we present numerical examples to demonstrate the practicality and efficiency of the
proposed algorithms. We first validate our approach using an investment problem and the optimal stopping
problem, as utilized in related work [15], [18], [22], highlighting comparison over existing methods.
Additionally, we conduct a more comprehensive evaluation using OpenAI’s Gym environment to further
demonstrate the generalizability of our algorithms.

A. Investment Problem
We conduct a validation of our method using the same experimental setup as [18]. We examine a

scenario involving a trading agent with options to invest in one of three assets. The returns of the first
two assets, A1 and A2, follow normal distributions: A1 is distributed as N (1, 1), and A2 as N (4, 6). The
third asset, A3, exhibits a Pareto distribution characterized by f(x) = α

xα+1 for x > 1 with a parameter
α = 1.5. This distribution results in a mean return of 3 for A3, but with an infinite variance, reflecting
the heavy-tailed distributions commonly employed in financial modeling [39]. The agent’s investment
decisions are randomized, with the probability of choosing asset Ai denoted as P (Ai) ∼ exp(θi), where
θ ∈ R3 represents the policy parameters. Here we plot the results of running 50 iterations, with 10, 000
trajectories to estimate gradients in each iteration.

In the experiment, we choose the Radon-Nikodym derivative and χ2-divergence as examples. Figure 1
illustrates how the probabilities of choosing A1, A2, and A3 change over iterations. For Radon-Nikodym
derivative, the agent is highly risk-averse at α = 0.95, favoring A1 and the agent is less risk-averse
atα = 0.05, resulting in shifts in probabilities. For χ2, P (Ai) also changes with different β. Notably,
different φ-divergence reflects different risk preferences as the probability distribution differs. These results
align with our theoretical analysis. Moreover, in comparison to the experimental results in [18], our method
exhibits enhanced efficiency, achieving convergence with a small number of iterations, even when applied
to more complex forms of risk measures.

B. Optimal Stopping Problem
In this section, we consider a more complex setup similar to the CVaR and EVaR policy gradient

work [15] [22]. The environment is designed as an optimal stopping problem, where the state at each
time step k is represented by x = [k, ck]. Here, ck denotes the cost at time k. The cost sequence {ck}Tk=0

is generated as follows: at each time step, the cost at the next time step either increases by a constant
factor fu > 1 (i.e., ck+1 = fuck) with probability p, or decreases by a constant factor fd < 1 (i.e.,
ck+1 = fdck) with probability 1 − p. The agent’s task is to decide whether to accept the current cost



10

(a) Distribution of asset return. (b) PhiD-R with RN derivative (c) PhiD-R with χ2-divergence

Fig. 1: Probability of selecting each asset versus training iterations, for policies generated by solving
PhiD-R RL based on Radon-Nikodym derivative and χ2-divergence.

(ak = 1) or wait (ak = 0) at each time step. If the agent chooses to accept the cost or the time step
reaches k = T , the cost is set to min(K, ck), where K represents the cost threshold. However, if the agent
chooses to wait, an additional cost of ph is incurred. Hence, the discounted cost can be expressed as
Jθ(x) =

∑T
k=0 γ

k (1{ak = 1}min(K, ck) + 1{ak = 0}ph) .
Here we choose x0 = [1; 0], ph = 0.1, T = 20, K = 5, γ = 0.95, fu = 2, fd = 0.5, p = 0.65,

N = 500, 000 and Θ = [−20, 20]κ1 , where the dimension of the basis function is κ1 = 64. Furthermore,
we implement radial basis functions (RBFs) to extract the features for each state and search over the class
of Boltzmann policies {

θ : {θx,a}x∈X ,a∈A, µθ(a|x) =
exp(θT

x,axf (x))∑
a∈A exp(θT

x,axf (x))

}
,

where xf (x) is the feature chosen by RBF at state x.
We evaluate the effectiveness of our algorithm using various φ-divergences. First, we employ the

Radon-Nikodym derivative as the φ-divergence, corresponding to the widely-used CVaR measure. Next,
we consider the KL divergence, corresponding to the EVaR, a relatively recent risk measure adopted in
risk-sensitive RL [9]. These first two choices demonstrate our approach’s efficiency with popular risk
measures, offering fresh perspectives on tackling these risk measures in risk-sensitive RL. Furthermore, we
explore the χ2 divergence, a common divergence in RL, yet without a designated risk measure defined by
this divergence. This experiment highlights our algorithm’s potential in addressing less clear or undefined
risk measures, potentially inspiring new research on innovative risk measures. Finally, we utilize the
squared Hellinger distance to underscore our algorithm’s necessity and advantages over other policy
gradient methods. The frequency distribution of costs under PhiD-R with different choices of φ-divergence
is presented in Figure 2.

1) Radon-Nikodym Derivative (CVaR): We begin by selecting the φ-divergence as the Radon-Nikodym
derivative, where φ(x) = 0 for 0 ≤ x ≤ 1

1−α and +∞ otherwise. In this case, the conjugate function φ∗(x)
is

1

1− α
max{0, x} =

1

α
(0, x)+.

By setting β = 0, the corresponding φ-divergence risk measure is CVaR and we obtain the following
expressions.

CVaRα(Z) = inf
ν>0,ω∈R

{
νω +

1

1− α
EP
(
(Z − νω)+

)}
.

Notice that d
dx
φ∗(x) = 1

1−αI {x > 0}, where I is the indicator function and d2

dx2
φ∗(x) = 0.
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(a) α = 0.05, β = 0, E[Z] =
1.35 and CVaR = 1.42

(b) α = 0.95, β = 0, E[Z] =
1.29 and CVaR = 2.49

(c) α = 0.05, β = 3, E[Z] =
1.36 and EVaR = 1.54

(d) α = 0.95, β = 0.05,
E[Z] = 1.25 and EVaR =
2.67

(e) β = 0.95, E[Z] = 1.31
and PRχ2,β = 1.79

(f) β = 3, E[Z] = 1.27 and
PRχ2,β = 1.83

(g) β = 0.95, with E[Z] =
1.46 and PRshd,β = 1.54

(h) β = 3, with E[Z] = 1.29
and PRshd,β = 1.97

Fig. 2: Frequency distribution of costs under PhiD-R defined by: 1). Radon-Nikodym derivative (CVaR);
2) KL divergence (EVaR); 3) χ2 divergence and 4) Squared Hellinger Distance with different choices of
parameters.

By employing Algorithm 1 with CVaR update rules at various confidence levels α, we obtain the results
in Figures 2a and 2b. The mean of discounted costs generated by following the optimal policy at α = 0.05
exceeds the mean at α = 0.95, whereas the opposite holds true for the CVaR value. The observed results
align with the theoretical properties of CVaR. Specifically, when the risk aversion parameter (α) is set
to 0.05, the agent exhibits a risk-averse behavior, opting for a safer strategy that results in higher costs
but reduced risk exposure. Conversely, for α = 0.95, the agent demonstrates risk-seeking tendencies,
prioritizing lower costs despite the associated higher level of risk.

2) KL Divergence (EVaR): In this case, we choose the φ-divergence to be the KL divergence, denoted
as φ(x) = x log x for x ≥ 0. Consequently, we have

φ∗(x) = ex−1

and β = − ln(1 − α) according to [27]. With this selection, the resulting φ-divergence risk measure
corresponds to EVaR, given by

EVaRα(Z) = inf
ν>0,ω∈R

{
ν
[
ω + EP

(
e
Z
ν
−ω+β

)]}
.

By employing Algorithm 1 and incorporating EVaR update rules, we obtained results for two specific
risk parameter settings: α = 0.05 (β = 3) and α = 0.95 (β = 0.05). For the case where α = 0.05, the
agent demonstrates a risk-averse preference by selecting higher costs to mitigate potential high risks.
Conversely, for α = 0.95, the agent exhibits a more aggressive behavior, seeking to minimize costs even
in the presence of higher risks. Furthermore, the observation that EVaR consistently exceeds CVaR under
the same distribution of a random variable aligns with the theoretical facts in [27].

3) χ2 Divergence: In this case, we utilize the χ2 divergence and set φ(x) = (x− 1)2. Consequently,
we obtain

φ∗(x) =
x2

4
+ x
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and β > 0. Thus, we have

PRχ2,β(Z) = inf
ν>0,ω∈R

{
νEP

((
Z
ν
− ω + β

)2

4
+
Z

ν
+ β

)}
.

Applying Algorithm 1 with corresponding update rules for χ2 divergence, we obtain the following results.
Figure 2e and 2f illustrate that when β = 0.95, the mean of discounted costs exceeds the mean in the case
where β = 3, while the risk value is lower. The selection of β indeed reflects the decision-maker’s attitude
towards risk.

4) Squared Hellinger Distance: In [22], the authors propose a two-update-rules trajectory-based policy
gradient method to solve EVaR in risk-sensitive RL. However, the two-update-rules algorithm is not
applicable to the entire class of φ-divergences. Here, we illustrate the necessity and practicality of our
Algorithm 1 by employing the squared Hellinger distance as an example.

We choose φ(x) = (
√
x− 1)2 and the conjugate function is

φ∗(x) =
1

1− x
− 1

for x > 0. Hence, this φ-divergence risk measure is given by

PRφ,β(Z) = inf

{
ν

[
ω + EP

(
1

1− Z
ν

+ ω − β
− 1

)]}
,

where ′ inf ′ is taken over the set
{
ν, ω : ν > 0, ω ∈ R, Z

ν
− ω + β > 0

}
.

Applying Algorithm 1 for the square Hellinger distance with varying values of β, we obtained the
results shown in Figures 2g and 2h. The figures clearly indicate that when β = 0.95, the sample mean of
the discounted cost is 1.46, which exceeds the mean in the case where β = 3, while the risk is lower. The
selection of the parameter β directly reflects the risk preference exhibited by the agent.

We present a summary of numerical results for PhiD-R using various φ-divergences under different
parameter settings in Table I, wher RN derivative means Radon-Nikodym derivative and SH distance
means squared Hellinger distance. The data shows that all risk values exceed the mean and vary with
parameter choices, validating the algorithm and demonstrating its alignment with established risk concerns.
Additionally, these results offer insights into interpreting new risk measures, such as PhiD-R with χ2-
divergence and squared Hellinger distance, especially when supported by extensive simulations across
diverse parameters. This adaptability in parameter selection highlights the flexibility of our approach,
allowing decision-makers to align with their risk preferences while maintaining local optimality and
efficiency.

TABLE I: Numerical results of different choices of φ-divergence.

φ-divergence Parameters Mean PhiD-R

RN derivative
α = 0.05, β = 0 1.35 1.42
α = 0.95, β = 0 1.29 2.49

KL-divergence α = 0.05, β = 3 1.36 1.54
α = 0.95, β = 0.05 1.25 2.67

χ2-divergence β = 0.95 1.31 1.79
β = 3 1.27 1.83

SH distance
β = 0.95 1.46 1.54
β = 3 1.29 1.79
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C. Experiments on Gym
In this section, we validate our approach using OpenAI’s Gym [40]. Specifically, we choose the

CartPole-v1 environment, which involves a pole attached to a cart moving along a frictionless track.
The goal is to prevent the pole from falling over by applying force to the cart. The action space is discrete,
with two possible actions: pushing the cart to the left or to the right. Since we consider cost in this work,
we design the environment such that the agent receives a cost of 0 for every time step the pole remains
upright and a cost of +1 for failing to keep the pole upright. The goal is to keep the pole balanced for
as many time steps as possible, up to a maximum of T steps. The episode terminates if the pole angle
exceeds ±15◦ or the cart moves more than 2.4 units from the center. We run both risk-neutral RL policy
gradient and our approach with different choices of φ-divergence. For these experiments, we set γ = 0.99
and run N = 10, 000 episodes with a time step of T = 1, 000.

As shown in Figure 3, the results are plotted with episode length on the y-axis and episodes on the
x-axis. Longer episode lengths indicate better performance, and changes in episode length over time
illustrate the convergence speed of the algorithm. The upper panel presents the episode length for each
individual episode, while the lower panel shows the mean episode length over the past 50 episodes using
a sliding window. This results in a smoother blue curve (mean) in the lower panel, with the yellow shaded
area around the blue curve providing a visual indication of the variability around the moving average. A
smaller shaded area suggests more consistent and robust algorithm performance, while a larger shaded area
indicates greater variability and less consistency. This visualization aids in understanding the stability of
the training process over time. Figure 3 shows the result of running policy gradient method for risk-neutral
RL.

Fig. 3: Episode length versus episodes for risk-neutral RL.

(a) RN derivative with β = 0, α =
0.95.

(b) RN derivative with β = 0, α = 0.1 (c) KL divergence with β = 0.1

(d) KL divergence with β = 3 (e) χ2 with β = 0.1 (f) χ2 with β = 3

Fig. 4: Episode length versus episodes for PhiD-R defined by: 1) Radon-Nikodym derivative (CVaR); 2)
KL divergence (EVaR); 3) χ2-divergence with different choices of parameters.
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We then apply our approach to the same environment using three different choices of divergence:
1) Radon-Nikodym derivative (Figure 4a, 4b), 2) KL divergence (Figure 4c, 4d), and 3) χ2-divergence
(Figure 4e, 4f). Although the training processes vary with different divergences and parameters, the overall
trends are similar. When the divergence level β is smaller, the process converges more quickly since the
agent is more risk-seeking and prefers taking more aggressive actions to balance the cart pole, as shown
in Figure 4a, 4c, 4e. These processes are similar to risk-neutral RL, as all agents were more risk-seeking
(risk-neutral implies risk-seeking behavior). Conversely, with larger β values, the agent exhibite more
risk-averse behavior, indicated by a flatter curve during the initial phase, leading to stable episode lengths
compared to the smaller β case (shown as Figure 4b, 4d, 4f). This behavior also suggests that the agent
is more likely to be trapped in a local optimum.

VI. CONCLUSION

In this paper, we have applied a new class of risk measures named PhiD-R to risk-sensitive RL. We
have proposed a trajectory-based policy gradient method tailored to this class of risk measures, utilizing
an explicit representation that accommodates all forms of φ-divergence. Our approach has extended upon
previous methods targeting specific risk measures and provided a comprehensive solution that encompasses
the entire range of φ-divergence. Furthermore, we have demonstrated the convergence of our algorithms
using a multi-time stochastic approximation approach. Through simulation experiments and numerical
results, we have validated the efficiency and practical utility of our algorithms.

APPENDIX A
COMPUTING GRADIENT ESTIMATES

In this section, we provide the details of the gradient estimate computations. From the definition of
L(ν, ω, θ), we obtain the following:

∇νL(ν, ω, θ) = ω + EP
[
φ∗
(
Jθ(x0)

ν
− ω + β

)]
+ ν∇νEP

[
φ∗
(
Jθ(x0)

ν
− ω + β

)]
, (16)

∇ωL(ν, ω, θ) = ν + ν∇ωEP
[
φ∗
(
Jθ(x0)

ν
− ω + β

)]
, (17)

∇θL(ν, ω, θ) = ν∇θEP
[
φ∗
(
Jθ(x0)

ν
− ω + β

)]
. (18)

1. ∇νL(ν, ω, θ): by expanding the expectation, we have

L(ν, ω, θ) = ν

[
ω +

∑
ξ

Pθ(ξ)
(
φ∗
(
J(ξ)

ν
− ω + β

))]
.

By taking the gradient w.r.t. ν, we have

∇̂νL(ν, ω, θ) = ω +
∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
+ ν

∑
ξ

Pθ(ξ)∇ν

[
φ∗
(
J(ξ)

ν
− ω + β

)]
= ω +

∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
− ν

∑
ξ

Pθ(ξ)
J(ξ)

ν2

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

= ω +
∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
−
∑
ξ

Pθ(ξ)
J(ξ)

ν

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

.
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2. ∇ωL(ν, ω, θ): by taking the gradient w.r.t. ω, we have

∇̂ωL(ν, ω, θ) = ν + ν∇ω

[∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)]

= ν + ν
∑
ξ

Pθ(ξ)∇ω

[
φ∗
(
J(ξ)

ν
− ω + β

)]
= ν − ν

∑
ξ

Pθ(ξ)
∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

.

3. ∇θL(ν, ω, θ): by taking the gradient w.r.t. θ, we have

∇̂θL(ν, ω, θ) = ν∇θ

[∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)]

= ν
∑
ξ

∇θPθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
= ν

∑
ξ

Pθ(ξ)∇θ logPθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
,

where the last equality is due to ∇θPθ(ξ) = Pθ(ξ)∇θ logPθ(ξ).

APPENDIX B
PROOF OF THEOREM 2: CONVERGENCE ANALYSIS

In this section, we provide the detailed proof that was outlined in the proof sketch in the main content.
We will begin by analyzing the multi-time scale discrete stochastic approximation and proceed through
the convergence of the sequences (νk, ωk, θk) to the local optimal solutions.

A. Convergence of ν-update
Since ν converges a faster time scale than ω and θ, we can regard ω and θ as fixed in the ν-update, i.e.,

νk+1 = ΓN

[
νk − ζ1(k)

(
ω +

N∑
j=1

1

N
φ∗
(
J(ξj,k)

νk
− ω + β

)
−

N∑
j=1

1

N

J(ξj,k)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

νk
−ω+β

)]
.

Consider the continuous time dynamics of ν defined using differential inclusion

ν̇ ∈ Υν

[
−∇̂νL(ν, ω, θ)

]
, (19)

where
Υν [G(ν)] := lim

0<η→0

ΓN(ν + ηG(ν))− ΓN(ν)

η
.

Here Υν [G(ν)] is the left directional derivative of the function ΓN(ν) in the direction of G(ν). Using the
left directional derivative Υν [G(ν)] in the sub-gradient descent algorithm for ν ensures that the gradient
points in the descent direction along the boundary of ν whenever the ν-update hits its boundary.

Now consider the following equation,

νk+1 = ΓN

[
νk − ζ1(k)

(
ω +

∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

νk
− ω + β

)
−
∑
ξ

Pθ(ξ)
J(ξ)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
νk
−ω+β

+ δνk+1

)]
,
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where

δνk+1
=

(
ω +

N∑
j=1

1

N
φ∗
(
J(ξj,k)

νk
− ω + β

)
−

N∑
j=1

1

N

J(ξj,k)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

νk
−ω+β

)
−
(
ω +

∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

νk
− ω + β

)
−
∑
ξ

Pθ(ξ)
J(ξ)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
νk
−ω+β

)
.

In order to show that the update rule converges to the solution of the o.d.e, we need to verify several
conditions. Before going through this process, we firstly make the following assumptions, which will be
used to guarantee the convergence of our algorithm.

Assumption 3. The parameters ν and ω are bounded, i.e., ν ∈ [Vmin, Vmax] and ω ∈ [Wmin,Wmax].

Assumption 4. Let Umin and Umax denote the bound for u = J(ξ)
ν
− ω + β. The function φ satisfies:

1. The first derivative of the conjugate function φ∗ is bounded in [Umin, Umax].
2. The second derivative of the conjugate function φ∗ is bounded in [Umin, Umax].

In Lemma 1 in Appendix C, we show that ∇̂νL(ν, ω, θ) is Lipschitz continuous in ν. Given that the step
size ζ1 satisfies Assumption 2, we have

∑
k ζ1(k) =∞ and

∑
k ζ

2
1 (k) <∞. Furthermore, in Lemma 2 in

Appendix C, we show that the sequence {δνk+1
} forms a martingale difference sequence. In addition, under

Assumption 3, we have supk ||νk|| <∞. With these conditions, we can invoke Corollary 4 in Chapter 5
of [34] to show that the update rule in our algorithm converges almost surely to the set [Vmin, Vmax].

To complete the proof of convergence for the ν-update, we must show that the sequence converges to a
fixed point of the o.d.e. (19). To establish this, we apply a Lyapunov stability analysis.

For any given ω and θ, define the following Lyapunov function

Lω,θ(ν) = L(ν, ω, θ)− L(ν∗, ω, θ),

where ν∗ is a minimum point.
To utilize the Lyapunov theory for asymptotically stable differential inclusions (Theorem 3.10 and

Corollary 3.11 in [41]), we need to verify that the Lyapunov function defined above satisfies both Hypothesis
3.1 and Hypothesis 3.9 from [41].

We begin by verifying that the Lyapunov function satisfies Hypothesis 3.9, which requires showing that
d
dt
Lω,θ(ν) ≤ 0 and ∇tLω,θ(ν) is non-zero if

∥∥∥ΓN [−∇̂νL(ν, ω, θ)]
∥∥∥ 6= 0. Considering the continuous-time

dynamics for ν, we have

d

dt
L(ν, ω, θ) = ∇̂νL(ν, ω, θ)ΥN

[
−∇̂νL(ν, ω, θ)

]
.

Therefore, we obtain

d

dt
Lθ,λ(ν) = ∇̂νL(ν, ω, θ)Υν

[
−∇̂νL(ν, ω, θ)

]
− ∇̂νL(ν, ω, θ)Υν

[
−∇̂νL(ν, ω, θ)

] ∣∣
ν=ν∗

= ∇̂νL(ν, ω, θ)Υν

[
−∇̂νL(ν, ω, θ)

]
=

d

dt
∇̂νL(ν, ω, θ).

We need to demonstrate that d
dt
Lω,θ(ν) ≤ 0 and that this quantity is non-zero whenever∥∥∥ΓN [−∇̂νL(ν, ω, θ)]

∥∥∥ 6= 0.

Case 1: ν ∈ (Vmin, Vmax).
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There exists a sufficiently small η0 > 0 such that ν − η0∇̂νL(ν, ω, θ) ∈ [Vmin, Vmax] and

ΓN

[
ν − η0∇̂νL(ν, ω, θ)

]
= −η0∇̂νL(ν, ω, θ).

Recalling the definition of Υ
[
−∇̂νL(ν, ω, θ)

]
, we obtain

d

dt
L(ν, θ, λ) = −

∥∥∥∇̂νL(ν, ω, θ)
∥∥∥ ≤ 0

and d
dt
L(ν, θ, λ) < 0 if ∇̂νL(ν, ω, θ) 6= 0.

Case 2: ν ∈ {Vmin, Vmax}.
Notice that there are two cases, which depend on whether the set

F (ν) :=

{
∇̂νL(ν, ω, θ)

∣∣∣∣∀η0 > 0,∃η ∈ [0, η0] such that ν − η∇̂νL(ν, ω, θ) /∈ [Vmin, Vmax]

}
is empty or not.
Case 2-1: F (ν) is empty.

Since ν ∈ {Vmin, Vmax} and ν − η∇̂νL(ν, ω, θ) ∈ [Vmin, Vmax], we know

Υν

[
−∇̂νL(ν, ω, θ)

]
= −∇̂νL(ν, ω, θ),

which implies that
d

dt
L(ν, θ, λ) = −

∥∥∥∇̂νL(ν, ω, θ)
∥∥∥ ≤ 0

and d
dt
L(ν, θ, λ) < 0 if ∇̂νL(ν, ω, θ) 6= 0.

Case 2-2: F (ν) is not empty.
For any η > 0, define νη := ν − η∇̂νL(ν, ω, θ). When 0 < η → 0, ΓN [νη] is the projection of νη to

the tangent space of [Vmin, Vmax]. For any ν̂ ∈ [Vmin, Vmax], since the set {ν ∈ [Vmin, Vmax] : ||ν − νη||2 ≤
||ν̂ − νη||2} is compact, then the project of νη on [Vmin, Vmax] exists. Furthermore, since g(ν) = 1

2
(ν − νη)2

is a strongly convex function and ∇νg(ν) = ν − νη. By the first order optimal condition, we obtains
∀ν ∈ [Vmin, Vmax],

∇g(ν∗η)(ν − ν∗η) = (ν∗η − νη)(ν − ν∗η) ≥ 0,

where ν∗η is the unique projection of νη. Due to the uniqueness, we know only if ν = ν∗η , the above equality
holds. Therefore, for any ν ∈ [Vmin, Vmax] and η > 0,

∇̂νL(ν, ω, θ)Υν

[
−∇̂νL(ν, ω, θ)

]
= ∇̂νL(ν, ω, θ) lim

0<η→0

ν∗η − ν
η

= lim
0<η→0

ν − νη
η

lim
0<η→0

ν∗η − ν
η

= lim
0<η→0

−||ν∗η − ν||2

η2
+ lim

0<η→0
(ν∗ − νη)

ν∗ − ν
η2

≤ 0.

Note that for any ∇̂νL(ν, ω, θ) ∩ F (ν)c, ν − η∇̂νL(ν, ω, θ) ∈ [Vmin, Vmax] for any η ∈ [0, η0] and some
η0 > 0. Thus, this follows the statement in the empty case.

Combining all these arguments, we conclude that d
dt
L(ν, ω, θ) ≤ 0, and this inequality holds strictly

whenever Υν

[
−∇̂νL(ν, ω, θ)

]
6= 0. As a result, d

dt
Lω,θ(ν) ≤ 0 and remains non-zero under the same

condition.
Having shown that Lω,θ(ν) satisfies Hypotheses 3.1 and 3.9, we can now apply the results from [41].

This ensures that the ν-update converges almost surely to the solution of the o.d.e. (19), which, in turn,
converges to ν∗ ∈ [Vmin, Vmax].
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B. Convergence of ω-update
After establishing the convergence of the ν-update, we proceed to demonstrate the convergence of the

ω-update. Given that ν converges on a faster timescale than ω, and θ operates on the slowest timescale, the
ω-update can be expressed using the converged value ν∗(ω) while treating θ as an invariant quantity, i.e.,

ωk+1 = ΓR

[
ωk − ζ2(k)

(
ν∗(ωk)− ν∗(ωk)

N∑
j=1

1

N

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

ν∗(ωk)
−ωk+β

)]
.

Considering the continuous time dynamic of ω,

ω̇ ∈ Υω

[
−∇̂ωL(ν, ω, θ)

]
, (20)

where
Υω[G(ω)] := lim

0<η→0

ΓR(ω + ηG(ω))− ΓR(ω)

η
.

The ω-update can be rewritten as a stochastic approximation, i.e.,

ωk+1 = ΓR

[
ωk − ζ2(k)

(
ν∗(ωk)− ν∗(ωk) ·

∑
ξ

Pθ(ξ)
∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν∗(ωk)

−ωk+β

)
+ δωk+1

]
,

where

δωk+1
= −

(
ν∗(ωk)− ν∗(ωk)

∑
ξ

Pθ(ξ)
∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν∗(ωk)

−ωk+β

)

+

(
ν∗(ωk)− ν∗(ωk)

N∑
j=1

1

N

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

ν∗(ωk)
−ωk+β

)
.

To demonstrate that the update rule converges to the solution of the o.d.e., we need to verify conditions
similar to those established previously. In particular, in Lemma 3 of Appendix C, we show that ∇̂ωL(ν, ω, θ)
is Lipschitz continuous in ω. The step size ζ2(k) satisfies

∑
k ζ2(k) =∞ and

∑
k ζ

2
2 (k) <∞, as stated in

Assumption 2. Moreover, Assumption 3 ensures that supk ||ωk|| <∞.
Next, we focus on the Lyapunov analysis for the ω-update. For any fixed θ, we define the Lyapunov

function as:
Lθ(ω) = L(ν∗(ω), ω, θ)− L(ν∗(ω), ω∗, θ),

where ω∗ is a local minimum point. Analogous to the approach used for the ν-update, we can express:

d

dt
Lθ(ω) =

d

dt
∇̂ωL(ν∗(ω), ω, θ).

Following a method similar to the Lyapunov analysis for the ν-update, we can show that d
dt
Lθ(ω) ≤ 0

and that this quantity is strictly non-zero whenever
∥∥∥ΓR[−∇̂ωL(ν, ω, θ|ν=ν∗(ω))]

∥∥∥ 6= 0. Consequently, we
demonstrate that the ω-update converges almost surely to the solution of the o.d.e. (19), which, in turn,
converges to ω∗ ∈ [Wmin,Wmax].
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C. Local minimum
In this section, we aim to establish the convergence of the sequence {νk, ωk} towards a local minimum

of the objective function L(ν, ω, θ), while keeping θ fixed. Building upon the arguments presented in the
previous sections, we show that, for any given initial states ν(0) and ω(0), the sequences ν(t) and ω(t)
converge to their respective optimal stationary points, ν∗ and ω∗. This further implies

L(ν∗, ω∗, θ) ≤ L(ν(ω∗(t)), ω(t), θ)

≤ L(ν(ω(0)), ω(0), θ)

≤ L(ν(t), ω(0), θ)

≤ L(ν(0), ω(0), θ).

We demonstrate the existence of a local minimum through contraction.
Suppose that (ν∗, ω∗) is not a local minimum, then there exits a point (ν̄, ω̄) ∈ [Vmin, Vmax]×[Wmin,Wmax]∩
B(ν∗,ω∗)(r) such that

L(ν̄, ω̄, θ) = min
(ν,ω)∈[Vmin,Vmax]×[Wmin,Wmax]∩B(ν∗,ω∗)(r)

L(ν, ω, θ).

The minimum is attained by the Weierstrass extreme value theorem. By setting ω(0) = ω̄, we have

L(ν̄, ω̄, θ) = min
(ν,ω)∈[Vmin,Vmax]×[Wmin,Wmax]∩B(ν∗,ω∗)(r)

L(ν, ω, θ)

≤ L(ν∗, ω∗, θ)

≤ L(ν̄, ω̄, θ),

which is a contraction.
Therefore, (ν∗, ω∗) is a local minimum for L(ν, ω, θ) for any fixed θ.

D. Convergence of θ-update
Given that θ converges on the slowest timescale, we can express the θ-update as:

θk+1 = ΓΘ

[
θk − ζ3(k)

(
ν∗(θ)

N∑
j=1

1

N
∇θ logPθ(ξj,k) · φ∗

(
J(ξj,k)

ν∗(θ)
− ω∗(θ) + β

))]
.

We now consider the following o.d.e. for θ:

θ̇ ∈ Υθ

[
−∇̂θL(ν, ω, θ)

]
, (21)

where
Υθ[G(θ)] := lim

0<η→0

ΓΘ(θ + ηG(θ))− ΓΘ(θ)

η
.

The θ-update can be rewritten as a stochastic approximation, i.e.,

θk+1 = ΓΘ

[
θk − ζ3(k) ·

(
∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θi),ω=ωk,θ=θk

+ δθk+1

)]
,

where

δθk+1
= −ν∗(θ)

∑
ξ

Pθ(ξ)∇θ logPθ(ξ) · φ∗
(
J(ξ)

ν∗(θ)
− ω∗(θk) + β

)
+ ν∗(θ)

∑
ξ

1

N
∇θ logPθ(ξ) · φ∗

(
J(ξ)

ν∗(θ)
− ω∗(θk) + β

)
.
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To demonstrate that the update rule converges to the solution of the o.d.e., we need to verify several
conditions. First, in Lemma 5 in Appendix C, we show that ∇̂θL(ν, ω, θ) is Lipschitz continuous in θ.
Second, the step size ζ3(k) satisfies

∑
k ζ3(k) =∞ and

∑
k ζ

2
3 (k) <∞, which follows from Assumption 2.

Additionally, in Lemma 6 of Appendix C, we show that {δωk+1
} forms a martingale difference sequence.

Finally, θ is in a compact and closed set Θ, which ensures that supk ||θk|| <∞.
It remains to check the Lyapunov analysis for θ-update. The general idea here is same with the Lyapunov

analysis above, but the difference here is that θ is vector other than a scalar. We first define the Lyapunov
function

L(θ) = L(ν∗(θ), ω∗(θ), θ)− L(ν∗(θ∗), ω∗(θ∗), θ∗),

where θ∗ is a local minimum point. Consider the continuous time dynamics for θ, we have

d

dt
L(θ) =

d

dt
∇̂θL(ν∗(θ), ω∗(θ), θ).

It remains to show that d
dt
∇̂θL(ν∗(θ), ω∗(θ), θ) ≤ 0 and the equality holds if and only if

Υθ

[
−∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

]
= 0.

There are three cases we have to consider.
Case 1: θ is in the interior of Θ (not on the boundary).

Since Θ is a compact closed set, there exists a sufficient small η0 > 0 such that

θ − η0∇̂θL(ν, ω, θ)
∣∣
ν=ν∗(θ),ω=ω∗(θ)

∈ Θ

and

ΓΘ

(
θ − η0∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

)
− θ = −η0∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

.

Recall the definition of Υθ, we have

d

dt
L(ν, ω, θ)

∣∣∣∣
ν=ν∗(θ),ω=ω∗(θ)

= −
∥∥∥∇̂θL(ν, ω, θ)|ν=ν∗(θ),ω=ω∗(θ)

∥∥∥2

≤ 0.

Furthermore, the equality only holds when d
dt
L(ν, ω, θ)|ν=ν∗(θ),ω=ω∗(θ) = 0.

Case 2: θ is on the boundary of Θ and θ− η∇̂θL(ν, ω, θ)|ν=ν∗(θ),ω=ω∗(θ) ∈ Θ for any η ∈ (0, η0] and some
η0 > 0.

In this case, we have

Υθ

[
−∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

]
= −∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

.

Therefore, we obtain

d

dt
L(ν, ω, θ)

∣∣∣∣
ν=ν∗(θ),ω=ω∗(θ)

= −
∥∥∥∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

∥∥∥2

≤ 0.

Moreover, the equality only holds when ∇̂θL(ν, ω, θ)|ν=ν∗(θ),ω=ω∗(θ) = 0.
Case 3: θ is on the boundary of Θ but θ− η∇̂θL(ν, ω, θ)|ν=ν∗(θ),ω=ω∗(θ) /∈ Θ for some η ∈ (0, η0] and any
η0 > 0.

For any η > 0, we define
θη = θ − η∇̂θL(ν, ω, θ)|ν=ν∗(θ),ω=ω∗(θ).
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In this case, when 0 < η → 0, ΓΘ[θη] is the projection of θη to the tangent space of Θ. For any θ̂ ∈ Θ,
since {θ ∈ Θ : ||θ−θη||2 ≤

∥∥∥θ̂ − θη∥∥∥
2
} is a compact set, the project of θη exists. Define g(θ) = 1

2
||θ−θη||22,

since g(θ) is a strong convex function and ∇θg(θ) = θ − θη, we obtain

∇g(θ∗η)
>(θ − θ∗η) = (θ∗η − θη)>(θ − θ∗η) ≥ 0,

for any θ ∈ Θ, where θ∗η is the projection of θη. Due to the uniqueness of this projection, the equality
holds if and only if θ = θ∗η. Therefore, for any θ ∈ Θ and η > 0,(

∇̂θL(ν, ω, θ)
∣∣
ν=ν∗(θ),ω=ω∗(θ)

)>
·Υν

[
−∇̂νL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

]
=
(
∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

)>
lim

0<η→0

θ∗η − θ
η

=

(
lim

0<η→0

θ − θη
η

)>
lim

0<η→0

θ∗η − θ
η

= lim
0<η→0

−||θ∗η − θ||2

η2
+ lim

0<η→0
(θ∗ − θη)>

θ∗ − θ
η2

≤ 0.

Combining all these arguments, we have d
dt
L(ν∗(θ), ω∗(θ), θ) ≤ 0 and it is non-zero whenever

Υθ

[
−∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

]
6= 0.

Therefore, we know that d
dt
L(θ) ≤ 0 and it is non-zero whenever Υθ

[
−∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

]
6= 0.

Now, we can establish the almost sure convergence of the θ-update to the solution of the o.d.e given by
equation (21), which in turn converges to θ∗ ∈ Θ.

Combining with the fact that (ν∗, ω∗) are local minimum for L(ν, ω, θ), we further conclude that θ∗ is
a local optimal policy for the φ-divergence optimization problem.

APPENDIX C
TECHNICAL LEMMAS

In this section, we present the technical lemmas that are used in the convergence analysis in the proof
of Theorem 2. We begin by introducing the following propositions, derived from the definition of Pθ,
which are crucial for demonstrating that the gradient estimates in Algorithm 1 are Lipschitz continuous.
These results further aid in establishing the technical lemmas that will be discussed later.

Proposition 1. By the definition of Pθ(ξ) and ∇θ logPθ(ξ), we have

Pθ(ξ)∇θ logPθ(ξ)

= P0(x0)
T−1∏
k=0

π(ak|xk, θ)P (xk+1|xk, ak)
T−1∑
k=0

∇θπ(ak|xk, θ)
π(ak|xk, θ)

= P0(x0)
T−1∑
k=0

T−1∏
i 6=k

∇θπ(ak|xk, θ)π(ak|xk, θ)P (xk+1|xk, ak).

Combining Assumption 1 and the fact that the sum of products of Lipschitz function is Lipschitz,
Pθ(ξ)∇θ logPθ(ξ) and

∑
ξ Pθ(ξ)∇θ logPθ(ξ) are Lipschitz in θ. Furthermore, since the gradient of Lipschitz

function is bounded, we have ∣∣∣∣∣∇θ(
∑
ξ

Pθ(ξ)∇θ logPθ(ξ))

∣∣∣∣∣ ≤ K1(ξ).
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Also,
E[∇θ logPθ(ξ)] =

∑
ξ

Pθ(ξ)∇θ logPθ(ξ) = 0.

Proposition 2. By Assumption 1, ∇θ logPθ(ξ) is bounded, i.e., |∇θ logPθ(ξ)| ≤ K2(ξ).

Lemma 1. ∇̂νL(ν, ω, θ) is Lipschitz in ν.

Proof. Recall that

∇̂νL(ν, ω, θ) = ω +
∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
−
∑
ξ

Pθ(ξ)
J(ξ)

ν

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

.

Let f(ν) denote ∇̂νL(ν, ω, θ), we have

f ′(ν) =
∑
ξ

Pθ(ξ)∇ν

(
φ∗
(
J(ξ)

ν
− ω + β

))
−
∑
ξ

Pθ(ξ)∇ν

(
J(ξ)

ν

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

)

= −
∑
ξ

Pθ(ξ)
J(ξ)

ν2

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

−
∑
ξ

Pθ(ξ)
(
− J(ξ)

ν2

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

− J2(ξ)

ν3

∂φ∗

∂u2

∣∣∣∣
u=

J(ξ)
ν
−ω+β

)
= −

∑
ξ

Pθ(ξ)
J(ξ)

ν2

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

+
∑
ξ

Pθ(ξ)
(
J(ξ)

ν2
+
J2(ξ)

ν3

)
∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

=
∑
ξ

Pθ(ξ)
J2(ξ)

ν3

∂φ∗

∂u2

∣∣∣∣
u=

J(ξ)
ν
−ω+β

.

Notice that J(ξ) is bounded by [−Cmax
1−γ ,

Cmax
1−γ ], ν is bounded by [Vmin, Vmax] and ω is bounded by [Wmin,Wmax].

By Assumption 4, we know that f ′(ν) is bounded. Thus, ∇̂νL(ν, ω, θ) is Lipschitz in ν.

Lemma 2. {δνk+1
} is a martingale difference sequence.

Proof. Due to the fact that the trajectories are generated based on the sampling p.m.f and all these
trajectories are independent, we have E[δνk+1

|Fν,k] = 0 where Fν,k = σ(νm, δνm ,m ≤ k) is the filtration
of νk generated by different independent trajectories.

We need to prove that E[||δνk+1
||2|Fν,k] is bounded. Consider

δνk+1
=

(
ω +

N∑
j=1

1

N
φ∗
(
J(ξj,k)

νk
− ω + β

)
−

N∑
j=1

1

N

J(ξj,k)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

νk
−ω+β

)
−
(
ω +

∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

νk
− ω + β

)
−
∑
ξ

Pθ(ξ)
J(ξ)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
νk
−ω+β

)

= −
∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

νk
− ω + β

)
+

N∑
j=1

1

N
φ∗
(
J(ξj,k)

νk
− ω + β

)

−
N∑
j=1

1

N

J(ξj,k)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

νk
−ω+β

+
∑
ξ

Pθ(ξ)
J(ξ)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
νk
−ω+β

.
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Notice that φ∗ is a convex function and J(ξj,k)

νk
− ω + β is bounded. Then, φ∗(J(ξj,k)

νk
− ω + β) is bounded.

For convenience, we denote it as φ∗(J(ξj,k)

νk
− ω + β) ∈ [c1, c2], where c1, c2 ∈ R. By Assumption 4, we

have ∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
νk
−ω+β

∈ [c3, c4], where c3, c4 ∈ R. Then, we have

δνk+1
≤ c2 − c1 +

Cmax

(1− γ)Vmin
(c4 − c3).

Let c5 ∈ R denote the real value on the right side, we further have, ||δνk+1
||2 ≤ (c5)2, which implies

{δνk+1
} is a martingale difference sequence.

Lemma 3. ∇̂ωL(ν, ω, θ) is Lipschitz in ω.

Proof. Recall that

∇̂ωL(ν, ω, θ) = ν − ν
∑
ξ

Pθ(ξ)
∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

.

For convenience, denote ∇̂ωL(ν, ω, θ) as f(ω). We have

f ′(ω) = ν
∑
ξ

Pθ(ξ)
∂φ∗

∂u2

∣∣∣∣
u=

J(ξ)
ν
−ω+β

.

Recall that the second derivative of φ∗ is bounded in a closed set and ν is also bounded. We know f ′(ω)

is bounded, thus, ∇̂ωL(ν, ω, θ) is Lipschitz in ω.

Lemma 4. {δωk+1
} is a martingale difference sequence.

Proof. Note that the trajectories are generated based on the sampling p.m.f and all these trajectories are
independent, we have E[δωk+1

|Fν,k] = 0 where Fω,k = σ(ωm, δωm ,m ≤ k) is the filtration of ωk generated
by different independent trajectories.

We now demonstrate that E[||δωk+1
||2|Fν,k] is bounded. Consider

δωk+1

= −
(
ν∗(ωk)− ν∗(ωk)

∑
ξ

Pθ(ξ)
∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν∗(ωk)

−ωk+β

)
+

(
ν∗(ωk)− ν∗(ωk)

N∑
j=1

1

N

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

ν∗(ωk)
−ωk+β

)

= ν∗(ωk)
∑
ξ

Pθ(ξ)
∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν∗(ωk)

−ωk+β

− ν∗(ωk)
N∑
j=1

1

N

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

ν∗(ωk)
−ωk+β

.

Since the first derivative of φ∗ is bounded in a closed set, for convenience, denote its bound as [c6, c7],
where c6, c7 ∈ R, we have

δωk+1
≤ Vmax|c7 − c6|.

Thus, ||δωk+1
||2 is bounded, which further implies {δωk+1

} is a martingale difference sequence.

Lemma 5. ∇̂θL(ν, ω, θ) is Lipschitz in θ.

Proof. Recall that

∇̂θL(ν, ω, θ) =
∑
ξ

Pθ(ξ)∇θ logPθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
.

By Assumption 1 and 4, we know that ∇θPθ(ξ) and ∇θ logPθ(ξ) are Lipschitz in θ. By the fact that the
sum of Lipschitz functions is Lipschitz, we know that ∇̂θL(ν, ω, θ) is Lipschitz in θ.
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Lemma 6. {δωk+1
} is a martingale difference sequence.

Proof. Since the trajectories are generated based on the sampling p.m.f and all these trajectories are
independent, we have E[δθk+1

|Fν,k] = 0 where Fθ,k = σ(θm, δθm ,m ≤ k) is the filtration of θk generated
by different independent trajectories.

It remains to show E[||δθk+1
||2|Fν,k] is bounded. Consider

δθk+1
= −ν∗(θ)

∑
ξ

Pθ(ξ)∇θ logPθ(ξ) · φ∗
(
J(ξ)

ν∗(θ)
− ω∗(θk) + β

)
+ ν∗(θ)

∑
ξ

1

N
∇θ logPθ(ξ) · φ∗

(
J(ξ)

ν∗(θ)
− ω∗(θk) + β

)
≤ Vmax(K1(ξ) +K2(ξ)) max {|Umin|, |Umax|} .

Thus, ||δθk+1
||2 ≤ (c8)2, where c8 = (VmaxK1(ξ) +K2(ξ)) max {|Umin|, |Umax|} ∈ R, which further implies

that {δθk+1
} is a martingale difference sequence.
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