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Abstract

Reinforcement Learning (RL) is a branch of machine learning that focuses on training agents

to make sequential decisions. By interacting with the environment, an RL agent learns optimal

policies that guide its actions. While traditional RL algorithms focus primarily on maximizing

expected rewards, they often overlook the risks associated with uncertain or adverse outcomes. This

limitation is particularly problematic in high-stakes applications—such as autonomous driving,

healthcare, and finance—where the consequences of poor decision-making can be significant. To

address this gap, the field of risk-sensitive reinforcement learning has emerged, enhancing the

safety and robustness of RL agents in uncertain environments.

This thesis explores advancements in risk-sensitive RL by developing novel algorithms,

frameworks, and analysis techniques to address uncertainty and robustness in sequential

decision-making.

One of the primary focuses is the application of Entropic Value-at-Risk (EVaR), a recently

introduced risk measure, to RL. Unlike the conventional Conditional Value-at-Risk (CVaR), EVaR

characterizes distributional uncertainty using Kullback-Leibler (KL) divergence, which better

aligns with common practices in machine learning. This alignment enables a broader application in

risk-sensitive RL problems where robustness to uncertainty is crucial. To achieve this, we propose

value iteration and policy gradient algorithms that incorporate EVaR optimization within the

Markov Decision Process (MDP) framework. The proposed algorithms are shown to converge and

perform effectively through numerical experiments, demonstrating the practicality and relevance

of EVaR for robust decision-making in RL.

Building upon this exploration of risk measures, we introduce the φ-Divergence-Risk (PhiD-R),

a general class of coherent risk measures that includes existing risk measures such as CVaR

and EVaR as special cases and extends the potential for RL applications by covering a

broader range of risk preferences. The PhiD-R class allows the study of risk-sensitive RL

using various φ-divergences, thus creating a flexible framework adaptable to multiple types
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of uncertainty. For this class of risk measure, we develop a trajectory-based policy gradient

method tailored specifically for PhiD-R, providing both theoretical convergence guarantees and

practical validations through extensive simulation experiments. This work not only enhances our

understanding of risk-sensitive learning but also contributes algorithms that are robust and versatile

across a range of RL environments.

In addition to exploring risk measures, this dissertation examines the robustness of

risk-sensitive RL under Robust MDPs (RMDPs). RMDPs provide a framework for decision-making

under worst-case scenarios by optimizing over ambiguity sets, which define possible variations in

the transition dynamics. While previous research on RMDPs has largely focused on risk-neutral

approaches, we extend this work to risk-sensitive contexts. Leveraging the coherence properties

of CVaR, we establish a connection between robustness and risk sensitivity, thereby enabling

risk-sensitive RL techniques to solve robust decision-making problems. We further introduce a

novel risk measure, NCVaR, specifically designed to handle state-action-dependent uncertainties, a

common feature in real-world applications. Through value iteration algorithms and simulations, we

validate that NCVaR optimization improves robustness in complex and uncertain RL environments.

The thesis also addresses a critical challenge in RL: exploration. In traditional reward-free

RL, exploration is guided without a specific reward function, enabling adaptability across

various reward settings. However, efficient exploration strategies in risk-sensitive RL are

still underdeveloped. To fill this gap, we propose a risk-sensitive reward-free RL framework

based on CVaR, aiming to balance efficient exploration with risk constraints. We develop

the CVaR-RF-UCRL algorithm, designed to perform effective CVaR-based exploration under

risk-sensitive criteria, and establish its performance guarantees by proving it is PAC with

sample complexity upper bound. We further introduce two planning algorithms, CVaR-VI and

CVaR-VI-DISC, and validate the approach with empirical experiments, demonstrating its utility in

safe and efficient exploration. We also establish a lower bound on the sample complexity for any

CVaR-RF algorithm.
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Chapter 1

Introduction

Decision making is a process of making choices by identifying a decision, gathering information,

and assessing alternative resolutions and its goal is to identify an optimal strategy (a mapping

from current system states to available actions), where the performance is incurred by a cost

function [62]. The evaluation criteria that are deemed relevant to the decision makers is captured by

this cost function. Reinforcement learning (RL) [94] is an area of machine learning where agents

learn from interacting with the environment to determine the actions. The environment is typically

stated as a Markov decision process (MDP) which will be described in Section 1.1. A common goal

in solving these sequential decision making tasks is to determine an optimal policy that minimizes

the expected total discounted cost, which is also named risk-neutral approach [15]. Although the

risk-neutral approach is quite popular, it doesn’t properly account for events that are rare but have

serious consequences.

To address this potential issue, many applications[23, 24, 39, 40, 43, 44, 52, 55, 57, 61, 64, 73,

91, 96, 99, 105] focus on minimizing a risk-sensitive criterion rather than the risk-neutral criterion,

which provides a promising approach to scenarios where it is important to control risks.

Various risk measures have been studied and applied in risk-sensitive decision-making,

including Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). In this work, we begin by

presenting an overview of risk measures in Section 1.2. Following this, we review risk-sensitive

1



RL, discussing current solutions and their limitations in Section 1.3. To address the limitations of

these existing works, this thesis introduces a novel application of a risk measure called Entropic

Value-at-Risk (EVaR) to risk-sensitive RL and proposes a broader class of risk measures for RL

applications. Additionally, we examine the robustness of risk-sensitive RL under model uncertainty

and design more efficient exploration algorithms within a reward-free framework for risk-sensitive

RL. Section 1.5 outlines the main contributions and organization of this thesis.

1.1 Markov Decision Processes

In RL, the underlying mathematical mode is the MDP, which represents a probabilistic sequential

decision-making framework such that the set of transition probabilities to next states depend only

on the current state and action of the system.

An MDP is represented by the tuple (X ,A, C, P, P0, x0, γ), whereX denotes the state space,A

is the action space, C(x, a) ∈ [−Cmax, Cmax] represents a bounded deterministic cost, P (·|x, a) is

the transition probability distribution, P0 is the state distribution of the initial state x0, and γ ∈ [0, 1]

is the discount factor. For each state x ∈ X , A(x) denotes the set of available actions. Note that

the specific bound for the cost may vary according to different assumptions in this thesis, and each

chapter will clearly specify these classifications. For convenience, we omit γ when γ = 1.

Intuitively, solving an MDP aims to determine some policies π (mappings from states to

actions) under given cost functions. In order to propose the optimization problem formulations,

here we define some feasible set of policies π. For t ≥ 1, let Ht = Ht−1 × A × X with

H0 = X denote the space of possible histories up to time t and ht = (x0, a0, . . . , xt−1, at−1, xt)

is an element in Ht. For each time t, the policy πt is a mapping from ht to the probability

distribution over the action space A. Let ΠH,t be the set of all t-step history-dependent policies,

i.e., ΠH,t := {π0 : H0 → A, π1 : H1 → A, . . . , πt : Ht → A|πj(·|hj) ∈ A for all

hj ∈ Hj, 1 ≤ j ≤ t}. Let ΠH = limt→∞ΠH,t be the set of all history-dependent policies.

Similarly, we can define the Markovian policies as ΠM = limt→∞ΠM,t where ΠM,t := {π0 :

2



X → A, π1 : X → A, . . . , πt : X → A|πj(·|xj) ∈ A for all xj ∈ X , 1 ≤ j ≤ t}.

One special case is the stationary Markovian policy denoted by ΠM,S , where the policies are

time-homogeneous, i.e., πj = π for all j ≥ 0. Compared with history-dependent policies, the

stationary Markovian policies are more structured, which means the actions only depend on current

state and its state-action mapping is time-independent. This makes the procedure of determining

an optimal policy under stationary Markovian policies more computationally tractable. Commonly,

the corresponding solution techniques involve dynamic programming algorithms [15] and policy

gradient methods [23, 70]. In policy gradient methods, the stationary Markovian policy π(·|x) is

parameterized by a κ-dimensional vector θ. Thus, the space of all such policies can be expressed

as {π(·|x, θ) : x ∈ X , θ ∈ Θ ⊆ Rκ}, where Θ is a convex, compact set.

Let T denote the length of time horizons. The cost function under policy π for a given state x is

defined as the total discounted cost accumulated by the agent when it starts at state x and follows

policy π, i.e.,

Jπ(x) =
T∑
t=0

γtC(xt, at) | x0 = x, π.

Similarly, for a state-action pair (x, a), the cost function is defined as

Jπ(x, a) =
T∑
t=0

γtC(xt, at) | x0 = x, a0 = a, π.

The expected values of the random variables Jπ(x) and Jπ(x, a), known as the value and

action-value functions of policy π, are defined as

V π(x) = E[Jπ(x)], Qπ(x, a) = E[Jπ(x, a)].

In policy gradient methods, the policy π is parameterized by a vector θ, allowing the cost

3



functions to be expressed as:

Jθ(x) =
T∑
t=0

γtC(xt, at) | x0 = x, π(·|·, θ),

Jθ(x, a) =
T∑
t=0

γtC(xt, at) | x0 = x, a0 = a, π(·|·, θ).

The corresponding value functions are defined as

V θ(x) = E[Jθ(x)], Qθ(x, a) = E[Jθ(x, a)].

For convenience, we will use π-indexed functions throughout, except when discussing policy

gradient methods.

In MDPs, a widely adopted optimization formulation is the risk-neutral criterion, where the

objective function is the expected total discounted cost. The optimization problem is formulated as

min
π∈ΠH

E[Jπ(x0)],

and for an infinite-horizon setting, the problem becomes:

min
π∈ΠH

E
[

lim
T→∞

Jπ(x0)
]
.

In [15], it is shown that the optimal policy of the above optimization problem is a stationary

Markovian policy.

1.2 Overview of Risk Measures

4



1.2.1 Uncertainty in MDPs

Here we describe two sources of uncertainty while using the MDP model. The first one is

inherent-uncertainty, which describes the cost variability due to the stochasticity of an MDP. The

second one is the model-uncertainty, which comes from the inaccuracy of transition probability

and cost of the MDP, more generally, it accounts for the errors in the representations of MDP. Both

uncertainty are incurred by the total discounted cost random variable [24].

As mentioned in Section1.1, the risk-neutral criterion is widely used. However, despite its

popularity, it doesn’t take either the uncertainties of cost nor its sensitivity to modeling errors into

account, which may significantly degrade the performance of the optimal policy [65] when there

are uncertainties or modeling errors. The uncertainty of the cost can be addressed in risk-sensitive

MDPs [47] by utilizing a risk measure rather than the risk-neutral expectation. A risk measure

is a mapping from a random variable to a real value. Typically, the risk object is derived from

the total discounted cost. The sensitive issue could be solved in robust MDPs by choosing some

uncertainty sets to model the uncertainty and considering the worst case [75] over these uncertainty

sets. [4] proposes an important concept named coherent risk measures, which satisfy four basic

axioms: translation invariance, subadditivity, monotonicity and positive homogeneity. A useful

property is that each coherent risk measure has a dual representation. [38] extends the concept of

coherent risk measures by introducing the notion of convex measure or risk. They also provide

the corresponding extension of the dual representation. [79] further shows that risk-sensitive MDP

with certain coherent risk measures is equivalent to robust MDP of minimizing the worst-case

expectation over the uncertainty set determined by the dual representation of the risk measure.

Therefore, suitably choosing risk measure can decrease the influence of both issues at the same

time.

Here, we present a real-life example to illustrate the importance of considering risk measures

instead of risk-neutral approaches (definitions of VaR and CVaR are provided in Section 1.2).

Consider a financial portfolio optimization problem where an agent allocates capital among

three assets: a risk-free bond with a fixed 2% annual return, a low-risk stock with an average
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annual return of 5% (standard deviation: 2%), and a high-risk stock with an average annual return

of 10% (standard deviation: 15%). Let the portfolio allocation under a risk-neutral criterion assign

10%, 20%, and 70% of the capital to the bond, low-risk stock, and high-risk stock, respectively,

while the risk-sensitive criterion, optimizing the CVaR at the 95% confidence level, assigns 40%,

40%, and 20% to the respective assets. The annual portfolio return R is a weighted sum of the

individual asset returns:

R = w1r1 + w2r2 + w3r3,

where wi are the portfolio weights and ri are the annual returns of the assets. Assume the

returns follow normal distributions: r1 = 0.02, r2 ∼ N (0.05, 0.022), r3 ∼ N (0.10, 0.152). For

convenience, we denote std as standard deviation.

Case 1: Risk-Neutral Criterion. With portfolio weights: w = [0.1, 0.2, 0.7], the expected

portfolio return is:

E[R] = 0.1 · 0.02 + 0.2 · 0.05 + 0.7 · 0.10 = 0.081 (8.1%).

For portfolio standard deviation, we have

Var[R] = 0.12 · 0 + 0.22 · 0.022 + 0.72 · 0.152 = 0.01129,

Std[R] =
√

0.01129 = 0.1063 (10.63%).

Using Monte Carlo simulation, the CVaR at the 95% confidence level is approximately −12%.

Case 2: Risk-Sensitive Criterion (CVaR Optimization at 95%). With portfolio weights: w =

[0.4, 0.4, 0.2], the expected portfolio return is

E[R] = 0.4 · 0.02 + 0.4 · 0.05 + 0.2 · 0.10 = 0.048 (4.8%).
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For, portfolio standard deviation, we have

Var[R] = 0.42 · 0 + 0.42 · 0.022 + 0.22 · 0.152 = 0.00292,

Std[R] =
√

0.00292 = 0.054 (5.4%).

Using Monte Carlo simulation, the CVaR at the 95% confidence level is approximately −3%.

Under the risk-neutral criterion, the portfolio achieves a higher expected return of 8.1%, but

with significantly higher volatility and a CVaR of −12%, indicating greater exposure to extreme

losses. Conversely, the risk-sensitive criterion reduces the expected return to 4.8%, but significantly

lowers the portfolio volatility and improves the CVaR to −3%, providing better protection against

adverse outcomes.

1.2.2 Coherent Risk Measures

Consider a probability space (Ω,F , P ), where Ω is the set of all possible outcomes, F is a

σ-algebra over Ω and P is a probability measure over F . Let Z denote the space of random

variables Z : Ω→ (−∞,∞) over the probability space (Ω,F , P ). A risk measure ρ is a mapping

from a random variable Z ∈ Z to a real value. In risk-sensitive RL, Z usually presents the reward

or cost and the goal is to determine the optimal strategies that minimize ρ(Z). In the last few

decades, many different risk measures have been proposed and investigated in the risk-sensitive

decision making context. All these risk measures can be classified into two categories: coherent

measures and non-coherent measures. A risk measure ρ is coherent if it satisfies the following

properties mentioned in [4].

(P1) Translation Invariance: ρ(Z + c) = ρ(Z) + c for any Z ∈ Z and c ∈ R;

(P2) Subadditivity: ρ(Z1 + Z2) ≤ ρ(Z1) + ρ(Z2) for all Z1, Z2 ∈ Z;

(P3) Monotonicity: If Z1, Z2 ∈ Z and Z1(w) ≤ Z2(w) for all w ∈ Ω, then ρ(Z1) ≤ ρ(Z2);

(P4) Positive homogeneity: ρ(λZ) = λρ(Z) for all Z ∈ Z and λ ≥ 0.

Another very useful property of coherent risk measures is the dual representation theorem [88],
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which connects the risk-sensitiveness to robustness. The theorem can be expressed as: a risk

measure ρ is coherent if and only if there exists a convex bounded and closed set U such that

ρ(Z) = max
ξ:ξP∈U(P )

Eξ[Z].

The result essentially states that any coherent risk measure is an expectation with respect to a

worst-case function ξP , chosen adversarially from the risk envelope U(P ) [24]. Examples of

coherent measures include the CVaR and EVaR [2] etc. Examples of non coherent measures include

variance, mean-standard-deviation and VaR etc [4].

In risk-sensitive decision making, more applications begin to consider optimization problems

in which the objective function involves a coherent risk measure of the total discounted cost.

The reason is that properties (P1)-(P4) ensure the ”rationality” of single-period risk assessments.

Take financial investment as an example: (P1) means that the deterministic part of an investment

portfolio does not contribute to its risk; (P2) ensures that diversifying an investment will reduce

its risk; (P3) guarantees that an asset with a higher cost for every possible scenario is indeed

riskier; (P4) means that doubling a position in an asset doubles its risk. Moreover, as mentioned

in Section 1.2.1, by using this representation of coherent risk, we can show that robust MDPs are

equivalent to risk-sensitive MDPs while using coherent risk measure. Thus, both uncertainties can

be solved by applying coherent risk measure to decision making.

1.2.3 Value-at-Risk and Conditional Value-at-Risk

In the following, we review risk measures that are directly related to our work. Let Z be a

bounded random variable (i.e., E[|Z|] <∞) on the probability space (Ω,F , P ) with the cumulative

distribution function (CDF) F (z) = P (Z ≤ z). The VaR [4] at confidence level α ∈ [0, 1] is the

1− α quantile of Z. Since we interpret Z as a cost in this thesis, VaR is defined as:

VaRα(Z) = inf{z|F (z) ≥ α}.
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The visual illustration of VaR can be founded in Figure 1.1. VaR is a well-known risk

measure of risk-sensitive MDPs. However, VaR is not coherent due to the lack of subadditivity

and convexity [4]. Furthermore, VaR is unstable and difficult to optimize when the costs are not

normally distributed [85, 86].

Figure 1.1: Illustration of VaR and CVaR.

To address these shortcomings, a new risk measure called CVaR has been developed [85, 86].

CVaR is defined as the mean of the worst α% of values of Z, i.e.,

CVaRα(Z) = inf
b∈R

{
b+

1

α
EP [(Z − b)+]

}
,

where (z)+ = max(z, 0). From its definition, we can see that CVaRα is decreasing in α, i.e, CVaRα

tends to max(Z) as α decreasing to 0 and CVaR1(Z) equals E(Z). CVaR is able to quantify risk

beyond VaR and is a coherent risk measure. Due to these advantages, CVaR has been extensively

applied to RL problems [23, 24, 40, 52, 91, 96, 97, 105].

As mentioned above, for each coherent risk measure, there is a useful alternative dual

representation [2]. Before introducing the dual representation of CVaR, we introduce some

notation. Let Q be another probability measure on (Ω,F), Q is said to be absolutely continuous

with respect to P (denoted by Q � P ) if P (A) = 0 implies Q(A) = 0 for any measurable set

A ∈ F . If Q � P , then by probability theory there is a well-defined Radon-Nikodym derivative
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dQ
dP

and the alternative dual representation for CVaR can be written as [3]:

CVaRα(Z) = sup
Q∈UCVaR

EQ(Z), (1.1)

where

UCVaR =

{
Q� P :

dQ

dP
∈
[
0,

1

α

]}
. (1.2)

From this dual representation, CVaRα(Z) can be interpreted as the largest mean of Z

computed using distribution Q that is in the neighborhood of P defined in (1.2). In the dual

representation of CVaR, the uncertainty set of the CVaR optimization is defined by distributions

whose Radon-Nikodym derivative is constrained to a certain range. While the uncertainty set

corresponding to CVaR is certainly relevant for some RL applications [24], it is a less common way

to define distribution neighborhood in machine learning applications and hence its interpretation

for machine learning applications is less natural. This leads to the question of whether we can

apply risk measures, whose uncertainty sets in their dual presentations are defined using widely

used metrics and have more natural interpretations in machine learning applications, to design

risk-sensitive RL algorithms.

1.2.4 Entropic Value-at-Risk

[2] propose a risk measure named EVaR from the Chernoff inequality of the VaR. Let LM+ be the

set of all Borel measurable functions Z : Ω → R whose moment generating function MZ(t) =

EP
[
eνZ
]

exists for ν ≥ 0. The EVaR of a random variable Z ∈ LM+ with confidence level α is

defined as

EVaRα(Z) = inf
ν>0

{
ν−1 ln(MZ(ν))− ν−1 lnα

}
. (1.3)

EVaR is shown to be the tightest upper bound for both VaR and CVaR. Similar to CVaR, EVaR is

coherent risk measure and EVaRα is decreasing in α, i.e, EVaRα tends to max(Z) as α decreasing

to 0 and EVaR1(Z) equals E(Z).
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Since EVaR is a coherent risk measure, one appealing feature of EVaR is its dual

representation [2]:

EVaRα(Z) = sup
Q∈UEVaR

EQ(Z), (1.4)

where

UEVaR = {Q� P : DKL(Q ‖ P ) ≤ − lnα}.

Here DKL refers to Kullback-Leibler (KL) divergence between probability measures Q and

P . Since KL divergence is also called relative entropy, this measure is then called entropic

value-at-risk. From (1.4), we can see that EVaRα(Z) has a very nice interpretation: it is the largest

mean of Z computed using distribution Q, who is in the − lnα-neighborhood (defined using KL

divergence) of P . Compared with the dual representation of CVaR, it’s more common and natural

to use KL divergence rather than the Radon-Nikodym derivative to define the distance between

distributions in machine learning applications. Therefore, EVaR might be a natural risk measure

for RL.

We now would like to comment on another risk measure named entropic risk measure. For

Z ∈ LM with ν 6= 0, the entropic risk [37] is defined as:

ρentropic = ν−1 log(MZ(−ν)).

Although having entropic in both names, entropic risk measure and EVaR are quite different not

only in the mathematical interpretation but also in their properties. Different from the t in EVaR

acting as a positive variable for getting the infimum, the parameter t in entropic risk measure is

already given by the user depending on the user’s tolerance towards risk. Although entropic risk

measure is convex, it is not coherent [47]. Moreover, despite the popularity of entropic risk measure

in literature, its practical applications have proven to be problematic in [16, 36, 42] since it’s very

sensitive to errors in the underlying distribution.
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1.3 Risk-Sensitive Reinforcement Learning

Due to these uncertainties mentioned in Section 1.2.1 and the increased awareness of events

that have small probability but high consequences, many applications focus on minimize a

risk-sensitive criterion rather than the risk-neutral criterion in decision making under the MDP

framework. The optimization over a risk-sensitive criterion is called risk-sensitive decision making.

In this literature, researchers are aiming to find a ‘good’ risk criterion such that is both

conceptually meaningful and computationally tractable. The earliest risk measure used in

risk-sensitive MDPs is the exponential risk measure 1
β
E[eβZ ], where Z is the total cost and

the parameter β is determined by the user to control its tolerance towards risk [47]. However,

the choice of suitable β is often challenging. This issue motivated several other approaches,

such as considering the maximization of a strictly concave function of the distribution of the

terminal state [25] and variance-related risk measures in [92]. Numerous alternative risk measures

have recently been investigated under this framework. VaR and CVaR are two promising such

alternatives. Recall the definition of VaR and CVaR, we know that they both aim at quantifying

costs that might be encountered in the tail of the distribution of cost, despite in different ways.

Both VaR and CVaR have been studied in risk-sensitive MDPs [8, 18, 22–24, 80].

RL techniques are also implemented to solve risk-sensitive decision making, which is called

risk-sensitive RL. Widely used RL techniques include dynamic programming [89] and policy

gradient [9, 66, 103]. The term dynamic programming (DP) refers to a collection of algorithms

that can be used to compute optimal policies. The classical DP includes policy evaluation,

policy improvement, policy iteration and value iteration and it can be applied to problems

with a few millions of states. Asynchronous DP can be applied to larger problems but overall,

DP is not practical enough to very large problems [94]. In policy gradient, the policies are

parameterized by a parameter vector and policy search is performance via gradient methods.

Risk-sensitive RL algorithms based on these RL techniques and risk measures have also been

research in [29, 58, 69, 81, 96].
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1.4 Research Motivation and Problems Addressed

Despite the growth of risk-sensitive RL approaches, the field still faces substantial challenges in

ensuring robustness, efficiency, and adaptability across diverse scenarios, particularly in settings

where model parameters are uncertain or where efficient exploration is crucial.

This thesis tackles four primary problems:

1) Interpretability and Computational Tractability of Risk Measures: Many conventional risk

measures, such as VaR and Conditional CVaR, have limitations in interpretability or computational

efficiency, especially when applied to RL. VaR is not coherent, making it difficult to optimize

reliably, while CVaR’s dual representation lacks a natural interpretation in many machine learning

contexts, complicating its application to RL. This raises the need for alternative risk measures that

can balance coherence, interpretability, and computational feasibility.

2) Lack of a Unified Risk-Sensitive Framework for Flexibility: Current RL methods often

rely on fixed risk measures, limiting flexibility to adapt to diverse risk preferences or nuanced

decision-making requirements. These approaches may not generalize well to a range of coherent

risk measures, highlighting the need for a framework that supports diverse measures while

maintaining efficiency and robustness.

3) Ensuring Robustness Under Model Uncertainty: Traditional RL often assumes fixed model

parameters, but real-world applications commonly face uncertainties in transition probabilities and

costs, leading to model inaccuracies and degraded performance. While Robust MDPs (RMDPs)

offer a solution by optimizing policies against worst-case scenarios, most RMDP research

assumes risk-neutral objectives. Extending RMDPs to handle risk-sensitive objectives introduces

complexity, particularly when ambiguity sets are decision-dependent, where the uncertainty itself

varies with actions taken.

4) Efficient Exploration Without a Predefined Reward Function: Exploration is fundamental

to effective learning, especially in RL applications where agents must explore unfamiliar

environments. In risk-sensitive RL, exploration poses unique challenges, as the standard

risk-neutral strategies may not adequately address the need to mitigate low-probability,
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high-impact events. Moreover, the reward-free setting—where a predefined reward function is

absent—requires the agent to gather information that is broadly applicable across potential

rewards, creating an urgent need for sample-efficient algorithms that can balance exploration and

risk sensitivity.

Addressing these challenges requires innovative methods that integrate robust theoretical

foundations with practical applicability, advancing risk-sensitive RL toward broader, more reliable

real-world deployment.

1.5 Contributions and Outline

The main contributions of this thesis are organized across four chapters, each addressing a specific

problem in risk-sensitive RL.

In Chapter 2, we solve the interpretability issue by introducing the application of a novel risk

measure, EVaR, to risk-sensitive RL. EVaR provides a more natural and interpretable measure of

uncertainty than conventional measures, such as CVaR, by defining uncertainty in terms of KL

divergence. We develop two approaches: EVaR optimization with value iteration (EVaR-VI) and

EVaR optimization with policy gradient (EVaR-PG). We validate these approaches with theoretical

proofs and numerical experiments, demonstrating the practicality of EVaR for RL applications.

These results have been published in [70, 71].

Chapter 3 proposes a generalized risk-sensitive RL framework using φ-Divergence-Risk

(PhiD-R), a flexible class of coherent risk measures that includes widely used measures

such as CVaR and EVaR. To solve RL problems under this new framework, we develop a

trajectory-based policy gradient algorithm that efficiently estimates gradients for PhiD-R and

converges to locally optimal policies. This framework ensures flexibility and computational

efficiency, enhancing decision-making robustness across diverse risk measures while maintaining

computational tractability. This work has been submitted to IEEE Transactions on Information

Theory [72].
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Chapter 4 investigates the robustness of risk-sensitive RL within the RMDP framework,

focusing on CVaR as a risk measure. We develop methods to determine optimal policies that

minimize the worst-case CVaR within an ambiguity set of transition probabilities. Furthermore,

we extend this analysis to handle decision-dependent uncertainty, introducing a new risk measure,

NCVaR, that enhances robustness under dynamic uncertainty settings. We validate our approach

with theoretical analysis and simulations, highlighting the potential of NCVaR to improve

robustness in risk-sensitive RL. This study has been published in [73].

In Chapter 5, we address the challenge of efficient exploration in risk-sensitive RL within

a reward-free framework. We propose a CVaR-based risk-sensitive reward-free RL framework

(CVaR-RF RL) to collect sample-efficient exploration trajectories that are applicable to any reward

function. Our exploration algorithm, CVaR-RF-UCRL, achieves near-optimal sample complexity,

and we introduce a planning algorithm, CVaR-RF-planning, equipped with CVaR-VI (CVaR

optimization with value iteration) and CVaR-VI-DISC (CVaR-VI with discretization) to ensure

practical applicability. This framework advances exploration efficiency in risk-sensitive RL, a

crucial factor in deploying RL in diverse real-world settings. These results have been published

in [74].
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Chapter 2

Risk-Sensitive Reinforcement Learning with

EVaR

2.1 Introduction

In risk-sensitive MDPs, one well-known risk measure is VaR. However, VaR is not coherent

due to the lack of subadditivity and convexity [4]. Furthermore, VaR is unstable and difficult to

optimize when the costs are not normally distributed [85, 86]. To address these shortcomings,

Rockafellar and Uryasev developed a new risk measure called CVaR in [85] and [86]. CVaR is

able to quantify risk beyond VaR and is a coherent risk measure. Due to these advantages, CVaR

has been extensively applied to RL problems [23, 24, 40, 52, 91, 96, 97, 105].

However, as detailed in Section 1.2.3, in the dual representation of CVaR, the uncertainty set of

the CVaR optimization is defined by distributions whose Radon-Nikodym derivative is constrained

to a certain range. While the uncertainty set corresponding to CVaR is certainly relevant for some

RL applications [24], it is a less common way to define distribution neighborhood in machine

learning applications and hence its interpretation for machine learning applications is less natural.

This leads to the question of whether we can apply risk measures, whose uncertainty sets in their

dual presentations are defined using widely used metrics and have more natural interpretations in
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machine learning applications, to design risk-sensitive RL algorithms. One promising coherent risk

measure is EVaR developed recently by Ahmadi et al. [2]. EVaR is a coherent risk measure that is

derived from the Chernoff inequality for the VaR. In particular, EVaR is the tightest upper bound

for both VaR and CVaR [2].

One appealing feature of EVaR is the uncertainty set in its dual representation. In particular, [2]

shows that the uncertainty set in the dual representation of EVaR is defined by distributions whose

KL distance to the nominal distribution is less or equal to a certain level. As a result, minimizing

EVaR is equivalent to minimizing the worst-case expectation over distributions whose KL distance

to the nominal distribution is less or equal to a certain level. As KL distance is widely used to define

distances between distributions in machine learning applications, EVaR appears to be a natural risk

measure to use for RL problems.

Considering all these advantages of EVaR, we introduce a new approach to determine the

optimal policies for risk-sensitive decision making problem based on the optimization of EVaR. To

the best of our knowledge, this is the first time that EVaR is applied in risk-sensitive MDPs. In our

approach, the goal is to determine the optimal policies that minimize the EVaR value of the total

discounted cost.

Chapter Contribution: In this chapter, we develop two approaches to solve the EVaR

optimization problem: a value iteration-based method, termed EVaR-VI, and a policy

gradient-based method, termed EVaR-PG.

In EVaR-VI, due to the coherent property of EVaR, we can apply the alternative dual

representation for EVaR in [2] and then the problem becomes an optimization problem over an

uncertainty set. However, in the uncertainty set, we need to know the probability distribution of

the total discounted cost under different policies, which is quite hard to obtain. To address this

issue, we utilize the conditional decomposition theorem of version independent risk functions

in [82] to develop the conditional EVaR decomposition theorem that reveals the connection

of EVaR computation between the current state and the next state. After utilizing conditional

EVaR decomposition theorem, the EVaR problem becomes an optimization problem over the
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uncertainty set defined on the one-step transition kernel of the underlying MDP using KL distance.

Following the idea of dynamic programming, we define value function and Bellman operator for

EVaR. Similar with the Bellman operator, we show that the EVaR Bellman operator also has the

monotonicity, transition invariance and contraction properties, which guarantees the existence of

the unique fixed-point solution. Combining with these useful properties, we develop an EVaR

value iteration algorithm, which recursively update the EVaR value at each time step and gradually

converge to the optimize value. According to the optimal value function, we can then construct a

method to extract the optimal policy as a stationary Markovian policy, which is more structured and

easier for implementation. However, using the conditional EVaR decomposition theorem will bring

in an augmented continuous space representing the confidence level, which makes our algorithm

not practical enough. To improve the practicality, we follow the idea of linear interpolation in [24]

to develop an approximate value iteration algorithm, in which we choose some points of the

confidence level rather than using its whole continuous space. Similar with the EVaR value iteration

algorithm, we also define the interpolated EVaR Bellman operator and show that it also has these

useful properties as mentioned in EVaR Bellman operator. Therefore, we can follow the same

procedure to develop the approximate version of the value iteration algorithm and analyze the

error bounds between these two algorithms. Furthermore, for the scenarios where we do not know

the transition kernel of the underlying MDP model, we adapt the sample average approximation

(SAA) approach introduced in [88] and [98] to estimate the transition probability and design the

sample based EVaR algorithm following the same procedure. Moreover, we validate the proposed

algorithms using numerical examples.

In EVaR-PG, we follow the idea of policy gradient method to minimize the EVaR value of the

total discounted cost. In policy gradient method, policies are parameterized by a vector and we use

gradient descent in the parameter space to search for optimal policies. In this work, we propose

a trajectory-based EVaR policy gradient algorithm. We first reformulate the EVaR optimization

problem by plugging in the definition of EVaR, which enables us to compute the gradient more

easily. The general idea is to descent in the policy parameter as well as the parameter that comes
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from EVaR’s definition w.r.t gradients to find a local minimum of the EVaR optimization problem.

In order to ensure the usability of this approach, we generate sample trajectories to estimate the

gradients. Then we develop updates rules for these parameters, in which projections are adopted

and the stepsizes are chosen to satisfy certain conditions to ensure the convergence of this approach.

For the convergence analysis, we first regard these updates as a multi-time scale discrete stochastic

approximation and show the sequences converge to the solution of the corresponding continuous

time system with different speed. By applying Lyapunov analysis, we further show that these

sequences converge to the local asymptotically stable points, which guarantees that the solution

is a local minimum. Numerical examples for this algorithm are also provided by applying this

approach to the optimal stopping problem.

Chapter Organization: The remainder of this chapter is organized as follows. Section 2.2

details the EVaR-VI approach. Specifically, Section 2.2.1 introduces the problem formulation,

followed by Section 2.2.2, which presents the value iteration algorithms and a practical

approximation using linear interpolation. Section 2.2.3 addresses cases where the underlying

MDP model is unknown, providing a sample-based algorithm. Section 2.3 covers the EVaR-PG

approach. In Section 2.3.1, we provide mathematical preliminaries for EVaR-PG, followed by the

problem formulation in Section 2.3.2. Section 2.3.3 introduces the trajectory-based EVaR policy

gradient method. In Section 2.4, we present numerical simulation results for both EVaR-VI and

EVaR-PG. Finally, concluding remarks are provided in Section 2.5.

2.2 EVaR Optimization with Value Iteration: EVaR-VI

In RL, a common approach to solving sequential decision-making problems is value iteration.

This method estimates the value of each state-action pair, enabling the agent to derive an optimal

policy. Value iteration is effective in discrete action spaces, providing a straightforward framework

to converge on an optimal strategy. It is especially useful in environments with well-defined

transitions and rewards, where accurate value estimates can be efficiently computed. Here, we
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apply EVaR to risk-sensitive RL and solve the optimization problem using value iteration.

2.2.1 Problem Formulation

The problem formulation of EVaR optimization in risk-sensitive RL can be written as

min
π∈ΠH

EVaRα

(
lim
T→∞

Jπ(x0)
)
, (2.1)

where π = {π0, π1, . . . } is the policy sequence with action at = πt(ht) for t = {0, 1, . . . }.

Now, let PS be the true probability measure of the total discounted cost under policy π and QS

denote another probability measure over this space. Using the dual representation (1.4) of EVaR,

we can write the optimization problem (2.1) as

min
π∈ΠH

sup
QS∈UEVaR(α,PS)

EQS
(

lim
T→∞

Jπ(x0)
)
,

where

UEVaR(α, PS) = {QS � PS : DKL(QS ‖ PS) ≤ − lnα}.

However, it is challenging to optimize over this uncertainty set on the probability distribution

of the total discounted cost. As will be discussed in the sequel, we will solve this problem by

using the EVaR decomposition theorem proposed in Section 2.2.2, which reveals the connection

between the current state and next state in EVaR computation and allows us to optimize over the

uncertainty set defined on the transition kernel P (·|x, a) using KL distance. Note that in standard

RL, we only aim to minimize the total discounted cost under the transition kernel P (·|x, a). Now

with EVaR and its dual representation, the objective is to minimize the worst cost for all kernels in

the neighborhood of P (·|x, a) as defined in KL distance, so as to achieve robustness.
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2.2.2 Value Iteration for EVaR

In order to solve the primary optimization problem (2.1), we follow the idea of dynamic

programming and apply the decomposition theorem of version independent risk measures used

in [24] [82]. One important function in RL is the Bellman operator, which describes a recursively

update for value function. Our approach follows the similar idea to derive the EVaR Bellman

operator and then uses the value iteration process to obtain the optimal solution of (2.1).

To begin with, we introduce the decomposition theorem for conditional EVaR. Firstly, equipped

with the dual representation for EVaR in [2] and the definition of conditional risk measures in [82],

the conditional EVaR at random confidence level can be defined as following.

Definition 1. Let Ft be a sub-σ-algebra over the space (Ω, P ), i.e., Ft ⊂ F and ξt be a measurable

random variable w.r.t. Ft, then the conditional EVaR with confidence level α ∈ [0, 1] is defined as

EVaRα(Z|Ft) = esssupEP (ξtZ|Ft),

where the ′esssup′ is taken over the set {ξt : E[ξt|Ft] = 1, DKL(ξtP ||P ) ≤ − lnα}.

Then, we introduce version independent risk measures mentioned in [82]. Let Z1 and Z2 be two

random variables in Z , then a risk measure ρ is version independent if ρ(Z1) = ρ(Z2) whenever

Z1 and Z2 shares the same law, i.e., P (Z1 ≤ z) = P (Z2 ≤ z) for all z ∈ R. By Corollary 3.1

in [2], we know EVaR is a version independent risk functional. Now, we can apply Theorem 21

in [82] to propose the EVaR decomposition theorem.

Theorem 1. For any τ > t ≥ 0, let Ft ⊂ Fτ be two sub-σ-algebra of F . The conditional EVaR at

random confidence level α (α ∈ [0, 1] a.s.) obeys the nested decomposition

EVaRα(Z|Ft) = esssupEP [ξτ · EVaRα;ξτ (Z|Fτ )|Ft]

where the essential supremum is taken among all feasible dual random variables ξτ measurable
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with respect to Fτ .

Remark 1. In this chapter, Q and P are two probability mass functions (PMFs) and P is the true

transition probability of the underlying MDP model. Since we are more interested in the EVaR

decomposition between the current state xt and the next state xt+1 under policy π, here we choose

Fτ to be Ht+1 and Ft to be Ht. Therefore, ξτ can be represented as

ξ(xt+1) =
Q(xt+1|xt, at)
P (xt+1|xt, at)

≥ 0

for any t ≥ 0, where at is the action induced by π at xt. Recall the uncertainty set in EVaR dual

representation,

UEVaR = {Q� P : DKL(Q ‖ P ) ≤ − lnα}.

Note that in discrete case, the KL distance is

DKL(Q ‖ P ) =
∑

xt+1∈X

Q(xt+1|xt, at) log
Q(xt+1|xt, at)
P (xt+1|xt, at)

.

Inserting Q(xt+1|xt, at) = ξ(xt+1) · P (xt+1|xt, at) to the above equation and using the fact that Q

is a PMF, then we know ξ(xt+1) should be in the set

UEVaR(α, P (·|xt, at)) =

{
ξ :

∑
xt+1∈X

ξ(xt+1)P (xt+1|xt, at) log ξ(xt+1) ≤ − lnα,

∑
xt+1∈X

ξ(xt+1)P (xt+1|xt, at) = 1

}
.

Then the decomposition in Theorem 1 can be rewritten as

EVaRα(Z|Ht, π) = esssupEP [ξ(xt+1) · EVaRαξ(xt+1)(Z|Ht+1, π)|Ht, π], (2.2)

where the ′esssup′ is taken over ξ ∈ UEVaR(α, P (·|xt, at)).

Note that the ′esssup′ can be replaced by ′max′ since the set UEVaR is convex and compact.
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Theorem 1 establishes a connection between the current state and the next state for EVaR

computation. Comparing with directly computing EVaR value based on its definition, which

involves the sum of infinitely many random variables and an uncertainty set depending on the

policy, it provides a recursive method to compute EVaR that involves optimization over uncertainty

set of the one-step transition kernel P (·|x, a). Due to the difference of confidence level on both

side in equation (8), following the idea in [24], we augment the state space X with an additional

continuous space Y = (0, 1], which represents the space of confidence level. Following the idea of

standard dynamic programming, we define the value function for EVaR as follows.

Definition 2. For any x ∈ X , y ∈ Y , the value-function V (x, y) is defined as:

V (x, y) = min
π∈ΠH

EVaRy

(
lim
T→∞

Jπ(x)
)
. (2.3)

Equipped with Theorem 1 and Definition 2, we can define the EVaR Bellman operator.

Definition 3. The EVaR Bellman operator T : X × Y → X × Y is defined as:

T[V ](x, y) = min
a∈A

[
C(x, a) + γ max

ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

ξ(x′)V (x′, yξ(x′))P (x′|x, a)

]
. (2.4)

Here we introduce some useful properties of the EVaR Bellman operator.

Lemma 1. The Bellman operator T : X × Y → X × Y has the following properties:

(1) Monotonicity: If V1 ≤ V2 component-wisely, then T[V1] ≤ T[V2].

(2) Transition Invariance: For a constant c, T[V + c] = T[V ] + γc.

(3) Contraction: ‖ T[V1]−T[V2] ‖∞≤ γ ‖ V1 − V2 ‖∞, where ‖ f ‖∞= supx∈X ,y∈Y |f(x, y)|.

(4) Concavity preserving in y: For any x ∈ X , suppose yV (x, y) is concave in y ∈ Y . Then the

maximization problem in (2.4) is concave. Furthermore, yT[V ](x, y) is concave in y.

Proof. Please refer to Appendix A.1 for details.

Similar with standard dynamic programming, Property 3 shows that the EVaR Bellman

operator is contraction, which is important and useful for the design of convergent value iteration
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algorithms based on EVaR. Property 4 indicates that the optimization problem in our value iteration

update process is concave and therefore computationally tractable.

After defining the Bellman operator for EVaR, we need to determine the optimal condition

and the optimal policy. In the following theorem, we show that for any x ∈ X and y ∈ Y , the

fixed point solution of T[V ](x, y) = V (x, y) exists and it is unique. Moreover, the solution for the

original optimization problem (2.1) is equal to the fixed point solution with x0 = x and α = y.

Theorem 2. For any (x, y) ∈ X × Y , T[V ](x, y) = V (x, y) has a unique solution V ∗(x, y).

Furthermore, this unique solution is equal to the optimal value of (2.1), i.e.,

V ∗(x, y) = min
π∈ΠH

EVaRy

(
lim
T→∞

Jπ(x)
)
. (2.5)

Proof. Please refer to Appendix A.2 for details.

We now discuss how to determine the optimal policy from V ∗. Although the original

optimization problem (2.1) is based on history-dependent policies, we can show that the optimal

condition in Theorem 2 can be obtained by following a stationary Markovian policy, which

can be constructed as a greedy policy with respect to the optimal condition V ∗. Compared to

historic-dependent policies, stationary Markovian policies are more structured, i.e., actions only

depend on current states and the mappings from states to actions are time-independent, and hence

are easier for implementation.

Theorem 3. Given initial conditions x0, y0 = α and the unique fixed-point solution V ∗(x, y) for

all (x, y) ∈ X × Y , let u∗ be a stationary Markovian policy defined as:

u∗(xk, yk) = a∗k,∀k ≥ 0, (2.6)
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and for k ≥ 1, the state transitions are

xk ∼ P
(
· |xk−1, a

∗
k−1

)
, yk = yk−1ξxk−1,yk−1,a

∗
k−1

(xk), (2.7)

where a∗ and ξx,y,a∗(·) are solutions of the min-max optimization problem in T[V ∗](x, y). Then u∗

is an optimal policy for problem (2.1) with initial state x0 and confidence level α.

Proof. Please refer to Appendix A.3 for details.

Equipped with Theorem 2 and Theorem 3, we can now design a value iteration process to solve

the EVaR optimization problem in (2.1).

Algorithm 2.1 EVaR Value Iteration

1: Initialization: for any x ∈ X and y ∈ Y , arbitrarily choose V0(x, y).
2: for t = 0, 1, 2, . . . do
3: for all (x, y) ∈ X × Y do
4: recursively applying the EVaR Bellman operator as

Vt+1(x, y) = T[Vt](x, y),

5: end for
6: end for
7: Get the optimal value function by V ∗(x, y) = limt→∞ Vt(x, y).
8: Selecting the specific initial state x0 and confidence level α, the solution of EVaR optimization

problem can be immediately obtained as V ∗(x0, α).
9: Following Theorem 3, one can derive an optimal Markovian policy w.r.t V ∗(x, y).

However, Algorithm 2.1 is not practical enough due to the augmented continuous space Y .

To address this issue, we follow the idea of applying linear interpolation from the paper of CVaR

in [24]. Moreover, in order to ensure the computational tractability of our approach, the initial value

function should satisfy the following assumption to preserve the concavity of the EVaR Bellman

operator T.

Assumption 1. The initial value function V0(x, y) satisfies the following properties:

(1) yV0(x, y) is concave in y ∈ Y;

(2) V0(x, y) is continuous and bounded in y ∈ Y for any x ∈ X .
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In the linear interpolation, for the confidence level, we choose a finite set from the continuous

space Y . For each x ∈ X , let N(x) be the number of interpolation points of confidence level and

the corresponding set is Y (x) = {y1, y2, . . . , yN(x)} ∈ [0, 1]N(x) with y1 = 0 and yN(x) = 1. Then

the linear interpolation of the concave function yV (x, y) can be written as

Ix[V ](y) = yiV (x, yi) +
yi+1V (x, yi+1)− yiV (x, yi)

yi+1 − yi
(y − yi)

where yi = max{y′ ∈ Y (x) : y′ ≤ y} and yi+1 is the closet point such that y ∈ [yi, yi+1].

Now we can define the interpolated Bellman operator as follows:

TI [V ](x, y) = min
a∈A

[
C(x, a) + γ max

ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V ](yξ(x′))

y
P (x′|x, a)

]
. (2.8)

Notice that when the confidence level y tends to 0, by L’ Hospital’s rule, one has

limy→0
Ix′ [V ](yξ(x′))

y
= V (x, 0)ξ(x), which means at y = 0 the interpolated Bellman operator

TI is equivalent to the original Bellman operator, i.e, TI[V ](x, 0) = mina∈A
[
C(x, a) +

γmaxx′∈X :P (x′|x,a)>0 V (x′, 0)
]
.

Similar with the EVaR Bellman operator, we can show that the interpolated EVaR Bellman

operator has the following useful properties: (1) monotonicity; (2) transition invariance; (3)

contraction; and (4) concavity preserving in y. Property 3 helps us to construct the value iteration

process with linear interpolation and ensures the existence of the unique fixed-point solution.

Property 4 indicates the computational tractability of the inner maximization problem in (4.10).

Moreover, property 4 will be used in bounding the error of our approximate algorithm. Details of

the proofs of these properties are omitted as they are very similar to the corresponding proofs for

the EVaR Bellman operator. Combining with Theorem 1 and these properties, we can design an

approximate version of Algorithm 1.

Since the EVaR bellman operator has the concavity preserving property, Theorem 7 in [24] can

be used to bound the error between EVaR value iteration and approximate EVaR value iteration.

In particular, suppose that Assumption 7 is satisfied and ε > 0 is an error tolerance parameter. For
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Algorithm 2.2 EVaR Value Iteration with Linear Interpolation

1: Initialization: choose the set of interpolation points Y (x) and the initial value function
V0(x, y) satisfying Assumption 7.

2: for t = 1, 2, . . . do
3: for each x ∈ X and each yi ∈ Y (x) do
4: update the estimate of value function by

Vt(x, yi) = TI [Vt−1](x, yi),

5: end for
6: end for
7: Get the near-optimal value function by V̂ ∗(x, yi) = limt→∞ Vt(x, yi).
8: Selecting the specific initial state x0 and confidence level α, the solution of EVaR optimization

problem with linear interpolation can be immediately obtained as V̂ ∗(x0, α).
9: Following Theorem 3, one can derived an optimal policy w.r.t V̂ ∗(x, y).

any state x ∈ X and step t ≥ 0, choose y2 > 0 such that Vt(x, y2)− Vt(x, 0) ≥ −ε and update the

interpolation points according to: yi+1 = θyi,∀i ≥ 2 with θ ≥ 1. Then following same steps as in

Theorem 7 in [24], one can show that Algorithm 2 has the following error bound:

−γ
1− γ

O ((θ − 1) + ε) ≤ V̂ ∗(x0, a)− min
π∈ΠH

EVaRα

(
lim
T→∞

Jπ(x0)
)
≤ 0

and the following finite time convergence error bound:

∣∣∣∣Tn
I [V0](x0, α)− min

π∈ΠH
EVaR

(
lim
T→∞

Jπ(x0)
)∣∣∣∣ ≤ O((θ − 1) + ε)

1− γ
+O(γn).

From these bounds, we know that when the number of interpolated points becomes large

enough, i.e., θ → 1 and the tolerance parameter ε→ 0, the error tends to 0.

2.2.3 Linear Interpolated EVaR with Sample Average Approximation

In Section 2.2.2, we assume that the transition probability of the underlying MDP model

are known, which is often not the case in practice. Therefore, in this section, we propose a

sample-based counterpart for Algorithm 2, which also approximates the solution of the primary

27



EVaR optimization problem in (2.1). In previous sections, we only define the value function.

Now, without the model information, to obtain the policy, we need to define the state-action value

function, state-action Bellman operator as well as the state-action interpolated Bellman operator

for EVaR. Notice that we use the set of interpolation points Y (x) rather than the whole continuous

space Y .

Definition 4. For any x ∈ X , y ∈ Y (x) and a ∈ A, the state-action value function for EVaR MDP

is defined as

Q∗(x, y, a) = min
π∈ΠH

EVaRy

(
lim
T→∞

Jπ(x, a)

)
.

Definition 5. For any x ∈ X , y ∈ Y (x) and a ∈ A, the state-action Bellman operator F is defined

as

F[Q](x, y, a) = C(x, a) + γ max
ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

ξ(x′)V (yξ(x′))P (x′|x, a),

where

V (x, y) = min
a∈A

Q(x, y, a).

Definition 6. For any x ∈ X , y ∈ Y (x), the state-action interpolated Bellman operator is defined

as

FI [Q](x, y, a) = C(x, a) + γ max
ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V ](yξ(x′))

y
P (x′|x, a),

and the corresponding interpolated value iteration update:

Q(x, y, a) := C(x, a) + γ max
ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V ](yξ(x′))

y
P (x′|x, a). (2.9)

Similar with the estimate of optimal value function V̂ ∗, Q̂∗(x, y, a) denotes the unique solution
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of FI [Q](x, y, a) = Q(x, y, a),∀x ∈ X , y ∈ Y (x), a ∈ A. According to the similar contraction

argument, we can show the existence as well as the uniqueness of the fixed-point solution of FI.

Without loss of generality, we assume that the set of EVaR-level interpolation points Y(x) is

uniform at any state x ∈ X . We consider synchronous setting where all the state-action value

functions are updated at each time step.

When the transition probability P is unknown, we utilize the SAA approach introduced in [88]

and [98] to estimate it. Let Nk denote the number of episodes and for each (x, a) ∈ X ×A, we run

Nk episodes and then get the sampled transitions {x′,1, . . . , x′,Nk} ∼ P (x′|x, a). Based on these

samples, we can calculate the empirical transition probability PNk(x
′|x, a) by

PNk(x
′|x, a) =

1

Nk

Nk∑
i=1

1{x′,i = x′|x, a}, ∀x, x′ ∈ X , a ∈ A, (2.10)

and replace the inner maximization problem in (2.9) with the following one:

max
ξ∈UEVaR(y,PNk (·|x,a))

1

Nk

Nk∑
i=1

Ix′,i [Vk](yξ(x′,i))
y

.

As shown in [13], SAA is consistent, which means the solution of maximization problem

equipped with SAA converges to the original solution as Nk →∞. The details of the consistency

can be found in [88]. Now we can derive a sample-based EVaR algorithm as described in

Algorithm 2.3.

In Algorithm 2.3, we first choose the set of interpolation points Y (x) according to yi+1 =

θyi,∀i ≥ 2 with θ ≥ 1 and randomly assign values to the initial state-action value function

Q0(x, y, a) for any x ∈ X , y ∈ Y and a ∈ A(x), e.g., Q0(x, y, a) = 0. Since the exact transition

probability of the underlying model is unknown, we use Monte Carlo method to sample Nk

trajectories for states (x′,1, . . . , x′,Nk) and calculate the empirical transition probability PNk(x
′|x, a)

by (2.10). In the iteration process, we update the state-action value function by equation (2.11) with

step size satisfying (2.12) until the state-action value function converges. Lastly, a near-optimal

policy can be constructed as a greedy policy with respect to the near-optimal value.In the following
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Algorithm 2.3 Sample-based EVaR Algorithm

1: Initialization: choose the set of interpolation points Y (x) and the initial state-action value
function Q0(x, y, a) = 0 for any x ∈ X , y ∈ Y (x) and a ∈ A(x).

2: Sample Nk ≥ 1 for states (x′,1, . . . , x′,Nk) and calculate the empirical transition probability
PNk(x

′|x, a) by (2.10).
3: for k = 1, 2, . . . do
4: for each state x and action a do
5: update the state-action value function as follows:

Qk+1(x, y, a) =Qk(x, y, a) + βk(x, y, a) ·
(
−Qk(x, y, a) + C(x, a)

+ γ max
ξ∈UEVaR(y,PNk (·|x,a))

1

Nk

Nk∑
i=1

Ix′,i [Vk](yξ(x′,i))
y

)
.

(2.11)

where the value function is Vk(x, y) = mina∈AQk(x, y, a), and the step size βk(x, y, a)
satisfies ∑

k

βk(x, y, a) =∞,
∑
k

β2
k(x, y, a) <∞. (2.12)

6: end for
7: end for
8: A near-optimal policy can be constructed as

π̃∗(x, y) ∈ argmin
a∈A

Qk̄(x,y,a), ∀x ∈ X ,∀y ∈ Y (2.13)

where k̄ is the iteration index when the learning is stopped.

theorem, we provide the convergence of Algorithm 3.

Theorem 4. Suppose the step size βk(x, y, a) follows the update rule in (2.12) and the sample size

Nk → ∞ as k → ∞. Then recursively applying (2.11) makes {Qk(x, y, a)}k∈N converges to the

fixed-point solution Q̂∗(x, y, a) component-wise with probability 1.

Proof. Please refer to Appendix A.4.

2.3 EVaR Optimization with Policy Gradient: EVaR-PG

While value iteration offers a solid foundation for determining optimal strategies in many RL

problems, it has limitations, particularly in complex or continuous action spaces. To overcome
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these challenges, we turn to policy gradient methods, which directly optimize the policy rather

than estimating values for each state-action pair. Policy gradient methods are well-suited for

environments with stochastic or continuous actions, providing a more flexible and effective

approach. In the following section, we introduce the policy gradient approach to solve the EVaR

optimization problem, starting with preliminaries on new notations and a reformulated problem

setup.

2.3.1 Preliminaries

In this section, the cost function C(x, a) is assumed to be bounded within [0, Cmax]. For simplicity,

we set the initial state distribution as P0 = 1{x = x0}.

In order to compare the performance of our approach with CVaR, we denote EVaR as

EVaRα(Z) = inf
ν>0

{
ν−1 ln

MZ(ν)

1− α

}
. (2.14)

Note that this form is still consistent with the one introduced in Section 1.2, as we are considering

losses here.

Recall that EVaR is a coherent risk measure, optimizing over EVaR under the MDP model

solve these uncertainties mention in Section 1.2.1.

Here we discuss more about boundedness of the optimal value of the parameter ν indexed in

the definition of EVaR.

Remark 2. For generalization, we here assume that Z is bounded, i.e., Z ∈ [Zmin, Zmax]. From [2],

we know that E[Z] ≤ EVaRα(Z) ≤ esssup(Z) [2], which means E[Z] ≤ infν>0{ν−1 ln E[eZν ]
1−α } ≤

esssup(Z). Let ν∗ be the corresponding optimal value to get infimum of EVaR, then E[Z] ≤

ν∗−1 ln E[eZν
∗

]
1−α ≤ esssup(Z). From this, we know ν∗ is in the range [− 1−α

Zmax−Zmin
,+∞]. Let Vmin =

− (1−γ) ln(1−α)
Cmax−Cmin

, then ν∗ is lower bounded by Vmin.

From Remark 2, ν is lower bounded by Vmin. In order to ensure that ν is always bounded in the

gradient descent process, we make an assumption about its upper boundedness as follows.
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Assumption 2. ν is upper bounded, i.e., ν ≤ Vmax.

2.3.2 Problem Statement

Our goal is to find an optimal policy which is parameterized by θ that solves the following

optimization problem for a given confidence level α ∈ (0, 1):

min
θ

EVaRα(Jθ(x0)), (2.15)

which can be reformulated as:

min
θ,ν

L(ν, θ) := ν−1 ln
E[eJ

θ(x0)ν ]

1− α
. (2.16)

In the following, we make assumption about the stationary policy π.

Assumption 3. For any (x, a), π(a|x, θ) is continuously differentiable in Θ and ∇θπ(a|x, θ) is a

Lipschitz function in θ for every (x, a) ∈ X × A. Moreover, the ratio ∇θπ(a|x, θ)/π(a|x, θ) is

bounded for all θ ∈ Rκ and every (x, a) ∈ X ×A (this is also assumed in [9]).

One example satisfying the assumption is

π(a = j|x = i, θ) =
eθij∑m
j=1 e

θij

where θ = [θ11, · · · , θ1m, · · · , θnm] ∈ Rnm. Let πij(θ) denote π(a = j|x = i, θ), then

∂πij(θ)/∂θij
πij(θ)

= 1− πij(θ),
∂πij(θ)/∂θkl

πij(θ)
= −πkl(θ)

where k = 1, · · · , n with k 6= i and l = 1, · · · ,m with l 6= j.
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2.3.3 A Trajectory-Based EVaR Policy Gradient Algorithm

In this section, we propose a trajectory-based EVaR policy gradient algorithm, which is to descend

in ν and θ according to the gradients of L(ν, θ) w.r.t ν and θ, i.e.,

∇νL(ν, θ) = ν−1∇νE[eJ
θ(x0)ν ]

E[eJθ(x0)ν ]
− ν−2 ln

E[eJ
θ(x0)ν ]

1− α
(2.17)

and

∇θL(ν, θ) = ν−1∇θE[eJ
θ(x0)ν ]

E[eJθ(x0)ν ]
. (2.18)

In our trajectory-based algorithm, at each iteration, the algorithm will generate N trajectories

by following the current policy π, then use these trajectories to estimate the gradients in (B.1)

and (B.3) and update these parameters.

To generate these gradients, let ξ = {x0, a0, . . . , xT−1, aT−1, xT} denote one trajectory where

xT = xtar and the corresponding cost function is J(ξ) =
∑T−1

k=0 γ
kC(xk, ak). The probability

of generating such a trajectory is Pθ(ξ) = P0(x0)
∏T−1

k=0 π(ak|xk, θ)P (xk+1|xk, ak) and we can

also have ∇θ logPθ(ξ) =
∑T−1

k=0 ∇θ log π(ak|xk, θ) =
∑T−1

k=0 ∇θπ(ak|xk, θ)/π(ak|xk, θ) whenever

Pθ(ξ) 6= 0 and π(ak|xk, θ) ∈ (0, 1].

Proposition 1. By the definition of Pθ(ξ) and ∇θ logPθ(ξ), we have

Pθ(ξ)∇θ logPθ(ξ) = P0(x0)
T−1∏
k=0

π(ak|xk, θ)P (xk+1|xk, ak)
T−1∑
k=0

∇θπ(ak|xk, θ)/π(ak|xk, θ)

= P0(x0)
T−1∑
k=0

T−1∏
i 6=k

∇θπ(ak|xk, θ)π(ak|xk, θ)P (xk+1|xk, ak).

Combining Assumption 3 and the fact that the sum of products of Lipschitz function is Lipschitz,

we can show that Pθ(ξ)∇θ logPθ(ξ) and
∑

ξ Pθ(ξ)∇θ logPθ(ξ) are Lipschitz in θ. Furthermore,

since the gradient of Lipschitz function is bounded, we have |∇θ(
∑

ξ Pθ(ξ)∇θ logPθ(ξ))| ≤

K1(ξ). Also, E[∇θ logPθ(ξ)] =
∑

ξ Pθ(ξ)∇θ logPθ(ξ) = 0.
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Proposition 2. By Assumption 3,∇θ logPθ(ξ) is bounded, i.e., |∇θ logPθ(ξ)| ≤ K2(ξ).

Since we have the representation of trajectories, we can now derive the estimated form of these

gradients. First, the goal function L(ν, θ) in the optimization problem (2.16) can be rewrite as

L(ν, θ) = ν−1 ln

∑
ξ Pθ(ξ)eJ(ξ)ν

1− α
.

Now, based on this function, we can estimate these gradients as follows.

Gradient w.r.t θ is

∇θL(ν, θ) = ν−1

∑
ξ∇θPθ(ξ)eJ(ξ)ν∑
ξ Pθ(ξ)eJ(ξ)ν

.

Note that∇θPθ(ξ) = Pθ(ξ)∇θ logPθ(ξ) and insert this term to the above equation, we have

∇θL(ν, θ) = ν−1

∑
ξ Pθ(ξ)∇θ logPθ(ξ)eJ(ξ)ν∑

ξ Pθ(ξ)eJ(ξ)ν
. (2.19)

Gradient w.r.t ν is

∇νL(ν, θ) = −ν−2 ln

∑
ξ Pθ(ξ)eJ(ξ)ν

1− α
+ ν−1

∑
ξ Pθ(ξ)J(ξ)eJ(ξ)ν∑

ξ Pθ(ξ)eJ(ξ)ν
. (2.20)

Recall that in each iteration, we generate N trajectories. Therefore, use ξj,k denote the

j-th trajectory in k-th iteration. Then these trajectories can be used to estimate the gradients

in (2.19) (2.20) and these updates rules can be written as:

ν-update

νk+1 = ΓN [νk − ζ2(k)∇νL(ν, θ)|ν=νk,θ=θk ]

= ΓN

[
νk − ζ2(k)

(
−ν−2

k ln

∑N
j=1 e

J(ξj,k)νk

N(1− α)
+ ν−1

k

∑N
j=1 J(ξj,k)e

J(ξj,k)νk∑N
j=1 e

J(ξj,k)νk

)]
.

(2.21)
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θ-update

θk+1 = ΓΘ[θk − ζ1(k)∇θL(ν, θ)|ν=νk,θ=θk ]

= ΓΘ

[
θk − ζ1(k)

(
ν−1
k

∑N
j=1∇θ logPθ(ξj,k)eJ(ξj,k)νk∑N

j=1 e
J(ξj,k)νk

)]
.

(2.22)

where

ΓN (ν) = argminν̂∈[Vmin,Vmax]||ν − ν̂||22,

and

ΓΘ(θ) = argminθ̂∈Θ||θ − θ̂||
2
2.

Note that these projections ensure the updated values are still in the bounded ranges, which are

further used in the proof of the convergence. Algorithm 2.4 contains the pseudo-code of our

proposed EVaR policy gradient algorithm.

Algorithm 2.4 Trajectory-based EVaR Policy Gradient

1: Input: confidence level α and parameterized policy π(·|·, θ).
2: Initialization: choose ν = ν0, θ = θ0 and initial state x0 = x0.
3: while TRUE do
4: for k = 0, 1, 2, . . . do
5: Generate N trajectories {ξj,k}Nj=1 from x0 by following the current policy parameterized

by θk. Update (ν, θ) by

νk+1 = ΓN

[
νk − ζ2(k)

(
−ν−2

k ln

∑N
j=1 e

J(ξj,k)νk

N(1− α)
+ ν−1

k

∑N
j=1 J(ξj,k)e

J(ξj,k)νk∑N
j=1 e

J(ξj,k)νk

)]

θk+1 = ΓΘ

[
θk − ζ1(k)

(
ν−1
k

∑N
j=1∇θ logPθ(ξj,k)eJ(ξj,k)νk∑N

j=1 e
J(ξj,k)νk

)]
6: end for
7: if |νk − Vmax| ≤ ε for some tolerance parameter ε > 0 then
8: Set Vmax ← 2Vmax.
9: else

10: return ν and θ, break
11: end if
12: end while

We further make a typical assumption about the step sizes for policy gradient.
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Assumption 4. The step size schedules ζ1(k) and ζ2(k) satisfy

∑
k

ζ1(k) =
∑
k

ζ2(k) =∞, (2.23)

∑
k

ζ2
1 (k),

∑
k

ζ2
2 (k) <∞, (2.24)

ζ1(k) = o(ζ2(k)), i.e., lim
k→∞

ζ1(k)

ζ2(k)
= 0 (2.25)

From (2.25), we know that ν updates at a faster timescale ζ2(k) and θ updates at a slower

timescale ζ1(k). Note that the above assumption satisfies the standard condition of stochastic

approximation algorithms.

In the following theorem, we prove our trajectory-based EVaR policy gradient algorithm

converges to a local optimal policy for the EVaR optimization problem (2.16).

Theorem 5. Under Assumption 3 and Assumption 4, the policy sequence generated by

Algorithm (2.4) converges almost surely to a locally optimal policy θ∗ for the EVaR optimization

problem as k →∞.

Proof. Please refer to Appendix A.5 for details.

Here we give a high level overview of the proof technique in the following. First, we regard

these updates (νk, θk) as a multi-time scale discrete stochastic approximation and show the

sequences (νk, θk) converge to the solution of the corresponding continuous time systems with

different speed. Then by using Lyapunov analysis, we show that the these sequences further

converges to the local asymptotically stable points (ν∗, θ∗). Lastly, we show that (ν∗, θ∗) is a local

minimum.

To illustrate this high level idea more, consider the following two-time scale stochastic

approximation algorithm for updating (xi, yi):

xn+1 = xn + ζ1(n)[h(xn, yn) +M
(1)
n+1], (2.26)
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yn+1 = yn + ζ2[g(xn, yn) +M
(2)
n+1], (2.27)

where h and g are two Lipschitz continuous functions, M (1)
n+1, M (2)

n+1 are two Martingale

differences w.r.t the increasingσ-field Fn = σ(xm, ym,M
(1)
m ,M

(2)
m ,m ≤ n), n ≥ 0, satisfying

E[||M (i)
n+1||2|Fn] ≤ K(1 + ||xn|| + ||yn||)2, i = 1, 2 for n ≥ 0. The step sizes a(n) and b(n) are

non-summable and square summable. If b(n) converges to zero faster than a(n), then (2.26) is a

faster recursion than (2.27) after some iteration n0, which implies that (2.26) has uniformly larger

increments than (2.27). Note that (2.27) can be rewritten as

yn+1 = yn + ζ1
ζ2

ζ1

[g(xn, yn) +M
(2)
n+1],

and by the fact that ζ2 converges to zero faster than ζ1, (2.26) and (2.27), it’s instructive to consider

the ODE ẋ = h(x, y) and ẏ = 0. By Theorem 2 in Chapter 6 of [19], we can show that (xn, yn)

converges to (λ(y∗), y∗) as n → ∞ almost surely, where λ(y∗) is a globally asymptotically stable

equilibrium of the ODE ẋ = h(x, y) and λ is a Lipschitz continuous function, and y∗ is a globally

asymptotically equilibrium of the ODE ẏ = g(λ(y), y).

2.4 Experiments

We provide some numerical examples to illustrate the algorithms developed in this chapter.

2.4.1 EVaR-VI

In the first experiment, we set the environment to be a rectangular grid world, where the state space

is consisted of positions in the map. An agent starts at a safe position (i.e., the initial state) and its

goal is to travel to a given destination. In each step, there are four available actions to take: left,

right, up and down. After taking an action, the agent will move to the corresponding neighboring

state with probability 1− δ while the agent will move to any of the other three neighboring states

with equal probability δ/3. In the grid world, there are some obstacles which differ from safe
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positions in the following setup. The cost of each movement between safe regions is 1 while the

cost of hitting an obstacle is 40. Also, the mission will be terminated if the agent hits obstacles.

The goal here is to find a safe path with small cost.

In order to compare with the CVaR application in risk-sensitive decision making in [24], we

use the same parameters for the grid world setup. We use a 64×53 grid world and put 80 obstacles

(printed in bright yellow), which results in a total of 3, 312 states. The start point is (60, 50) and

the destination is (60, 2). For the confidence level set, we choose the number of interpolated points

be 21. In order to make the error smaller, here we use the update rule mentioned in the bounds, i.e.,

yi+1 = θyi for i = 2, 3, . . . , 20. We choose δ = 0.05 and a discount factor γ = 0.95 for an effective

horizon of 200 steps [24]. For the initialization, we apply the standard value iteration process,

i.e., use the risk-neutral method. In the EVaR value iteration, we use an optimization tool named

Gurobi [17, 78]. Furthermore, considering the cases where the transition probability is unknown,

we also validate the algorithm equipped with SAA (Algorithm 2.3) in the same setup. Note that the

choice of Nk affects the accuracy of the approximation of the transition probability, thus further

has influence on the near-optimal value function as well as the optimal policy. Here we choose the

sample size Nk = 100, Nk = 500 and Nk = 1000 to compare the influence.

After applying Algorithm 2.2 and Algorithm 2.3 (with three different value of Nk), we plot

the near-optimal value function and the corresponding optimal path at α = 0.01, α = 0.11 and

α = 1.00 in Figures 2.1, 2.2 and 2.3 respectively, to compare the agent’s preference about risk.

In the figures, we use bright yellow color to mark the positions of the obstacles, and use color

bar to represent the value functions for different states. More specifically, as shown in the color

bar, the bluer the color, the smaller the value function. From the figures, we can see that the

closer the states are to the obstacles, the higher the cost are. Comparing the results generated

by applying Algorithm 2.2 in Figures 2.1, 2.2 and 2.3, we can find that, with confidence level α

increasing, the difference between the value function of safe states is getting smaller, i.e, the states

near obstacles are becoming less risky, which leads to the case that the agent’s strategy becomes

more aggressive, i.e., the optimal path tends to be shorter and closer to the obstacles. For this
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Figure 2.1: The value function and corresponding optimal path for α = 0.01 generated by
Algorithm 2.2 and Algorithm 2.3 (with different values of Nk) in the obstacle’s setting.

part, we also reproduce the CVaR algorithm in [24] and the results are almost same with ours,

which indicates that our approach is also practical in solving risk-sensitive RL. As for the results

generated by Algorithm 2.3, when Nk = 100, the value function and the path are not near-optimal

since the estimated transition probability is not accurate enough. But forNk = 500 andNk = 1000,

the overall tendency is almost the same as the one in Algorithm 2.2 despite some minor difference

that can be further alleviated by choosing larger Nk.

In the second experiment, we apply both Algorithm 2.2 and Algorithm 2.3 in Cliffwalk’s setup.

In this setting, we choose the map to be 14 × 16 and put 23 cliffs, which leads to a total of 201

states. The difference between cliff and obstacle in the first example is that hitting cliff will send

the agent back to the start point while hitting an obstacle in the first example ends the mission.

Similar to the first example, we use bright yellow color to mark the positions of the cliffs, and use

color bar to represent the value functions for different states. As shown in Figures 2.4, 2.5, 2.6,

we know that for both algorithms, with the confidence level increasing, the agent becomes more

and more aggressive and the optimal path becomes shorter and closer to the cliffs. This tendency
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Figure 2.2: The value function and corresponding optimal path for α = 0.11 generated by
Algorithm 2.2 and Algorithm 2.3 (with different values of Nk) in the obstacle’s setting.

is exactly the same as the one we get in the first experiment. Moreover, for the results generated

by Algorithm 2.3, when Nk = 100, all these optimal policies generated by Algorithm 2.3 are quite

different with these in Algorithm 2.2. For Nk = 500 and Nk = 1000, the optimal path is same

when α = 0.11 and α = 1.00 while the optimal path is a little different when α = 0.01.

2.4.2 EVaR-PG

In this section, we apply Algorithm 2.4 to RL following the similar setup with [23] to illustrate the

practicality and efficiency of our approach.

We consider an optimal stopping problem of purchasing certain types of goods. Under this

setup, the state at each time step k ≤ T is x = (ck, k), where ck is the purchase cost and T is the

upper bound of first-hitting time. The purchase cost sequence {ck}Tk=0 is randomly generated by a

Markov chain with two modes. Specifically, at time k the random purchase cost at the next time

step ck+1 either grows by a constant factor fu > 1, i.e., ck+1 = fuck with probability p or drops by

a constant factor fd < 1, i.e., ck+1 = fdck with probability 1 − p. The agent should decide either
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Figure 2.3: The value function and corresponding optimal path for α = 1.00 generated by
Algorithm 2.2 and Algorithm 2.3 (with different values of Nk) in the obstacle’s setting.

to accept the present cost (uk = 1) or wait (uk = 0). If the agent accepts the cost or the system

terminate at time k = T , the purchase cost is set at max(K, ck), where K is the maximum cost

threshold. Moreover, due to the steady rate of inflation, at each time step the agent will receive an

extra cost of ph, which is independent to the purchase cost. Also, account for the increase in the

agent’s affordability, there is a discount factor γ ∈ (0, 1).

Therefore, the optimal stopping problem can be formulated as

min
θ

EVaRα(Jθ(x0)) (2.28)

where

Jθ(x) =
T∑
k=0

γk
(
1{uk = 1}max(K, ck) + 1{uk = 0}ph

)
|x0 = x, π.

Here we choose x0 = [1; 0] (this means c0 = 1), ph = 0.1, T = 20, K = 5, γ = 0.95, fu = 2,

fd = 0.5 and p = 0.65. The number of trajectories N = 500, 000 and Θ = [−20, 20]κ1 , where the

dimension of the basis function is κ1 = 64. We implement radial basis functions (RBFs) as feature
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Figure 2.4: The value function and corresponding optimal path for α = 0.01 generated by
Algorithm 2.2 and Algorithm 2.3 (with different values of Nk) in the cliff’s setting.

functions and search over the class of Boltzmann policies

{
θ : {θx,a}x∈X ,a∈A, πθ(a|x) =

exp(θT
x,axf (x))∑

a∈A exp(θT
x,axf (x))

}
,

where xf (x) is the feature chosen by RBF at each state x.

There are two phases in applying Algorithm 2.4 to this experiment:

• Tunning phase: We run the EVaR policy gradient algorithm and update the policy until

(ν, θ) converges.

• Converged run: Having obtained a converged policy θ∗ in the tunning phase, in the

converged run phase, we perform a Monte Carlo simulation of 10, 000 trajectories and report

the results as averages over these trials.

In order to better compare the results generated by applying the EVaR policy gradient algorithm

to the optimal stopping problem, we implement Algorithm 2.4 at two different confidence level,
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Figure 2.5: The value function and corresponding optimal path for α = 0.11 generated by
Algorithm 2.2 and Algorithm 2.3 (with different values of Nk) in the cliff’s setting.

α = 0.05 (agent will be more risk-averse) and α = 0.95 (agent will be more risk-seeking). The

results for α = 0.05 is shown in Figure 2.7a and the result for α = 0.95 is shown in Figure 2.7b.

From these figures, we can see that the agent is more likely to wait longer and its tolerance towards

larger cost is higher with confidence level α = 0.95 while the agent prefers to accept the cost at

earlier state to avoid larger cost at next state.

2.5 Conclusion

In this chapter, we have applied EVaR to risk-sensitive RL, introducing both value iteration

and policy gradient methods based on the MDP framework. We proposed an EVaR value

iteration algorithm and a more practical approximate version, proving convergence and bounding

the approximation error. Additionally, for scenarios where the transition kernel of the MDP

is unknown, we presented a sample-based EVaR synchronous Q-value update algorithm with

convergence guarantees. We validated these approaches in simulation experiments, demonstrating
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Figure 2.6: The value function and corresponding optimal path for α = 1.00 generated by
Algorithm 2.2 and Algorithm 2.3 (with different values of Nk) in the cliff’s setting.

the effectiveness of our algorithms. Furthermore, we developed an EVaR policy gradient algorithm

that learns a parameterized policy, providing a convergence guarantee to a locally optimal

policy. We evaluated this approach through simulations using an optimal stopping problem setup,

confirming its practical applicability.

44



(a) α = 0.05. (b) α = 0.95.

Figure 2.7: The total discounted cost distributions generated by applying the EVaR Policy gradient
algorithm at different confidence levels.
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Chapter 3

Risk-Sensitive Reinforcement Learning with

φ-Divergence Risk Measure

3.1 Introduction

As discussed in Chapter 1, a multitude of risk measures have been studied in the literature and

successfully applied to RL, such as VaR, CVaR, Entropic risk measure and EVaR et al [22–

24, 33, 43, 44, 55, 70, 74, 95, 97]. The extensive exploration of risk measures in decision-making

contexts often requires adopting specific algorithms tailored to each measure, potentially

reducing decision-making efficiency. While some risk measures incorporate a risk-tolerance

parameter that reflects decision-makers’ preferences to an extent, their varied methodologies might

not capture these preferences accurately due to different risk quantification approaches. [95]

introduces a policy gradient method applicable to a wide range of coherent risk measures.

However, this method assumes a structured form of the measures’ envelope sets in their dual

representation. Although the approach is comprehensive, it involves significant computation

complexity, especially in identifying saddle points across four parameters. This complexity,

arising from the specific constraints within the dual representation, represents a trade-off between

generality and computational efficiency in risk-sensitive RL. Realizing these challenges in existing
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work on risk sensitive RL, we are prompted to explore a critical question:

Is it possible to develop a class of coherent risk measures that cover popular risk measures

and to design an accompanying algorithm that not only offers decision-makers greater flexibility

in selecting risk measures but also ensures efficiency and robustness?

To address this question, we adopt a new class of risk measures named PhiD-R, whose

uncertainty sets in their dual representations are defined by using φ-divergence [2], to RL problems.

Our choice of this class of risk measures is motivated by several factors: 1) PhiD-R is coherent and

includes many widely adopted risk measures such as CVaR and EVaR as special cases [2]. 2)

φ-divergence has been thoroughly explored in the machine learning domain, particularly in policy

optimization and robust RL [11,41,46,49,54,87]. This extensive research supports the potential of

φ-divergence to foster innovative developments in risk measures for risk-sensitive RL. 3) Previous

work by [24] illustrated that solving CVaR RL was equivalent to tackling risk-neutral RL when

uncertainties in transition probabilities are defined by specific divergence measures. This finding

motivates further exploration into the equivalence of PhiD-R RL and robust RL, aiming to address

the robustness concerns identified. 4) The explicit generalized representation of PhiD-R in [2]

allows for the development of a generalized policy gradient method applicable to all forms of

φ-divergence, which ensures both flexibility and efficiency of the approach.

Chapter Contribution: In this chapter, we introduce a trajectory-based policy gradient

method tailored to solve RL problems under this new class of risk measures, PhiD-R. The

explicit representation of PhiD-R allows for efficient gradient estimation. Based on these gradient

estimates, we propose specific update rule for each parameter. By using multi-time stochastic

approximation technique [19, 23, 70], we demonstrate that our proposed method asymptotically

converges to locally optimal policies. This approach is highly versatile, applying to the entire

spectrum of φ-divergence, thereby broadening the scope beyond traditional risk measures such

as CVaR. This extension also offers a new approach to address CVaR RL and explores novel

approaches within risk-sensitive RL. Our approach benefits from the coherence property of

PhiD-R and the dual presentation theorem, which ensures that solving PhiD-R RL is equivalent
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to solving robust RL when uncertainties in transition probabilities are defined by φ-divergence.

This connection between risk and robustness is particular valuable when decision-makers face

scenarios with inherent uncertainty and wish to incorporate their risk preferences.

Related Work: Several works are closely related to our studies. [95] proposes a generalized

method for solving RL problems with coherent risk measures, which aligns with PhiD-R, and

demonstrates convergence to local optimality. Our approach also guarantees near-optimality,

while providing a simplified solution for PhiD-R, requiring fewer assumptions and optimized

parameters. We build on the well-established representation of PhiD-R from [2], offering a more

efficient and practical method tailored to these risk measures. In particular, when applied to CVaR

RL, our algorithm reduces the number of parameters without compromising local optimality.

Compared to policy gradient-based CVaR RL approaches that extend the likelihood-ratio method

for demonstrating local optimality [95,97], our work estimates gradients directly using the explicit

representation of PhiD-R. While our methodology and objectives differ from those of [95, 97], all

algorithms achieve convergence to a locally optimal policy. Furthermore, our approach contrasts

with existing policy gradient research on CVaR [23, 83, 104], which is typically limited to the

constrained RL framework. Our method also diverges from [70], which focuses solely on EVaR.

Chapter Organization: The remainder of this chapter is organized as follows. Section 3.2

provides background on risk measures, φ-divergence and the new risk measure class PhiD-R,

detailing their definition and drawing upon exiting properties from [2]. Section 3.3 outlines

the notations and problem formulation of this work. In Section 3.4, we introduce the proposed

trajectory-based policy gradient algorithm and establishes its asymptotic convergence towards

local optima, utilizing the multi-time stochastic approximation technique from [19]. Section 3.5

presents empirical validation through various experimental setups. Finally, Section 3.6 offers

concluding remarks.
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3.2 Preliminaries

Recall that the dual representation theorem links different choices of uncertainty sets U to various

risk measures. We extend this framework by constructing risk measures based on φ-divergence.

For two probability measuresQ and P within the probability space, the φ-divergence is defined

as:

Dφ(Q,P ) =
∑
z∈Ω

P (z)φ

(
Q(z)

P (z)

)
, (3.1)

where φ is a closed and convex function satisfying φ(1) = 0. The choice of the function φ directly

determines the type of divergence, allowing for various risk measures to be modeled. Below, we

present some common choices of φ and their corresponding divergences:

1). Total variation distance: φ(x) = 1
2
|x− 1|.

2). KL divergence: φ(x) = x log x for x ≥ 0.

3). χ2-divergence: φ(x) = (x− 1)2.

We now define the φ-Divergence-Risk, in which the uncertainty sets U are constructed based

on φ-divergence, following the framework described in [2].

Definition 7. (φ-Divergence-Risk) Let φ be a closed and convex function with φ(1) = 0, and

β > 0. The φ-divergence risk measure with divergence level β for a random variable Z ∈ Z is

defined as

PhiD-Rφ,β(Z) := sup
Q∈U

EQ[Z],

where U = {Q� P : Dφ(Q,P ) ≤ β} with Dφ being defined in (3.1).

The definition via dual representation ensures two key outcomes: (1) PhiD-R is a coherent

risk measure, as validated by Theorem 3.2 in [2]; and (2) building on insights from [22], solving

PhiD-R RL aligns with robust RL, where uncertainties in transition probabilities are characterized

by φ-divergence. Furthermore, Theorem 5.1 in [2] provides an explicit representation of PhiD-R,

which plays a crucial role in developing the policy gradient method discussed in the following

sections.
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Theorem 6 (Theorem 5.1 of [2]). For any Z ∈ Z , the φ-divergence risk measure has the following

representation:

PhiD-Rφ,β(Z) = inf
ν>0,ω∈R

{
ν

[
ω + EP

(
φ∗
(
Z

ν
− ω + β

))]}
, (3.2)

where φ∗ is the conjugate of φ (the Legendre–Fenchel transform).

It is important to note that the class of φ-divergence risk measures encompasses widely used

risk measures in risk-sensitive RL, such as CVaR and EVaR, as special cases. For instance, by

selecting φ(x) = 0 for 0 ≤ x ≤ 1
1−α and +∞ otherwise, we recover CVaR, with φ∗(x) =

1
1−α max{0, x}. Additionally, by setting β = 0, we obtain

PhiD-Rφ,β(Z) = inf
t∈R

{
t+

1

1− α
EP
[
(Z − t)+

]}
,

which exactly corresponds to the definition of CVaR as mentioned earlier.

Similarly, by selecting φ(x) = x log x for x ≥ 0, we recover EVaR, with φ∗(x) = ex−1. By

setting β = − ln(1− α) [2], we derive

PhiD-Rφ,β(Z) = inf
ν>0

{
ν lnEP

(
e
Z
ν

)
− ν ln(1− α)

}
,

which corresponds to the representation formula for EVaR.

3.3 Problem Statement

Our goal is to solve PhiD-R RL by minimizing the objective function

min
θ

PhiD-Rφ,β

(
Jθ(x0)

)
(3.3)
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for a given divergence level β ≥ 0. This optimization problem seeks to find the optimal policy

θ∗ that minimizes the risk-sensitive objective. By incorporating the representation (3.2) of the

φ-divergence risk measure, the optimization problem can be reformulated as follows:

min
θ,ν,ω

L(ν, ω, θ) := ν

[
ω + EP

(
φ∗
(
Jθ(x0)

ν
− ω + β

))]
. (3.4)

While similar formulations have been explored in the literature on risk measures and

optimization, our application of this reformulation to the context of RL is novel. Our main idea to

solve the optimization problem (3.4) is to adopt a gradient descent method, which will be detailed

in the subsequent section. In this chapter, the policy should also satisfies Assumption 3 mentioned

in Section 2.3.

3.4 Trajectory-Based Policy Gradient Method

In this section, we introduce a trajectory-based policy gradient algorithm that descends in ν, µ, and

θ based on the gradients of L(ν, ω, θ) with respect to ν, ω, and θ, respectively.

The approach is similar to that proposed in Section 2.3. In each iteration, the algorithm

generates N trajectories by executing the current policy π. These trajectories are then used to

estimate the gradients, and the parameters ν, ω, and θ are updated using stepsizes that satisfy

specific conditions. The cost function J(ξ) and the probability Pθ(ξ) of generating trajectory ξ are

the same as in Section 2.3 and adhere to the same propositions.

We can now proceed to derive the estimated form of these gradients. The derivation details

could be found in Appendix B.1.

Gradient estimate w.r.t ν

∇̂νL(ν, ω, θ) = ω +
∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
−
∑
ξ

Pθ(ξ)
J(ξ)

ν

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

.
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Gradient estimate w.r.t ω

∇̂ωL(ν, ω, θ) = ν − ν
∑
ξ

Pθ(ξ)
∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

.

Gradient estimate w.r.t θ

∇̂θL(ν, ω, θ) = ν
∑
ξ

Pθ(ξ)∇θ logPθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
.

However, these estimates are not immediately usable due to the presence of the unknown

transition probability P (xk+1|xk, ak) in the expression of Pθ(ξ). To address this, we use empirical

mean to estimate the sample mean. Moreover, it is important to note that when Pθ(ξ) 6= 0, the

gradients ∇θPθ(ξ) and ∇θ logPθ(ξ) can be expressed as Pθ(ξ)∇θ logPθ(ξ), and the latter is only

dependent on π without any reliance on the unknown transition probability P (xk+1|xk, ak). By

utilizing these insights and generating N trajectories per iteration, we obtain the gradient estimates

as:

Gradient estimate w.r.t ν

∇̃νL(ν, ω, θ) = ω +
∑
ξ

1

N
φ∗
(
J(ξ)

ν
− ω + β

)
−
∑
ξ

1

N

J(ξ)

ν

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

. (3.5)

Gradient estimate w.r.t ω

∇̃ωL(ν, ω, θ) = ν − ν
∑
ξ

1

N

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

. (3.6)

Gradient estimate w.r.t θ

∇̃θL(ν, ω, θ) = ν
∑
ξ

1

N
∇θ logPθ(ξ)φ∗

(
J(ξ)

ν
− ω + β

)
. (3.7)

Based on these gradient estimates and let ξj,k denote the j-th trajectory generated at iteration
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k and properly chosen step sizes ζ1(k), ζ2(k) and ζ3(k), we design the following update rules for

parameter ν, ω, θ that will be utilized in our algorithm.

ν-update

νk+1

= ΓN

[
νk − ζ1(k)∇̃νL(ν, ω, θ)

∣∣
ν=νk,ω=ωk,θ=θk

]
= ΓN

[
νk − ζ1(k)

(
ωk +

N∑
j=1

1

N
φ∗
(
J(ξj,k)

νk
− ωk + β

)
−

N∑
j=1

1

N

J(ξj,k)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

νk
−ωk+β

)]
.

(3.8)

ω-update

ωk+1 = ΓR

[
ωk − ζ2(k)∇̃ωL(ν, ω, θ)

∣∣
ν=νk,ω=ωk,θ=θk

]
= ΓR

[
ωk − ζ2(k) ·

(
νk − νk

N∑
j=1

1

N

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

νk
−ωk+β

)]
.

(3.9)

θ-update

θk+1 = ΓΘ

[
θk − ζ3(k)∇̃θL(ν, ω, θ)

∣∣
ν=νk,ω=ωk,θ=θk

]
= ΓΘ

[
θk − ζ3(k)

(
νk

N∑
j=1

1

N
∇θ logPθ(ξj,k) · φ∗

(
J(ξj,k)

νk
− ωk + β

))]
.

(3.10)

The projections introduced in the update rules, i.e., ΓN (ν) = argminν∈[Vmin,Vmax]||ν − ν̂||22,

ΓR(ω) = argminω∈[Wmin,Wmax]||ω − ω̂||22, ΓΘ(θ) = argminθ∈Θ||θ − θ̂||22, are employed to enforce

the updated values to remain within specified bounds, thereby ensuring the convergence of the

policy gradient algorithm for PhiD-R. Additionally, we adopt a common assumption regarding the

stepsizes utilized in the update rules (3.8) (3.9) (3.10).

Assumption 5. The stepsizes ζ1(k), ζ2(k) and ζ3(k)satisfy

∑
k

ζ1(k) =
∑
k

ζ2(k) =
∑
k

ζ3(k) =∞, (3.11)
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∑
k

ζ2
1 (k),

∑
k

ζ2
2 (k),

∑
k

ζ2
3 (k) <∞, (3.12)

ζ1(k) = o(ζ2(k)), ζ2(k) = o(ζ3(k)). (3.13)

The first two conditions in Assumption 5 are common in RL problems. The third condition

assumes that the stepsizes satisfy the standard requirements of stepsizes in multi-scale stochastic

approximation algorithms. Moreover, from Eq (3.13), we observe that the update frequencies for

ν, ω, and θ occur at different timescales, with ν updating at the fastest timescale ζ1(k), ω updating

at a second fast timescale ζ2(k), and θ updating at the slowest timescale ζ3(k).

Algorithm 3.1 outlines the proposed trajectory-based policy gradient method for PhiD-R.

Line 5 details the collection of N trajectories by following the current parameterized policy with

θk and line 5 updates the parameters. Lines 9 to 13 describe adjustments to the selected ranges for

ν and ω. If no adjustments are needed, the iteration ceases, resulting in the local optimal θ.

Theorem 7 provides theoretical guarantees for Algorithm 3.1, establishing its convergence to a

locally optimal policy for the optimization problem (3.4).

Theorem 7. (Local Optimality) Under Assumptions 3 and 5, as k → ∞, the policy sequence

generated by Algorithm 3.1 converges almost surely to a locally optimal policy θ∗.

Proof Sketch 1. Our proof is inspired by [22] and our EVaR-PG method proposed in Section 2.3.

Initially, we treat the updates (νk, ωk, θk) as a multi-time scale discrete stochastic approximation,

under the condition that the stepsizes satisfy Assumption 5. We prove that the sequences

(νk, ωk, θk) converge to the solutions of the corresponding continuous-time systems, each with

varying convergence rates. Subsequently, we apply Lyapunov analysis to demonstrate that the

sequences (νk, ωk, θk) further converge to local asymptotically stable points denoted as (ν∗, ω∗, θ∗).

Finally, we establish that the attained points (ν∗, ω∗, θ∗) serve as local optimal solutions for the

optimization problem (3.3). More details can be found in Appendix B.2.
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Algorithm 3.1 PhiD-R RL: A Trajectory-based Policy Gradient Method

1: Given: divergence level β, parameterized policy π(·|·, θ), tolerance parameters εν , εω.
2: Initialization: choose ν = ν0, ω = ω0, θ = θ0 and initial state x0.
3: while TRUE do
4: for k = 0, 1, 2, . . . do
5: Generate N trajectories {ξj,k}Nj=1 by following policy πθk starting from the initial state

x0.
6: Update (ν, ω, θ) by

νk+1 = ΓN

[
νk − ζ1(k)

(
ωk +

N∑
j=1

1

N
φ∗
(
J(ξj,k)

νk
− ωk + β

)

−
N∑
j=1

1

N

J(ξj,k)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

νk
−ωk+β

)]
,

ωk+1 = ΓR

[
ωk − ζ2(k) ·

(
νk − νk

N∑
j=1

1

N

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

νk
−ωk+β

)]
,

θk+1 = ΓΘ

[
θk − ζ3(k)

(
νk

N∑
j=1

1

N
∇θ logPθ(ξj,k) · φ∗

(
J(ξj,k)

νk
− ωk + β

))]
.

7: end for
8: if νk lies within the εν-neighborhood of the boundary then
9: Extend the boundary for ν

10: else if ωk lies within the εω-neighborhood of the boundary then
11: Extend the boundary for ω
12: else
13: Return (ν, ω, θ) and terminate
14: end if
15: end while

3.5 Experiments

In this section, we present numerical examples to demonstrate the practicality and efficiency of

the proposed algorithms. We first validate our approach using an investment problem and the

optimal stopping problem, as utilized in related work [22, 70, 95], highlighting comparison over

existing methods. Additionally, we conduct a more comprehensive evaluation using OpenAI’s Gym

environment to further demonstrate the generalizability of our algorithms.
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3.5.1 Investment Problem

We conduct a validation of our method using the same experimental setup as [95]. We examine a

scenario involving a trading agent with options to invest in one of three assets. The returns of the

first two assets, A1 and A2, follow normal distributions: A1 is distributed as N (1, 1), and A2 as

N (4, 6). The third asset, A3, exhibits a Pareto distribution characterized by f(x) = α
xα+1 for x > 1

with a parameter α = 1.5. This distribution results in a mean return of 3 for A3, but with an infinite

variance, reflecting the heavy-tailed distributions commonly employed in financial modeling [93].

The agent’s investment decisions are randomized, with the probability of choosing assetAi denoted

as P (Ai) ∼ exp(θi), where θ ∈ R3 represents the policy parameters. Here we plot the results of

running 50 iterations, with 10, 000 trajectories to estimate gradients in each iteration.

In the experiment, we choose the Radon-Nikodym derivative and χ2-divergence as examples.

Figure 3.1 illustrates how the probabilities of choosing A1, A2, and A3 change over iterations. For

Radon-Nikodym derivative, the agent is highly risk-averse at α = 0.95, favoring A1 and the agent

is less risk-averse atα = 0.05, resulting in shifts in probabilities. For χ2, P (Ai) also changes with

different β. Notably, different φ-divergence reflects different risk preferences as the probability

distribution differs. These results align with our theoretical analysis. Moreover, in comparison to

the experimental results in [95], our method exhibits enhanced efficiency, achieving convergence

with a small number of iterations, even when applied to more complex forms of risk measures.

(a) Distribution of asset return. (b) PhiD-R with RN derivative (c) PhiD-R with χ2-divergence

Figure 3.1: Probability of selecting each asset versus training iterations, for policies generated by
solving PhiD-R RL based on Radon-Nikodym derivative and χ2-divergence.
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3.5.2 Optimal Stopping Problem

In this section, we consider a more complex setup similar to the CVaR and EVaR policy gradient

work [22] [70]. The environment is designed as an optimal stopping problem, where the state at

each time step k is represented by x = [k, ck]. Here, ck denotes the cost at time k. The cost sequence

{ck}Tk=0 is generated as follows: at each time step, the cost at the next time step either increases by

a constant factor fu > 1 (i.e., ck+1 = fuck) with probability p, or decreases by a constant factor

fd < 1 (i.e., ck+1 = fdck) with probability 1−p. The agent’s task is to decide whether to accept the

current cost (ak = 1) or wait (ak = 0) at each time step. If the agent chooses to accept the cost or

the time step reaches k = T , the cost is set to min(K, ck), where K represents the cost threshold.

However, if the agent chooses to wait, an additional cost of ph is incurred. Hence, the discounted

cost can be expressed as Jθ(x) =
∑T

k=0 γ
k (1{ak = 1}min(K, ck) + 1{ak = 0}ph) .

Here we choose x0 = [1; 0], ph = 0.1, T = 20, K = 5, γ = 0.95, fu = 2, fd = 0.5, p = 0.65,

N = 500, 000 and Θ = [−20, 20]κ1 , where the dimension of the basis function is κ1 = 64.

Furthermore, we use Boltzmann policies

{
θ : {θx,a}x∈X ,a∈A, µθ(a|x) =

exp(θT
x,axf (x))∑

a∈A exp(θT
x,axf (x))

}
,

where xf (x) is the feature chosen by RBF at state x.

We evaluate the effectiveness of our algorithm using various φ-divergences. First, we employ

the Radon-Nikodym derivative as the φ-divergence, corresponding to the widely-used CVaR

measure. Next, we consider the KL divergence, corresponding to the EVaR, a relatively recent

risk measure adopted in risk-sensitive RL [71]. These first two choices demonstrate our approach’s

efficiency with popular risk measures, offering fresh perspectives on tackling these risk measures

in risk-sensitive RL. Furthermore, we explore the χ2 divergence, a common divergence in RL,

yet without a designated risk measure defined by this divergence. This experiment highlights our

algorithm’s potential in addressing less clear or undefined risk measures, potentially inspiring

new research on innovative risk measures. Finally, we utilize the squared Hellinger distance to

57



underscore our algorithm’s necessity and advantages over other policy gradient methods. The

frequency distribution of costs under PhiD-R with different choices of φ-divergence is presented

in Figure 3.2.

(a) α = 0.05, β =
0, E[Z] = 1.35 and
CVaR = 1.42

(b) α = 0.95, β =
0, E[Z] = 1.29 and
CVaR = 2.49

(c) α = 0.05, β =
3, E[Z] = 1.36 and
EVaR = 1.54

(d) α = 0.95, β =
0.05, E[Z] = 1.25 and
EVaR = 2.67

(e) β = 0.95, E[Z] =
1.31 and PRχ2,β = 1.79

(f) β = 3, E[Z] = 1.27
and PRχ2,β = 1.83

(g) β = 0.95, with
E[Z] = 1.46 and
PRshd,β = 1.54

(h) β = 3, with E[Z] =
1.29 and PRshd,β = 1.97

Figure 3.2: Frequency distribution of costs under PhiD-R defined by: 1). Radon-Nikodym
derivative (CVaR); 2) KL divergence (EVaR); 3) χ2 divergence and 4) Squared Hellinger Distance
with different choices of parameters.

Radon-Nikodym Derivative (CVaR)

We begin by selecting the φ-divergence as the Radon-Nikodym derivative, where φ(x) = 0 for

0 ≤ x ≤ 1
1−α and +∞ otherwise. In this case, the conjugate function φ∗(x) is

1

1− α
max{0, x} =

1

α
(0, x)+.

By setting β = 0, the corresponding φ-divergence risk measure is CVaR and we obtain the

following expressions.

CVaRα(Z) = inf
ν>0,ω∈R

{
νω +

1

1− α
EP
(
(Z − νω)+

)}
.
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Notice that d
dx
φ∗(x) = 1

1−αI {x > 0}, where I is the indicator function and d2

dx2φ
∗(x) = 0.

By employing Algorithm 3.1 with CVaR update rules at various confidence levels α, we obtain

the results in Figures 3.2a and 3.2b. The mean of discounted costs generated by following the

optimal policy at α = 0.05 exceeds the mean at α = 0.95, whereas the opposite holds true for the

CVaR value. The observed results align with the theoretical properties of CVaR. Specifically, when

the risk aversion parameter (α) is set to 0.05, the agent exhibits a risk-averse behavior, opting for a

safer strategy that results in higher costs but reduced risk exposure. Conversely, for α = 0.95, the

agent demonstrates risk-seeking tendencies, prioritizing lower costs despite the associated higher

level of risk.

KL Divergence (EVaR)

In this case, we choose the φ-divergence to be the KL divergence, denoted as φ(x) = x log x for

x ≥ 0. Consequently, we have

φ∗(x) = ex−1

and β = − ln(1−α) according to [2]. With this selection, the resulting φ-divergence risk measure

corresponds to EVaR, given by

EVaRα(Z) = inf
ν>0,ω∈R

{
ν
[
ω + EP

(
e
Z
ν
−ω+β

)]}
.

By employing Algorithm 3.1 and incorporating EVaR update rules, we obtained results for two

specific risk parameter settings: α = 0.05 (β = 3) and α = 0.95 (β = 0.05). For the case where

α = 0.05, the agent demonstrates a risk-averse preference by selecting higher costs to mitigate

potential high risks. Conversely, for α = 0.95, the agent exhibits a more aggressive behavior,

seeking to minimize costs even in the presence of higher risks. Furthermore, the observation that

EVaR consistently exceeds CVaR under the same distribution of a random variable aligns with the

theoretical facts in [2].
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χ2 Divergence

In this case, we utilize the χ2 divergence and set φ(x) = (x− 1)2. Consequently, we obtain

φ∗(x) =
x2

4
+ x

and β > 0. Thus, we have

PRχ2,β(Z) = inf
ν>0,ω∈R

{
νEP

((
Z
ν
− ω + β

)2

4
+
Z

ν
+ β

)}
.

Applying Algorithm 3.1 with corresponding update rules for χ2 divergence, we obtain the

following results. Figure 3.2e and 3.2f illustrate that when β = 0.95, the mean of discounted

costs exceeds the mean in the case where β = 3, while the risk value is lower. The selection of β

indeed reflects the decision-maker’s attitude towards risk.

Squared Hellinger Distance

In [70], the authors propose a two-update-rules trajectory-based policy gradient method to solve

EVaR in risk-sensitive RL. However, the two-update-rules algorithm is not applicable to the entire

class of φ-divergences. Here, we illustrate the necessity and practicality of our Algorithm 3.1 by

employing the squared Hellinger distance as an example.

We choose φ(x) = (
√
x− 1)2 and the conjugate function is

φ∗(x) =
1

1− x
− 1

for x > 0. Hence, this φ-divergence risk measure is given by

PRφ,β(Z) = inf

{
ν

[
ω + EP

(
1

1− Z
ν

+ ω − β
− 1

)]}
,

where ′ inf ′ is taken over the set
{
ν, ω : ν > 0, ω ∈ R, Z

ν
− ω + β > 0

}
.
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Applying Algorithm 3.1 for the square Hellinger distance with varying values of β, we obtained

the results shown in Figures 3.2g and 3.2h. The figures clearly indicate that when β = 0.95, the

sample mean of the discounted cost is 1.46, which exceeds the mean in the case where β = 3, while

the risk is lower. The selection of the parameter β directly reflects the risk preference exhibited by

the agent.

We present a summary of numerical results for PhiD-R using various φ-divergences under

different parameter settings in Table 3.1, wher RN derivative means Radon-Nikodym derivative

and SH distance means squared Hellinger distance. The data shows that all risk values exceed the

mean and vary with parameter choices, validating the algorithm and demonstrating its alignment

with established risk concerns. Additionally, these results offer insights into interpreting new risk

measures, such as PhiD-R with χ2-divergence and squared Hellinger distance, especially when

supported by extensive simulations across diverse parameters. This adaptability in parameter

selection highlights the flexibility of our approach, allowing decision-makers to align with their

risk preferences while maintaining local optimality and efficiency.

Table 3.1: Numerical results of different choices of φ-divergence.

φ-divergence Parameters Mean PhiD-R

Radon-Nikodym derivative
α = 0.05, β = 0 1.35 1.42
α = 0.95, β = 0 1.29 2.49

KL-divergence
α = 0.05, β = 3 1.36 1.54
α = 0.95, β = 0.05 1.25 2.67

χ2-divergence
β = 0.95 1.31 1.79
β = 3 1.27 1.83

Squared Hellinger distance
β = 0.95 1.46 1.54
β = 3 1.29 1.79

3.5.3 Experiments on Gym

In this section, we validate our approach using OpenAI’s Gym [20]. Specifically, we choose the

CartPole-v1 environment, which involves a pole attached to a cart moving along a frictionless

track. The goal is to prevent the pole from falling over by applying force to the cart. The action
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space is discrete, with two possible actions: pushing the cart to the left or to the right. Since we

consider cost in this work, we design the environment such that the agent receives a cost of 0 for

every time step the pole remains upright and a cost of +1 for failing to keep the pole upright. The

goal is to keep the pole balanced for as many time steps as possible, up to a maximum of T steps.

The episode terminates if the pole angle exceeds ±15◦ or the cart moves more than 2.4 units from

the center. We run both risk-neutral RL policy gradient and our approach with different choices of

φ-divergence. For these experiments, we set γ = 0.99 and run N = 10, 000 episodes with a time

step of T = 1, 000.

As shown in Figure 3.3, the results are plotted with episode length on the y-axis and episodes on

the x-axis. Longer episode lengths indicate better performance, and changes in episode length over

time illustrate the convergence speed of the algorithm. The upper panel presents the episode length

for each individual episode, while the lower panel shows the mean episode length over the past 50

episodes using a sliding window. This results in a smoother blue curve (mean) in the lower panel,

with the yellow shaded area around the blue curve providing a visual indication of the variability

around the moving average. A smaller shaded area suggests more consistent and robust algorithm

performance, while a larger shaded area indicates greater variability and less consistency. This

visualization aids in understanding the stability of the training process over time. Figure 3.3 shows

the result of running policy gradient method for risk-neutral RL.

Figure 3.3: Episode length versus episodes for risk-neutral RL.

We then apply our approach to the same environment using three different choices of

divergence: 1) Radon-Nikodym derivative (Figure 3.4a, 3.4b), 2) KL divergence (Figure 3.4c, 3.4d),

and 3) χ2-divergence (Figure 3.4e, 3.4f). Although the training processes vary with different

divergences and parameters, the overall trends are similar. When the divergence level β is smaller,
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(a) RN derivative with β =
0, α = 0.95.

(b) RN derivative with β =
0, α = 0.1

(c) KL divergence with β = 0.1

(d) KL divergence with β = 3 (e) χ2 with β = 0.1 (f) χ2 with β = 3

Figure 3.4: Episode length versus episodes for PhiD-R defined by: 1) Radon-Nikodym derivative
(CVaR); 2) KL divergence (EVaR); 3) χ2-divergence with different choices of parameters.

the process converges more quickly since the agent is more risk-seeking and prefers taking more

aggressive actions to balance the cart pole, as shown in Figure 3.4a, 3.4c, 3.4e. These processes are

similar to risk-neutral RL, as all agents were more risk-seeking (risk-neutral implies risk-seeking

behavior). Conversely, with larger β values, the agent exhibite more risk-averse behavior, indicated

by a flatter curve during the initial phase, leading to stable episode lengths compared to the smaller

β case (shown as Figure 3.4b, 3.4d, 3.4f). This behavior also suggests that the agent is more likely

to be trapped in a local optimum.

3.6 Conclusion

In this chapter, we have applied a new class of risk measures named PhiD-R to risk-sensitive RL.

We have proposed a trajectory-based policy gradient method tailored to this class of risk measures,

utilizing an explicit representation that accommodates all forms of φ-divergence. Our approach has

extended upon previous methods targeting specific risk measures and provided a comprehensive

solution that encompasses the entire range of φ-divergence. Furthermore, we have demonstrated

the convergence of our algorithms using a multi-time stochastic approximation approach. Through

numerical simulation results, we have validated the efficiency and practicality of our algorithms.
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Chapter 4

Robust Risk-Sensitive Reinforcement

Learning with CVaR

4.1 Introduction

Real-world applications of RL frequently encounter uncertainties in MDP elements, such as

transition probabilities and reward/cost functions, leading to estimation errors in RL algorithms and

subsequent sensitivity to model inaccuracies, thus impairing performance [59, 102, 106]. In light

of these challenges, RMDPs have been developed to focus on optimal policies that accommodate

worst-case transition probabilities within an ambiguity set [45], with most studies assuming known

and rectangular ambiguity sets due to computational considerations [12, 45, 46, 48, 76, 101].

The existing RMDP research has largely focused on risk-neutral objectives that minimize the

expected total discounted costs. Although risk-sensitive RL is widely popular, its robustness within

the RMDP framework is not clear. While Chow et al. (2015) [24] roughly mention how solving

CVaR can enhance the robustness of risk-neutral RL in certain uncertainty sets, there is a noticeable

gap in understanding how CVaR’s robustness fares against various types of uncertainty sets.

Chapter Contribution: This chapter presents a novel and comprehensive investigation into

the robustness of risk-sensitive RL within RMDP. The primary goal is to determine an optimal
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policy that minimizes the robust CVaR value. This value is characterized as the highest CVaR

of the total discounted cost across transition probabilities within a defined rectangular ambiguity

set. We initially explore scenarios where the uncertain budget is fixed, and utilize the coherent

properties of CVaR and the dual representation theorem to convert the optimization challenge into

a manageable risk-sensitive RL problem, facilitating the use of existing algorithms. Furthermore,

considering that in many real-world applications, ambiguity sets are often dynamic and influenced

by decision-making processes [77], we delve deep into a more challenging setup about designing

robust CVaR optimization under decision-dependent uncertainty. To tackle this problem, we

introduce a new coherent risk measure NCVaR and propose a crucial decomposition theorem.

We develop value iteration algorithms for NCVaR and validate our methods through simulation

experiments. Based on these results, the emergence of NCVaR not only enhances the robustness

of CVaR RL under decision-dependent uncertainty but also brings insights to risk-sensitive RL.

Adopting NCVaR as the risk measure for risk-sensitive RL provides strong robustness compared

to risk-neutral RL while rationally capturing risk. This makes NCVaR promising for potential

future research and also shed lights on solving decision-dependent uncertainty for RL.

Chapter Organization: The structure of this chapter is as follows. In Section 4.2, we outline

mathematical foundations and problem formulation. Section 4.3 discusses solutions utilizing

predetermined ambiguity sets and risk-sensitive RL methods. Section 4.4 focuses on undetermined

ambiguity sets and corresponding value iteration algorithms. Section 4.5 validates our approaches

through experimental simulations and presents the numerical results. Conclusions are drawn in

Section 4.6.

4.2 Preliminaries

4.2.1 RMDP and Ambiguity Set

Addressing robustness, the transition probability P is known to belong to a non-empty, compact

set P , with the uncertain transition probability denoted as P̃ ∈ P . The robust policy evaluation
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over non-rectangular ambiguity sets P is known to be NP-hard, even with a fixed policy π [102].

Therefore, robust RL research often focuses on rectangular ambiguity sets. In this work, we

examine a specific rectangular ambiguity set:

P =

{
P̃ :

∑
x′∈X

P̃ (x′|x, a) = 1, D(P̃ , P ) ≤ K

}
,

where K is the non-negative uncertain budget and the divergence measure D(P̃ , P ) satisfies

D(P̃ , P ) =
∑
x′∈X

P (x′|x, a)φ

(
P̃ (x′|x, a)

P (x′|x, a)

)
≤ K. (4.1)

In (4.1), φ represents the φ-divergence measure.

4.3 Robust CVaR RL with Predetermined Ambiguity Set

In this section, the robust CVaR value is defined as the worst-case CVaR value of a policy π when

starting from the initial state x0 and traversing through transition probabilities specified in the

ambiguity set. The objective is to minimize this robust CVaR value across all history-dependent

policies, as expressed by the following optimization problem:

min
π∈ΠH

max
P̃∈P

CVaRα

(
lim
T→∞

Jπ(x0)
)
. (4.2)

The sets ΠH and P are both non-empty and compact. Additionally, the objective function is finite

due to γ < 1. Thus, the minimum and maximum values can be achieved, as guaranteed by

the Weierstrass theorem in optimization theory [46]. This theorem ensures that the optimization

problem is well-defined and can be effectively solved to obtain the desired policy that minimizes

the robust CVaR value under the given constraints. Contrasting with the robustness analysis of

CVaR in [24], our approach evaluates the inner CVaR objective in Equation (4.2) across the entire

set P , instead of limiting the analysis to the true transition probabilities P alone. This broader
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evaluation provides a more comprehensive analysis of the robustness of CVaR in diverse uncertain

environments.

Recalling the coherent nature of CVaR as a risk measure and leveraging the dual representation

theorem, the original optimization problem (4.2) can be reformulated as follows:

min
π∈ΠH

max
P̃∈P

max
Q∈UCVaR

EQ
(

lim
T→∞

Jπ(x0)
)
. (4.3)

where UCVaR = {Q � P̃ : 0 ≤ Q(x′|x, a)/P̃ (x′|x, a) ≤ 1
α
}. Notice that the ′ sup′ has been

replaced by ′max′ since UCVaR is convex and compact and the objective function is continuous in

Q.

We first focus on solving problem (4.3) with a predetermined ambiguity set, where the

uncertain budget remains fixed for every state and action. Our approach involves combining two

inner maximization problems by analyzing the divergence D(Q,P ). Under the assumption that

the function φ in (4.1) is chosen such that D(Q,P ) remains bounded, i.e., D(Q,P ) ≤ K̃ (a

condition satisfied by the divergence measure used in this study), we show that problem (4.3) can

be reformulated to:

min
π∈ΠH

max
Q∈Q

EQ
(

lim
T→∞

Jπ(x0)
)
, (4.4)

where Q =
{
Q : D(Q,P ) ≤ K̃

}
represents the uncertain transition problem set.

This approach effectively addresses robust CVaR across diverse uncertainty sets by combining

the set’s divergence measure with the Radon-Nikodym derivative, forming a new envelope set

for risk-sensitive RL. This strategy not only links the robustness of risk-sensitive RL with its

intrinsic transformation but also provides a universal framework for evaluating CVaR’s robustness.

We further illustrate this approach by analyzing two specific φ-divergence measures.

4.3.1 Radon-Nikodym Derivative

Firstly, we consider the scenario where φ-divergence is Radon-Nikodym derivative, subject to a

fixed uncertain budget for all states and actions: DRN(P̃ , P ) = P̃ (x′|x,a)
P (x′|x,a)

∈ [0, K], where K ≥ 0 is
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a predetermined constant.

Consequently, we obtain: DRN(Q,P ) ∈
[
0, K

α

]
. In this context, the original optimization

problem (4.3) transforms into:

min
π∈ΠH

max
Q∈URN

EQ
(

lim
T→∞

Jπ(x0)
)
, (4.5)

where URN =
{
Q� P : DRN(Q,P ) ∈ [0, K

α
]
}
.

Notice that solving problem (4.5) is equivalent to solving the following CVaR optimization

problem with confidence level α′ = α
K

:

min
π∈ΠH

CVaRα′

(
lim
T→∞

Jπ(x0)
)
,

which can be solve by employing CVaR value iteration algorithms proposed in [24].

4.3.2 KL Divergence

In this scenario, we consider that the uncertain transition probability P̃ is defined in the

neighborhood of the true transition probability P using the KL divergence, given by:DKL(P̃ , P ) =∑
x′∈X P̃ (x′|x, a) log

(
P̃ (x′|x,a)
P (x′|x,a)

)
≤ K, where K ≥ 0 is a fixed value. Without loss of generality,

we set K = lnκ with κ ≥ 1. We can combine the two inner maximization problems into one, as

the KL divergence of Q and P satisfies: DKL(Q,P ) ≤ − lnα+ 1/α lnκ = − ln(α/κ
1
α ). Then, the

original optimization problem (4.3) is transformed into:

min
π∈ΠH

max
Q∈UKL

EQ
(

lim
T→∞

Jπ(x0)
)
, (4.6)

where UKL =
{
Q� P : DKL(Q,P ) ≤ − ln α

κ
1
α

}
.

Notice that solving problem (4.6) is equivalent to solving the following EVaR optimization
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problem with confidence level α′ = α/κ
1
α :

min
π∈ΠH

EVaRα′

(
lim
T→∞

Jπ(x0)
)
.

The problem could be solved by the approaches we proposed in Chapter 2.

4.4 Robust CVaR RL with Decision-Dependent Uncertainty

In real-world scenarios, ambiguity sets can dynamically change due to decisions made during

optimization, introducing endogenous uncertainty [63]. This variability means that the uncertain

budget can fluctuate over time, adding complexity to robust CVaR optimization analysis. To tackle

this decision-dependent uncertainty, we focus on the Radon-Nikodym derivative, i.e.,

DRN(P̃ , P ) =
P̃ (x′|x, a)

P (x′|x, a)
∈ [0, ~κ(x, a)] ,∀(x, a) ∈ X ×A,

where ~κ := {~κ(x, a),∀s ∈ S, a ∈ A} is the decision-dependent uncertainty budget vector.

By combining the dual representation theorem of CVaR, we obtain the following expression:

DRN(Q,P ) =
Q(x′|x, a)

P (x′|x, a)
∈
[
0,
~κ(x, a)

α

]
,∀(x, a) ∈ X ×A.

The problem at hand cannot be straightforwardly addressed by treating it as a fixed confidence

level CVaR optimization. To overcome this challenge, we introduce a novel risk measure called

NCVaR, which incorporates both the confidence level α and an undetermined uncertain budget

vector ~κ. Before delving into its definition, we set forth an assumption to ensure that both NCVaR

and the uncertain budget are meaningful.

Assumption 6. The undetermined uncertain budget satisfies 1 ≤ ~κ(x, a) ≤ Kmax,∀x ∈ X and

a ∈ A. Here Kmax ≥ 1 is a real value.

Definition 8. For a random variable Z : Ω → R with probability mass function (p.m.f.) P , the
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NCVaR at a given confidence level α ∈ (0, 1] with an undetermined uncertain budget ~κ is defined

as follows:

NCVaRα,~κ(Z) = sup
Q∈Q

EQ[Z], (4.7)

where Q =
{
Q : DRN(Q,P ) = Q(ω)

P (ω)
∈
[
0, ~κ(ω)

α

]
,∀ω ∈ Ω

}
.

It’s easy to observe that when P (ω) = 0, it implies Q(ω) = 0, indicating that Q is

absolutely continuous with respect to P (i.e., Q � P ). By leveraging Theorem 3.2 in [2], we can

demonstrate that NCVaR is a coherent risk measure, which provides a solid theoretical foundation

for employing NCVaR in practical applications and risk-sensitive RL scenarios.

As a consequence of the coherency property, solving problem (4.4) with an undetermined

uncertain budget defined by the Radon-Nikodym derivative is equivalently transformed into:

min
π∈ΠH

NCVaRα,~κ

(
lim
T→∞

Jπ(x0)
)
. (4.8)

Given the computational challenges associated with directly computing NCVaR, as it requires

knowledge of the entire distribution of the total discounted cost, we present a decomposition

theorem for NCVaR, which is key to simplifying NCVaR computation and the proof is detailed

in Theorem 21 of [82].

Theorem 8. (NCVaR Decomposition) For any α ∈ (0, 1] and ~κ satisfying Assumption 6, the

NCVaRα,~κ has the following decomposition

NCVaRα,~κ(Z|Ht, π) = max
ξ∈UNCVaR(α,~κ(xt,at),P (·|xt,at))

EP
[
ξxt+1 · NCVaRαξ,~κ(Z|Ht+1, π)|Ht, π

]
,

where ξ(xt+1) = Q(x′|x,a)
P (x′|x,a)

≥ 0 is in the set

UNCVaR(α,~κ(xt, at), P (·|xt, at))

=

ξ : ξ(xt+1) ∈
[
0,
~κ(xt, at)

α
)

]
,
∑

xt+1∈X

ξ(xt+1)P (xt+1|xt, at) = 1

 .
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This decomposition theorem provides a valuable insight to NCVaR computation, effectively

linking the risk measure between different states, and facilitates a more tractable approach

to handling the complexity of NCVaR evaluation within risk-sensitive RL under the RMDP

framework. In light of the distinct confidence levels on both sides of equation (8), we introduce an

augmented continuous space Y = (0, 1] to represent the domain of confidence levels.

Accordingly, the value-function V (x, y) for every (x, y) ∈ X × Y is defined as:

V (x, y) = min
π∈ΠH

NCVaRy,~κ

(
lim
T→∞

Jπ(x)
)
.

The Bellman operator T : X × Y → X × Y is defined as:

T[V ](x, y) = min
a∈A

[
C(x, a) + γ max

ξ∈UNCVaR(y,~κ(x,a),P (·|x,a))

∑
x′∈X

ξ(x′)V (x′, yξ(x′))P (x′|x, a)

]
.

Lemma 2 introduces some important properties for the NCVaR Bellman operator.

Lemma 2. The Bellman operator T has the following properties: P1) Monotonicity; P2) Tran-

sition Invariance; P3) Contraction; P4) Concavity preserving: Suppose yV (x, y) is concave in

y ∈ Y ,∀x ∈ X . Then the maximization problem in (4.8) is concave and yT[V ](x, y) is also

concave in y.

Properties P1-P3 are similar to standard dynamic programming [15], and are key to design a

convergent value iteration method. P4 ensures that value-iteration updates involve concave, and

thus tractable, optimization problems. More details can be found in Appendix C.1.

Based on Lemma 2, we are able to propose the following theorem, which demonstrates the

existence of a unique fixed-point solution and outline a method for deriving an optimal policy.

Theorem 9. The unique fixed-point solution V ∗(x, y) of T[V ](x, y) = V (x, y) exists and equals

to the optimal value of optimization problem (4.8), i.e.,

V ∗(x, y) = min
π∈ΠH

NCVaRy,~κ

(
lim
T→∞

Jπ(x)
)
.
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Proof. Please refer to Appendix C.2 for details.

Although the problem is optimized over history-dependent policies, we demonstrate that an

optimal Markov policy exists, from which the optimal history-dependent policy can be derived.

Considering the easier implementation of the Markov policy, we adopt the greedy policy w.r.t

V ∗(x, y) as the optimal policy.

We introduce Algorithm 4.1 to effectively solve the NCVaR optimization problem. This

solution is equivalent to addressing the original problem incorporating an undetermined uncertain

budget defined by the Radon-Nikodym derivative.

Algorithm 4.1 Value Iteration for NCVaR

1: Initialization: for each x ∈ X and y ∈ Y , arbitrarily initialize V0(x, y).
2: for t = 0, 1, 2, . . . do
3: for x ∈ X and y ∈ Y do
4: Vt+1(x, y) = T[Vt](x, y)
5: end for
6: end for
7: Set V ∗(x, y) = limt→∞ Vt(x, y), then construct π∗ as the greedy policy w.r.t V ∗(x, y)

However, implementing Algorithm 4.1 directly can be challenging due to the continuous nature

of the set Y . To address this issue, we employ a sampling approach, where we select multiple

points in Y and subsequently utilize linear interpolation to derive the value function V . However,

to guarantee convergence, we need to satisfy the following assumption for the initial value function

V0.

Assumption 7. The initial value function V0(x, y) is continuous and bounded in y ∈ Y for any

x ∈ X . Also, yV0(x, y) is concave in y ∈ Y .

Let N(x) denote the number of sample points, and Y (x) = y1, y2, . . . , yN(x) ∈ [0, 1]N(x) be

the corresponding confidence level set. Notably, we have y1 = 0 and yN(x) = 1. To perform linear

interpolation of yV (x, y), we define the interpolation function IxV as follows:

Ix[V ](y) = yiV (x, yi) +
yi+1V (x, yi+1)− yiV (x, yi)

yi+1 − yi
(y − yi), (4.9)
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where yi and yi+1 are the closest points such that y ∈ [yi, yi+1]. With this, we introduce the

interpolated Bellman operator for NCVaR, denoted as TIV :

TI [V ](x, y) = min
a∈A

[
C(x, a) + γ max

ξ∈UNCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V ](yξ(x′))

y
P (x′|x, a)

]
. (4.10)

An essential observation is that the interpolated Bellman operator shares the properties of

Lemma 2, which can be shown using a similar proof. Additionally, Algorithm 4.2 provides a more

practical value iteration method, utilizing the interpolated Bellman operator and linear interpolation

to achieve near-optimal value functions and policies.

Algorithm 4.2 NCVaR Value Iteration with Linear Interpolation

1: Initialization: choose Y (x), V0(x, y) satisfying Assumption 7
2: for t = 0, 1, 2, . . . do
3: for x ∈ X and y ∈ Y do
4: Vt+1(x, y) = TI [Vt](x, y)
5: end for
6: end for
7: Set V ∗(x, y) = limt→∞ Vt(x, y), then construct π∗ as the greedy policy w.r.t V ∗(x, y)

4.5 Experiments

In this section, we use the grid world setup adopted for EVaR-VI in Chapter 2. Here, we omit a

reintroduction of the setup and proceed directly to the results and analysis.

We first validate our approach for a fixed uncertain budget using Radon-Nikodym derivative

and KL divergence. This involves visualizing the optimal value function with color variations (a

bluer color indicates a lower risk while a yellower color indicates a higher risk) and tracing the

optimal path as a red line (Figure 4.1a). In Figure 4.1a, 4.1b and 4.1c, we select a confidence

level of α = 0.48 and an uncertain budget of K = 2 for both RN derivative and KL divergence.

Consequently, we obtain α′CVaR = 0.24 and α′EVaR = 0.03, which indicates that the new optimal

policy will exhibit a more risk-averse behavior compared to the original one. Accordingly, the
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optimal path becomes longer and is positioned closer to obstacles, aligning with the result that

the value function is larger. We further assess Algorithm 4.2 for decision-dependent cases, setting

the uncertain budget range to [1, 2]. As a result, for a fixed current state x, the new confidence

level on the right side of the decomposition theorem significantly deviates from the fixed case.

This increased deviation leads to the agent becoming more risk-averse as shown in Figure 4.1d.

In conclusion, our algorithms effectively induce risk-averse policies, equipping agents to navigate

more cautiously in uncertain environments. The experiments validate our methodology’s efficacy

in guiding agents towards safer decision-making strategies.

(a) α = 0.48, no uncertainty (b) α = 0.48, KRN = 2

(c) α = 0.48, KKL = 2 (d) α = 0.48, Kunfix ∈ [1, 2]

Figure 4.1: Optimal value function and path in robust CVaR optimization across various
uncertainty sets.

4.6 Conclusion

In this chapter, we have conducted a comprehensive and novel analysis of robust CVaR-based

risk-sensitive RL within the framework of RMDP. We have successfully addressed robust CVaR
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optimization in the presence of fixed uncertain budgets while adopting a rectangular ambiguity set.

We have introduced a novel risk measure NCVaR and devised NCVaR value iteration algorithms

to solve the challenges associated with state-action dependent uncertainty. Furthermore, we have

demonstrated the convergence of our algorithms through theoretical analysis. We have validated the

proposed approaches through simulation experiments, and the results showcased the effectiveness

and practicality of our methods.
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Chapter 5

Risk-Sensitive Reward-Free Reinforcement

Learning

5.1 Introduction

In RL, agents learn optimal actions by iteratively interacting with the environment and leveraging

feedback from reward signals. A critical part of this learning process is exploration, where agents

navigate through states to effectively gather environment information. Despite exploration being

widely recognized as a vital aspect of RL, simple randomized exploration strategies often fail

due to high sample complexity [60]. While research by [6, 26, 27, 50] demonstrates that stochastic

exploration can be sample-efficient, applying these algorithms across different reward functions

can lead to inefficiencies. To address this, [51] introduces the concept of reward-free RL, in which

the goal is to approximate the near optimal policy under any reward function after a single phase

of exploration, enhancing the efficiency and adaptability of the learning process. [51] also derives

upper and lower bounds of the sample complexity of the risk-free approach.

Building on these insights, subsequent studies such as [21, 53, 67, 68, 100, 107] have sought

tighter upper bounds and more practical algorithms. The focus of these existing reward-free RL

research has been predominantly on the risk-neutral approach, in which the goal is to maximize
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the average total (discounted) reward.

In risk-sensitive RL, the objective function is shaped by applying risk measures to reward

functions [8, 28, 32, 58, 84, 90, 104], thus is also significantly dependent on the exploration

phase. However, efficient exploration, particularly in contexts without a predefined reward

function, remains an under-explored area. Existing studies on sample complexity and algorithm

performance in risk-sensitive RL typically target specific reward functions, potentially limiting

their effectiveness in varied reward settings [7, 30, 31, 34, 99]. This situation underscores the

urgency for developing efficient exploration methods in risk-sensitive RL, crucial for its practical

deployment and success in diverse stochastic environments.

In this chapter, we study risk-sensitive RL in the reward-free setting, and aim to answer the

following question:

Is it possible to design provably efficient risk-sensitive reward-free RL algorithm?

In this chapter, we design an algorithm with near-optimal sample complexity to the above

question.

Chapter Contribution: This chapter introduces a CVaR-based risk-sensitive reward-free RL

framework (CVaR-RF RL). For the exploration phase, we propose CVaR-RF-UCRL to efficiently

explore environments with unknown reward functions. The number of trajectories collected in the

exploration phase is upper bounded by Õ
(
S2AH4

ε2α2

)
, where S is the number of states, A is the

action count, H is the horizon length, ε is the targeted accuracy, and α the risk tolerance level

for CVaR. We also prove a lower bound of Ω
(
S2AH2

ε2α

)
for any CVaR-RF exploration algorithm.

Subsequently, we introduce the CVaR-RF-planning algorithm equipped with CVaR-VI, which is

able to solve CVaR RL for given reward function but without interacting with the environment.

We also propose CVaR-VI-DISC, a discretized version of CVaR-VI for direct implementation in

real-world settings while maintaining an optimization error within ε/3. These developments ensure

the efficiency and applicability of our CVaR-RF framework in advancing the field of risk-sensitive

RL.

Challenges: 1). Compared to risk-neutral reward-free RL [51], CVaR-RF RL focuses only
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on the tail distribution related to the risk tolerance parameter α. But in a reward-free setup, we

can’t access reward information, including the reward distribution. Therefore, we must adjust our

exploration strategy based on α. To address this, we define an adaptive stopping rule for different

α values during the exploration phase. Moreover, while the optimal policy in risk-neutral RL is

Markovian, the optimal policy for risk-sensitive RL is history-dependent, which makes it more

complex. To simplify this, we propose a planning algorithm with CVaR-VI that can construct a

Markovian policy as the optimal policy for CVaR RL, reducing the added complexity.

2). Compared with CVaR RL [22–24, 43, 55, 70, 71, 95, 97], CVaR-RF RL faces challenges due

to the absence of immediate feedback on risks associated with actions during the exploration

phase. In CVaR RL, with rewards given, the agent doesn’t need to explore every state or action,

as it can immediately adjust its strategy based on the reward. However, in CVaR-RF RL, where

rewards are unknown during the exploration, it’s necessary to thoroughly explore the environment

by visiting all possible states and actions. This extensive exploration gathers enough information

for the planning phase, allowing the agent to adjust its strategy effectively. To facilitate this, we

introduce CVaR-RF-UCRL, a method that efficiently explores all states.

Chapter Organization: In Section 5.2, we introduce the preliminaries essential for the

understanding of CVaR-RF RL. Section 5.3 presents the formal problem statement of CVaR-RF

RL. In Section 5.4, we present the CVaR-RF-UCRL for exploration and CVaR-RF-planning

algorithms, and present the upper bound for sample complexity. Section 5.5 provides our analysis

of the lower bound of sample complexity specifically for CVaR-RF exploration. Section 5.6

provides numerical examples. Section 5.7 offer concluding remarks.

5.2 Preliminaries

In this chapter, we use S to denote the state space and let S represent the number of states (to avoid

notation conflicts with the random variable X). The probability of reaching state s under policy π

is denoted by P π(s). Unlike the MDP process described in Section 1.1, this process begins with an
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initial state s1 selected from an unknown initial distribution P1(·) and ends when the agent reaches

the state sH+1, where H denotes the time horizon length (distinct from the original setup). Here,

we also consider a reward r, which can be interpreted as −C and we assume r(s, a) ∈ [0, 1] for all

(s, a).

Since the reward function is deterministic, its cumulative sum is bounded by [0, H]. Given

this constraint and acknowledging that the optimal b aligns with the VaR (see Lemma 14), and

considering VaRα ∈ [0, H], we can appropriately restrict the range of b as follows:

CVaRα(X) := sup
b∈[0,H]

(
b− α−1E[(b−X)+]

)
. (5.1)

Reward-Free RL: The RF-RL framework, as proposed by [51], is structured into two distinct

phases: exploration and planning. In the exploration phase, the goal is to design algorithms that

can efficiently explore the environment without reward information. Formally, in the exploration

phase, each episode commences with an exploration policy πt, based solely on data from previous

episodes. An episode ξt captures a sequence of states and actions (st1, a
t
1, . . . , s

t
H , a

t
H), starting at

initial state st1. Actions are chosen as ath = πth(s
t
h), with subsequent states determined as sth ∼

Ph(s
t
h−1, a

t
h−1). Each trajectory ξt is added to the dataset Dt. Data collection ends at a random

stopping time tstop, resulting in dataset Dtstop . Based on the dataset, we are able to get the empirical

transition kernel P̂ .

In the planning phase, the agent’s exploration strategy is critically assessed. During this phase,

the agent is no longer permitted to interact with the environment. Instead, a specific reward function

r is given, and the primary goal is to derive a near-optimal policy tailored to this r using the

dataset Dtstop gathered during the exploration phase. The efficiency of the exploration approach

is quantified based on the number of trajectories needed to consistently reach this objective,

effectively measuring the algorithm’s ability to prepare the agent for diverse reward scenarios

without direct interaction with the MDP.

Our Goal: This chapter focuses on establishing an efficient CVaR based reward-free RL
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framework, including:

1). Develop a CVaR-RF-Exploration algorithm that efficiently explores the environment without

requiring any reward function and is adaptive to different α.

2). Propose a CVaR-RF-Planning algorithm, which computes near-optimal policies based on the

dataset acquired during the exploration phase and a specified reward function, without further

interaction with the environment.

3). Ensure the efficiency and reliability by analyzing the sample complexity of exploration

algorithm and the optimization error of planning algorithm.

5.3 Problem Statement

To address the inner objective of CVaR outlined in (5.1), which depends on the variable b, we

consider an augmented MDP, in which an augmented state is defined as (s, b) ∈ SAug := S×[0, H].

The initial state for a given b1 ∈ [0, H] is set to (s1, b1). Then, for each timestep h = 1, . . . , H , the

agent selects action ah based on policy πh, and updates bh+1 to bh − rh.

For any history-dependent policy π ∈ ΠH , timestep h ∈ [H], state sh ∈ S, budget bh ∈ [0, H],

and history H , we define the value function as:

V π
h (sh, bh;Hh) = Eπ

(bh − H∑
h′=h

rh′(sh′ , ah′)

)+ ∣∣∣∣sh, Hh

 .
The CVaR objective following policy π, starting at s1, is then expressed as:

CVaRπ
α(s1) = max

b1∈[0,H]
{b1 − α−1V π

1 (s1, b1)},
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and the optimal CVaR objective is formulated as:

CVaR?
α(s1) = max

π∈ΠH
max
b1∈[0,H]

{b− α−1V π
1 (s1, b1)}

= max
b1∈[0,H]

{b1 − α−1 min
π∈ΠH

V π
1 (s1, b1)}.

(5.2)

The work of [8] significantly advances our understanding by establishing the existence of an

optimal policy ρ? : SAug → A, which is deterministic and Markovian within the augmented MDP,

denoted by SAug = S × [0, H]. With a starting point of b1 ∈ [0, H] and initial state (s1, b1), the

process unfolds as follows: for each h = 1, 2, . . . , H , the action ah is determined as ρ?(sh, bh), the

reward rh as rh(sh, ah), the next state sh+1 evolves according to P ?
h (sh, ah), and the budget bh+1 is

updated to bh − rh. The additional state bh effectively tracks the residual budget from b1, serving

as a comprehensive summary of historical decisions for the CVaR RL problem.

The adoption of deterministic Markovian policies simplifies the decision-making process in

MDPs, directly associating states with actions, thereby facilitating implementation and analytical

processes. Consequently, without loss of optimality, the optimization problem in (5.2) simplifies

to:

CVaR?
α(s1) = max

b1∈[0,H]
{b1 − α−1 min

ρ∈ΠAug
V ρ

1 (s1, b1)}, (5.3)

where ΠAug is the class of deterministic Markovian policies.

We now introduce the function definitions and the Bellman equations for the augmented MDP

proposed in [10, 99]. For any policy ρ ∈ ΠAug, we define:

V ρ
h (sh, bh) = Eρ

(bh − H∑
h′=h

rh′(sh′ , ah′)

)+ ∣∣∣∣sh, bh
 , (5.4)

and

Qρ
h(sh, bh, ah) = Eρ

(bh − H∑
h′=h

rh′(sh′ , ah′)

)+ ∣∣∣∣sh, bh, ah
 . (5.5)
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For notation convenience, we introduce the following definition:

[PhVh+1] (sh, bh, ah) = Esh+1∼P (·|sh,ah)[Vh+1(sh+1, bh+1)].

These functions adhere to the following Bellman equations:

V ρ
h (sh, bh) = Eah∼ρh(sh,bh) [Qρ

h(sh, bh, ah)] ,

Qρ
h(sh, bh, ah) = [PhVh+1] (sh, bh, ah),

(5.6)

where bh+1 = bh − rh and V ρ
H+1(s, b) = b+

1 := max(0, b1). Similarly, we define the optimal

conditions as:

V ?
h (sh, bh) = min

a∈A
Q?
h(sh, ah, bh),

ρ?h(sh, bh) = argmina∈AQ
?
h(sh, bh, ah)],

Q?
h(sh, bh, ah) =

[
PhV

?
h+1

]
(sh, bh, ah),

(5.7)

where bh+1 = bh − rh and V ?
H+1(s, b) = b+

1 = max(0, b1).

Here we introduce a key fact shown in [100], which shows the optimality of ΠAug.

Theorem 10. (Optimality) For any b1 ∈ [0, 1], V ?
1 (s1, b1) = V ρ?

1 (s1, b1) = infπ∈ΠH V
π

1 (s1, b1).

Theorem 10 suggest that we could compute V ?
1 and ρ? using dynamic programming (DP) if the

true transitions P were known, following the classical Value Iteration procedure in standard RL.

By executing ρ? starting from (s1, b
?
1) where b?1 := arg maxb1∈[0,H]{b1 − α−1V ?

1 (s1, b1)}, we can

attain the optimal CVaR value.

Based on these arguments, the goal of our work is to identify a probably approximately correct

(PAC) algorithm for CVaR-RF RL, characterized by specific performance and accuracy parameters

(ε, δ), which is defined as follows:

Definition 9. (PAC algorithm for CVaR-RF) A CVaR-RF exploration algorithm is (ε, δ)-PAC with
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a given risk tolerance α if for any reward function r,

P
(
Es1∼P1

[
CVaR?

α(s1; r)− CVaRρ̂
α(s1; r)

]
≤ ε
)
≥ 1− δ.

Here, CVaR?
α(s1; r) is derived by executing optimal policy ρ? starting from (s1, b

?
1) under the

true transition probabilities P and the reward function r with optimal initial budget b?1 :=

arg maxb1∈[0,H]{b1 − α−1V ?
1 (s1, b1; r)}. Conversely, CVaRρ̂

α(s1; r) is derived by executing the

output policy in the planning phase ρ̂ starting from (s1, b̂1) under the empirical transition

probabilities P̂ and the reward function r with the near optimal initial budget obtained in the

planning phase.

5.4 Main Results

In this section, we first analyze the exploration phase by assuming the optimization error during

the planning phase is bounded. Inspired by [35, 53], we propose the CVaR-RF-UCRL, which is

an (ε, δ)-PAC algorithm for CVaR-RF exploration, with the sample complexity upper bounded

by Õ(S2AH4/ε2α2). Then, in the planning phase, we propose a CVaR-RF-planning algorithm,

adopting CVaR-VI and CVaR-VI-DISC, which satisfy the optimization error assumption.

Notation: Consider (sih, a
i
h, s

i
h+1) as the state, action, and next state observed by an algorithm

at step h of episode i. For any step h ∈ [H] and any state-action pair (s, a) ∈ S × A, we define

nth(s, a) =
∑t

i=1 I{(sih, aih) = (s, a)} as the count of visits to the state-action pair (s, a) at step h in

the first t episodes, and nth(s, a, s
′) =

∑t
i=1 I{(sih, aih, sih+1) = (s, a, s′)}. The empirical transitions

are defined as:

P̂ t
h(s
′|s, a) =


nth(s,a,s′)

nth(s,a)
, if nth(s, a) > 0

1
S
, otherwise

.

We denote by V̂ t,ρ
h (sh, bh; r) and Q̂t,ρ

h (sh, bh, ah; r) the value and action-value functions of a policy

π in the MDP with transition kernels P̂t and reward function r.

83



5.4.1 Exploration Phase

We first present a lemma that will be useful for the study of the objective within the CVaR-RF

exploration context. Prior to delving into this lemma, we make an assumption regarding the

planning phase.

Assumption 8. The optimization error during the planning phase is bounded, i.e.,

∣∣∣ĈVaR
ρ̂?

α (s1; r)− ĈVaR
ρ̂

α(s1; r)
∣∣∣ ≤ εα/3,

where ĈVaR
ρ̂?

α (s1; r) is derived by executing the optimal policy ρ̂? starting from (s1, b̂
?
1) under the

empirical transition probabilities P̂ and the reward function r with optimal initial budget b̂?1 :=

arg maxb1∈[0,H]{b1 − α−1V̂ ?
1 (s1, b1; r)}.

Notice that, Assumption 8 focuses on the optimization error based on same empirical transition

probability P̂ and given r. This assumption is not about the error with respect to the optimal

policy for the true underlying MDP. Theorem 10 justifies the existence of an optimal policy ρ̂∗

for MDP specified by P̂ and given reward function (more technical details could be found in

Appendix D.1.1). Furthermore, there exist many CVaR RL works capable of generating such a

near-optimal policy ρ̂ that satisfies this assumption, such as [24, 97, 99]. We also propose our

algorithms in the planning phase that satisfy this assumption. Therefore, Assumption 8 could be

immediately satisfied based on these facts.

The following lemma is useful for subsequent discussions and analyses related to our primary

objective.

Lemma 3. An algorithm is (ε, δ)-PAC for CVaR-RF exploration with a given risk tolerance α if

for any reward function r and for any b1 ∈ [0, H],
∣∣∣V ρ

1 (s1, b1; r)− V̂ ρ
1 (s1, b1; r)

∣∣∣ ≤ εα/3.

Proof. Please refer to Appendix D.1.1 for more details.

For simplifying the exposition of our algorithm, we posit that the initial state distribution P0 is

supported solely on a singular state s1. This assumption incurs no loss of generality [35]. If this is
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not the case, one might contemplate an augmented MDP that includes an additional initial state s0,

paired with a unique action a0 yielding a null reward. Thus, b0 = b1. In this scenario, the transitions

from s0 using a0 are defined as P0(·|s0, a0) = P0.

The error upper bounds in the CVaR-RF-UCRL algorithm are derived from an upper bound on

the estimation error for each policy ρ, each initial budget b ∈ [0, H] and each reward function r. The

complete procedure is outlined in Algorithm 5.1. Before discussing the details of this algorithm,

we introduce the definitions for the estimation error and its upper confidence bound.

Definition 10. For a given policy ρ, reward function r, and episode t, we define this error for any

(sh, bh, ah) ∈ SAug ×A as

êt,ρh (sh, bh, ah; r) :=
∣∣∣Q̂t,ρ

h (sh, bh, ah; r)−Qρ
h(sh, bh, ah; r)

∣∣∣ .
Definition 11. The upper confidence boundEt

h(sh, ah) for the error, recursively defined as follows:

Et
H+1(s,a) = 0 for all (s, a), and for all h ∈ [H], with the convention 1

0
= +∞,

Et
h(sh, ah) = min

{
H,H

√
2β(nth(s, a), δ)

nth(s, a)
+
∑
s′

P̂ t
h(s
′|s, a) max

a
Et
h+1(s′, a)

}
, (5.8)

where β(n, δ) is a threshold function, an input to the algorithm, the choice of which will be

discussed later.

It is important to note that the error upper bound only depends on the state s and action a, and

is independent of the policy ρ, initial budget b1 and reward function r. Lemma 4 establishes that

Et
h(s, a) serves as the upper bound on the error êt,ρh (s, b, a; r) for any ρ, b, r with a high probability.

Lemma 4. With the KL divergence between two distributions over S defined as KL(p ‖ q) =∑
s∈S p(s) log p(s)

q(s)
, consider the event

E =

{
∀t ∈ N,∀h ∈ [H],∀(s, a),KL(P̂ t

h(·|s, a), P h(·|s, a)) ≤ β(nth(s, a), δ)

nth(s, a)

}
,
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it is established that for any policy ρ, any reward function r and any b, êt,ρh (s, b, a; r) ≤ Et
h(s, a)

holds on event E .

Proof. Please refer to the Appendix D.1.2 for more details.

We now introduce the proposed CVaR-RF-UCRL algorithm, which operates on the principle of

uniformly reducing the estimation error across all budgets, policies and potential reward functions

by adopting a greedy approach based on the upper boundsEt on these errors. The stopping criterion

for CVaR-RF-UCRL is defined as reaching an error in step 1 that is smaller than εα/3:

• Sampling rule: the exploration policy πt+1 is the greedy policy with respect to Et(s, a),

such that for all s ∈ S and h ∈ [H]:

πt+1
h (sh) = argmaxaE

t
h(s, a). (5.9)

• Stopping rule: the algorithm stops at

tstop = inf{t : Et
h(s1, π

t+1
1 (s1)) ≤ εα/3}.

Algorithm 5.1 CVaR-RF-UCRL

1: Given: risk tolerance α ∈ (0, 1]
2: Initialization: t = 1, D0 = ∅, initialize E0 with (5.8) and π1

h with (5.9)
3: while Et−1

h (s1, π
t
1(s1)) ≥ εα/3 do

4: Observe the initial state st1 ∼ P0

5: for h = 1, . . . , H − 1, H do
6: Play ath ∼ πth(s

t
h)

7: Observe the next state sh+1

8: end for
9: Compute Et according to (5.8) and πt+1 according to (5.9)

10: Dt = Dt−1 ∪ (st1, a
t
1, . . . , s

t
H , a

t
H)

11: t = t+ 1
12: end while
13: Return the dataset Dtstop
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Now, we have the following Lemma showing that CVaR-RF-UCRL is an algorithm with

(ε, δ)-PAC.

Lemma 5. (Correctness) On the event E , given α, for any r, ρ and b1,

∣∣∣V tstop,ρ
1 (s1, b1; r)− V̂ tstop,ρ

1 (s1, b1; r)
∣∣∣ ≤ εα/3,

which implies CVaR?
α(s1; r)− CVaRρ̂?

α (s1; r) ≤ ε.

Proof. By definition of the stopping rule and the sampling rule, we have for all a ∈ A,

E
tstop
1 (s1, a) ≤ ε/3. Hence, by Lemma 4 on the event E , for all ρ, b1, r, and all a,

ê
tstop,ρ
1 (s1, b1, a; r) ≤ εα/3. In particular, for all ρ, b1, and r,

∣∣∣V tstop,ρ
1 (s1, b1; r)− V̂ tstop,ρ

1 (s1, b1; r)
∣∣∣ ≤

εα/3. The conclusion follows from Lemma 3 by choosing ρ to be ρ̂?.

We are now able to state our main results for CVaR-RF-UCRL, which show that with a proper

chosen threshold β(n, δ), CVaR-RF-UCRL achieves (ε, δ)-PAC for CVaR RL. Furthermore, an

upper bound on its sample complexity can be established under these conditions.

Theorem 11. (Upper Bound for Sample Complexity) Using threshold β(n, δ) = log(2SAH/δ) +

(S − 1) log(e(1 + n/(S − 1))), the CVaR-RF-UCRL is (ε, δ)-PAC for CVaR-RF exploration. The

number of trajectories collected in the exploration phase is bounded by Õ
(
S2AH4

ε2α2

)
.

Proof. Please refer to Appendix D.1.3 for more details.

Compared with the risk-neutral reward-free approaches [51, 53, 67], the denominator of the

bound we obtained is related to the risk tolerance parameter α. This is expected since CVaR is

interpreted as the mean of the tail distribution with an area under the curve equal to α, it requires

more trajectories for smaller α values and fewer trajectories for larger α values.

5.4.2 Planning Phase

In the planning phase, the reward function is provided, and the goal is to find a near-optimal

policy based on the given reward function and the dataset generated during the exploration phase.
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Following a similar approach to [51], we now introduce our planning algorithm, as outlined in

Algorithm 5.2.

Algorithm 5.2 CVaR-RF-Planning
1: Input: a dataset of transition Dtstop , reward function r, accuracy ε, risk tolerance α.
2: for all (s, a, s′, h) ∈ S ×A× S × [H] do
3: Nh(s, a, s

′)←
∑

(sh,ah,sh+1)∈D I[sh = s, ah = a, sh+1 = s′].

4: Nh(s, a)←
∑

s′ Nh(s, a, s
′).

5: P̂h(s
′|s, a) = Nh(s, a, s

′)/Nh(s, a).
6: end for
7: ρ̂, b̂← APPROXIMATE-CVaR-SOLVER(P̂ , r, ε, α).
8: return policy ρ̂, and initial budget b̂.

In Algorithm 5.2 , we first compute the empirical transition matrix P̂ based on the collected

dataset Dtstop . Then, for each reward function r, we find a near-optimal policy by employing

a APPROXIMATE-CVaR-SOLVER that utilizes transitions P̂ , the given reward function r, an

accuracy parameter ε and the given risk tolerance α. It’s worth noting that the solver can be any

algorithm designed to find an ε/3-suboptimal policy ρ̂ for CVaR RL when both the transition

matrix and the reward are known. One straightforward approach to achieve this is by using the

Value Iteration algorithm, which iteratively solves the Bellman optimality equation (5.6) in a

dynamic programming manner. The greedy policy induced by the resulting Q? yields the optimal

optimal policy without errors. We present Algorithm 5.3, which generates an optimal policy exactly

according to Theorem 10 [99]. This algorithm satisfies our Assumption 8 about the optimization

error.

Discretization

Algorithm 5.3 faces computational challenges due to the dynamic programming step, which

requires optimization over all b ∈ [0, H], involving the maximization of a non-concave

function [99]. Following the approach proposed in [7,99], we introduce a discretization of rewards,

which allows the mentioned steps to be performed over a finite grid. This offers computational

efficiency while preserving the same statistical guarantees.
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Algorithm 5.3 CVaR-VI
1: Input: transition matrix P , reward function r, risk tolerance α
2: for all s ∈ S, b ∈ [0, H] do
3: Set VH+1(s, b) = b+

4: for h = H,H − 1, . . . , 1 do
5: Qh(sh, bh, ah) = [PhVh+1] (sh, bh, ah), where bh+1 = bh − rh
6: ρ?h(sh, bh) = argminaQh(sh, bh, ah)
7: V ?

h (sh, bh) = minaQh(sh, bh, ah)
8: end for
9: end for

10: Calculate b? = argmaxb1∈[0,1] {b− α−1V1(s1, b)}
11: return policy ρ? and b?

We fix a precision η ∈ (0, 1) and define φ(r) = ηdr/ηe ∧ 1. This rounding function maps

r ∈ [0, 1] to an η-net of the interval [0, 1], commonly referred as the grid. The discretized MDP

dis(M) is an exact replica of the true MDPM with one exception: its rewards are post-processed

using φ, i.e., r(s, a; disc(M)) = φ(r(s, a;M)). We now introduce the CVaR value iteration with

discretization algorithm.

Algorithm 5.4 CVaR-VI-DISC
1: Input: transition matrix P , reward function r, precision parameter η, risk tolerance α.
2: Discretize the reward funtion r by

r̂ = φ(r) = ηdr/ηe ∧ 1

3: for all s ∈ S, b̂ = n · η, n = 0, 1, . . . do
4: Set V̂H+1(s, b̂) = b̂+ := max(0, b̂)
5: for h = H,H − 1, . . . , 1 do
6: Q̂h(sh, b̂h, ah) =

[
PhV̂h+1

]
(sh, b̂h, ah), where b̂h+1 = b̂h − r̂h

7: ρ̂?h(sh, b̂h) = argminaQ̂h(sh, b̂h, ah)

8: V̂ ?
h (sh, b̂h) = mina Q̂h(sh, b̂h, ah)

9: end for
10: end for
11: Calculate b̂? = argmaxb̂

{
b̂− α−1V̂1(s1, b̂)

}
12: return policy ρ̂? and b̂?
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Computational Complexity

In disc(M), the α-th quantile of the returns distribution (the argmax of the CVaR objective) will

be a multiple of η. Therefore, it suffices to compute V1(s1, b1) and maximize line 9 over the grid.

Since b1 transitions by subtracting rewards, which are multiples of η, bh will always stay on the

grid. Hence, the entire dynamic programming procedure only needs to occur on the grid. This

approach demonstrates that CVaR value iteration via discretization is computationally tractable.

Theorem 12. The CVaR-VI-DISC has a run time ofO(S2AHη−2) in the discretized MDP. Setting

η = εα/3H , as suggested in Theorem 13, the run time is O(S
2AH3

ε2α2 ).

Proof. Please refer to Appendix for more details.

Discretization Error

Next, we evaluate the impact of errors resulting from the discretization step. Following a similar

method as previous works [99], we can relate the errors within disc(M) to equivalent errors within

M using a coupling argument. This leads us to introduce the CVaR-VI-DISC algorithm, which is

tailored for practical applications.

The following theorem guarantees that the optimization error assumption is met when when

Algorithm 5.4 is employed.

Theorem 13. By selecting η ≤ εα/3H , we ensure that

∣∣CVaRρ?

α (s1; r)− CVaRρ̂
α(s1; r)

∣∣ ≤ ε/3, (5.10)

where ρ? represents the policy generated by Algorithm 5.3 and ρ̂ is the output of Algorithm 5.4.

Consequently, the optimization error is bounded by ε/3, which satisfies Assumption 8.

Proof. Please refer to the Appendix for more details.
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5.4.3 Adaptability to Varying Risk Tolerances

We further introduce an important proposition that underscores the adaptability of our exploration

process to different levels of risk tolerance α:

Proposition 3. For any α′ ≥ α, the exploration dataset obtained through Algorithm 5.1 at risk

tolerance α contains the requisite information for conducting CVaR-RF RL with any higher risk

tolerance α′. Consequently, the planning phase is also compatible with any given α′ ≥ α.

Proof. Utilizing Lemma 3, we observe that as εα/3 ≤ εα′/3, the CVaR-RF exploration algorithm

configured with a risk tolerance of α also satisfies the (ε, δ)-PAC criterion for CVaR-RF RL when

operating under a higher risk tolerance α′ ≥ α. Furthermore, invoking Theorem 13, we have that

the stipulated optimization error condition is met since η ≤ η′. This implies that the planning phase

remains efficacious under these adjusted parameters.

5.5 Lower Bound

In this section, we develop a lower bound of the sample complexity for CVaR-RF exploration. We

present a theorem that delineates this lower bound, applicable to any algorithm operating within

the CVaR-RF exploration framework.

Theorem 14. Consider a universal constant C > 0. For a given risk tolerance α ∈ (0, 1], if the

number of actions A ≥ 2, the number of states S ≥ C log2A + 2, the horizon H ≥ C log2 S + 1,

and the accuracy parameter ε ≤ min{1/4α,H/48α}, then any CVaR-RF exploration algorithm

that can output ε-optimal policies for an arbitrary number of adaptively chosen reward functions

with a success probability δ = 1/2 must collect at least Ω(S2AH2/αε2) trajectories in expectation.

Proof Sketch 2. Here we highlight the main idea of our lower bound proof, while the detailed proof

can be found in the Appendix. Our proof is inspired by the lower bound construction in for the

reward-free RL [51]. The key idea is that any reward-free risk neutral problem can be transformed

into a CVaR-RF RL problem. If a CVaR-RF exploration algorithm that can output ε-optimal
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policies in the transformed CVaR-RF RL problem, it can also solve the original reward-free risk

neutral problem. Specifically, for a MDP M with initial state s1, we consider a new MDP M′

with an initial state s0. For any action a, P (s1|s0, a) = α, P (s′|s0, a) = 1 − α, P (s′|s′, a) = 1,

and r(s′, a) = 1. For any adaptively chosen reward function for M and a policy π, the CVaR

with tolerance α following policy in the new MDPM′ is equal to the cumulative rewards in the

original MDP M. [51] shows that any reward-free exploration algorithm that output ε-optimal

policy from initial state s1 must collect at least Ω(S2AH2/αε2) trajectories in expectation. Thus,

from the initial state s0, the CVaR-RF exploration algorithm must collect at least Ω(S2AH2/αε2)

trajectories in expectation. �

This theorem illustrates that, compared with the lower bound, the upper bound established

in Theorem 11 has by an additional factor of H2 and 1/α, while being tight with respect to the

parameters S,A, ε. If α is a constant, our result is nearly minimax-optimal with an additional factor

on H2. An interesting direction of the future work is utilizing the empirical Bernstein inequality to

further improve the sample complexity. The H factor can potentially be optimized by adopting an

approach similar to [67] by introducing an empirical Bernstein inequality derived from a control

of the transition probability. As shown in [99], the Bernstein inequality could also potentially

improve the dependence on α under a continuity assumption. Furthermore, compared with the

risk-neutral reward-free RL, our derived lower bound for any CVaR-RF exploration algorithm

includes an additional α in the denominator. This is because CVaR focuses on the α worst

outcomes. Additionally, the CVaR setting poses challenges due to non-Markovianity, requiring

more efforts in achieving a minimax optimal sample complexity bound.

5.6 Experiments

In this section, we provide numerical examples to evaluate the proposed CVaR-RF RL framework.

In these examples, we use similar experimental setup as in [53]. Our environment is configured

as a grid-world consisting of 21 × 21 states, where each state offers four possible actions (up,
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down, left, right), and actions leading to the boundary result in remaining in the current state.

The agent will move to the correct state with a probability of 0.95. However, there is an equal

probability of 0.05
3

for the agent to move in any one of the other three directions. Initially, the

exploration algorithm CVaR-RF-UCRL runs without reward information, collecting n = 30, 000

transitions. The empirical transition probability P̂ is then estimated. We use the β(n, δ) threshold

from Theorem 11 with δ = 0.1 and set a time horizon H of 20. Using the obtained dataset and P̂ ,

the planning algorithm derives near-optimal policies, employing CVaR-VI-DISC as the solver.

Reward Setup 1: The first one is similar with [53], where the agent starts at position (10, 10).

The reward structure is primarily set at 0 for most states, except at (16, 16) where it is 1.0. Here we

choose ε = 0.1. Then we executing the output policy of CVaR-VI-DISC in the same grid-world for

K = 10, 000 trajectories and plot the number of state visits following the policy. For comparison,

we also generate the optimal policy using true transition probability. Figures 5.1a displays the

number of visits to each state following the policy generated from P , while Figure 5.1b shows

for P̂ . Additionally, Table 5.1 presents the CVaR values under both true and empirical transition

probabilities.

(a) Optimal policy (b) CVaR-VI-DISC

Figure 5.1: Number of state visits following policies generated under P and P̂ in reward setup 1
with risk tolerance α = 0.05.

These visitation patterns, shown in Figures 5.1a and 5.1b, are notably similar, indicating that

the agent tends to favor states with higher rewards. This behavior is consistent with the objective of
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ε, α CVaRP CVaRP̂ Error

0.1, 0.05 4.308 4.258 0.05
0.1, 0.95 4.960 4.954 0.006

Table 5.1: CVaR values under reward setup 1 with different α.

maximizing CVaR. The similarity in patterns under both true and empirical transition probabilities

underscores the reliability of the data collected during the exploration phase. Moreover, with ε =

0.1 and α = 0.05, the difference between true and empirical CVaR is 0.05, which is below the

anticipated error threshold of ε = 0.1. Similarly, with ε = 0.1 and α = 0.95, the error is only

0.006, again less than the threshold of 0.1. These results align with our theoretical analysis.

Reward Setup 2: We consider a more complex case as the reward structure is primarily set

at 0.5 for most states, except at (16, 16) where it is 1.0, and a zero-reward zone marked ’x’ from

(12, 10) to (12, 16).

(a) Optimal policy (b) CVaR-VI-DISC

Figure 5.2: Number of state visits following policies generated under P and P̂ in reward setup 2
with risk tolerance α = 0.05.

ε, α CVaRP CVaRP̂ Error

0.1, 0.05 1.852 1.829 0.023
0.1, 0.95 1.993 1.990 0.003

Table 5.2: CVaR values under reward setup 2 with different α.

Figure 5.2 and Table 5.2 illustrate that CVaR-RF RL effectively avoids traversing zero-reward
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regions, and the observed errors remain within the pre-defined thresholds. These outcomes are also

consistent with the CVaR’s property as the agent is more risk-averse compared to risk-neutral case.

5.7 Conclusion

In this chapter, we have introduced a novel risk-sensitive reward-free RL framework based

on CVaR, which is able to solve CVaR RL for given any reward function after a singular

reward-free exploration phase. We have proposed CVaR-RF-UCRL as the exploration algorithm

and established upper and lower bounds for the sample complexity. We have developed

a CVaR-RF-planning algorithm, equipped with CVaR-VI and CVaR-VI-DISC to generate

near-optimal Markov policies solely based on the exploration dataset and given reward function.

Through our numerical experiments, we have validated the effectiveness and practicality of this

CVaR-RF-RF framework.
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Chapter 6

Conclusion

This thesis presents advancements in risk-sensitive RL, addressing critical challenges in managing

uncertainty, optimizing for risk-sensitive criteria, and enhancing decision-making robustness.

By leveraging novel risk measures, developing generalized frameworks, ensuring robustness in

uncertain environments, and designing efficient exploration methods, this work contributes new

approaches to foundational problems in risk-sensitive RL.

In Chapter 2, we introduced EVaR as a coherent, interpretable risk measure that offers

computational advantages over traditional measures such as CVaR. We developed two

algorithms—EVaR-VI and EVaR-PG—to solve the EVaR optimization problem, establishing the

practical and theoretical viability of EVaR for RL applications. This approach enables RL agents

to minimize risks using a measure that is both coherent and naturally interpretable through its dual

KL-divergence representation.

Chapter 3 extended risk-sensitive RL by proposing a novel framework based on PhiD-R, a class

of coherent risk measures that encompasses widely used risk measures, including CVaR and EVaR.

By introducing a trajectory-based policy gradient method, we demonstrated how PhiD-R can be

used to efficiently solve RL problems while providing flexibility in risk measure selection. This

approach ensures that decision-makers can customize risk preferences to suit specific applications

without sacrificing computational efficiency.
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In Chapter 4, we focused on the robustness of risk-sensitive RL within the RMDP framework,

examining CVaR’s robustness under uncertainty. We developed algorithms to optimize for the

worst-case CVaR within a predefined ambiguity set of transition probabilities and introduced

NCVaR to handle decision-dependent uncertainty. These contributions reinforce the robustness

of risk-sensitive RL under dynamic uncertainty conditions, making it a more effective tool for

applications where model parameters are not fully known or are subject to change.

Finally, in Chapter 5, we addressed the problem of efficient exploration in risk-sensitive

RL without a predefined reward function, developing a CVaR-based reward-free framework.

By proposing the CVaR-RF-UCRL algorithm, which achieves near-optimal sample complexity,

and additional planning algorithms tailored for CVaR RL, we demonstrated how risk-sensitive

exploration can be conducted effectively in diverse, unknown environments. This contribution

is particularly valuable for safety-critical applications, where efficient and safe exploration is

essential.
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Appendix A

Technical Results in Chapter 2

A.1 Proof of Lemma 1

The monotonicity and constant shift properties can be directly obtained from the definition of

EVaR Bellman operator since
∑

x′∈X ξ(x
′)P (x′|x, a) = 1 holds for any ξ ∈ UEVaR(y, P (·|x, a))

and ξ(x′)P (x′|x, a) is non-negative.

For the contraction property, by the definition of sup norm, for any x ∈ X , y ∈ Y , we have

−||V1 − V2||∞ ≤ V1(x, y)− V2(x, y) ≤ ||V1 − V2||∞.

Using the monotonicity and constant shift property, we obtain

−γ||V1 − V2||∞ ≤ T[V1](x, y)−T[V2](x, y) ≤ γ||V1 − V2||∞.

This further implies that

|T[V1](x, y)−T[V2](x, y)| ≤ γ||V1 − V2||∞

and the contraction property holds.
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It remains to prove the concavity preserving property. Assume that yV (x, y) is concave in

y ∈ Y . Let y1, y2 ∈ Y and λ ∈ [0, 1] and define yλ = (1− λ)y1 + λy2. Then,

(1− λ)y1T[V ](x, y1) + λy2T[V ](x, y2)

= (1− λ)y1 min
a1∈A

[
C(x, a1) + γ max

ξ1∈UEVaR(y1,P (·|x,a1))

∑
x′∈X

ξ1(x′)V (x′, y1ξ(x
′))P (x′|x, a1)

]
+ λy2 min

a2∈A

[
C(x, a2) + γ max

ξ2∈UEVaR(y2,P (·|x,a2))

∑
x′∈X

ξ2(x′)V (x′, y2ξ(x
′))P (x′|x, a2)

]
(1)

≤ min
a∈A

[
yλC(x, a) + γ max

ξ1∈UEVaR(y1,P (·|x,a))

ξ2∈UEVaR(y2,P (·|x,a))

∑
x′∈X

P (x′|x, a)
(
(1− λ)y1ξ1(x′)V (x′, y1ξ1(x′))

+ λy2ξ2(x′)V (x′, y2ξ2(x′))
)]

(2)

≤ min
a∈A

[
yλC(x, a) + γ max

ξ1∈UEVaR(y1,P (·|x,a))

ξ2∈UEVaR(y2,P (·|x,a))

∑
x′∈X

P (x′|x, a)
(
(1− λ)y1ξ1(x′) + λy2ξ2(x′))

V (x, (1− λ)y1ξ1(x′) + λy2ξ2(x′)
)]
.

(A.1)

The inequality (1) is by the concavity of min and (2) is by the assumption of concavity of yV (x, y).

Now define

ξ =
(1− λ)y1ξ1 + λy2ξ2

yλ
=

(1− λ)y1ξ1 + λy2ξ2

(1− λ)y1 + λy2

.

To prove the the concavity preserving property, it remains to show that ξ ∈ UEVaR(yλ, P (·|x, a)).

Note that ξ1 ∈ UEVaR(y1, P (·|x, a)) and ξ2 ∈ UEVaR(y2, P (·|x, a)), we obtain

∑
x′∈X ξ(x

′)P (x′|x, a) =
∑

x′∈X
(1−λ)y1ξ1+λy2ξ2

(1−λ)y1+λy2
P (x′|x, a) = 1.

It remains to show that ∑
x′∈X

ξ(x′)P (x′|x, a) log ξ(x′) ≤ − ln yλ.

Recall that ξ is the ratio of two PMFs, then we have

Q = ξP =
(1− λ)y1Q1 + λy2Q2

(1− λ)y1 + λy2

,
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where Q1 = ξ1P and Q2 = ξ2P .

Then it is equivalent to show

DKL(Q ‖ P ) ≤ − ln yλ.

Since KL divergence is convex when P is fixed, we have

DKL(Q ‖ P ) = DKL

(
(1− λ)y1Q1 + λy2Q2

(1− λ)y1 + λy2

‖ P
)

= DKL

(
(1− λ)y1

(1− λ)y1 + λy2

Q1 +
λy2

(1− λ)y1 + λy2

Q2 ‖ P
)

≤ (1− λ)

(1− λ)y1 + λy2

y1DKL(Q1 ‖ P ) +
λ

(1− λ)y1 + λy2

y2DKL(Q2 ‖ P ).

Since DKL(Q1 ‖ P ) ≤ − ln y1 and DKL(Q2 ‖ P ) ≤ − ln y2, we obtain

(
(1− λ)y1 + λy2

)
DKL(Q ‖ P ) ≤ −

(
(1− λ)y1 ln y1 + λy2 ln y2

)
.

We will also use the fact that y ln y is convex, i.e,

(
(1− λ)y1 ln y1 + λy2 ln y2

)
≥
(
(1− λ)y1 + λy2

)
ln((1− λ)y1 + λy2).

Combining these two inequalities, we can get

(
(1− λ)y1 + λy2

)
DKL(Q ‖ P ) ≤ −

(
(1− λ)y1 + λy2

)
ln((1− λ)y1 + λy2),

i.e,

DKL(Q ‖ P ) ≤ − ln((1− λ)y1 + λy2) = − ln yλ.

Thus, we have shown that ξ also belongs to UEVaR(yλ, P (·|x, a)). Then, combining this fact
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with (C.1), we obtain

(1− λ)y1T[V ](x, y1) + λy2T[V ](x, y2)

≤ min
a∈A

[
yλC(x, a) + γ max

ξ∈UEVaR(yλ,P (·|x,a))

∑
x′∈X

P (x′|x, a)yλξ(x
′)V (x, yλξ(x

′))
]

= yλT[V ](x, yλ).

We have shown that yT[V ](x, y) is concave in y under the assumption that yV (x, y) is concave.

Finally, to show that the inner maximization problem in (2.4) is concave, we need to show the

following function:

Gx,y,a(z) :=


zV (x′, z)P (x′|x, a)/y if y 6= 0

0 otherwise

is concave in z ∈ R for any given x ∈ X , y ∈ Y and a ∈ A. Suppose zV (x, z) is a concave

function in z, then for y = 0, the function is concave in z. For y ∈ Y\{0}, since P (x′|x, a) ≥ 0,

we also have that Gx,y,a(z) is concave in z. This further implies

∑
x′∈X

ξ(x′)V (x′, yξ(x′))P (x′|x, a) =
∑
x′∈X

Gx,y,a(yξ(x
′))

is concave in ξ. Combining this result with the fact that the envelope set of ξ is a polytope, we can

prove the Property 4.

A.2 Proof of Theorem 2

The proof of Theorem 2 follows the idea in the proof of Theorem 4 in [24].

Let C0,T =
∑T

t=0 γ
tC(xt, at) denotes the total discounted cost from time 0 up to time T . For

any (x, y) ∈ X × Y , V0(x, y) is the bounded arbitrarily selected initial value. We divide the proof
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into three parts and the first part is to show that for any (x, y) ∈ X × Y ,

Vn(x, y) := Tn[V0](x, y)

= min
π∈ΠM

EVaRy

(
C0,n + γnV0(xn, yn)|x0 = x, π

)
,

(A.2)

where x0 = x, y0 = y and at = π(xt, yt).

By induction hypothesis, firstly we need to verify (C.2) holds when n = 1. For n = 1, let

(x1, y1) denotes (x′, yξ(x′)), from definition we have

V1(x, y) = T[V0](x, y) = min
π∈ΠM

[
C(x0, a0) + γEV aRy(C(x1, a1) + V0(x1, y1)|x0 = x, π)

]
Note that when n = 1, a1 only depends on x1 and y1, therefore, π is a Markovian policy, i.e.,

π ∈ ΠM . Hence, we obtain V1(x, y) = minπ∈ΠM EVaRy

(
C0,1 + γV0(x1, y1)|x0 = x, π

)
.

Next, we assume that (C.2) holds at n = k.

Then for n = k + 1,

Vk+1(x, y) := Tk+1[V0](x, y) = T[Vk](x, y)

(1)
= min

a∈A

[
C(x, a) + γ max

ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

ξ(x′)Vk(x
′, yξ(x′))P (x′|x, a)

]
(2)
= min

a∈A

[
C(x, a) + γ max

ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

ξ(x′)P (x′|x, a) min
π∈ΠM

EVaRyξ(x′)(C0,k + γkV0|x0 = x′, π)

]
(3)
= min

a∈A
[C(x, a) + γ max

ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

ξ(x′)P (x′|x, a) min
π∈ΠM

EVaRy1(C0,k + γkV0|x0 = x1, π)]

= min
a∈A

[
C(x, a) + max

ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

ξ(x′)P (x′|x, a) min
π∈ΠM

EVaRy1(γC0,k + γk+1V0|x0 = x1, π)

]
(4)
= min

a∈A

[
C(x, a) + max

ξ∈UEVaR(y,P (·|x,a))
EξP

[
min
π∈ΠM

EVaRy1(C1,k+1 + γk+1V0|x1, π)
]]

(5)
= min

a∈A

[
min
π∈ΠM

EVaRy(C0,k+1 + γk+1V0|x0 = x, π)
]

= min
π∈ΠM

EVaRy(C0,k+1 + γk+1V0|x0 = x, π),

(A.3)
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where x0 = x and y0 = y. The equality (1) is by the definition of T, (2) is by plugging in

the induction that (C.2) holds at n = k, (3) is by denoting (x′, yξ(x′)) = (x1, y1), (4) is by the

definition of C0,k, i.e,

γC0,k|x0 = x1, π

= γC(x1, a1) + γ2C(x2, a2) + · · ·+ γk+1C(xk+1, ak+1)

=
k+1∑
t=1

γtC(xt, at)

= C1,k+1,

and (5) is by the EVaR decomposition theorem. Thus, (A.3) is proved by induction.

The second part of the proof is to show that

V ∗(x0, y0) = min
π∈ΠM

EVaRy0

(
lim
n→∞

C0,n|x0, π
)
. (A.4)

Recall the contraction property of T and the boundedness of V0, for any (x, y) ∈ X × Y , we can

get the result that

V ∗(x, y) = T[V ∗](x, y)

= lim
n→∞

Tn[V0](x, y) = lim
n→∞

Vn(x, y).

The first equality is by the definition of V ∗. The second equality can be obtained by Proposition

2.2 in [15]. The third equation is derived from the definition of Vn. Combining the above results,

we have

V ∗(x0, y0) = lim
n→∞

Vn(x0, y0)

= min
π∈ΠM

EVaRy0

(
lim
n→∞

(C0,n + γnV0(xn, yn))|x0, π
)
.

The second equality is due to the boundedness of both state-wise cost and V0. Recall the
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subadditivity property of EVaR, we obtain

V ∗(x0, y0) ≤ min
π∈ΠM

[
EVaRy0( lim

n→∞
C0,n|x0, π) + lim

n→∞
γn ‖ V0 ‖∞

]
≤ min

π∈ΠM
EVaRy0( lim

n→∞
C0,n|x0, π) + lim

n→∞
γn ‖ V0 ‖∞

≤ min
π∈ΠM

EVaRy0( lim
n→∞

C0,n|x0, π) +
∣∣ lim
n→∞

γn ‖ V0 ‖∞
∣∣

which implies

− lim
n→∞

γn ‖ V0 ‖∞≤ V ∗(x0, y0)− min
π∈ΠM

EVaRy0

(
lim
n→∞

C0,n|x0, π
)
≤ lim

n→∞
γn ‖ V0 ‖∞ .

Since γ ∈ (0, 1], the term limn→∞ γ
n ‖ V0 ‖∞→ 0 when n→∞ . Thus, we obtain that

V ∗(x0, y0) = min
π∈ΠM

EVaRy0

(
lim
n→∞

C0,n|x0, π
)

holds for any (x0, y0) ∈ X × Y .

So far, we have established the optimal value over Markovian policies, the third part is to get

the optimal value over all historic-dependent policies, i.e., for the initial conditions (x0, y0), we

have that

V ∗(x0, y0) = min
π∈ΠH

EVaRy0( lim
n→∞

C0,n|x0, π).

For each (xt, yt) ∈ X × Y , we first define the tth tail-subproblem as follow:

V(xt, yt) = min
π∈ΠH

EVaRyt( lim
n→∞

Ct,n|xt, π)

where the tail policy sequence is equal to π = {πt, πt+1, . . . } and the action is given by aj = πj(hj)

for j ≥ t.

For any history depend policy π̃ ∈ ΠH , we also define the π̃-induced value function as

EVaRyt(limn→∞ Ct,n|xt, π̃) where π̃ = {π̃t, π̃t+1, . . . } and aj = π̃j(hj) for j ≥ t.

Let π∗ denote the optimal policy of the tth-subproblem mentioned above, then the policy π̃ =
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{π∗t+1, π
∗
t+2, . . . } is a feasible policy for the (t+ 1)th-subproblem for any state xt+1 and confidence

level yt+1:

min
π∈ΠH

EVaRyt+1( lim
n→∞

Ct+1,n|xt+1, π).

Combining all the above results, for any (xt, yt) ∈ X × Y with at = π∗t (xt), we can write

V(xt, yt) = min
π∈ΠH

EVaRyt( lim
n→∞

Ct,n|xt, π)

= EVaRyt( lim
n→∞

Ct,n|xt, π∗)

= C(xt, at) + γEVaRyt( lim
n→∞

Ct+1,n|xt+1, π̃)

(1)
= C(xt, at) + γ max

ξ∈UEVaR(yt,P (·|xt,at))
E
[
ξ(xt+1) · EVaRyt+1( lim

n→∞
Ct+1,n|xt+1, π̃)

]
(2)
= C(xt, at) + γ max

ξ∈UEVaR(yt,P (·|xt,at))
Eξ
[
Vπ̃(xt+1, ytξ(xt + 1))|xt, yt, at

]
(3)

≥ C(xt, at) + γ max
ξ∈UEVaR(yt,P (·|xt,at))

Eξ
[
V(xt+1, ytξ(xt + 1))|xt, yt, at

]
(4)

≥ T[V](xt, yt)

where (1) is by the decomposition theorem, (2) is by defining Vπ̃(xt, yt) = EVaRyt(limn→∞ Ct,n|xt, π̃),

(3) is by Vπ̃(x, y) ≥ V(x, y) for any (x, y) ∈ X × Y and (4) is by the definition of T.

On the other hand, for any state xt+1 and confidence level yt+1, let π∗ = {π∗t+1, π
∗
t+2, . . . } ∈ ΠH

be an optimal policy for the (t + 1)th tail subproblem. Given (xt, yt) ∈ X × Y , we can construct

policy π̃ = {π̃t, π̃t+1, . . . } ∈ ΠH for the tth subproblem from π∗ by π̃t(xt) = u∗(xt, yt) and

π̃j(hj) = π∗j (hj), where

u∗(xt, yt) ∈ arg min
a∈A

[
C(xt, a) + γ max

ξ∈UEVaR(yt,P (·|xt,a))
Eξ[V(xt+1, ytξxt+1)|xt, yt, a]

]
,

with yt is the given confidence level to the tth tail-subproblem and the transition from yt to yt+1 is

given by yt+1 = ytξ
∗(xt+1) where

ξ∗ ∈ arg max
ξ∈UEVaR(yt,P (·|xt,a∗))

E
[
ξ(xt+1)EVaRytξ(xt+1)( lim

n→∞
Ct+1,n|xt+1,n, π̃)

]
.
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Notice that π∗ is an optimal and hence is a feasible policy for the tail subproblem from time

t + 1. Then the policy π̃ ∈ ΠH is a feasible policy for the tail subproblem from time t:

minπ∈ΠH EVaRyt(limn→∞ Ct+1,n|xt, π). Hence,

V(xt, yt) ≤ C(xt, π̃t(xt)) + γEVaRyt( lim
n→∞

Ct+1,n|xt, π̃).

Recall the definition of π∗, we can immediately get

V(xt, yt)

≤ C(xt, u
∗(xt, yt))

+ γ max
ξ∈UEVaR(yt,P (·|xt,u∗(xt,yt)))

E
[
ξ(xt+1) · EVaRytξ(xt+1)( lim

n→∞
Ct+1,n|xt+1, π̃)|xt, yt, u∗(xt, yt)

]
≤ C(xt, u

∗(xt, yt)) + γ max
ξ∈UEVaR(yt,P (·|xt,u∗(xt,yt)))

Eξ
[
V(xt+1, ytξ(xt+1))|xt, yt, u∗(xt, yt)

]
= T[V](xt, yt).

Combining the result V(xt, yt) ≥ T[V](xt, yt) and V(xt, yt) ≤ T[V](xt, yt), we show that V is

a fixed-point solution of V(xt, yt) = T[V](xt, yt) for any (x, y) ∈ X × Y . Since the fixed-point

solution is unique, we can obtain V ∗(x, y) = V(x, y) for any (x, y) ∈ X × Y . Therefore, we have

V ∗(x, y) = V(x, y) = min
π∈ΠH

EVaRy( lim
n→∞

C0,n|x0 = x, π).

Equipped with the results from the above three parts, this claim is proved.

A.3 Proof of Theorem 3

The proof follows the similar idea with the proof of Theorem 5 in [24].

Firstly, for any u ∈ ΠM,S , we define the policy induced Bellman operator Tu as follows:

Tu[V ](x, y) = C(x, u(x, y)) + γ max
ξ∈UEVaR(y,P (·|x,u(x,y)))

∑
x′∈X

ξ(x′)V (x′, yξ(x′))P (x′|x, u(x, y)).
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Following the arguments in the proof of Theorem 2, we can show that the unique fixed-point

solution to Tu[V ](x, y) = V (x, y) exists. Therefore, we need to show that the stationary Markovian

policy u∗ is optimal if and only if for any (x, y) in X × Y

T[V ∗](x, y) = Tu∗ [V
∗](x, y), (A.5)

where V ∗(x, y) is the unique fixed-point solution of T[V ](x, y) = V (x, y).

The first step is to show that, if u∗ ∈ ΠM,S is optimal, equation (A.5) holds. From Theorem 2,

we know that

V ∗(x, y) = min
π∈ΠH

EVaRy

(
lim
T→∞

C0,T |x0 = x, π
)
.

Let Vu∗ be the fixed-point solution to Tu∗ [V ](x, y) = V (x, y) for any (x, y) and combine the

definition of u∗ as described in Theorem 3, we can obtain V ∗(x, y) = Vu∗(x, y). Then, we have

T[V ∗](x, y) = V ∗(x, y) = Vu∗(x, y) = Tu∗ [Vu∗ ](x, y).

The second step is to assume that equation (A.5) holds, we need to show u∗ ∈ ΠM,S is optimal.

Recall that T[V ∗](x, y) = V ∗(x, y) holds for any (x, y), we obtain V ∗(x, y) = Tu∗(x, y). Due to

the uniqueness of fixed-point solution and the result from Theorem 2, we have

T[V ∗](x, y) = V ∗(x, y) = Vu∗(x, y) = min
π∈ΠH

EVaRy( lim
T→∞

C0,T |x0 = x, π).

A.4 Proof of Theorem 4

The proof is inspired by the idea of the proof of Theorem 7 in [24].
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We can rewrite the (2.11) as

Qk+1(x, y, a) = (1− ζk(x, y, a))Qk(x, y, a) + ζk(x, y, a)·(
γ max
ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [Vk](yξ(x′))
y

P (x′|x, a) + γMk(x, y, a) + C(x, a)

)
,

where the noise term is given by

Mk(x, y, a)

= max
ξ∈UEVaR(y,PNk (·|x,a))

1

Nk

Nk∑
i=1

Ix′,i [Vk](yξ(x′,i))
y

− max
ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [Vk](yξ(x′))
y

P (x′|x, a)

for which Mk(x, y, a) → 0 almost surely as Nk → ∞ (consistency property of SAA shown in

Chapter 5 of [88]) and for any k ∈ N, let

T1 = C(x, a) + max
ξ∈UEVaR(y,PNk (·|x,a))

1

Nk

Nk∑
i=1

Ix′,i [Vk](yξ(x′,i))
y

,

T2 = C(x, a) + max
ξ∈UEVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [Vk](yξ(x′))
y

P (x′|x, a).

We can rewrite the noise term as

Mk(x, y, a) = T1 − T2 ≤ |T1 − T2|.

Then

M2
k (x, y, a) ≤ |T1 − T2|2 ≤ |T1|2 + |T2|2 ≤ 2 max

x,y,a
Q2
k(x, y, a).

Then the assumptions in Proposition 4.5 in [15] on the noise term Mk(x, y, a) are verified.

Now, we need to show that the operator FI is contraction. Firstly, we prove the monotonicity

property. Based on the definition of Ix[V ](y), if V1(x, y) ≥ V2(x, y), ∀x ∈ X , y ∈ Y , we have that
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for y ∈ Ii+1(x)

Ix[V1](y) =
yi+1V1(x, yi+1)(y − yi) + yiV1(x, yi)(yi+1 − y)

yi+1 − yi
.

Since yi, yi+1 ∈ Y and (yi+1 − y), (y − yi) ≥ 0, we can easily see that Ix[V1](y) ≥ Ix[V2](y). As

y ∈ Y and ξ(·)P (·|x, a) ≥ 0 for any ξ ∈ UEVaR(y, P (·|x, a)), this further implies FI [V1](x, y) ≥

FI [V2](x, y).

Next we prove the constant shift property. From the definition of Ix[V ](y) that for a constant

K, we have that

Ix[V +K](y) = yi(V (x, yi) +K) +
yi+1(V (x, yi+1) +K)− yi(V (x, yi) +K)

yi+1 − yi
(y − yi)

= yK + yiV (x, yi) +
yi+1V (x, yi+1)− yiV (x, yi)

yi+1 − yi
(y − yi)

= yK + Ix[V ](y).

Therefore, by definition of FI [V ](x, y), the constant shift property:

TI [V +K](x, y) = TI [V ](x, y) + γK,∀x ∈ X , y ∈ Y

follows directly from the above arguments. Based on these two properties, we can prove the

contraction of FI directly follow steps in Lemma 1, which means, for any two state-action value

function Q1(x, y, a) and Q2(x, y, a) such that V1(x, y) = mina∈AQ1(x, y, a) and V2(x, y) =

mina∈AQ2(x, y, a), we have that ||FI [Q1]− FI [Q2]|| ≤ γ||Q1 −Q2||∞.

By combining these arguments, all assumptions in Proposition 4.5 in [15] are justified. This in

turns implies the convergence of {Qk(x, y, a)}k∈N to Q∗(x, y, a) component-wise, where Q∗ is the

unique fixed-point solution of FI [Q](x, y, a) = Q(x, y, a).
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A.5 Proof of Theorem 5

Here we follow the same idea used in the proof of Theorem 7 in [23]. First, we can regard these

updates as a multi-time scale discrete stochastic approximation and show the sequences {νk}

and {θk} converge to the solution of the corresponding continuous time systems with different

speed by [19], which further converge to the local asymptotically stable point (ν∗, θ∗) by applying

Lyapunov analysis in Chapter 4 of [56].

Step 1. Show ν-update converges.

Following Chapter 6 in Borkar’s book [19], since ν converges faster, when analyzing the

convergence of ν-update, we can view θ as constant, then the ν-update rule can be rewritten as

νk+1 = ΓN

[
νk − ζ2(k)

(
− ν−2

k ln

∑N
j=1 e

J(ξj,k)νk

N(1− α)
+ ν−1

k

∑N
j=1 J(ξj,k)e

J(ξj,k)νk∑N
j=1 e

J(ξj,k)νk

)]
.

Considering the following dynamic system

ν̇ = Υν [−∇νL(ν, θ)] (A.6)

where

Υν [−K(ν)] = lim
0<η→0

ΓN (ν + ηK(ν))− ΓN (ν)

η
.

Now consider the following equation,

νk+1 = ΓN

[
νk + ζ2(k)

(
ν−2
k ln

∑N
j=1 e

J(ξj,k)νk

N(1− α)
− ν−1

k

∑N
j=1 J(ξj,k)e

J(ξj,k)νk∑N
j=1 e

J(ξj,k)νk
+ δνk+1

)]

where

δνk+1
= −

(
ν−2
k ln

∑N
j=1 e

J(ξj,k)νk

N(1− α)
− ν−1

k

∑N
j=1 J(ξj,k)e

J(ξj,k)νk∑N
j=1 e

J(ξj,k)νk

)

+

(
ν−2
k ln

∑
ξ Pθ(ξ)eJ(ξ)νk

1− α
− ν−1

k

∑
ξ Pθ(ξ)J(ξ)eJ(ξ)νk∑

ξ Pθ(ξ)eJ(ξ)νk

)
.
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In order to show that the update rule converges to the solution of (A.6), we need to verify several

conditions to satisfy the assumptions of Theorem 2 in Chapter 2 of Borkar’s book[19]:

(1)∇νL(ν, θ) is Lipschitz in ν.

Proof. Recall that

∇νL(ν, θ) = −ν−2 ln

∑
ξ Pθ(ξ)eJ(ξ)ν

1− α
+ ν−1

∑
ξ Pθ(ξ)J(ξ)eJ(ξ)ν∑

ξ Pθ(ξ)eJ(ξ)ν

and denote this function as f(ν). Since ν ∈ [Vmin, Vmax] and ∇νL(ν, θ) is continuous and

differentiable, we have

f ′(ν) = 2ν−3 ln

∑
ξ Pθ(ξ)eJ(ξ)ν

1− α
− 2ν−2

∑
ξ Pθ(ξ)J(ξ)eJ(ξ)ν∑

ξ Pθ(ξ)eJ(ξ)ν

+ ν−1

∑
ξ Pθ(ξ)J2(ξ)eJ(ξ)ν∑

ξ Pθ(ξ)eJ(ξ)ν
−
(∑

ξ Pθ(ξ)J(ξ)eJ(ξ)ν∑
ξ Pθ(ξ)eJ(ξ)ν

)2

.

By applying the subadditivity property of absolute value, we have

|f ′(ν)| ≤
∣∣∣∣2ν−3 ln

∑
ξ Pθ(ξ)eJ(ξ)ν

1− α

∣∣∣∣+

∣∣∣∣2ν−2

∑
ξ Pθ(ξ)J(ξ)eJ(ξ)ν∑

ξ Pθ(ξ)eJ(ξ)ν

∣∣∣∣
+

∣∣∣∣ν−1

∑
ξ Pθ(ξ)J2(ξ)eJ(ξ)ν∑

ξ Pθ(ξ)eJ(ξ)ν

∣∣∣∣+

∣∣∣∣ν−1(

∑
ξ Pθ(ξ)J(ξ)eJ(ξ)ν∑

ξ Pθ(ξ)eJ(ξ)ν
)2

∣∣∣∣
≤ 2ν−3

(
Dmax

1− γ
ν − ln(1− α)

)
+ 2ν−2 Dmax

1− γ
+ ν−1

(
Dmax

1− γ

)2

+ ν−1

(
Dmax

1− γ

)2

≤ 4V −2
min

Dmax

1− γ
+ 2V −1

min

(
Dmax

1− γ

)2

− 2V −3
min ln(1− α).

By the mean value theorem,∇νL(ν, θ) is Lipschitz in ν.

(2). Stepsize ζ2(k) satisfies
∑

k ζ2(k) =∞ and
∑

k ζ
2
2 (k) <∞.

Proof. Refer to Assumption 5.

(3). {δνk+1
} is a Martingale difference sequence (MDS), i.e., E[δνk+1

|Fν,k] = 0 and

E[||δνk+1
||2|Fν,k] ≤ K(1 + ||νk||2) where Fν,k = σ(νm, δm,m ≤ k) is the filtration of νk generated
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by different independent trajectories.

Proof. (i). E[δνk+1
|Fν,k] = 0 since the trajectories are generated based on the sampling probability

mass function and all these trajectories are independent.

(ii). Recall that

|δνk+1
| =

∣∣∣∣− (ν−2
k ln

∑N
j=1 e

J(ξj,k)νk

N(1− α)
− ν−1

k

∑N
j=1 J(ξj,k)e

J(ξj,k)νk∑N
j=1 e

J(ξj,k)νk

)

+

(
ν−2
k ln

∑
ξ Pθ(ξ)eJ(ξ)νk

1− α
− ν−1

k

∑
ξ Pθ(ξ)J(ξ)eJ(ξ)νk∑

ξ Pθ(ξ)eJ(ξ)νk

)∣∣∣∣
=

∣∣∣∣ν−2
k

(
ln
∑
ξ

Pθ(ξ)eJ(ξ)νk − ln

∑
ξ e

J(ξ)νk

N

)

+ ν−1
k

(∑N
j=1 J(ξj,k)e

J(ξj,k)νk∑N
j=1 e

J(ξj,k)νk
−
∑

ξ Pθ(ξ)J(ξ)eJ(ξ)νk∑
ξ Pθ(ξ)eJ(ξ)νk

)∣∣∣∣
≤
∣∣∣∣ν−2
k · 2

Dmax

1− γ
νk + ν−1

k · 2
Dmax

1− γ

∣∣∣∣
≤ 4V −1

min
Dmax

1− γ
.

Thus, E[||δνk+1
||2|Fν,k] ≤ (4V −1

min
Dmax
1−γ )2. Combining (i) and (ii), we show that δνk+1

is a MDS.

(4). supk |||νk||2 <∞.

Proof. By Assumption 2 and note that the projection ensures νk is in [Vmin, Vmax].

Based on these conditions, we can invoke Theorem 2 in Ch2 of Borkar’s book to show that

the sequence of {νk} converges almost surely to the solution of the o.d.e for ν. To show the

convergence of ν-update, it remains to show that the solution of the o.d.e converges to a fixed

point.

For any given θ, define the following Lyapunov function

Lθ(ν) = L(ν, θ)− L(ν∗, θ)

where ν∗ is a minimum point since L(ν, θ) is convex in ν. Then Lθ(ν) is a positive definite
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function, i.e., Lθ(ν) ≥ 0. In order to use the Lyapunov theory for asymptotically stable system

from Chapter 4 of Khalil and Grizzle [56], we need to show d
dt
Lθ(ν) ≤ 0 and it’s non-zero if

||Υν [−∇νL(ν, θ)]|| 6= 0.

Now define
d

dt
L(ν, θ) = ∇νL(ν, θ)Υν [−∇νL(ν, θ)],

then

d

dt
Lθ(ν) =

d

dt
L(ν, θ)− d

dt
L(ν, θ)|ν=ν∗ =

d

dt
L(ν, θ) = ∇νL(ν, θ)Υν [−∇νL(ν, θ)].

It remains to show d
dt
L(ν, θ) ≤ 0 and it’s non-zero whenever ||Υν [−∇νL(ν, θ)]|| 6= 0 by

considering three cases.

Case 1: When ν ∈ (Vmin, Vmax).

∃ a sufficiently small η0 > 0 such that ν − η0∇νL(ν, θ) ∈ [Vmin, Vmax] and

ΓN (ν − η0∇νL(ν, θ))− ν = −η0∇νL(ν, θ).

Recall that Υν [−∇νL(ν, θ)] = lim0<η→0
ΓN (ν−η∇νL(ν,θ))−ΓN (ν)

η
, we have

d

dt
L(ν, θ) = −||∇νL(ν, θ)||2 ≤ 0

and d
dt
L(ν, θ) is non-zero if∇νL(ν, θ) 6= 0, i.e., ||Υν [−∇νL(ν, θ)]|| 6= 0.

Case 2: When ν ∈ {Vmin, Vmax}, for any η ∈ (0, η0] and some η0 > 0, (ν − η0∇νL(ν, θ)) ∈

[Vmin, Vmax].

Since (ν − η∇νL(ν, θ)) ∈ [Vmin, Vmax], we have

Υν [−∇νL(ν, θ)] = −∇νL(ν, θ)
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and this further implies
d

dt
L(ν, θ) = −||∇νL(ν, θ)||2 ≤ 0

and d
dt
L(ν, θ) is non-zero if∇νL(ν, θ) 6= 0, i.e., ||Υν [−∇νL(ν, θ)]|| 6= 0.

Case 3: When ν ∈ {Vmin, Vmax}, there exists some η ∈ (0, η0] for any η0 > 0, (ν − η∇νL(ν, θ)) /∈

[Vmin, Vmax].

Define νη := ν − η∇νL(ν, θ) for any η > 0. In this condition, considering the strong convex

function f(ν) = 1
2
(ν − νη)

2, invoking the first order optimality condition, one obtains for all

ν ∈ [Vmin, Vmax],

∇f(ν∗η)(ν − ν∗) = (ν∗ − νη)(ν − ν∗η) ≥ 0.

Note that ν∗η is the projection of νη and it’s unique due to the strong convexity of f(ν). Then, we

can have

d

dt
L(ν, θ) = ∇νL(ν, θ)Υν [−∇νL(ν, θ)]

= ∇νL(ν, θ)

(
lim

0<η→0

ν∗η − ν
η

)
=

(
lim

0<η→0

−(νη − ν)

η

)(
lim

0<η→0

ν∗η − ν
η

)
= lim

0<η→0

−||ν∗η − ν||2

η2
+ lim

0<η→0

(ν∗η − νη)(ν∗η − ν)

η2
≤ 0.

Based on these arguments, we have shown that d
dt
Lθ(ν) ≤ 0 and it’s non-zero whenever

||Υν [−∇νL(ν, θ)]|| 6= 0. Then by applying the Lyapunov theory in the reference, we know that

for any initial condition ν(0), ν(t) converges to ν∗, i.e., L(ν∗, θ) ≤ L(ν(t), θ) ≤ L(ν(0), θ) for

any t ≥ 0. Furthermore, v∗ is a stationary point since Υν [−∇νL(ν, θ)]|ν=ν∗ = 0.

Therefore, the sequence {νk} generated by (2.21) converges to the solution of (A.6), which

converges almost surely to ν∗.

Step 2. Show θ-update converges.

Since ν converges on a faster timescale than θ, the θ-update can be rewritten using the
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converged ν∗(θ), i.e.,

θk+1 = ΓΘ

[
θk − ζ1(k)ν∗(θk)

−1

∑N
j=1∇θ logPθ(ξj,k)|θ=θkeJ(ξj,k)ν∗(θk)∑N

j=1 e
J(ξj,k)ν∗(θk)

]
.

Considering the following dynamic system

θ̇ = Υθ[−∇θL(ν, θ)|ν=ν∗(θ)] (A.7)

where

Υθ[−K(θ)] = lim
0<η→0

ΓΘ(θ + ηK(θ))− ΓΘ(θ)

η
.

Note that ||νk − ν∗(θk|| → 0 almost surely and by the continuity of∇θL(ν, θ), we know that

||∇θL(ν, θ)|θ=θk,ν=νk −∇θL(ν, θ)|θ=θk,ν=ν∗(θk)|| → 0

a.s.. Then, we can rewrite the θ-update as

θk+1 = ΓΘ

[
θk + ζ1(k)

(
− ν∗(θk)−1

∑
ξ Pθ(ξ)∇θ logPθ(ξ)|θ=θkeJ(ξ)ν∗(θk)∑

ξ Pθ(ξ)|θ=θkeJ(ξ)ν∗(θk)
+ δθk+1

)]

where

δθk+1
= ν∗(θk)

−1

∑
ξ Pθ(ξ)∇θ logPθ(ξ)|θ=θkeJ(ξ)ν∗(θk)∑

ξ Pθ(ξ)|θ=θkeJ(ξ)ν∗(θk)

− ν∗(θk)−1

∑N
j=1∇θ logPθ(ξj,k)|θ=θkeJ(ξj,k)ν∗(θk)∑N

j=1 e
J(ξj,k)ν∗(θk)

+
(
ν∗(θk)

−1 − ν−1
k

)∑N
j=1∇θ logPθ(ξj,k)|θ=θkeJ(ξj,k)ν∗(θk)∑N

j=1 e
J(ξj,k)ν∗(θk)

+ ν−1
k

(∑N
j=1∇θ logPθ(ξj,k)|θ=θkeJ(ξj,k)ν∗(θk)∑N

j=1 e
J(ξj,k)ν∗(θk)

−
∑N

j=1∇θ logPθ(ξj,k)|θ=θkeJ(ξj,k)νk∑N
j=1 e

J(ξj,k)νk

)

Similarly, to prove (A.7) is well-posed, we need to check:

(1).∇θL(ν, θ) is Lipschitz in θ.
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Proof. Recall that

∇θL(ν, θ) = ν−1

∑
ξ Pθ(ξ)∇θ logPθ(ξ)eJ(ξ)ν∑

ξ Pθ(ξ)eJ(ξ)ν
.

For convenience, Let f(θ) denote the above function, we can obtain

f ′(θ) = ν−1
∇θ(

∑
ξ Pθ(ξ)∇θ logPθ(ξ)eJ(ξ)ν)∑

ξ Pθ(ξ)eJ(ξ)ν
− ν−1

(∑
ξ Pθ(ξ)∇θ logPθ(ξ)eJ(ξ)ν∑

ξ Pθ(ξ)eJ(ξ)ν

)2

By applying the subadditivity of absolute value, we have

|f ′(θ)| ≤
∣∣∣∣ν−1
∇θ(

∑
ξ Pθ(ξ)∇θ logPθ(ξ)eJ(ξ)ν)∑

ξ Pθ(ξ)eJ(ξ)ν

∣∣∣∣+

∣∣∣∣ν−1

(∑
ξ Pθ(ξ)∇θ logPθ(ξ)eJ(ξ)ν∑

ξ Pθ(ξ)eJ(ξ)ν

)2∣∣∣∣
(i). For the first term, combining Proposition 5 and the fact that

∑
ξ Pθ(ξ)eJ(ξ)ν ≥ 1 (since J(ξ) ∈

[0, Dmax
1−γ ]), we have

∣∣∣∣ν−1
∇θ(

∑
ξ Pθ(ξ)∇θ logPθ(ξ)eJ(ξ)ν)∑

ξ Pθ(ξ)eJ(ξ)ν

∣∣∣∣ ≤ V −1
minK1(ξ).

(ii). For the second term, by Proposition 6, we have

∣∣∣∣ν−1(

∑
ξ Pθ(ξ)∇θ logPθ(ξ)eJ(ξ)ν∑

ξ Pθ(ξ)eJ(ξ)ν
)2

∣∣∣∣ ≤ V −1
minK

2
2(ξ)

Based on these arguments, we have

|f ′(θ)| ≤ V −1
minK1(ξ) + V −1

minK
2
2(ξ).

Therefore, by the mean value theorem,∇θL(ν, θ) is Lipschitz in θ.

(2). Stepsize ζ1(k) satisfies
∑

k ζ1(k) =∞ and
∑

k ζ
2
1 (k) <∞.

Proof. Refer to Assumption 5.

(3). {δθk+1
} is a Martingale difference sequence (MDS), i.e., E[δθk+1

|Fθ,k] = 0 and
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E[||δθk+1
||2|Fθ,k] ≤ K(1 + ||νk||2) where Fθ,k = σ(θm, δm,m ≤ k) is the filtration of θk generated

by different independent trajectories.

Proof. (i). E[δθk+1
|Fθ,k] = 0 since the trajectories are generated based on the sampling probability

mass function and all these trajectories are independent.

(ii). First we consider the last two components of δθk+1
. Since ||ν∗(θk) − νk|| → 0 almost surely

and ∇θ logPθ(ξj,k) is Lipschitz in θ, θ lies in a compact set Θ, both J(ξj,k) and πk are bounded,

and ν, ν∗(θk) lie in a compact set N , we can concludes that as k → ∞, the last two components

converges to 0 almost surely. Then,

|δθk+1
| ≤

∣∣∣∣ν∗(θk)−1

∑
ξ Pθ(ξ)∇θ logPθ(ξ)|θ=θkeJ(ξ)ν∗(θk)∑

ξ Pθ(ξ)|θ=θkeJ(ξ)ν∗(θk)

∣∣∣∣
+

∣∣∣∣ν∗(θk)−1

∑N
j=1∇θ logPθ(ξj,k)|θ=θkeJ(ξj,k)ν∗(θk)∑N

j=1 e
J(ξj,k)ν∗(θk)

∣∣∣∣
≤ V −1

minK2(ξ) + V −1
minK2(ξ) = 2V −1

minK2(ξ).

Therefore, we can show that

E[||δθk+1
||2|Fθ,k] ≤

(
2V −1

minK2(ξ)
)2

(4). supk |||θk||2 <∞.

Proof. Refer to the assumption that θ ∈ Θ and the projection in the update rule ensures every

θk ∈ Θ.

Based on these conditions, we can invoke Theorem 2 in Ch2 of Borkar’s book to show that the

sequence of {θk} converges almost surely to the solution of the o.d.e for θ. In addition, we need to

show that ν∗(θ) is an asymptotically stable equilibrium point for the sequence {νk}. Besides the

convergence analysis of the ν-update, we need to check that∇νL(ν, θ) is Lipschitz in θ.
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Proposition 4. ∇νL(ν, θ) is Lipschitz in θ.

Proof. Recall that

∇νL(ν, θ) = −ν−2 ln

∑
ξ Pθ(ξ)eJ(ξ)ν

1− α
+ ν−1

∑
ξ Pθ(ξ)J(ξ)eJ(ξ)ν∑

ξ Pθ(ξ)eJ(ξ)ν
,

let f(θ) denote this function and we have

f ′(θ) = −ν−2

∑
ξ Pθ(ξ)∇θ logPθ(ξ)eJ(ξ)ν∑

ξ Pθ(ξ)eJ(ξ)ν
+ ν−1

∑
ξ Pθ(ξ)∇θ logPθ(ξ)J(ξ)eJ(ξ)ν∑

ξ Pθ(ξ)eJ(ξ)ν

− ν−1

∑
ξ Pθ(ξ)J(ξ)eJ(ξ)ν ·

∑
ξ Pθ(ξ)∇θ logPθ(ξ)eJ(ξ)ν

(
∑

ξ Pθ(ξ)eJ(ξ)ν)2
.

Then, we obtain

|f ′(θ)| ≤ ν−2

∣∣∣∣
∑

ξ Pθ(ξ)∇θ logPθ(ξ)eJ(ξ)ν∑
ξ Pθ(ξ)eJ(ξ)ν

∣∣∣∣+ ν−1

∣∣∣∣
∑

ξ Pθ(ξ)∇θ logPθ(ξ)J(ξ)eJ(ξ)ν∑
ξ Pθ(ξ)eJ(ξ)ν

∣∣∣∣
+ ν−1

∣∣∣∣
∑

ξ Pθ(ξ)J(ξ)eJ(ξ)ν∑
ξ Pθ(ξ)eJ(ξ)ν

∣∣∣∣ · ∣∣∣∣
∑

ξ Pθ(ξ)∇θ logPθ(ξ)eJ(ξ)ν∑
ξ Pθ(ξ)eJ(ξ)ν

∣∣∣∣
≤ V −2

minK2(ξ) + 2V −1
min

Dmax

1− γ
K2(ξ)

Therefore, by the mean value theorem,∇νL(ν, θ) is Lipschitz in θ.

To show the convergence of θ-update, it remains to show that the solution of the o.d.e converges

to a fixed point θ∗. Now we apply the Lyapunov analysis for θ-update. Define the following

Lyapunov function

L(θ) = L(ν∗(θ), θ)− L(ν∗(θ∗), θ∗),

where θ∗ is a local minimum point. Then L(θ) is a local positive definite function, i.e.,

L(θ) ≥ 0. In order to use the Lyapunov theory for asymptotically stable system from Chapter

4 of Khalil and Grizzle (2002), we need to verify to show d
dt
L(ν) ≤ 0 and it’s non-zero if

||Υν [−∇θL(ν, θ)|ν=ν∗(θ)]|| 6= 0.
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Now define

d

dt
L(ν, θ)|ν=ν∗(θ) = (∇θL(ν, θ)|ν=ν∗(θ))

TΥθ[−∇θL(ν, θ)|ν=ν∗(θ)],

then
d

dt
L(ν) =

d

dt
L(ν∗(θ), θ)− d

dt
L(ν∗(θ), θ)|θ=θ∗ =

d

dt
L(ν, θ)|ν=ν∗(θ).

It remains to show d
dt
L(ν, θ)|ν=ν∗(θ) ≤ 0 and it’s non-zero whenever ||Υθ[−∇θL(ν(θ), θ)]|θ=θ∗ || 6=

0 by considering three cases. For convenience, let Θo = Θ\∂Θ denote the interior of the set Θ.

Case 1: When θ ∈ Θo.

Recall that Θ is a convex compact set, then there exists a sufficiently small η0 > 0 such that

θ − η0∇θL(ν, θ)|ν=ν∗(θ) ∈ Θ and

ΓΘ(θ − η0∇θL(ν, θ)|ν=ν∗(θ))− ν = −η0∇θL(ν, θ)|ν=ν∗(θ).

Recall that Υθ[−K(θ)] = lim0<η→0
ΓΘ(θ+ηK(θ))−ΓΘ(θ)

η
, we have

d

dt
L(ν, θ)|ν=ν∗(θ) = −||∇θL(ν, θ)|ν=ν∗(θ)||2 ≤ 0

and d
dt
L(ν, θ)|ν=ν∗(θ) is non-zero if ||∇θL(ν, θ)|ν=ν∗(θ)|| 6= 0, i.e., ||Υθ[−∇θL(ν, θ)|ν=ν∗(θ)]|| 6= 0.

Case 2: When θ ∈ ∂Θ, for any η ∈ (0, η0] and some η0 > 0, (θ − η∇θL(ν, θ)|ν=ν∗(θ)) ∈ Θ.

Since (θ − η∇θL(ν, θ)|ν=ν∗(θ)) ∈ Θ, we have

Υθ[−∇θL(ν, θ)|ν=ν∗(θ)] = −∇θL(ν, θ)|ν=ν∗(θ)

and this further implies

d

dt
L(ν, θ)|ν=ν∗(θ) = −||∇θL(ν, θ)|ν=ν∗(θ)||2 ≤ 0
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and d
dt
L(ν, θ)|ν=ν∗(θ) is non-zero if ||∇θL(ν, θ)|ν=ν∗(θ)|| 6= 0, i.e., ||Υθ[−∇θL(ν, θ)|ν=ν∗(θ)]|| 6= 0.

Case 3: When θ ∈ ∂Θ, for some η ∈ (0, η0] and any η0 > 0, (θ − η∇θL(ν, θ)|ν=ν∗(θ)) /∈ Θ.

Define θη := θ−η∇θL(ν, θ)|ν=ν∗(θ) for any η > 0. In this condition, considering the strong convex

function f(θ) = 1
2
(θ−θη)2, invoking the first order optimality condition, one obtains for all θ ∈ Θ,

∇f(θ∗η)
T(θ − θ∗) = (θ∗ − θη)(θ − θ∗η) ≥ 0.

Note that θ∗η is the projection of νη and it’s unique due to the strong convexity of f(θ). Then, we

can have

d

dt
L(ν, θ)|ν=ν∗(θ) =

(
∇θL(ν, θ)|ν=ν∗(θ)

)T
Υθ[−∇θL(ν, θ)|ν=ν∗(θ)]

=
(
∇θL(ν, θ)|ν=ν∗(θ)

)T
(

lim
0<η→0

θ∗η − θ
η

)
=

(
lim

0<η→0

−(θη − θ)
η

)(
lim

0<η→0

θ∗η − θ
η

)
= lim

0<η→0

−||θ∗η − θ||2

η2
+ lim

0<η→0

(θ∗η − θη)(θ∗η − θ)
η2

≤ 0.

Based on these arguments, we know that d
dt
L(ν) ≤ 0 and it’s non-zero whenever

||Υθ[−∇θL(ν, θ)|ν=ν∗(θ)]|| 6= 0. Then by applying the Lyapunov theory in the reference, we know

that for any initial condition θ(0), θ(t) converges to θ∗, i.e., L(ν∗(θ∗), θ∗) ≤ L(ν∗(θ(t)), θ(t)) ≤

L(ν∗(θ(0)), θ(0)) for any t ≥ 0. Therefore, the sequence {θk} generated by following the θ-update

converges almost surely to θ∗.

Step 3. Local Minimum

We have shown that {νk, θk} converges to (ν∗, θ∗) = (ν∗(θ∗), θ∗). Moreover, by the Lyapunov

analysis, we know with any initial condition ν(0), θ(0), the state trajectories ν(t) and θ(t)

of (A.6) and (A.7) converges to (ν∗, θ∗) and L(ν∗, θ∗) ≤ L(ν∗(θ(t)), θ) ≤ L(ν∗(θ(0)), θ(0)) ≤

L(ν(t), θ(0)) ≤ L(ν(0), θ(0)) for any t ≥ 0.

By contradiction, suppose that (ν∗, θ∗) is not a local minimum. Then there exists (ν̄, θ̄) ∈
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[Vmin, Vmax]×Θ ∩ Bν∗,θ∗(r) such that

L(ν̄, θ̄) = min
(ν,θ)∈[Vmin,Vmax]×Θ∩Bν∗,θ∗ (r)

L(ν, θ).

By setting θ(0) = θ̄, the above equation implies that

L(ν̄, θ̄) = min
(ν,θ)∈[Vmin,Vmax]×Θ∩Bν∗,θ∗ (r)

L(ν, θ) < L(ν∗, θ∗) ≤ L(ν̄, θ(0)) = L(ν̄, θ̄)

which is a contradiction. Therefore, (ν∗, θ∗) is a local minimum.
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Appendix B

Technical Results in Chapter 3

B.1 Computation of Gradient Estimates

In this section, we provide the details of the gradient estimate computations. From the definition

of L(ν, ω, θ), we obtain the following:

∇νL(ν, ω, θ) = ω + EP
[
φ∗
(
Jθ(x0)

ν
− ω + β

)]
+ ν∇νEP

[
φ∗
(
Jθ(x0)

ν
− ω + β

)]
,

(B.1)

∇ωL(ν, ω, θ) = ν + ν∇ωEP
[
φ∗
(
Jθ(x0)

ν
− ω + β

)]
, (B.2)

∇θL(ν, ω, θ) = ν∇θEP
[
φ∗
(
Jθ(x0)

ν
− ω + β

)]
. (B.3)

1.∇νL(ν, ω, θ): by expanding the expectation, we have

L(ν, ω, θ) = ν

[
ω +

∑
ξ

Pθ(ξ)
(
φ∗
(
J(ξ)

ν
− ω + β

))]
.
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By taking the gradient w.r.t. ν, we have

∇̂νL(ν, ω, θ) = ω +
∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
+ ν

∑
ξ

Pθ(ξ)∇ν

[
φ∗
(
J(ξ)

ν
− ω + β

)]
= ω +

∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
− ν

∑
ξ

Pθ(ξ)
J(ξ)

ν2

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

= ω +
∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
−
∑
ξ

Pθ(ξ)
J(ξ)

ν

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

.

2.∇ωL(ν, ω, θ): by taking the gradient w.r.t. ω, we have

∇̂ωL(ν, ω, θ) = ν + ν∇ω

[∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)]

= ν + ν
∑
ξ

Pθ(ξ)∇ω

[
φ∗
(
J(ξ)

ν
− ω + β

)]
= ν − ν

∑
ξ

Pθ(ξ)
∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

.

3.∇θL(ν, ω, θ): by taking the gradient w.r.t. θ, we have

∇̂θL(ν, ω, θ) = ν∇θ

[∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)]

= ν
∑
ξ

∇θPθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
= ν

∑
ξ

Pθ(ξ)∇θ logPθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
,

where the last equality is due to∇θPθ(ξ) = Pθ(ξ)∇θ logPθ(ξ).

B.2 Proof of Theorem 7

In this section, we provide the detailed proof that was outlined in the proof sketch in the main

content. We will begin by analyzing the multi-time scale discrete stochastic approximation and
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proceed through the convergence of the sequences (νk, ωk, θk) to the local optimal solutions.

B.2.1 Convergence of ν-update

Since ν converges a faster time scale than ω and θ, we can regard ω and θ as fixed in the ν-update,

i.e.,

νk+1 = ΓN

[
νk − ζ1(k)

(
ω +

N∑
j=1

1

N
φ∗
(
J(ξj,k)

νk
− ω + β

)
−

N∑
j=1

1

N

J(ξj,k)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

νk
−ω+β

)]
.

Consider the continuous time dynamics of ν defined using differential inclusion

ν̇ ∈ Υν

[
−∇̂νL(ν, ω, θ)

]
, (B.4)

where

Υν [G(ν)] := lim
0<η→0

ΓN(ν + ηG(ν))− ΓN(ν)

η
.

Here Υν [G(ν)] is the left directional derivative of the function ΓN(ν) in the direction of G(ν).

Using the left directional derivative Υν [G(ν)] in the sub-gradient descent algorithm for ν ensures

that the gradient points in the descent direction along the boundary of ν whenever the ν-update

hits its boundary.

Now consider the following equation,

νk+1 = ΓN

[
νk − ζ1(k)

(
ω +

∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

νk
− ω + β

)
−
∑
ξ

Pθ(ξ)
J(ξ)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
νk
−ω+β

+ δνk+1

)]
,

where

δνk+1
=

(
ω +

N∑
j=1

1

N
φ∗
(
J(ξj,k)

νk
− ω + β

)
−

N∑
j=1

1

N

J(ξj,k)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

νk
−ω+β

)
−
(
ω +

∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

νk
− ω + β

)
−
∑
ξ

Pθ(ξ)
J(ξ)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
νk
−ω+β

)
.
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In order to show that the update rule converges to the solution of the o.d.e, we need to verify several

conditions. Before going through this process, we firstly make the following assumptions, which

will be used to guarantee the convergence of our algorithm.

Assumption 9. The parameters ν and ω are bounded, i.e., ν ∈ [Vmin, Vmax] and ω ∈ [Wmin,Wmax].

Assumption 10. Let Umin and Umax denote the bound for u = J(ξ)
ν
−ω+β. The function φ satisfies:

1. The first derivative of the conjugate function φ∗ is bounded in [Umin, Umax].

2. The second derivative of the conjugate function φ∗ is bounded in [Umin, Umax].

In Lemma 6 in Appendix B.3, we show that ∇̂νL(ν, ω, θ) is Lipschitz continuous in ν. Given

that the step size ζ1 satisfies Assumption 5, we have
∑

k ζ1(k) = ∞ and
∑

k ζ
2
1 (k) < ∞.

Furthermore, in Lemma 7 in Appendix B.3, we show that the sequence {δνk+1
} forms a martingale

difference sequence. In addition, under Assumption 9, we have supk ||νk|| < ∞. With these

conditions, we can invoke Corollary 4 in Chapter 5 of [19] to show that the update rule in our

algorithm converges almost surely to the set [Vmin, Vmax].

To complete the proof of convergence for the ν-update, we must show that the sequence

converges to a fixed point of the o.d.e. (B.4). To establish this, we apply a Lyapunov stability

analysis.

For any given ω and θ, define the following Lyapunov function

Lω,θ(ν) = L(ν, ω, θ)− L(ν∗, ω, θ),

where ν∗ is a minimum point.

To utilize the Lyapunov theory for asymptotically stable differential inclusions (Theorem 3.10

and Corollary 3.11 in [14]), we need to verify that the Lyapunov function defined above satisfies

both Hypothesis 3.1 and Hypothesis 3.9 from [14].

We begin by verifying that the Lyapunov function satisfies Hypothesis 3.9, which requires

showing that d
dt
Lω,θ(ν) ≤ 0 and ∇tLω,θ(ν) is non-zero if

∥∥∥ΓN [−∇̂νL(ν, ω, θ)]
∥∥∥ 6= 0. Considering
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the continuous-time dynamics for ν, we have

d

dt
L(ν, ω, θ) = ∇̂νL(ν, ω, θ)ΥN

[
−∇̂νL(ν, ω, θ)

]
.

Therefore, we obtain

d

dt
Lθ,λ(ν) = ∇̂νL(ν, ω, θ)Υν

[
−∇̂νL(ν, ω, θ)

]
− ∇̂νL(ν, ω, θ)Υν

[
−∇̂νL(ν, ω, θ)

] ∣∣
ν=ν∗

= ∇̂νL(ν, ω, θ)Υν

[
−∇̂νL(ν, ω, θ)

]
=

d

dt
∇̂νL(ν, ω, θ).

We need to demonstrate that d
dt
Lω,θ(ν) ≤ 0 and that this quantity is non-zero whenever

∥∥∥ΓN [−∇̂νL(ν, ω, θ)]
∥∥∥ 6= 0.

Case 1: ν ∈ (Vmin, Vmax).

There exists a sufficiently small η0 > 0 such that ν − η0∇̂νL(ν, ω, θ) ∈ [Vmin, Vmax] and

ΓN

[
ν − η0∇̂νL(ν, ω, θ)

]
= −η0∇̂νL(ν, ω, θ).

Recalling the definition of Υ
[
−∇̂νL(ν, ω, θ)

]
, we obtain

d

dt
L(ν, θ, λ) = −

∥∥∥∇̂νL(ν, ω, θ)
∥∥∥ ≤ 0

and d
dt
L(ν, θ, λ) < 0 if ∇̂νL(ν, ω, θ) 6= 0.

Case 2: ν ∈ {Vmin, Vmax}.

Notice that there are two cases, which depend on whether the set

F (ν) :=

{
∇̂νL(ν, ω, θ)

∣∣∣∣∀η0 > 0,∃η ∈ [0, η0] such that ν − η∇̂νL(ν, ω, θ) /∈ [Vmin, Vmax]

}
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is empty or not.

Case 2-1: F (ν) is empty.

Since ν ∈ {Vmin, Vmax} and ν − η∇̂νL(ν, ω, θ) ∈ [Vmin, Vmax], we know

Υν

[
−∇̂νL(ν, ω, θ)

]
= −∇̂νL(ν, ω, θ),

which implies that
d

dt
L(ν, θ, λ) = −

∥∥∥∇̂νL(ν, ω, θ)
∥∥∥ ≤ 0

and d
dt
L(ν, θ, λ) < 0 if ∇̂νL(ν, ω, θ) 6= 0.

Case 2-2: F (ν) is not empty.

For any η > 0, define νη := ν − η∇̂νL(ν, ω, θ). When 0 < η → 0, ΓN [νη] is the projection

of νη to the tangent space of [Vmin, Vmax]. For any ν̂ ∈ [Vmin, Vmax], since the set {ν ∈ [Vmin, Vmax] :

||ν − νη||2 ≤ ||ν̂ − νη||2} is compact, then the project of νη on [Vmin, Vmax] exists. Furthermore,

since g(ν) = 1
2
(ν − νη)2 is a strongly convex function and ∇νg(ν) = ν − νη. By the first order

optimal condition, we obtains ∀ν ∈ [Vmin, Vmax],

∇g(ν∗η)(ν − ν∗η) = (ν∗η − νη)(ν − ν∗η) ≥ 0,

where ν∗η is the unique projection of νη. Due to the uniqueness, we know only if ν = ν∗η , the above

equality holds. Therefore, for any ν ∈ [Vmin, Vmax] and η > 0,

∇̂νL(ν, ω, θ)Υν

[
−∇̂νL(ν, ω, θ)

]
= ∇̂νL(ν, ω, θ) lim

0<η→0

ν∗η − ν
η

= lim
0<η→0

ν − νη
η

lim
0<η→0

ν∗η − ν
η

= lim
0<η→0

−||ν∗η − ν||2

η2
+ lim

0<η→0
(ν∗ − νη)

ν∗ − ν
η2

≤ 0.

Note that for any ∇̂νL(ν, ω, θ) ∩ F (ν)c, ν − η∇̂νL(ν, ω, θ) ∈ [Vmin, Vmax] for any η ∈ [0, η0] and

some η0 > 0. Thus, this follows the statement in the empty case.
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Combining all these arguments, we conclude that d
dt
L(ν, ω, θ) ≤ 0, and this inequality holds

strictly whenever Υν

[
−∇̂νL(ν, ω, θ)

]
6= 0. As a result, d

dt
Lω,θ(ν) ≤ 0 and remains non-zero under

the same condition.

Having shown that Lω,θ(ν) satisfies Hypotheses 3.1 and 3.9, we can now apply the results

from [14]. This ensures that the ν-update converges almost surely to the solution of the o.d.e. (B.4),

which, in turn, converges to ν∗ ∈ [Vmin, Vmax].

B.2.2 Convergence of ω-update

After establishing the convergence of the ν-update, we proceed to demonstrate the convergence of

the ω-update. Given that ν converges on a faster timescale than ω, and θ operates on the slowest

timescale, the ω-update can be expressed using the converged value ν∗(ω) while treating θ as an

invariant quantity, i.e.,

ωk+1 = ΓR

[
ωk − ζ2(k)

(
ν∗(ωk)− ν∗(ωk)

N∑
j=1

1

N

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

ν∗(ωk)
−ωk+β

)]
.

Considering the continuous time dynamic of ω,

ω̇ ∈ Υω

[
−∇̂ωL(ν, ω, θ)

]
, (B.5)

where

Υω[G(ω)] := lim
0<η→0

ΓR(ω + ηG(ω))− ΓR(ω)

η
.

The ω-update can be rewritten as a stochastic approximation, i.e.,

ωk+1 = ΓR

[
ωk − ζ2(k)

(
ν∗(ωk)− ν∗(ωk) ·

∑
ξ

Pθ(ξ)
∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν∗(ωk)

−ωk+β

)
+ δωk+1

]
,
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where

δωk+1
= −

(
ν∗(ωk)− ν∗(ωk)

∑
ξ

Pθ(ξ)
∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν∗(ωk)

−ωk+β

)

+

(
ν∗(ωk)− ν∗(ωk)

N∑
j=1

1

N

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

ν∗(ωk)
−ωk+β

)
.

To demonstrate that the update rule converges to the solution of the o.d.e., we need to verify

conditions similar to those established previously. In particular, in Lemma 8 of Appendix B.3, we

show that ∇̂ωL(ν, ω, θ) is Lipschitz continuous in ω. The step size ζ2(k) satisfies
∑

k ζ2(k) = ∞

and
∑

k ζ
2
2 (k) <∞, as stated in Assumption 5. Moreover, Assumption 9 ensures that supk ||ωk|| <

∞.

Next, we focus on the Lyapunov analysis for the ω-update. For any fixed θ, we define the

Lyapunov function as:

Lθ(ω) = L(ν∗(ω), ω, θ)− L(ν∗(ω), ω∗, θ),

where ω∗ is a local minimum point. Analogous to the approach used for the ν-update, we can

express:

d

dt
Lθ(ω) =

d

dt
∇̂ωL(ν∗(ω), ω, θ).

Following a method similar to the Lyapunov analysis for the ν-update, we can show that

d
dt
Lθ(ω) ≤ 0 and that this quantity is strictly non-zero whenever

∥∥∥ΓR[−∇̂ωL(ν, ω, θ|ν=ν∗(ω))]
∥∥∥ 6=

0. Consequently, we demonstrate that the ω-update converges almost surely to the solution of the

o.d.e. (B.4), which, in turn, converges to ω∗ ∈ [Wmin,Wmax].

B.2.3 Local minimum

In this section, we aim to establish the convergence of the sequence {νk, ωk} towards a local

minimum of the objective function L(ν, ω, θ), while keeping θ fixed. Building upon the arguments
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presented in the previous sections, we show that, for any given initial states ν(0) and ω(0), the

sequences ν(t) and ω(t) converge to their respective optimal stationary points, ν∗ and ω∗. This

further implies

L(ν∗, ω∗, θ) ≤ L(ν(ω∗(t)), ω(t), θ)

≤ L(ν(ω(0)), ω(0), θ)

≤ L(ν(t), ω(0), θ)

≤ L(ν(0), ω(0), θ).

We demonstrate the existence of a local minimum through contraction.

Suppose that (ν∗, ω∗) is not a local minimum, then there exits a point (ν̄, ω̄) ∈ [Vmin, Vmax] ×

[Wmin,Wmax] ∩ B(ν∗,ω∗)(r) such that

L(ν̄, ω̄, θ) = min
(ν,ω)∈[Vmin,Vmax]×[Wmin,Wmax]∩B(ν∗,ω∗)(r)

L(ν, ω, θ).

The minimum is attained by the Weierstrass extreme value theorem. By setting ω(0) = ω̄, we have

L(ν̄, ω̄, θ) = min
(ν,ω)∈[Vmin,Vmax]×[Wmin,Wmax]∩B(ν∗,ω∗)(r)

L(ν, ω, θ)

≤ L(ν∗, ω∗, θ)

≤ L(ν̄, ω̄, θ),

which is a contraction.

Therefore, (ν∗, ω∗) is a local minimum for L(ν, ω, θ) for any fixed θ.
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B.2.4 Convergence of θ-update

Given that θ converges on the slowest timescale, we can express the θ-update as:

θk+1 = ΓΘ

[
θk − ζ3(k)

(
ν∗(θ)

N∑
j=1

1

N
∇θ logPθ(ξj,k) · φ∗

(
J(ξj,k)

ν∗(θ)
− ω∗(θ) + β

))]
.

We now consider the following o.d.e. for θ:

θ̇ ∈ Υθ

[
−∇̂θL(ν, ω, θ)

]
, (B.6)

where

Υθ[G(θ)] := lim
0<η→0

ΓΘ(θ + ηG(θ))− ΓΘ(θ)

η
.

The θ-update can be rewritten as a stochastic approximation, i.e.,

θk+1 = ΓΘ

[
θk − ζ3(k) ·

(
∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θi),ω=ωk,θ=θk

+ δθk+1

)]
,

where

δθk+1
= −ν∗(θ)

∑
ξ

Pθ(ξ)∇θ logPθ(ξ) · φ∗
(
J(ξ)

ν∗(θ)
− ω∗(θk) + β

)
+ ν∗(θ)

∑
ξ

1

N
∇θ logPθ(ξ) · φ∗

(
J(ξ)

ν∗(θ)
− ω∗(θk) + β

)
.

To demonstrate that the update rule converges to the solution of the o.d.e., we need to verify

several conditions. First, in Lemma 10 in Appendix B.3, we show that ∇̂θL(ν, ω, θ) is Lipschitz

continuous in θ. Second, the step size ζ3(k) satisfies
∑

k ζ3(k) = ∞ and
∑

k ζ
2
3 (k) < ∞, which

follows from Assumption 5. Additionally, in Lemma 11 of Appendix B.3, we show that {δωk+1
}

forms a martingale difference sequence. Finally, θ is in a compact and closed set Θ, which ensures

that supk ||θk|| <∞.

It remains to check the Lyapunov analysis for θ-update. The general idea here is same with the
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Lyapunov analysis above, but the difference here is that θ is vector other than a scalar. We first

define the Lyapunov function

L(θ) = L(ν∗(θ), ω∗(θ), θ)− L(ν∗(θ∗), ω∗(θ∗), θ∗),

where θ∗ is a local minimum point. Consider the continuous time dynamics for θ, we have

d

dt
L(θ) =

d

dt
∇̂θL(ν∗(θ), ω∗(θ), θ).

It remains to show that d
dt
∇̂θL(ν∗(θ), ω∗(θ), θ) ≤ 0 and the equality holds if and only if

Υθ

[
−∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

]
= 0.

There are three cases we have to consider.

Case 1: θ is in the interior of Θ (not on the boundary).

Since Θ is a compact closed set, there exists a sufficient small η0 > 0 such that

θ − η0∇̂θL(ν, ω, θ)
∣∣
ν=ν∗(θ),ω=ω∗(θ)

∈ Θ

and

ΓΘ

(
θ − η0∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

)
− θ = −η0∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

.

Recall the definition of Υθ, we have

d

dt
L(ν, ω, θ)

∣∣∣∣
ν=ν∗(θ),ω=ω∗(θ)

= −
∥∥∥∇̂θL(ν, ω, θ)|ν=ν∗(θ),ω=ω∗(θ)

∥∥∥2

≤ 0.

Furthermore, the equality only holds when d
dt
L(ν, ω, θ)|ν=ν∗(θ),ω=ω∗(θ) = 0.

Case 2: θ is on the boundary of Θ and θ − η∇̂θL(ν, ω, θ)|ν=ν∗(θ),ω=ω∗(θ) ∈ Θ for any η ∈ (0, η0]
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and some η0 > 0.

In this case, we have

Υθ

[
−∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

]
= −∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

.

Therefore, we obtain

d

dt
L(ν, ω, θ)

∣∣∣∣
ν=ν∗(θ),ω=ω∗(θ)

= −
∥∥∥∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

∥∥∥2

≤ 0.

Moreover, the equality only holds when ∇̂θL(ν, ω, θ)|ν=ν∗(θ),ω=ω∗(θ) = 0.

Case 3: θ is on the boundary of Θ but θ − η∇̂θL(ν, ω, θ)|ν=ν∗(θ),ω=ω∗(θ) /∈ Θ for some η ∈ (0, η0]

and any η0 > 0.

For any η > 0, we define

θη = θ − η∇̂θL(ν, ω, θ)|ν=ν∗(θ),ω=ω∗(θ).

In this case, when 0 < η → 0, ΓΘ[θη] is the projection of θη to the tangent space of Θ. For any

θ̂ ∈ Θ, since {θ ∈ Θ : ||θ − θη||2 ≤
∥∥∥θ̂ − θη∥∥∥

2
} is a compact set, the project of θη exists. Define

g(θ) = 1
2
||θ − θη||22, since g(θ) is a strong convex function and∇θg(θ) = θ − θη, we obtain

∇g(θ∗η)
>(θ − θ∗η) = (θ∗η − θη)>(θ − θ∗η) ≥ 0,

for any θ ∈ Θ, where θ∗η is the projection of θη. Due to the uniqueness of this projection, the
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equality holds if and only if θ = θ∗η. Therefore, for any θ ∈ Θ and η > 0,

(
∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

)>
·Υν

[
−∇̂νL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

]
=
(
∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

)>
lim

0<η→0

θ∗η − θ
η

=

(
lim

0<η→0

θ − θη
η

)>
lim

0<η→0

θ∗η − θ
η

= lim
0<η→0

−||θ∗η − θ||2

η2
+ lim

0<η→0
(θ∗ − θη)>

θ∗ − θ
η2

≤ 0.

Combining all these arguments, we have d
dt
L(ν∗(θ), ω∗(θ), θ) ≤ 0 and it is non-zero whenever

Υθ

[
−∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

]
6= 0.

Therefore, we know that d
dt
L(θ) ≤ 0 and it is non-zero whenever Υθ

[
−∇̂θL(ν, ω, θ)

∣∣
ν=ν∗(θ),ω=ω∗(θ)

]
6=

0. Now, we can establish the almost sure convergence of the θ-update to the solution of the o.d.e

given by equation (B.6), which in turn converges to θ∗ ∈ Θ.

Combining with the fact that (ν∗, ω∗) are local minimum for L(ν, ω, θ), we further conclude

that θ∗ is a local optimal policy for the φ-divergence optimization problem.

B.3 Technical Lemmas

In this section, we present the technical lemmas that are used in the convergence analysis in

the proof of Theorem 7. We begin by introducing the following propositions, derived from the

definition of Pθ, which are crucial for demonstrating that the gradient estimates in Algorithm 3.1

are Lipschitz continuous. These results further aid in establishing the technical lemmas that will

be discussed later.
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Proposition 5. By the definition of Pθ(ξ) and ∇θ logPθ(ξ), we have

Pθ(ξ)∇θ logPθ(ξ)

= P0(x0)
T−1∏
k=0

π(ak|xk, θ)P (xk+1|xk, ak)
T−1∑
k=0

∇θπ(ak|xk, θ)
π(ak|xk, θ)

= P0(x0)
T−1∑
k=0

T−1∏
i 6=k

∇θπ(ak|xk, θ)π(ak|xk, θ)P (xk+1|xk, ak).

Combining Assumption 3 and the fact that the sum of products of Lipschitz function is Lipschitz,

Pθ(ξ)∇θ logPθ(ξ) and
∑

ξ Pθ(ξ)∇θ logPθ(ξ) are Lipschitz in θ. Furthermore, since the gradient

of Lipschitz function is bounded, we have

∣∣∣∣∣∇θ(
∑
ξ

Pθ(ξ)∇θ logPθ(ξ))

∣∣∣∣∣ ≤ K1(ξ).

Also,

E[∇θ logPθ(ξ)] =
∑
ξ

Pθ(ξ)∇θ logPθ(ξ) = 0.

Proposition 6. By Assumption 3,∇θ logPθ(ξ) is bounded, i.e., |∇θ logPθ(ξ)| ≤ K2(ξ).

Lemma 6. ∇̂νL(ν, ω, θ) is Lipschitz in ν.

Proof. Recall that

∇̂νL(ν, ω, θ) = ω +
∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
−
∑
ξ

Pθ(ξ)
J(ξ)

ν

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

.
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Let f(ν) denote ∇̂νL(ν, ω, θ), we have

f ′(ν) =
∑
ξ

Pθ(ξ)∇ν

(
φ∗
(
J(ξ)

ν
− ω + β

))
−
∑
ξ

Pθ(ξ)∇ν

(
J(ξ)

ν

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

)

= −
∑
ξ

Pθ(ξ)
J(ξ)

ν2

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

−
∑
ξ

Pθ(ξ)
(
− J(ξ)

ν2

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

− J2(ξ)

ν3

∂φ∗

∂u2

∣∣∣∣
u=

J(ξ)
ν
−ω+β

)
= −

∑
ξ

Pθ(ξ)
J(ξ)

ν2

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

+
∑
ξ

Pθ(ξ)
(
J(ξ)

ν2
+
J2(ξ)

ν3

)
∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

=
∑
ξ

Pθ(ξ)
J2(ξ)

ν3

∂φ∗

∂u2

∣∣∣∣
u=

J(ξ)
ν
−ω+β

.

Notice that J(ξ) is bounded by [−Cmax
1−γ ,

Cmax
1−γ ], ν is bounded by [Vmin, Vmax] and ω is bounded by

[Wmin,Wmax]. By Assumption 10, we know that f ′(ν) is bounded. Thus, ∇̂νL(ν, ω, θ) is Lipschitz

in ν.

Lemma 7. {δνk+1
} is a martingale difference sequence.

Proof. Due to the fact that the trajectories are generated based on the sampling p.m.f and all these

trajectories are independent, we have E[δνk+1
|Fν,k] = 0 where Fν,k = σ(νm, δνm ,m ≤ k) is the

filtration of νk generated by different independent trajectories.

We need to prove that E[||δνk+1
||2|Fν,k] is bounded. Consider

δνk+1
=

(
ω +

N∑
j=1

1

N
φ∗
(
J(ξj,k)

νk
− ω + β

)
−

N∑
j=1

1

N

J(ξj,k)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

νk
−ω+β

)
−
(
ω +

∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

νk
− ω + β

)
−
∑
ξ

Pθ(ξ)
J(ξ)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
νk
−ω+β

)

= −
∑
ξ

Pθ(ξ)φ∗
(
J(ξ)

νk
− ω + β

)
+

N∑
j=1

1

N
φ∗
(
J(ξj,k)

νk
− ω + β

)

−
N∑
j=1

1

N

J(ξj,k)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

νk
−ω+β

+
∑
ξ

Pθ(ξ)
J(ξ)

νk

∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
νk
−ω+β

.
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Notice that φ∗ is a convex function and J(ξj,k)

νk
− ω + β is bounded. Then, φ∗(J(ξj,k)

νk
− ω + β) is

bounded. For convenience, we denote it as φ∗(J(ξj,k)

νk
− ω + β) ∈ [c1, c2], where c1, c2 ∈ R. By

Assumption 10, we have ∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
νk
−ω+β

∈ [c3, c4], where c3, c4 ∈ R. Then, we have

δνk+1
≤ c2 − c1 +

Cmax

(1− γ)Vmin
(c4 − c3).

Let c5 ∈ R denote the real value on the right side, we further have, ||δνk+1
||2 ≤ (c5)2, which implies

{δνk+1
} is a martingale difference sequence.

Lemma 8. ∇̂ωL(ν, ω, θ) is Lipschitz in ω.

Proof. Recall that

∇̂ωL(ν, ω, θ) = ν − ν
∑
ξ

Pθ(ξ)
∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν
−ω+β

.

For convenience, denote ∇̂ωL(ν, ω, θ) as f(ω). We have

f ′(ω) = ν
∑
ξ

Pθ(ξ)
∂φ∗

∂u2

∣∣∣∣
u=

J(ξ)
ν
−ω+β

.

Recall that the second derivative of φ∗ is bounded in a closed set and ν is also bounded. We know

f ′(ω) is bounded, thus, ∇̂ωL(ν, ω, θ) is Lipschitz in ω.

Lemma 9. {δωk+1
} is a martingale difference sequence.

Proof. Note that the trajectories are generated based on the sampling p.m.f and all these trajectories

are independent, we have E[δωk+1
|Fν,k] = 0 where Fω,k = σ(ωm, δωm ,m ≤ k) is the filtration of

ωk generated by different independent trajectories.
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We now demonstrate that E[||δωk+1
||2|Fν,k] is bounded. Consider

δωk+1

= −
(
ν∗(ωk)− ν∗(ωk)

∑
ξ

Pθ(ξ)
∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν∗(ωk)

−ωk+β

)
+

(
ν∗(ωk)− ν∗(ωk)

N∑
j=1

1

N

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

ν∗(ωk)
−ωk+β

)

= ν∗(ωk)
∑
ξ

Pθ(ξ)
∂φ∗

∂u

∣∣∣∣
u=

J(ξ)
ν∗(ωk)

−ωk+β

− ν∗(ωk)
N∑
j=1

1

N

∂φ∗

∂u

∣∣∣∣
u=

J(ξj,k)

ν∗(ωk)
−ωk+β

.

Since the first derivative of φ∗ is bounded in a closed set, for convenience, denote its bound as

[c6, c7], where c6, c7 ∈ R, we have

δωk+1
≤ Vmax|c7 − c6|.

Thus, ||δωk+1
||2 is bounded, which further implies {δωk+1

} is a martingale difference sequence.

Lemma 10. ∇̂θL(ν, ω, θ) is Lipschitz in θ.

Proof. Recall that

∇̂θL(ν, ω, θ) =
∑
ξ

Pθ(ξ)∇θ logPθ(ξ)φ∗
(
J(ξ)

ν
− ω + β

)
.

By Assumption 3 and 10, we know that ∇θPθ(ξ) and ∇θ logPθ(ξ) are Lipschitz in θ. By the fact

that the sum of Lipschitz functions is Lipschitz, we know that ∇̂θL(ν, ω, θ) is Lipschitz in θ.

Lemma 11. {δωk+1
} is a martingale difference sequence.

Proof. Since the trajectories are generated based on the sampling p.m.f and all these trajectories

are independent, we have E[δθk+1
|Fν,k] = 0 where Fθ,k = σ(θm, δθm ,m ≤ k) is the filtration of θk

generated by different independent trajectories.
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It remains to show E[||δθk+1
||2|Fν,k] is bounded. Consider

δθk+1
= −ν∗(θ)

∑
ξ

Pθ(ξ)∇θ logPθ(ξ) · φ∗
(
J(ξ)

ν∗(θ)
− ω∗(θk) + β

)
+ ν∗(θ)

∑
ξ

1

N
∇θ logPθ(ξ) · φ∗

(
J(ξ)

ν∗(θ)
− ω∗(θk) + β

)
≤ Vmax(K1(ξ) +K2(ξ)) max {|Umin|, |Umax|} .

Thus, ||δθk+1
||2 ≤ (c8)2, where c8 = (VmaxK1(ξ) +K2(ξ)) max {|Umin|, |Umax|} ∈ R, which further

implies that {δθk+1
} is a martingale difference sequence.
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Appendix C

Technical Results in Chapter 4

C.1 Proof of Lemma 2

Note that
∑

x′∈X ξ(x
′)P (x′|x, a) = 1 and ξ(x′) ≥ 0, then by Definition 8, we have P1 and P2. For

P3, applying the definition of sup norm, we have

−||V1 − V2||∞ ≤ V1(x, y)− V2(x, y) ≤ ||V1 − V2||∞.

Applying P1 and P2, we have

−γ||V1 − V2||∞ ≤ T[V1](x, y)−T[V2](x, y) ≤ γ||V1 − V2||∞,

which implies

|T[V1](x, y)−T[V2](x, y)| ≤ γ||V1 − V2||∞.
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Now, we prove P4. Suppose yV (x, y) is concave in y ∈ Y . Let y1, y2 be two elements in Y and

define yλ = (1− λ)y1 + λy2, where λ ∈ [0, 1]. By Definition 8, for every x ∈ X , we have

(1− λ)y1T[V ](x, y1) + λy2T[V ](x, y2)

= (1− λ)y1 min
a1∈A

[
C(x, a1) + γ max

ξ1∈UNCVaR(y1,~κ(x,a1),P (·|x,a1))

∑
x′∈X

ξ1(x′)V (x′, y1ξ(x
′))P (x′|x, a1)

]
+ λy2 min

a2∈A

[
C(x, a2) + γ max

ξ2∈UNCVaR(y2,~κ(x,a2),P (·|x,a2))

∑
x′∈X

ξ2(x′)V (x′, y2ξ(x
′))P (x′|x, a2)

]
≤ min

a∈A

[
yλC(x, a) + γ max

ξ1∈UNCVaR(y1,~κ(x,a),P (·|x,a))

ξ2∈UNCVaR(y2,~κ(x,a),P (·|x,a))

∑
x′∈X

P (x′|x, a)
(
(1− λ)y1ξ1(x′)V (x′, y1ξ1(x′))

+ λy2ξ2(x′)V (x′, y2ξ2(x′))
)]

≤ min
a∈A

[
yλC(x, a) + γ max

ξ1∈UNCVaR(y1,~κ(x,a),P (·|x,a))

ξ2∈UNCVaR(y2,~κ(x,a),P (·|x,a))

∑
x′∈X

P (x′|x, a)
(
(1− λ)y1ξ1(x′) + λy2ξ2(x′))

· V (x, (1− λ)y1ξ1(x′) + λy2ξ2(x′)
)]
.

(C.1)

The first inequality is by the concavity of min and the second inequality is due to concavity of

yV (x, y). Now, we need to show

ξλ =
(1− λ)y1ξ1 + λy2ξ2

yλ
∈ UNCVaR(yλ, ~κ(x, a), P (·|x, a)),

where ξ1 ∈ UNCVaR(y1, ~κ(x, a), P (·|x, a)) and ξ2 ∈ UNCVaR(y2, ~κ(x, a), P (·|x, a)). By the definition

of ξ1, ξ2 and ξλ , we obtain

∑
x′∈X ξλ(x

′)P (x′|x, a) = 1,

and

ξλ =
(1− λ)y1ξ1 + λy2ξ2

yλ
≤ ~κ(x, a)

yλ
.
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Thus, ξλ is in the set UNCVaR(yλ, ~κ(x, a), P (·|x, a)). Applying this result to (C.1), we obtain

(1− λ)y1T[V ](x, y1) + λy2T[V ](x, y2)

≤ min
a∈A

[
yλC(x, a) + γ max

ξ∈UNCVaR(yλ,~κ(x,a),P (·|x,a))

∑
x′∈X

P (x′|x, a)yλξ(x
′)V (x, yλξ(x

′))

]

= yλT[V ](x, yλ).

Thus, we show yT[V ](x, y) is concave in y given yV (x, y) is concave.

It remains to show that the maximization problem in (4.4) is concave. Here, we consider the

function

Gx,y,a(z) :=


zV (x′, z)P (x′|x, a)/y if y 6= 0

0 otherwise.

Suppose zV (x, z) is concave in z. When y = 0, the function is concave in z. Otherwise, Gx,y,a(z)

is concave in z due to the fact that P (x′|x, a) ≥ 0. This result further implies

∑
x′∈X

ξ(x′)V (x′, yξ(x′))P (x′|x, a) =
∑
x′∈X

Gx,y,a(yξ(x
′))

is concave in ξ. Combining all these results, P4 holds.

C.2 Proof of Theorem 9

The proof of Theorem 9 follows the idea in the proof of Theorem 4 in [24].

For convenience, denote the total discounted cost from time 0 up to time T as C0,T =∑T
t=0 γ

tC(xt, at) and the initial value as V0(x, y). In the first place, we want to show the following

equation holds for any (x, y) ∈ X × Y by induction hypothesis.

Vn(x, y) := Tn[V0](x, y) = min
π∈ΠM

NCVaRy,~κ (C0,n + γnV0(xn, yn)|x0 = x, π) , (C.2)

where x0 = x, y0 = y and at = π(xt, yt).
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Here, we first verify equation (C.2) hold when n = 1. Let (x1, y1) denote (x′, yξ(x′)), then by

definition we have

V1(x, y) = T[V0](x, y) = min
π∈ΠH

[C(x0, a0) + γNCVaRy,~κ (C(x1, a1) + V0(x1, y1)|x0 = x, π)] .

When n = 1, a1 only depends on x1 and y1, therefore, π is a Markovian policy, i.e., π ∈ ΠM .

Hence, by moving constant terms inside, we have

V1(x, y) = min
π∈ΠM

NCVaRy,~κ (C0,1 + γV0(x1, y1)|x0 = x, π) .

Secondly, assume equation (C.2) hold when n = k, then for n = k+1 with x0 = x and y0 = y,

we obtain

Vk+1(x, y) := Tk+1[V0](x, y) = T[Vk](x, y)

= min
a∈A

[
C(x, a) + γ max

ξ∈UNCVaR(y,~κ(x,a),P (·|x,a))

∑
x′∈X

ξ(x′)Vk(x
′, yξ(x′))P (x′|x, a)

]

= min
a∈A

[
C(x, a) + γ max

ξ∈UNCVaR(y,~κ(x,a),P (·|x,a))

∑
x′∈X

ξ(x′)P (x′|x, a) min
π∈ΠM

NCVaRy1,~κ(C0,k + γkV0|x0 = x1, π)

]

= min
a∈A

[
C(x, a) + max

ξ∈UNCVaR(y,~κ(x,a),P (·|x,a))
EξP

[
min
π∈ΠM

NCVaRy1,~κ(C1,k+1 + γk+1V0|x1, π)

]]
= min

a∈A

[
min
π∈ΠM

NCVaRy,~κ

(
C0,k+1 + γk+1V0|x0 = x, π

)]
= min

π∈ΠM
NCVaRy,~κ

(
C0,k+1 + γk+1V0|x0 = x, π

)
.

Thus, (C.2) is proved by induction.

In the second place, we need to show

V ∗(x0, y0) = min
π∈ΠM

NCVaRy0,~κ

(
lim
n→∞

C0,n|x0, π
)
.

By the definition of V ∗, Proposition 2.2 in [15] and definition of Vn, for any (x, y) ∈ X × Y , we
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have

V ∗(x, y) = T[V ∗](x, y) = lim
n→∞

Tn[V0](x, y) = lim
n→∞

Vn(x, y).

Combining the above results, we have

V ∗(x0, y0) = lim
n→∞

Vn(x0, y0) = min
π∈ΠM

NCVaRy0,~κ

(
lim
n→∞

(C0,n + γnV0(xn, yn))|x0, π
)

since the state-wise cost is bounded and V0 is also bounded. By applying the coherent property of

NCVaR, we obtain

V ∗(x0, y0) ≤ min
π∈ΠM

[
NCVaRy0,~κ

(
lim
n→∞

C0,n|x0, π
)

+ lim
n→∞

γn ‖ V0 ‖∞
]

≤ min
π∈ΠM

NCVaRy0,~κ

(
lim
n→∞

C0,n|x0, π
)

+
∣∣ lim
n→∞

γn ‖ V0 ‖∞
∣∣

which implies

− lim
n→∞

γn ‖ V0 ‖∞ ≤ V ∗(x0, y0)− min
π∈ΠM

NCVaRy0,~κ

(
lim
n→∞

C0,n|x0, π
)

≤ lim
n→∞

γn ‖ V0 ‖∞ .

Since γ ∈ (0, 1], the term limn→∞ γ
n ‖ V0 ‖∞→ 0 as n→∞. Thus,

V ∗(x0, y0) = min
π∈ΠM

NCVaRy0,~κ

(
lim
n→∞

C0,n|x0, π
)

holds for any (x0, y0) ∈ X × Y .

Lastly, we want to get the optimal value over all history-dependent policies, which means given

(x0, y0), we have

V ∗(x0, y0) = min
π∈ΠH

NCVaRy0,~κ

(
lim
n→∞

C0,n|x0, π
)
.
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For each (xt, yt) ∈ X × Y with t ≥ 0, the tth tail-subproblem is defined as follow:

V(xt, yt) = min
π∈ΠH

NCVaRyt,~κ

(
lim
n→∞

Ct,n|xt, π
)

where the tail policy sequence is π = {πt, πt+1, . . . }.

For any history depend policy π̃ ∈ ΠH , we also define the π̃-induced value function as

NCVaRyt,~κ(limn→∞ Ct,n|xt, π̃) where π̃ = {π̃t, π̃t+1, . . . } and aj = π̃j(hj) for j ≥ t. Let π∗

denote the optimal policy of the tth-subproblem, then for any state xt+1 and confidence level yt+1,

the policy π̃ = {π∗t+1, π
∗
t+2, . . . } is a feasible policy for the (t+ 1)th-subproblem:

min
π∈ΠH

NCVaRyt+1,~κ

(
lim
n→∞

Ct+1,n|xt+1, π
)
.

Based on all these results, for any (xt, yt) ∈ X × Y with at = π∗t (xt), we have

V(xt, yt) = NCVaRyt,~κ

(
lim
n→∞

Ct,n|xt, π∗
)

= C(xt, at) + γNCVaRyt,~κ

(
lim
n→∞

Ct+1,n|xt+1, π̃
)

= C(xt, at) + γ max
ξ∈UNCVaR(yt,~κ(x,a),P (·|xt,at))

E
[
ξ(xt+1) · NCVaRyt+1,~κ

(
lim
n→∞

Ct+1,n|xt+1, π̃
)]

= C(xt, at) + γ max
ξ∈UNCVaR(yt,~κ,P (·|xt,at))

Eξ
[
Vπ̃(xt+1, ytξ(xt + 1))|xt, yt, at

]
≥ C(xt, at) + γ max

ξ∈UNCVaR(yt,~κ,P (·|xt,at))
Eξ [V(xt+1, ytξ(xt + 1))|xt, yt, at]

≥ T[V](xt, yt).

For the equality, the third one is by the decomposition theorem and the forth one is by defining

Vπ̃(xt, yt) = NCVaRyt,~κ (limn→∞ Ct,n|xt, π̃). Moreover, the first inequality is by Vπ̃(x, y) ≥

V(x, y) for any (x, y) ∈ X × Y and the last inequality is by the definition of T.

For any state xt+1 and confidence level yt+1, let π∗ = {π∗t+1, π
∗
t+2, . . . } ∈ ΠH be an optimal

policy for the (t + 1)th tail subproblem. Then we can construct policy π̃ = {π̃t, π̃t+1, . . . } ∈ ΠH

for the tth subproblem from π∗ when given (xt, yt) ∈ X ×Y is given. For the policy π̃, we choose
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π̃t(xt) = u∗(xt, yt) and π̃j(hj) = π∗j (hj), where

u∗(xt, yt) ∈arg min
a∈A

[
C(xt, a) + γ max

ξ∈UNCVaR(yt,~κ,P (·|xt,a))
Eξ [V(xt+1, ytξxt+1)|xt, yt, a]

]
,

with the given confidence level yt of the tth tail-subproblem and the connection between yt and

yt+1 is yt+1 = ytξ
∗(xt+1) with

ξ∗ ∈ arg max
ξ∈UNCVaR(yt,~κ(x,a),P (·|xt,a∗))

E
[
ξ(xt+1)NCVaRytξ(xt+1),~κ

(
lim
n→∞

Ct+1,n|xt+1,n, π̃
)]
.

Since π∗ is an optimal policy, it is a feasible policy for the tail subproblem from time

t + 1. Then the policy π̃ ∈ ΠH is a feasible policy for the tail subproblem from time t:

minπ∈ΠH NCVaRyt(limn→∞ Ct+1,n|xt, π). Hence,

V(xt, yt) ≤ C (xt, π̃t(xt)) + γNCVaRyt,~κ

(
lim
n→∞

Ct+1,n|xt, π̃
)
.

By the definition of π∗, we obtain

V(xt, yt) ≤ C(xt, u
∗(xt, yt)) + γ max

ξ∈UEVaR(yt,~κ(x,a),P (·|xt,u∗(xt,yt)))

E
[
ξ(xt+1) · NCVaRytξ(xt+1),~κ

(
lim
n→∞

Ct+1,n|xt+1, π̃
) ∣∣xt, yt, u∗(xt, yt)]

≤ C(xt, u
∗(xt, yt)) + γ max

ξ∈UNCVaR(yt,~κ,P (·|xt,u∗(xt,yt)))
Eξ [V(xt+1, ytξ(xt+1))|xt, yt, u∗(xt, yt)]

= T[V](xt, yt).

Recall the result V(xt, yt) ≥ T[V](xt, yt) and V(xt, yt) ≤ T[V](xt, yt) hold for all t ≥ 0, we can

show that V is a fixed-point solution of V(xt, yt) = T[V](xt, yt) for any (x, y) ∈ X × Y . Due to

the fact that the fixed-point solution is unique, we have V ∗(x, y) = V(x, y) for any (x, y) ∈ X ×Y ,

i.e.,

V ∗(x, y) = V(x, y) = min
π∈ΠH

NCVaRy,~κ

(
lim
n→∞

C0,n|x0 = x, π
)
.
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The proof is complete by combining all those results.
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Appendix D

Technical Results in Chapter 5

D.1 Proof of Exploration Phase

D.1.1 Proof of Lemma 3

Recall the definition of value function V for various policy types:

π ∈ ΠH : V π
h (sh, bh;Hh) = Eπ

(bh − H∑
t=h

rt

)+
∣∣∣∣∣∣sh, bh, Hh

 ,

ρ ∈ ΠAug : V ρ
h (sh, bh) = Eρ

(bh − H∑
t=h

rt

)+
∣∣∣∣∣∣sh, bh

 .
Notice that executing ρ, b in the augmented MDP is equivalent to executing policy πρ,b in the

original MDP, where πρ,bh (sh, Hh) = ρh(sh, b− r1 − . . .− rh−1). Consequently, their V functions

should be equivalent.
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Therefore, by Lemma 15, we have

CVaR?
α(s1; r)− CVaRρ̂r

α (s1; r)

= CVaRπρ
?,b?1

α (s1; r)− CVaRπρ̂,b̂1
α (s1; r)

= CVaRπρ
?,b?1

α (s1; r)− ĈVaR
πρ
?,b?1

α (s1; r)︸ ︷︷ ︸
Evaluation error I

+ ĈVaR
πρ
?,b?1

α (s1; r)− ĈVaR
πρ̂
?,b̂?1

α (s1; r)︸ ︷︷ ︸
≤0 by definition

+ ĈVaR
πρ̂
?,b̂?1

α (s1; r)− ĈVaR
πρ̂,b̂1

α (s1; r)︸ ︷︷ ︸
optimization error ≤ε/3 by Assumption 8

+ ĈVaR
πρ̂,b̂1

α (s1; r)− CVaRπρ̂,b̂1
α (s1; r)︸ ︷︷ ︸

Evaluation error II

.

By the triangle inequality, we have

∣∣CVaR?
α(s1; r)− CVaRρ̂?r

α (s1; r)
∣∣

≤
∣∣∣∣CVaRπρ

?,b?

α (s1; r)− ĈVaR
πρ
?,b?

α (s1; r)

∣∣∣∣+

∣∣∣∣ĈVaR
πρ̂
?,b̂?

α (s1; r)− CVaRπρ̂
?,b̂?

α (s1; r)

∣∣∣∣ .
For the evaluation errors, by the definition of CVaR, we have

∣∣∣∣CVaRπρ
?,b?1

α (s1; r)− ĈVaR
πρ
?,b?1

α (s1; r)

∣∣∣∣
=

∣∣∣∣b?1 − α−1V πρ
?,b?1

1 (s1, b
?
1; r)− max

b1∈[0,H]

{
b1 − α−1V̂ πρ

?,b?1

1 (s1, b1; r)
}∣∣∣∣

≤
∣∣∣b?1 − α−1V πρ

?,b?1

1 (s1, b
?
1; r)−

(
b?1 − α−1V̂ πρ

?,b?1

1 (s1, b
?
1; r)

)∣∣∣
≤ α−1

∣∣∣V πρ
?,b?1

1 (s1, b
?
1; r)− V̂ πρ

?,b?1

1 (s1, b
?
1; r)

∣∣∣ ,
and similarly,

∣∣∣∣ĈVaR
πρ̂,b̂1

α (s1; r)− CVaRπρ̂,b̂1
α (s1; r)

∣∣∣∣ ≤ α−1
∣∣∣V πρ̂,b̂1

1 (s1, b̂1; r)− V̂ πρ̂,b̂1
1 (s1, b̂1; r)

∣∣∣ .
Therefore, if an exploration algorithm that satisfies

∣∣∣V ρ
1 (s1, b1; r)− V̂ ρ

1 (s1, b1; r)
∣∣∣ ≤ εα/3,∀ρ ∈ ΠAug,∀b1 ∈ [0, H],
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or equivalently,

∣∣∣Qρ
1(s1, b1, ρ(s1, b1); r)− Q̂ρ

1(s1, b1, ρ(s1, b1); r)
∣∣∣ ≤ εα/3,∀ρ ∈ ΠAug,∀b1 ∈ [0, H],

it further ensures
∣∣CVaR?

α(s1; r)− CVaRρ̂?r
α (s1; r)

∣∣ ≤ ε, which completes the proof.

D.1.2 Proof of Lemma 4

We first consider the case where the initial budget b1 is fixed and for convenience, we omit the

index h + 1 by using (s′, b′). Referring to the Bellman equations in both the empirical augmented

MDP and the true augmented MDP,

Q̂t,ρ
h (sh, bh, ah; r) =

∑
s′

P̂ t
h(s
′|s, a)Q̂t,ρ

h+1(s′, b′, ρ(s′, b′); r),

and Qρ
h(sh, bh, ah; r) =

∑
s′

Ph(s
′|s, a)Qρ

h+1(s′, b′, ρ(s′, b′); r),

we have

Q̂t,ρ
h (sh, bh, ah; r)−Qρ

h(sh, bh, ah; r)

=
∑
s′

P̂ t
h(s
′|s, a)Q̂t,ρ

h+1(s′, b′, ρ(s′, b′); r)−
∑
s′

Ph(s
′|s, a)Qρ

h+1(s′, b′, ρ(s′, b′); r)

=
∑
s′

(
P̂ t
h(s
′|s, a)− Ph(s′|s, a)

)
Qρ
h+1(s′, b′, ρ(s′, b′); r)

+
∑
s′

P̂ t
h(s
′|s, a)

(
Q̂t,ρ
h+1(s′, b′, ρ(s′, b′); r)−Qρ

h+1(s′, b′, ρ(s′, b′); r)
)
.
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Thus, for nth(s, a) ≥ 0, we obtain

êt,ρh (sh, bh, ah; r) = |Q̂t,ρ
h (sh, bh, ah; r)−Qρ

h(sh, bh, ah; r)|
(1)

≤
∑
s′

∣∣∣P̂ t
h(s
′|s, a)− Ph(s′|s, a)

∣∣∣Qρ
h+1(s′, b′, ρ(s′, b′); r)

+
∑
s′

P̂ t
h(s
′|s, a)

∣∣∣Q̂t,ρ
h+1(s′, b′, ρ(s′, b′); r)−Qρ

h+1(s′, b′, ρ(s′, b′); r)
∣∣∣

(2)

≤ b1‖P̂ t
h(·|s, a)− Ph(·|s, a)‖1 +

∑
s′

P̂ t
h(s
′|s, a)êt,ρh+1(s′, b′, a′; r)

(3)

≤ b1

√
2β(nth(s, a), δ)

nth(s, a)
+
∑
s′

P̂ t
h(s
′|s, a)êt,ρh+1(s′, b′, a′; r),

where (1) is due to the Pinsker’s inequality; (2) is due to the fact that Qρ
h(sh, bh, ah; r) ≤ b1

(Qρ
h(sh, bh, ah; r) ≤ (bh)

+ ≤ b1 as bh+1 = bh − rh) for all s, a, b, r and the definition of L1

norm; (3) is due to the fact that TV(P,Q) = 1
2
‖P (·) − Q(·)‖1 ≤

√
1
2
KL(P,Q) and the definition

of E .

Notice that êt,ρh (sh, bh, ah; r) ≤ b1, then for all nth(s, a) ≥ 0, we have

êt,ρh (sh, ah, bh; r) ≤ min

{
b1, b1

√
2β(nth(s, a), δ)

nth(s, a)
+
∑
s′

P̂ t
h(s
′|s, a)êt,ρh+1(s′, a′, b′; r)

}
.

Notice that b1 ∈ [0, H], in order to find the upper bound of the estimation error over all the initial

budgets, we extend the inequality to

êt,ρh (sh, ah, bh; r) ≤ max
b1∈[0,H]

{
min

{
b1, b1

√
2β(nth(s, a), δ)

nth(s, a)
+
∑
s′

P̂ t
h(s
′|s, a)êt,ρh+1(s′, a′, b′; r)

}}

≤ min

{
H,H

√
2β(nth(s, a), δ)

nth(s, a)
+
∑
s′

P̂ t
h(s
′|s, a)êt,ρh+1(s′, a′, b′; r)

}
.

Now we prove Lemma 4 by induction. For H + 1, since

êt,ρH+1(s, a, b; r) = |Q̂t,ρ
H+1(s, a, b; r)−Qρ

H+1(s, a, b; r)| = max{0, b1} −max{0, b1} = 0
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and Et
H+1(s, a) = 0 for all (s, a), the result is true. Assume the result holds for h + 1, i.e.,

êt,ρh+1(s, a, b; r) ≤ Et
h+1(s, a; b1) for all (s, a), we have

êt,ρh (s, a, b; r) ≤ min

{
H,H

√
2β(nth(s, a), δ)

nth(s, a)
+
∑
s′

P̂ t
h(s
′|s, a)êt,ρh+1(s′, a′, b′; r)

}

≤ min

{
H,H

√
2β(nth(s, a), δ)

nth(s, a)
+
∑
s′

P̂ t
h(s
′|s, a) max

a∈A
Eh+1(s′, a)

}
= Et

h(s, a)

holds for h, which complete the proof.

D.1.3 Proof of Theorem 11

Notice that in the exploration phase, we follow the exploration policy π rather than ρ. We begin by

introducing some notations. Let P π
h (s, a) represent the probability that the state-action pair (s, a)

is reached at the h-th step of a trajectory under the exploraion policy π. We use the shorthand

pht (s, a) = phπt(s, a) for simplicity. The pseudo-counts n̄th(s, a) are defined as
∑t

i=1 P
i
h(s, a), and

we define the event

E cnt =

{
∀t ∈ N?,∀h ∈ [H],∀(s, a) ∈ S ×A : nth(s, a) ≥ 1

2
n̄th(s, a)− βcnt(δ)

}
,

where βcnt(δ) = log(2SAH/δ). Recalling the event E defined in Lemma 4, we let F = E ∩ E cnt

and introduce the following lemma.

By Lemma 16 and the principle of inclusion-exclusion, we have P (F) = P (E ∩ E cnt) =

P (E) + P (E cnt) − P (E ∪ E cnt) ≥ P (E) + P (E cnt) − 1 = 1 − δ. From Lemma 5, on the event F ,

it is shown that CVaR?
α(s1; r)−CVaRρ̂∗

α (s1; r) ≤ ε for all reward functions r, thereby proving that

CVaR-RF-UCRL is (ε, δ)-PAC.

We now proceed to upper bound the sample complexity of CVaR-RF-UCRL on the event F .

The first step involves introducing an average upper bound on the error at step h under policy πt+1,
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defined as

Qt
h =

∑
(s,a)

P t+1
h (s, a)Et

h(s, a).

By Lemma 13, the average errors can be related as follows:

Qh
t ≤ 3H

∑
(s,a)

P t+1
h (s, a)

[√
β(nth(s, a), δ)

nth(s, a)
∧ 1

]

+
∑
(s,a)

∑
(s′,a′)

P t+1
h (s, a)Ph(s

′|s, a)I(a′ = πt+1(s′))Et
h+1(s′, a′)

≤ 3H
∑
(s,a)

P t+1
h (s, a)

[√
β(nth(s, a), δ)

nth(s, a)
∧ 1

]
+ Qt

h+1.

For h = 1, observe that P t+1
1 (s1, a)Et

1(s1, a) = Et
1(s1, π

t+1
1 (s1))I(πt+1

1 (s1) = a), as the policy is

deterministic. Now, if t < tstop, Et
1(s1, π

t+1
1 (s1)) ≥ ε/3 by definition of the stopping rule, hence

Q1
t =

∑
a P

t+1
1 (s1, a)Et

1(s1, a) ≥ (εα/3)
∑

a∈A I(π
t+1
1 (s1) = a) = εα/3. Thus, we have

εα

3
≤ 3

H∑
h=1

∑
(s,a)

HP t+1
h (s, a)

[√
β(nth(s, a), δ)

nth(s, a)
∧ 1

]

for t < tstop. Summing these inequalities for t ∈ {0, . . . , T} where T < tstop gives:

(T + 1)εα ≤ 9
H∑
h=1

H
∑
(s,a)

T∑
t=0

P t+1
h (s, a)

[√
β(nth(s, a), δ)

nth(s, a)
∧ 1

]
.

The next step involves relating the counts to the pseudo-counts, taking into account that the event

E cnt holds.

Using Lemma 17, it can be stated that, on the event F , for T < tstop, the inequality

(T + 1)εα ≤ 18
H∑
h=1

H
∑
(s,a)

T∑
t=0

P t+1
h (s, a)

√
β(nth(s, a), δ)

nth(s, a) ∨ 1

≤ 18
√
β(T + 1, δ)

H∑
h=1

H
∑
(s,a)

T∑
t=0

n̄t+1
h (s, a)− nth(s, a)√

n̄th(s, a) ∨ 1
,
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is derived, where the relation P t+1
h (s, a) = n̄t+1

h (s, a) − n̄th(s, a), as per the definition of

pseudo-counts, is used.

Applying Lemma 18 to bound the sum over t, we get:

(T + 1)εα ≤ 18(1 +
√

2)
√
β(T + 1, δ)

H∑
h=1

H
∑
(s,a)

√
nT+1
h (s, a)

≤ 18(1 +
√

2)
√
β(T + 1, δ)

H∑
h=1

H
√
SA

√∑
s,a

nT+1
h (s, a).

Given that
∑

s,a n
T+1
h (s, a) = T + 1, the inequality simplifies to:

√
T + 1εα ≤ 18(1 +

√
2)
√
SAH2

√
β(T + 1, δ).

For sufficiently large T , this inequality cannot hold, as the left-hand side grows with
√
T , while

the right-hand side is logarithmic. Therefore, tstop is finite and satisfies (applying the inequality to

T = tstop − 1):

tstop ≤ Õ
(
H4S2A

ε2α2

)
The conclusion follows from Lemma 19.

D.2 Proof of Planning Phase

D.2.1 Proof of Theorem 12

The utilization of discretization in the algorithm significantly impacts its computational tractability,

and it is applied in two main areas:

1. In the dynamic programming step at each timestep h, the algorithm exclusively computes

Qh(sh, bh, ah) for all sh, ah and bh within the grid. This leads to a total runtime ofO(SAHη−1Tstep),

where Tstep represents the time required for each step. The time complexity here arises from

discretization and is a function of the state space size, action space size, and the horizon length.
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2. When computing b̂, the algorithm searches over the grid to find the solution. Since the returns

distribution is supported on the grid, the α-quantile of the return distribution (the optimal solution)

exists on the grid. This computation has a time complexity of O(η−1), which is considered a

lower-order term compared to the first part.

It’s important to note that the most time-consuming part of the algorithm is the computation of

expectations, specifically the term:

[PhVh+1] (sh, bh, ah) = Esh+1∼P (·|sh,ah)[V
?
h+1(sh+1, bh+1)].

In the discretized MDP, this expectation can be computed using only grid elements, implying

Tstep = O(Sη−1). As a result, the overall time complexity of this algorithm is approximately

O(SAHη−1Tstep) = O(S2AHη−2).

D.2.2 Proof of Theorem 13

The proof draws inspiration from [7, 99]. To facilitate the discussion, we introduce the following

notation. Let Zρ,M represent the returns from executing ρ in the MDPM. For random variables

X, Y , we say Y stochastically dominates X , which is denoted X � Y . This dominance implies

that for any real value t, the probability that Y is less than or equal to t is greater than or equal to

the probability of X being less than or equal to t, i.e., ∀t ∈ R : Pr(Y ≤ t) ≤ Pr(X ≤ t).

1) From disc(M) toM:

Consider any policy ρ ∈ ΠAug and b ∈ [0, 1] (which we use in disc(M)). Define an adapted

policy for use inM as follows:

adapted(ρ, b1)h(sh, r1:h−1) = ρh(sh, b1 − φ(r1)− · · · − φ(rh − 1)).

The adapted policy simulates the evolution of b in disc(M) by using the history. Let Zρ,b,disc(M)

be the returns from running ρ, b in disc(M). Let Zadopted(ρ,b),M be the returns from running
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adopted(ρ, b) inM. According to Lemma H.1 in [99], we almost surely have

Zρ,b,disc(M) −Hη � Zadopted(ρ,b),M � Zρ,b,disc(M).

Thus, for any x ∈ R, it follows that

Fρ,b,disc(M)(x) ≤ Fadapted(ρ,b),M(x) ≤ Fρ,b,disc(M)(x+Hη)

where Fρ,b,disc(M) is the CDF of Zρ,b,disc(M) and Fadapted(ρ,b),disc(M) is the CDF of Zadapted(ρ,b),M.

Based on these arguments and Theorem H.3 in [99], we conclude:

CVaRα(adapted(ρ, b);M) ≥ CVaRα(ρ, b; disc(M))− α−1Hη. (D.1)

2) From M to disc(M): Let’s introduce the memory-MDP model as defined in [99] first. The

memory-MDP mode augments a standard MDP with a memory generator Mh, which produces

memory items mh ∼ Mh(sh, ah, rh, Hh) at each timestep. These memories are stored into

the history Hh = (st, at, rt,mt)t∈[h−1]. The process of executing π in this memory-MDP is

as follows: for any h ∈ [H], ah ∼ πh(sh, Hh), sh+1 ∼ P (·|sh, ah), rh = r(sh, ah) and

mh ∼ Mh(sh, ah, rh, Hh). As a result of this process, the augmented MDP with memory has a

history HAug
h = (st, bt, at, rt,mt)t∈[h−1]. This memory-MDP model allows us to capture and model

dependencies on past experiences through the memory items.

Building on the framework presented in [99], consider a scenario where we have a policy

ρ ∈ ΠAug and an initial budget b ∈ [0, 1], which we intend to use in the original MDP M. To

adapt this policy to run in disc(M), we introduce a discretized policy, which is history-dependent

and incorporates memory. This policy operates in the discretized MDP disc(M) and is defined as

follows:

disc(ρ, b)h(sh,m1:h−1) = ρh(sh, b−m1 − · · · −mh−1).

Indeed, this definition of the discretized policy disc(ρ, b) is designed to ensure that, despite
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receiving discrete rewards r̂h in the discretized MDP disc(M), the memory elementmh is carefully

generated to imitate the reward that would have been received in the true MDPM.

By applying Lemma H.2 in [99], we almost surely have

Zρ,b,M � Zdisc(ρ,b),disc(M).

Consequently, if we define Fρ,b,M as the CDF of Zρ,b,M and Fdisc(ρ,b),disc(M) as the CDF of

Zdisc(ρ,b),disc(M), we can establish that,

∀x ∈ R : Fdisc(ρ,b),disc(M) ≤ Fρ,b,M.

Based on these observations and utilizing Theorem H.4 in [99], we obtain

CVaR?
α(disc(M)) ≥ CVaR?

α(M). (D.2)

Combining Eq. (D.1) and Eq. (D.2), we have

|CVaRρ?

α (s1; r)− CVaRρ̂
α(s1; r)| ≤ α−1Hη. (D.3)

We can satisfy the assumption about the optimization error by selecting η ≤ εα/3H to ensure

|CVaRρ?

α (s1; r)− CVaRρ̂
α(s1; r)| ≤ ε/3.

D.3 Proof of Lower Bound

In this section, we prove our lower bound presented in Theorem 14. First, we develop the

connection between the reward-free problem and the CVaR-reward-free RL problem.

Lemma 12. For any MDPM = (S,A, H, P, r) with initial state s1 and any policy π, there exists
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another MDPM′ = (S ′,A, H + 1, P ′, r′) with initial state s0, we have

CVaRπ,M′
α (s0) = Eπ

[
H∑
h′=1

rh′(sh′ , ah′)

∣∣∣∣s1,M

]
. (D.4)

Proof. We set horizon h starting at 0 in M′. We can build such a M′ = (S ′,A, H + 1, P ′, r′),

where S ′ = S ∪ s0, s
′, P ′(·|s, a) = P (·|s, a) for any s ∈ S and a ∈ A, P ′(s1|s0, a) = α for any

a ∈ A, P ′(s′|s0, a) = 1 − α for any a ∈ A, P ′(s′|s′, a) = 1 for any a ∈ A, r′(s, a) = r(s, a) for

any s ∈ S and a ∈ A, r(s0, a) = 0 for any a ∈ A, and r(s1, a) = 1 for any a ∈ A.

For any policy π,
∑H

h′=1 rh′(sh′ , ah′) equals to H with probability at least 1 − α. Thus, the

α-VaR following by any policy π in the transferred MDPM′ is H . We have

CVaRπ,M′
α (s0) = max

b0∈[0,H]
{b0 − α−1V π,M′

0 (s0, b0)}

=H − α−1Eπ

[(
H −

H∑
h′=0

r′h′(sh′ , ah′)

)∣∣∣∣s0,M′

]

=H − α−1αEπ

[(
H −

H∑
h′=1

r′h′(sh′ , ah′)

)∣∣∣∣s1,M′

]

− α−1(1− α)Eπ

[(
H −

H∑
h′=1

r′h′(sh′ , ah′)

)∣∣∣∣s′,M′

]
︸ ︷︷ ︸

=0

=Eπ

[
H∑
h′=1

r′h′(sh′ , ah′)

∣∣∣∣s1,M′

]

=Eπ

[
H∑
h′=1

rh′(sh′ , ah′)|s1,M

]
.

(D.5)

Now we can prove our lower bound, Theorem 14. Here, we restated Theorem 4.1 in [51], which

shows that any reward-free exploration algorithm that output ε-optimal policy must collect at least

Ω(S2AH2/αε2) trajectories in expectation.

Theorem 15. (Theorem 4.1 in [51]) Consider a universal constantC > 0. For a given risk tolerance
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α ∈ (0, 1], if the number of actions A ≥ 2, the number of states S ≥ C log2A, the horizon H ≥

C log2 S, and the accuracy parameter ε ≤ min{1/4α,H/48α}, then any reward-free exploration

algorithm that can output ε-optimal policies for an arbitrary number of adaptively chosen reward

functions with a success probability δ = 1/2 must collect at least Ω(S2AH2/αε2) trajectories in

expectation.

Thus, any CVaR-RF exploration algorithm must collect at least Ω(S2AH2/ε2) trajectories from

the state s1, in expectation, and then collect at least Ω(S2AH2/αε2) trajectories from the initial

state s0.

D.4 Technical Lemmas

D.4.1 An Essential Lemma for Upper Bound

The following crucial lemma establishes a relationship between the errors at step h and those at

step h+ 1.

Lemma 13. On the event E , for all h ∈ [H] and (s, a) ∈ S ×A,

Et
h(s, a) ≤ 3H

[√
β(nth(s, a), δ)

nth(s, a)
∧ 1

]
+
∑
s′∈S

Ph(s
′|s, a)Eh+1(s′, ρt+1(s′)).

Proof. By the definition of Et
h(s, a) and the greedy policy ρt+1, if nth(s, a) > 0,

Et
h(s, a) ≤ H

√
2β(nth(s, a), δ)

nth(s, a)
+
∑
s′∈S

P̂h(s
′|s, a)Eh+1(s′, ρt+1(s′)).
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By the definition of E and Pinsker’s inequality, we further have

∑
s′∈S

P̂h(s
′|s, a)Et

h+1(s′, ρt+1(s′))

≤
∑
s′∈S

Ph(s
′|s, a)Et

h+1(s′, ρt+1(s′)) +
∑
s′∈S

(
P̂h(s

′|s, a)− P t
h(s
′|s, a)

)
Et
h+1(s′, ρt+1(s′))

≤
∑
s′∈S

Ph(s
′|s, a)Et

h+1(s′, ρt+1(s′)) + ‖(P̂h(·|s, a)− P t
h(·|s, a)‖ ·H

≤
∑
s′∈S

Ph(s
′|s, a)Et

h+1(s′, ρt+1(s′)) +H

√
2β(nth(s, a), δ)

nth(s, a)
,

where we use the fact that Et
h+1(s′, ρt+1(s′) ≤ H . Therefore, plugging in this inequality and using

2
√

2 ≤ 3, we have

Et
h(s, a) ≤

∑
s′∈S

Ph(s
′|s, a)Et

h+1(s′, ρt+1(s′)) + 3H

√
β(nth(s, a), δ)

nth(s, a)
.

Notice that

Et
h(s, a) ≤ H ≤ 3H ≤ 3H +

∑
s′∈S

Ph(s
′|s, a)Et

h+1(s′, ρt+1(s′)),

and this is also true for nth(s, a) = 0 with 1/0 = +∞, which leads to the conclusion.

D.4.2 Auxiliary Lemmas

Lemma 14. VaRα = b? := arg maxb∈R(b− α−1E[(b−X)+]).

Proof. Recall the definitions of CVaR and VaR, we have CVaRα(X) = supb
{
b− 1

α
E[(b−X)+]

}
,

VaRα(X) = inf{x ∈ R : P (X ≤ x) ≥ α}. By Theorem 6.2 in [1], we have

CVaRα(X) = E[X|X ≥ VaRα(X)].
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Firstly, we define f(b) = b− 1
α
E[(b−X)+], thus the derivative of f(b) with respect to b is:

f ′(b) = 1− 1

α
P (X ≥ b).

By setting the derivative equal to zero, we have P (X ≤ b) = 1 − α. According to the definition

of VaR, b is the α-th quantile of the distribution of X , which means b = VaRα(X). Therefore, the

critical point b∗ that maximizes f(b) is equal to VaRα(X). Now we prove f(b∗) = CVaRα(X).

f(b∗) = VaRα(X)− 1

α
E[(VaRα(X)−X)+]

= VaRα(X)− 1

α

∫ VaRα(X)

−∞
(VaRα(X)− x)dF (x)

=
1

α

∫ ∞
VaRα(X)

xdF (x) = E[X|X ≥ VaRα(X)] = CVaRα(X).

Lemma 15. (Lemma F.1 in [99]) Given any ρ ∈ ΠAug, h ∈ [H], augmented state (sh, bh), and

history Hh, we have V ρ
h (sh, bh) = V πρ,b

h (sh, bh;Hh) for b = bh + r1 + . . . + rh−1. Particularly,

V ρ
1 (s1, ·) = V πρ,b

1 (s1, ·).

Lemma 16. (Lemma 10 in [53]) Given β(n, δ) = log(2SAH/δ) + (S − 1) log
(
e
(
1 + n

S−1

))
, it

holds that P (E) ≥ 1− δ
2
. Furthermore, P (E cnt) ≥ 1− δ

2
.

Lemma 17. (Lemma 7 in [53]) On the event E cnt, for all h ∈ [H] and (s, a) ∈ S ×A,

∀t ∈ N∗,
β(nth(s, a), δ)

nth(s, a)
∧ 1 ≤ 4

β(n̄th(s, a), δ)

n̄th(s, a) ∨ 1
.

Lemma 18. (Lemma 19 in [5]) For any sequence of numbers z1, . . . , zn with 0 ≤ zk ≤ Zk−1 =

max
{

1,
∑k−1

i=1 zi

}
,

n∑
k=1

zk√
Zk−1

≤ (1 +
√

2)
√
Zn.
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Lemma 19. (Lemma 15 in [53].) Let n ≥ 1 and a, b, c, d > 0. If n∆2 ≤ a+ b log(c+ dn) then

n ≤ 1

∆2

[
a+ b log

(
c+

d

∆4
(a+ b(

√
c+
√
d))2

)]
.
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