
Adversarially Robust Zeroth-order ADMM
Consensus over Networks

Xinyang Cao and Lifeng Lai

Abstract—Due to the grow of data size, there is a recent
surge of interest in the design of distributed machine learning
algorithms that run with computers connected using networks.
However, Byzantine attackers can easily compromise some com-
puters and prevent the convergence of algorithms or lead the
algorithm to converge to value of attackers’ choice. In this
paper, we design a zeroth order adversarially robust alternating
direction method of multipliers (ZOAR-ADMM) that can deal
with Byzantine attackers for the zeroth-order methods in a
consensus network. The main idea of the algorithm is to ask
each worker store a local deviation statistics of distance between
neighbor’s model parameter and its own model parameter for
every neighbor. These information will then be used to filter out
bad model parameter from Byzantine attackers. We show that
this algorithm can converge to the sample minimizer and the
function can converge to the optimal value. We further provide
numerical examples to illustrate the performance of the proposed
algorithm.

I. INTRODUCTION

There are a growing number of applications that produce
computation and storage challenges for machine learning
systems. To address these challenges and to harness the
computing power of multiple machines distrbuted over net-
works, there is a growing interest in the design of distributed
optimization algorithms [1]–[11]. Various distributed methods
have been proposed in many existing works to solve dis-
tributed optimization problems, such as belief propagation [1],
distributed subgradient descent algorithms [2], dual averaging
methods [3] and the alternating direction method of multipliers
(ADMM) [4], [11]–[14] etc. Among these, ADMM has drawn
significant attentions, since it is well suited for distributed
optimization and shows fast convergence. These methods
mainly explore first-order methods, i.e. use gradients of the
loss function for iterative updates. However, in some scenarios
such as simulation-based optimization, bandit optimization and
objectives without simple gradient expressions etc [15]–[18],
gradients are hard to be explicitly evaluated.

In order to make distributed methods work well for these
applications, zeroth-order methods, which only use function
values, have been proposed [5]–[10]. Most of the existing
works, both the first-order and zeroth-order methods, assume
that these workers behave honestly and follow the protocol.
However, in practice, there is a risk that some of the workers
are compromised. These compromised workers can prevent
the convergence of the optimization algorithms or lead the

Xinyang Cao and Lifeng Lai are with Department of Electrical and
Computer Engineering, University of California, Davis, CA, 95616. Email:
{xycao,lflai}@ucdavis.edu. This work was supported by the National Science
Foundation under grant CCF-2232907.

algorithms to converge to values chosen by the attackers by
modifying or falsifying intermediate results when the server
require these intermediate results for updating. For example, as
shown in [19], [20], for the first-order methods, the presence
of even a single Byzantine worker can prevent the convergence
of distributed gradient descent algorithms.

There have been some interesting recent works on designing
distributed machine learning algorithms [19]–[30] that can deal
with Byzantine attacks. The main idea of several works is to
compare information received from all workers and compute
a quantity that is robust to attackers for algorithm update.
Another idea is to employ the redundant data when dealing
with Byzantine attackers. In [23], Chen et al. proposed an
algorithm named DRACO that uses redundant data. Each
worker computes redundant gradients, encodes them and sends
the resulting vector to the server. These vectors will pass
through a decoder that detects where the adversaries are
through the encoded redundant gradient information. However,
these algorithms require the first-order gradient information.

In this paper, we focus on problems in which the first-order
gradient information is difficult to obtain. In particular, we pro-
pose a new robust zeroth-order information based distributed
optimization algorithm that is robust to Byzantine attacks.
We name the method as zeroth-order adversarially robust
alternating direction method of multipliers (ZOAR-ADMM).
In the proposed method, at each iteration, each worker will first
receive model parameter from its neighbors. Then each worker
will test received parameter information by computing the
distance from the received parameter to the model parameter
computed using local data, and then sum all such distances
obtained in history to build a deviation statistic for all neighbor
workers. If the deviation statistic computed for its neighbor
worker is smaller than a specially designed threshold, the
worker will accept the model parameter from that neighbor. If
the deviation statistic is larger than the threshold, the worker
will reject the model parameter and decide that worker to be
an attacker. After testing, each worker will first update dual
variable by using accepted model parameters, then compute
temporary model parameter based on accepted parameters
and deterministic gradient approximation computed from its
own data. It will then update new model parameter and
broadcast it to its neighbors. We show that the proposed
algorithm can solve the optimization problem and the objective
function can converge to the minimum value. We show this
result by first investigating how the distance between model
parameter and optimal value is affected by the attack vector
generated by the attackers, and then carefully analyzing how

the proposed testing method can mitigate these effects and
eventually proving that the value of objective function of the
proposed algorithm will converge to the optimal value despite
the presence of Byzantine attackers.

II. MODEL

In this section, we introduce our model. For an unknown
distribution D, our goal is to infer the model parameter θ∗ ∈ Θ
of the unknown distribution. It is popular to formulate this
inference problem as an optimization problem

θ∗ ∈ argmin
θ∈Θ

F (θ) = E{f(X, θ)}, (1)

in which X is the data generated by the unknown distribution
D, f : X × Θ → R is the loss function, Θ ∈ Rd is
a closed convex set of all possible model parameters, and
the expectation is over the distribution D. F (θ) is called
population risk function.

Since the expectation in (1) is over the unknown distribution
D, the population risk function F (θ) is unknown and hence
we cannot solve (1) directly. Instead, one typically aims to
minimize the empirical risk:

min
θ∈Θ

1

N

N∑
s=1

f(Xs, θ), (2)

which uses N data samples Xs, s = 1, . . . , N generated by the
unknown distribution D. By solving (2), we obtain an estimate
of the true model parameter θ∗. When the number of data
points N is large, we can employ distributed optimization
methods. In particular, we consider a network consisting of
n workers bidirectionally connected with E edges. We can
describe the network as a symmetric directed graph Gd =
{V,A}, where V is the set of workers with |V| = n and A is
the set of directed edges with |A| = 2E. In a distributed setup,
a connected network of workers collaboratively minimize the
sum of their local loss functions over a common optimization
variable. Each worker generates local updates individually
and communicates with its neighbors to reach a common
minimizer in a consensus network. Then we can have a
distributed optimization problem with population risk,

min
θi,ϕij

n∑
i=1

F i(θi), s.t.θi = ϕij , θj = ϕij ,∀(i, j) ∈ A. (3)

where F i(θi) = E{f(X, θi)}, where f(X, θi) represents the
loss function based on the data generated by the unknown
distribution D and the model parameter θi. θi ∈ Rd is the
local optimization variable at worker i and ϕij ∈ Rd is
an auxiliary variable imposing the consensus constraint on
neighbor workers i and j. Again, since we do not know the
distribution D, we cannot solve (3) directly. Instead we can
focus on the distributed optimization problem for empirical
risk function formulated as follows

min
θi,ϕij

n∑
i=1

f
(i)
(θi), s.t.θi = ϕij , θj = ϕij ,∀(i, j) ∈ A. (4)

where f
(i)
(θi) =

1
|Si|
∑

s∈Si
f(Xs, θi) with Si being the set

of data samples at worker i.

Define θ ∈ Rnd as a vector concatenating all θi, ϕ ∈ R2Ed

as a vector concatenating all ϕij , then (4) can be written in a
matrix form as

min
θ,ϕ

f(θ) + Γ(ϕ), (5)

s.t. Aθ +Bϕ = 0,

where f(θ) =
∑n

i=1 f
(i)
(θi) and Γ(ϕ) = 0. Here A =

[A1;A2];A1, A2 ∈ R2Ed×nd are both composed of 2E × n
blocks of d × d matrices. If (i, j) ∈ A and ϕij is the qth
block of ϕ, then the (q, i)th block of A1 and the (q, j)th
block of A2 are d × d identity matrices Id; otherwise the
corresponding blocks are d × d zero matrices 0d. Also, we
have B = [−I2Ed;−I2Ed] with I2Ed being a 2Ed × 2Ed
identity matrix.

In this paper, we assume that F (θ) and θ satisfy the
following assumptions.

Assumption 1. F (θ) is mF -strongly convex and F (θ) has
MF -Lipschitz gradients on θ ∈ Θ for any θ.

Assumption 2. The constrain set Θ is convex and compact,
there exists some constant R such that ∥θ − θ′∥ ≤ R for any
θ, θ′ ∈ Θ.

These assumptions are common assumptions in existing
works for optimization problems [10], [31].

The iterative updates of the distributed ADMM to solve
problem (4) is given in [11]. In particular, consider the
augmented Lagrangian of (5), we will have

L(θ, ϕ, ν) = f(θ) + ⟨ν,Aθ +Bϕ⟩+ c

2
∥Aθ +Bϕ∥2. (6)

By using ADMM method, the updates are

∇f(θk+1) +AT νk+1 + cATB(ϕk − ϕk+1) = 0,

BT νk+1 = 0,

νk+1 − νk − c(Aθk+1 +Bϕk+1) = 0. (7)

By letting ν = [β; γ] with β, γ ∈ R2Ed and recalling B =
[−I2Ed;−I2Ed], we will have γ = −β. By choosing ϕ0 =
1
2M

T
+θ0, the ADMM form will be reduced to the following

form:

θ − update : ∇f(θk+1) +M−β
k+1 − c

2
M+M

T
+θk

+
c

2
M+M

T
+θk+1 = 0,

β − update : βk+1 − βk − c

2
MT

−θk+1 = 0, (8)

where β ∈ R2Ed, the matrices M+ = AT
1 + AT

2 and M− =
AT

1 −AT
2 . Let W ∈ Rnd×nd be a block diagonal matrix with

its (i, i)th block being the degree of agent i multiplying Id
and other blocks being 0d, L+ = 1

2M+M
T
+ , L− = 1

2M−M
T
− ,

and W = 1
2 (L+ + L−). By defining a new multiplier α =

2

M−β ∈ Rnd, the algorithm reduces to the following form:

θ − update : ∇f(θk+1) + αk + 2cWθk+1 = cLk+1
+ θk,

α− update : αk+1 − αk − cLk+1
− θk+1 = 0. (9)

Note θ = [θ1, ...θn], α = [α1, ..., αn] ∈ Rnd, and there is
an optimal solution θ∗ ∈ Θ. These matrices are related to the
underlying network topology. From above, we can find that W
is a block diagonal matrix with its (i, i)th being the number
of neighbor of worker i. L− is the Laplacian matrix, and L+

is the nonnegative Laplacian matrix.

Fig. 1. Information flow of ADMM algorithm in [11].

Using the matrices defined above, the matrices form iterative
updates in (9) can be distributed to each worker. For example,
Figure 1 illustrates information flow of 5 workers in the
network by using this algorithm. In iteration k, worker i will
receive all model parameter θkj , j ∈ Ni from its neighbors,
then it will first calculate αk

i based on received information:

αk
i = αk−1

i + c|Ni|θki − c
∑
j∈Ni

θkj . (10)

Then it will update θk+1
i by solving

∇f
(i)
(θk+1

i)+αk
i +2c|Ni|θk+1

i = c|Ni|θki + c
∑
j∈Ni

θkj , (11)

based on received model information θkj and local data. After
updating θk+1

i , worker i will broadcast it to its all neighbors.
Algorithm 1 (from [11]) summarizes these steps.

In this paper, we consider two problems based on Algo-
rithm 1. First, we consider a system with Byzantine attackers,
in which an unknown subset of workers might be compro-
mised. In each iteration, compromised worker i can send
arbitrary information to its neighbors. Let B denote the set
of compromised workers. Then we can write the information
sent by node i as zi = θi + ei with ei taking the following
form

ei =

{
0 i /∈ B
⋆ i ∈ B (12)

in which ⋆ denotes an arbitrary vector chosen by the attacker.
Secondly, We also consider the system where gradient or
subgradient information is hard to be explicitly evaluated.
Instead, we will use a deterministic estimator gi(θi) to estimate

∇f
(i)
(θi), which approximates each coordinate of the gradient

and then sums them up [32]:

gi(θi) =
1

m

∑
s∈Si

d∑
l=1

f(Xs, θi + uvl)− f(Xs, θi − uvl)

2u
vl.

Here u is a scalar, whose value will be specified in the
algorithm analysis, and vl is a standard basis vector with 1
at its lth coordinate.

Then the corresponding algorithm becomes

gi(θ
k+1
i) + αk

i + 2c|Ni|θk+1
i = c|Ni|zki + c

∑
j∈Ni

zkj ,

αk+1
i = αk

i + c|Ni|zk+1
i − c

∑
j∈Ni

zk+1
j . (13)

For a clearer presentation, we will use following equivalent
form of the updates in analysis when there are Byzantine
attackers:

θ − update : g(θk+1) + αk + 2cW k+1θk+1 = cLk+1
+ zk,

α− update : αk+1 − αk − cLk+1
− zk+1 = 0, (14)

where g(θ) =
∑n

i=1 gi(θi). Compared with (9), θk is replaced
by zk and θk+1 is replaced by zk+1. The goal of our paper is
to design robust zeroth-order algorithms, by designing proper
tests for each worker that can tolerate Byzantine attacks. For
g(θ) generated by deterministic estimator, we will use g(θ) to
estimate ∇f(θ). For ∇f(θ), we have following assumption,
which are similar to those used in [19], [22], [24],

Assumption 3. There exist positive constants σ1 and α1

such that for any unit vector v ∈ B, ⟨∇f(X, θ∗), v⟩ is sub-
exponential with σ1 and α1, that is,

sup
v∈B

E[exp(λ⟨∇f(X, θ∗), v⟩)] ≤ eσ
2
1λ

2/2,∀|λ| ≤ 1/α1,

where B denotes the unit sphere {v : ∥v∥2 = 1}.

We now define gradient difference w(X, θ) = ∇f(X, θ)−
∇f(X, θ∗) and assume that for every θ, w(X, θ) normalized
by ∥ θ − θ∗ ∥ is also sub-exponential.

Assumption 4. There exist positive constants σ2 and α2 such
that for any θ ∈ Θ with θ ̸= θ∗ and any unit vector v ∈ B,
⟨w(X, θ)−E[w(X, θ)], v⟩/ ∥ θ− θ∗ ∥ is sub-exponential with
σ2 and α2, that is,

sup
θ∈Θ,v∈B

E
[
exp

(
λ⟨w(X, θ)− E[w(X, θ)], v⟩

∥θ − θ∗∥

)]
≤ eσ

2
2λ

2/2, ∀|λ| ≤ 1

α2
. (15)

This allows us to show that 1
m

∑
s∈Ss

w(Xs, θ) concentrates
on E[w(X, θ)] for every fixed θ.

Assumptions 3 and 4 ensure that random gradient ∇f(θ)
has good concentration properties, i.e., an average of m i.i.d
random gradients 1

m

∑
s∈Ss

∇f(Xs, θ) sharply concentrates
on ∇F (θ) for every fixed θ, which is an assumption on the

3

Algorithm 1: ADMM [11]
Initialize θ1 = 0, c, α0 = 0, T .
for k = 1 to T do

For the worker i:
1: Receives the model parameter θkj from its neighbor;
2: Computes αk

i = αk−1
i + c|Ni|θki − c

∑
j∈Ni

θkj
3: Solves ∇fi(θ

k+1
i) + αk

i + 2c|Ni|θk+1
i

= c|Ni|θki + c
∑

j∈Ni
θkj

to gets updated θk+1
i and communicates it with its

neighbors;
end for

output θT .

Algorithm 2: ZOAR-ADMM
Initialize θ1 = 0, c, α0 = 0, T, U .
for k = 1 to T do

For the worker i:
1: Receives the model parameter θkj from its neighbor;
if
∑k

t=1 ∥θti − θtj∥ > U then
2: worker i detects that worker j is an attacker,
rejects θkj and removes worker j from N k

i ;
else

2: worker i accepts θkj ;
end if
3: Computes αk

i = αk−1
i + c|N k

i |θki − c
∑

j∈Nk
i
θkj

4: Solves gi(θ
k+1
i) + αk

i + 2c|N k
i |θ

k+1
i

= c|N k
i |θki + c

∑
j∈Nk

i
θkj

to gets updated θk+1
i and communicates it with its

neighbors;
end for

output θT .

upper bound of the variance of the gradient.
We also assume data in each worker has following assump-

tion.

Assumption 5. For any δ ∈ (0, 1/m), there exists an Mf =
Mf (δ) and mf = mf (δ) such that

Pr

{
∀θ, θ′ ∈ Θ,mf ≤ ∥∇f(X, θ)−∇f(X, θ′)∥

∥θ − θ′∥
≤ Mf

}
≥ 1− δ

3
. (16)

Assumption 5 ensures that ∇f(X, θ) in each worker is
Mf -Lipschitz and f(X, θ) is mf strongly convex with high
probability.

III. ALGORITHM

In this section, we describe our algorithm in distributed
network that can tolerate Byzantine attacks in ADMM updates.

If there is no network, each worker will compute model
parameter by itself, then in each iteration, different workers

will have different model parameter. But in a network, workers
will communicate with its neighbor, then each worker can
know the model parameter deviation between itself and its
neighbor. The main idea of our algorithm is to use this model
parameter deviation to detect Byzantine attackers. As we will
show in Lemma 4, for the case where all the workers are
honest, the deviation statistic

∑k
t=1

∑
(i,j)∈A ∥θti − θtj∥ will

be bounded by a quantity value U no matter what the value
k is. As the result, this bound can serve as the standard
threshold for each worker to decide whether its neighbor is
honest or not. Inspired by this bound, in our algorithm, each
worker maintains the local deviation statistic

∑k
t=1 ∥θti − θtj∥

for every neighboring worker j, and compares it with U to
test if neighboring worker j provides a reasonable value or
not. The local deviation statistic from an honest worker will
always smaller than U , no matter how many iterations have
passed.

In particular, in iteration k, worker i tests all the model
information θkj from its neighbor j, j ∈ Ni. If the local
deviation statistic

∑k
t=1 ∥θti − θtj∥ from neighbor j is larger

than U , neighbor j will be considered as a Byzantine attacker.
The model parameter sent by a Byzantine attacker will be
rejected forever and worker i will not send information to
worker j. Worker j will be removed from set Ni and worker
i will be removed from set Nj . Then worker i and worker
j will have new neighbor set N k

i and N k
j . After testing all

neighbors, worker i updates αk
i first:

αk
i = αk−1

i + c|N k
i |θki − c

∑
j∈Nk

i

θkj . (17)

Then worker i will update θi by solving

gi(θi) + αk
i + 2c|N k

i |θi = c|N k
i |θki + c

∑
j∈Nk

i

θkj , (18)

where we use deterministic gradient estimator gi(θi) using its
own local m data samples:

gi(θi) =
1

m

∑
s∈Si

d∑
l=1

f(Xs, θi + ukvl)− f(Xs, θi − ukvl)

2uk
vl.

In our algorithm, at iteration k, we will choose uk = 1
dk2 .

After worker i update θi, it will communicate its value with its
neighbors. Main steps of the algorithm are list in Algorithm 2.

IV. CONVERGENCE ANALYSIS

Before presenting detailed analysis, here we introduce some
notations for the network and describe the high level ideas.
On iteration k, when we describe the network, we let Qk =

LD
1
2LT , where LDLT =

Lk
−
2 is the singular value decompo-

sition of the positive semidefinite matrix Lk
−
2 , and Lk

− repre-
sents the Laplacian matrix of the network at iteration k. We
will define a new auxiliary sequence rk =

∑k
s=0 Q

s(θs + es)
to represent the accumulation of the network constraint in

4

optimization problem over iterations. In addition, we define
matrix p and matrix G as

pk =

[
rk

θk

]
, Gk+1 =

[
cI 0

0 cLk+1
+ /2

]
. (19)

We also define two constants that will be used in the
analysis:

∆1 =
√
2σ1

√
(d log 6 + log(3/δ))/m, (20)

∆2 =
√
2σ2

√
(τ1 + τ2)/m (21)

with τ1 = d log 18 + d log(MF ∨ Mf/σ2), τ2 =

0.5d log(m/d) + log(6/δ) + log(
2rσ2

2

√
m

α2σ1
).

In our analysis, we will first study the properties of the
zeroth-order gradient estimation at an honest worker. We
will then analyze the impacts of attacks on each iteration of
ADMM. Finally, we will show that our proposed algorithm
can reduce the error caused by Byzantine attackers and the
function value will converge to the function value based on
the optimal parameter.

A. Bound of zeroth-order gradient estimation

In this section, we will derive an upper bound on the
gradient estimate at an honest worker. This bound will be used
in the subsequent analysis.

Recall that we have f(θ) =
∑n

i=1 f
(i)
(θi). To consider the

difference between zeroth-order gradient estimation and the
true unknown gradient of f(θ), we denote h(θ) = ∇f(θ) −
g(θ). For h(θ), we have

Lemma 1. ([32]) Under Assumptions 1, 2, 5, in iteration
k, for any δ ∈ (0, 1), with probability at least 1 − δ/3, the
deterministic estimator g(θk) satisfies

∥g(θk)−∇f(θk)∥2 ≤ nM2
f d

2u2
k/(4m). (22)

Lemma 1 illustrates that there is a bound for the distance
between zeroth-order estimate and the true gradient. From
this lemma and assumptions mentioned above, we have the
following upper bound on ∥gi(θ)∥.

Lemma 2. Under Assumptions 1-5, in iteration k, for any
δ ∈ (0, 1), with probability at least (1− δ), the deterministic
estimator gi(θ

k
i) satisfies

∥gi(θki)∥ ≤ Vk +Mf∥θki − θ∗∥, (23)

where Vk =
M2

fd
2u2

k

m +∆1.

B. Impact of Byzantine attackers in ADMM

In this section, we analyze the impact of Byzantine attacks
on the iterations of ADMM. To facilitate the analysis of
the algorithm, we show that the algorithm has the following
equivalent form.

Lemma 3. The algorithm satisfies

g(θk+1) = 2cW k+1ek+1 − cLk+1
+ (zk+1 − zk)− 2cQrk+1,

where W k+1 =
Lk+1

+ +Lk+1
−

2 and Q is a matrix that makes
2Qrk+1 =

∑k+1
s=0 L

s
−(θ

s + es)

Using this lemma, we are ready to show that, if each
node blindly accepts information from neighboring workers,
Byzantine attackers can change the distance between θk and
θ∗ by changing the model parameter during information trans-
mission.

Theorem 1. If Assumptions 1-5 hold, by choosing uk = 1
dk2

for k iteration, for any δ ∈ (0, 1), with optimal value

p =

[
0
θ∗

]
, (24)

then with probability at least (1− δ)n, we have

∥pk+1−p∥2Gk+1 ≤ 1

1 + ρ

(
∥pk − p∥2Gk+1 +∆(k + 1)

)
, (25)

where

∆(k + 1) = c
σ2
max(L

k+1
+)

2σmin(L
k+1
−)

∥ek∥2 +
√
nMfR√
mk2

+∆1R

+c2σ2
max(L

k+1
+)∥ek∥2 + c2σ2

max(L
k+1
−)∥ek+1∥2

+c⟨ek+1, 2Qrk+1⟩+ 2(µ− 1)nV 2
k+1 + 8∆2R

2, (26)

and

ρ = min

{
(µ− 1)σ2

min(L
k+1
−)

2µσ2
max(L

k+1
+)σmax(L0

−)
,

mf

cσ2
max(L+)

2 + µ
c 2M

2
fσ

−2
min(L

k+1
−)σmax(L0

−)

}
> 0.(27)

From this theorem, we can see that when there is no attacker,
i.e., ∥ek∥ = ∥ek+1∥ = 0, then ∆(k + 1) decreases and
goes to 2(µ − 1)∆2

1 + ∆1R + 8∆2R
2 as k → ∞, which is

generated from the approximation of population risk function
by using empirical risk function. We can find the sequence
∥pk − p∥2Gk converges linearly to the neighbor of optimal p
with a rate of 1

1+ρ when there is no attacker in the network.
However, when there are attackers, this theorem shows how
the error values ∥ek∥ introduced by the attackers affect the
term ∆(k + 1), and these errors will accumulate after each
iteration. These error values can be any value decided by the
Byzantine attackers. The bound will become larger and larger,
the ADMM algorithm will not converge.

To provide further insights on how attackers can impact the
algorithm, we analyze how the convergence rate is related to
the value of ρ. In the no attacker case, by maximizing ρ, we
can have a better convergence result. Then we will show how
to maximal ρ.

Proposition 1. If the algorithm parameter c is chosen as

c =
2Mf

√
σmax(L0

−)
√
µ

σmax(L
k+1
+)σmin(L

k+1
−)

, (28)

5

and

µ = 1+
K2

Lσmax(L
0
−)

K2
f

−
KLσmax(L

0
−)

2Kf

√
8

σmax(L0
−)

+ 4
K2

L

K2
f

,

then we have

ρ =
1

2Kf

√
8

σmax(L0
−)K

2
Lk+1

+
4

K2
f

− 1

2K2
f

(29)

maximizes the value of ρ in iteration k + 1, where KLk+1 =
σmax(L

k+1
+)

σmin(L
k+1
−)

and Kf =
Mf

mf
.

The minimum non-zero singular value of the signed Lapla-
cian matrix L− and the maximum singular value of signless
Laplacian matrix L+ are related to network connectedness
but former is less. Roughly speaking, larger L+ and L−
mean stronger connectedness, and a larger KL means weaker
connectedness. From this proposition, we can observe that the
value of ρ is related to KL. The value of ρ decreases as
KL increases. This proposition suggests that another way that
the Byzantine attacker can influence the result is to reduce
the network connectedness, which makes the convergence
arbitrarily slow.

In summary, Theorem 1 and Proposition 1 provide useful
insights the impact the adversarial attacks. In particular, when
we consider the defending method as in the proposed ZOAR-
ADMM, we are going to identify the Byzantine attackers
and remove them from the network. Then in the network,
the attackers may have two difference methods for attacking:
1) From insights in Theorem 1, the attacker may choose
to make small changes at each step so that changed model
parameter pass the test and workers will accumulate the wrong
information; 2) From insights in Proposition 1, the attacker
may choose to make large changes to the value so it does not
pass the test, which will break the network and change the
value of ρ and impact the convergence.

C. Convergence analysis of ZOAR-ADMM

Using the insights obtained in Section IV-B, in this section,
we will prove the convergence of ZOAR-ADMM when there
are Byzantine attackers in the network.

In Section III, we mention that, when there is no Byzantine
attackers, the deviation statistic

∑k
t=1 ∥Qθt∥ will be bounded

by some value no matter what the value k. The following
lemma shows how to find such a bound.

Lemma 4. Consider a network without attacker, starting from
θ0 = 0 and ut =

1
dt2 , for any δ ∈ (0, 1), with probability at

least (1− δ
3)

n, we have

1

T

T∑
t=1

∥Qθt∥≤ 1

4T

(
σmax(L

0
+)R

2 +
4C

σmin(L0
−)c

2
+ 4

)
+

R

2cT

√
nMfπ

2

12
√
m

, (30)

where C = nV 2
1 +M2

fR
2.

Using this lemma, we can set the bound for testing as U =
1

2
√
2

(
σmax(L

0
+)R

2 + 4C
σmin(L0

−)c2
+ 4
)
+ R

c

√
nMfπ

2

12
√
2m

. When

there is no attacker, from Lemma 4,
∑T

t=1 ∥Qθt∥ ≤ U/
√
2.

Note that
∑T

t=1 ∥Qθt∥ = 1√
2

∑T
t=1

∑
(i,j)∈A ∥θti − θtj∥, thus,

we will have 1√
2

∑T
t=1 ∥θti − θtj∥ ≤ U/

√
2,∀(i, j) ∈ A. Then

we can design our attacker testing method in the following
way: in each iteration k, each worker i maintains the local
deviation statistics

∑k
t=1 ∥θti − θtj∥ for every neighbor worker

j ∈ Ni. For an honest worker, this deviation statistics will
not exceed U . If this value is greater than U , then worker j
will be regarded as a Byzantine attacker by worker i, since if
in one iteration, this value is greater than U , then after this
iteration, the value will still be greater, so worker i will reject
the information from worker j forever.

Next, we show that the proposed ZOAR-ADMM algorithm
can converge to the optimal value in a consensus network.
Considering after T iteration, the whole consensus network has
been attacked to several small consensus networks. Assume
first n̂ ≤ n workers are in one consensus network. Then
consider the initial network between these workers, we will
have L̂+, L̂− for such network and f̂(θ) =

∑n̂
i=1 f

(i)
(θi).

Then we have the following theorem showing the proposed
algorithm can work in a consensus network.

Theorem 2. If Assumptions 1-5 holds, there exists optimal

p =

[
r
θ∗

]
, with r = 0 and θ̂T =

∑T
k=1 θk

T , with uk = 1
dk2

and for any δ ∈ (0, 1), with probability (1− δ)n̂, it holds

f̂(θ̂T)− f̂(θ∗) ≤ 1

T

(
∥p̂0 − p∥2

Ĝ1 + c
σ2
max(L̂

T
+)

σ2
min(L̂

T
−)

8E2U2

+
π2

6

n̂
√
n̂MfR

2n
√
m

)
. (31)

This theorem shows that, when the whole network is sep-
arated by Byzantine attackers into several smaller network,
ZOAR-ADMM can work in each small consensus network.
Now we consider the convergence of ZOAR-ADMM in the
whole network. Consider different network in whole algo-
rithm, for signless Laplacian matrix, we have ∥xk−x∗∥2

Lk
+
2

=

1
4

∑m
i=1

∑
j∈Ni

∥xi−x∗+xj−x∗∥2. Now consider the whole
network, define fall(x) =

∑
f(x) =

∑n
i=1 fi(xi), which

consider the whole network, then we get the following theorem
for whole network.

Theorem 3. If Assumptions 1-5 holds, there exists optimal

p =

[
r
θ∗

]
, with r = 0 and θ̂T =

∑T
k=1 θk

T , with uk = 1
dk2

and for any δ ∈ (0, 1), with probability (1− δ)n, it holds

f(θ̂T)− f(θ∗) =
∑

f̂(θ̂T)− f̂(θ∗)

≤ 1

T

(
∥p0 − p∥2G1 + c

σ2
max(L

T
+)

σ2
min(L

T
−)

8E2U2

+
π2

6

√
nMfR

2
√
m

)
. (32)

6

This theorem shows that the algorithm achieves a sub-
linear convergence rate of O(1

T). The upper bound in (32)
introduces two additional terms. The first term comes from
the method for defending against Byzantine attackers and the
second term comes from the estimate gradient by using zeroth-
order approximation.

V. NUMERICAL RESULTS

A. Synthesized data

We first use synthesized data. In this example, we focus on
linear regression, in which

Yi = HT
i x

∗ + ϵi, i = 1, 2, · · · , N,

where Hi ∈ Rd, x∗ is a d× 1 vector and ϵi is the noise. We
set H = [H1, · · · , HN] as d×N data matrix.

In the simulation, we set the dimension d = 10, the total
number of data N = 50000. We use N (0, 9) to independently
generate true model parameter x∗, where N (ν, σ2) denotes
Gaussian variables with mean ν and variance σ2. After x∗

is generated, we fix it. The data matrix H is generated
randomly by Gaussian distribution with ν = 0 and fixed
known maximal and minimal eigenvalues of the correlation
matrix HTH. Let λmax(·) and λmin(·) denote the maximal
and minimal eigenvalue of HTH respectively. In the following
figures, we use λmax(H

TH) = 100 and λmin(H
TH) = 1 to

generate the data matrix H. We set the white noise ϵi as i.i.d.
N (0, 1) random variable. Finally, we generate Yi using the
linear relationship mentioned above. In the synthesized data
simulation, we set the number of workers n = 100, and data
are evenly distributed in each worker. The original network is
generated by a connected Erdos-Renyi graph ER(100, 0.2),
meaning that 100 workers connect with each other with
probability 0.2. We first randomly select 20 workers to be
attackers. We illustrate our results with 2 different cases: 1)
20 Inverse attack, in which each attacker first calculates the
gradient based on its local data but sends the inverse version
of gradient information or vector information to the server; 2)
20 Random attack, in which the attacker randomly generates
gradient value. In our simulation, we compare 2 algorithms: 1)
The proposed ZOAR-ADMM as presented in Algorithm 2; 2)
The DS-ADMM in [10] which considers zeroth-order ADMM
with two times communication in each iteration.

Figures 2 and 3 plot the value of the average optimality
gap vs iteration with 20 inverse attacks and 20 random attacks
respectively, where the average optimality gap is defined as:
1
n

∑n
j=1[

∑n
i=1 fi(x

k
j)−

∑n
i=1 fi(x

∗)]. From Figures 2 and 3,
we can see that DS-ADMM method does not converge, since
computing average cannot defend Byzantine attacks. On the
other hand, the proposed ZOAR-ADMM can still converge,
since it helps workers to detect the Byzantine attackers and
converge under the trusted sub network.

Figures 4 and 5 plot the value of ∥Q0xk∥2 vs iteration
with 20 random attacks and 20 inverse attacks respectively.
As discussed above, ∥Q0xk∥2 can be used to show the node
disagreement. From Figures 4 and 5, we can observe that

0 20 40 60 80 100
communication iteration

0

2000

4000

6000

8000

10000

av
er

ag
e

op
tim

ia
lit

y
ga

p 20 random attack

ZOAR-ADMM
DS-ADMM

Fig. 2. Optimality gap comparison using synthesized data: 20 Random attack.

0 20 40 60 80 100
communication iteration

0
1000
2000
3000
4000
5000
6000
7000
8000

av
er

ag
e

op
tim

ia
lit

y
ga

p 20 inverse attack

ZOAR-ADMM
DS-ADMM

Fig. 3. Optimality gap comparison using synthesized data: 20 Inverse attack.

DS-ADMM has a large disagreement, since the attackers
successfully make the algorithm fail. However the proposed
ZOAR-ADMM has a small disagreement.

B. Real data

Now we test our algorithms on real datasets MNIST [33]
and compare our algorithms with the existing zeroth order
method in [10]. MNIST is a widely used computer vision
dataset that consists of 70,000 28×28 pixel images of hand-
written digits 0 to 9. We use the handwritten images of 3 and
5, which are the most difficult to distinguish in this dataset,
to build a logistic regression model. After picking all 3 and
5 images from the dataset, the total number of images is
13454. It is divided into a training subset of size 12000 and a
testing subset of size 1454. For the dataset, we set the number
of workers to be 50, and generate network by a connected
Erdos-Renyi graph ER(50, 0.2). We then randomly select 20
workers from these 50 workers to be attackers. Similar to
the synthesized data scenario, we illustrate our results with
two cases, namely 20 inverse attack, 20 random attack, and
compare the performance of two algorithms by comparing

7

0 10 20 30 40 50
communication iteration

10−6

10−4

10−2

100

102

104

106
no

de
 d

isa
gr

ee
m

en
t

20 random attack
ZOAR-ADMM
DS-ADMM

Fig. 4. Node disagreement comparison using synthesized data: 20 Random
attack.

0 10 20 30 40 50
iteration

10−6

10−4

10−2

100

102

104

106

108

no
de

 d
isa

gr
ee

m
en

t

20 inverse attack
ZOAR-ADMM
DS-ADMM

Fig. 5. Node disagreement comparison using synthesized data: 20 Inverse
attack.

the testing accuracy and node disagreement. When testing
accuracy, we consider x = 1

50

∑50
i=1 xi to be the output testing

model parameter and testing with testing data. The following
figures show the result.

Figures 6 and 7 illustrate the impact of two cases on
different algorithms using MNIST respectively. Figures 6
and 7 show that the DS-ADMM fails to predict if there are
20 attackers. On the other hand, the proposed ZOAR-ADMM
algorithm still show high accuracy.

We then plot the impact of 20 attackers case on real
data with value of ∥Q0xk∥2 to show node disagreement in
Figures 8 and 9 using MNIST respectively. When there are
20 attackers, DS-ADMM has large disagreement, it cannot
properly work. Our proposed ZOAR-ADMM has a low dis-
agreement. As the iterations increase, the simulation result
shows that our proposed ZOAR-ADMM has better accuracy
and lower disagreement.

0 25 50 75 100 125 150 175 200
communication iteration

40

50

60

70

80

90

100

ac
cu

ra
cy

20 inverse attack

ZOAR-ADMM
DS-ADMM

Fig. 6. Accuracy comparison using MNIST: 20 Inverse attack.

0 25 50 75 100 125 150 175 200
communication iteration

40

50

60

70

80

90

100

ac
cu

ra
cy

20 random attack

ZOAR-ADMM
DS-ADMM

Fig. 7. Accuracy comparison using MNIST: 20 Random attack.

VI. CONCLUSION

In this paper, we have proposed a robust zeroth-order
ADMM named ZOAR-ADMM algorithm that can tolerate
Byzantine attackers in a distributed network. We have analyzed
the effect of Byzantine attacks, and have proved that the pro-
posed algorithm can converge to optimal value. We also have
provided numerical examples to illustrate the performance of
the proposed algorithm.

REFERENCES

[1] J. Predd, S. Kulkarni, and H. Poor, “A collaborative training algorithm
for distributed learning,” IEEE Trans. Inform. Theory, vol. 55, pp. 1856–
1871, Mar. 2009.

[2] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Automatic Control, vol. 54, pp. 48–61,
Jan. 2009.

[3] J. Duchi, A. Agarwal, and M. Wainwright, “Dual averaging for dis-
tributed optimization: Convergence analysis and network scaling,” IEEE
Trans. Automatic Control, vol. 57, pp. 592–606, Jun. 2011.

8

0 20 40 60 80 100 120 140
communication iteration

10−6

10−4

10−2

100

102

no
de

 d
isa

gr
ee

m
en

t
20 inverse attack

ZOAR-ADMM
DS-ADMM

Fig. 8. Node disagreement comparison using MNIST: 20 Inverse attack.

0 20 40 60 80 100 120 140
communication iteration

10−6

10−4

10−2

100

102

no
de

 d
isa

gr
ee

m
en

t

20 random attack
ZOAR-ADMM
DS-ADMM

Fig. 9. Node disagreement comparison using MNIST: 20 Random attack.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine Learning, vol. 3,
pp. 1–122, Jan. 2011.

[5] S. Liu, J. Chen, P. Chen, and A. Hero, “Zeroth-order online alternating
direction method of multipliers: Convergence analysis and applications,”
in International Conference on Artificial Intelligence and Statistics,
pp. 288–297, PMLR, Apr. 2018.

[6] Z. Yu, D. Ho, and D. Yuan, “Distributed randomized gradient-free mirror
descent algorithm for constrained optimization,” IEEE Trans. Automatic
Control, pp. 1–1, Apr. 2021.

[7] Y. Tang, J. Zhang, and N. Li, “Distributed zero-order algorithms for
nonconvex multi-agent optimization,” IEEE Transactions on Control of
Network Systems, pp. 269–281, Sep. 2020.

[8] A. Sahu, D. Jakovetic, D. Bajovic, and S. Kar, “Distributed zeroth order
optimization over random networks: A Kiefer-Wolfowitz stochastic
approximation approach,” in Proc. IEEE Conference on Decision and
Control, pp. 4951–4958, Dec. 2018.

[9] S. Liu, B. Kailkhura, P. Chen, P. Ting, S. Chang, and L. Amini, “Zeroth-
order stochastic variance reduction for nonconvex optimization,” arXiv
preprint arXiv:1805.10367, Jun. 2018.

[10] A. Makhdoumi and A. Ozdaglar, “Convergence rate of distributed
ADMM over networks,” IEEE Trans. Automatic Control, vol. 62,

pp. 5082–5095, Mar. 2017.
[11] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear

convergence of the ADMM in decentralized consensus optimization,”
IEEE Trans. Signal Processing, vol. 62, pp. 1750–1761, Feb. 2014.

[12] P. Giselsson and S. Boyd, “Linear convergence and metric selection
for Douglas-Rachford splitting and ADMM,” IEEE Trans. Automatic
Control, vol. 62, pp. 532–544, May 2016.

[13] L. Majzoobi, F. Lahouti, and V. Shah-Mansouri, “Analysis of distributed
ADMM algorithm for consensus optimization in presence of node error,”
IEEE Trans. Signal Processing, vol. 67, pp. 1774–1784, May 2019.

[14] S. Lu, J. Lee, M. Razaviyayn, and M. Hong, “Linearized ADMM
converges to second-order stationary points for non-convex problems,”
IEEE Trans. Signal Processing, vol. 69, pp. 4859–4874, Aug. 2021.

[15] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. Celik, and A. Swami,
“Practical black-box attacks against machine learning,” in Proc. ACM on
Asia Conference on Computer and Communications Security, pp. 506–
519, Apr. 2017.

[16] P. Chen, H. Zhang, Y. Sharma, J. Yi, and C. Hsieh, “Zoo: Zeroth
order optimization based black-box attacks to deep neural networks
without training substitute models,” in Pro. ACM Workshop on Artificial
Intelligence and Security, pp. 15–26, Nov. 2017.

[17] T. Chen and G. Giannakis, “Bandit convex optimization for scalable and
dynamic IoT management,” IEEE Internet of Things Journal, vol. 6,
pp. 1276–1286, May 2018.

[18] X. Lian, H. Zhang, C. Hsieh, Y. Huang, and J. Liu, “A comprehensive
linear speedup analysis for asynchronous stochastic parallel optimiza-
tion from zeroth-order to first-order,” Advances in Neural Information
Processing Systems, vol. 29, pp. 3054–3062, Dec. 2016.

[19] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent,” Proc. of the ACM on
Measurement and Analysis of Computing Systems, vol. 1, p. 44, Dec.
2017.

[20] P. Blanchard, E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine learn-
ing with adversaries: Byzantine tolerant gradient descent,” in Advances
in Neural Information Processing Systems, pp. 119–129, Dec. 2017.

[21] X. Cao and L. Lai, “Robust distributed gradient descent with arbitrary
number of byzantine attackers,” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 6373–6377,
2018.

[22] D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett, “Byzantine-robust
distributed learning: Towards optimal statistical rates,” arXiv preprint
arXiv:1803.01498, Mar. 2018.

[23] L. Chen, Z. Charles, D. Papailiopoulos, et al., “Draco: Robust distributed
training via redundant gradients,” arXiv preprint arXiv:1803.09877, Jun.
2018.

[24] L. Su and J. Xu, “Securing distributed gradient descent in high dimen-
sional statistical learning,” Proc. ACM on Measurement and Analysis of
Computing Systems, vol. 3, p. 12, Mar. 2019.

[25] C. Xie, O. Koyejo, and I. Gupta, “Zeno: Byzantine-suspicious stochastic
gradient descent,” arXiv preprint arXiv:1805.10032, Sep. 2018.

[26] X. Cao and L. Lai, “Distributed gradient descent algorithm robust
to an arbitrary number of Byzantine attackers,” IEEE Trans. Signal
Processing, vol. 67, pp. 5850–5864, Nov. 2019.

[27] L. Li, W. Xu, T. Chen, G. Giannakis, and Q. Ling, “Rsa: Byzantine-
robust stochastic aggregation methods for distributed learning from
heterogeneous datasets,” in Proc. of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 1544–1551, Jul. 2019.

[28] Z. Yang, A. Gang, and W. Bajwa, “Adversary-resilient inference and
machine learning: From distributed to decentralized,” arXiv preprint
arXiv:1908.08649, Feb. 2020.

[29] R. Jin, X. He, and H. Dai, “Distributed Byzantine tolerant stochastic
gradient descent in the era of big data,” in Proc. IEEE Intl. Conf. on
Communication, (Shanghai, China), pp. 1–6, May 2019.

[30] X. Cao and L. Lai, “Distributed approximate Newton’s method robust to
Byzantine attackers,” IEEE Trans. Signal Processing, vol. 68, pp. 6011–
6025, Oct. 2020.

[31] L. Bottou, F. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.

[32] A. Agarwal, O. Dekel, and L. Xiao, “Optimal algorithms for online con-
vex optimization with multi-point bandit feedback,” in COLT, pp. 28–40,
Citeseer, 2010.

[33] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”
AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist,
vol. 2, 2010.

9

