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ABSTRACT

Most of existing works in multi-agent reinforcement learning
assume that agents will follow the pre-established protocols.
However, in practice, there is a risk that some agents might be
controlled by Byzantine attackers, who can easily prevent the
convergence of existing algorithms or lead the existing algo-
rithms to converge to value of attackers’ choice. In this paper,
we design a robust median-based multi-agent policy gradi-
ent method (MMPG) for cooperative reinforcement learning
problems in a distributed setting.

1. INTRODUCTION

There are growing numbers of RL problems that require mul-
tiple learner operating in a distributed fashion. In general,
multi-agent reinforcement learning (MARL) consider the se-
quential decision-making problem of multiple autonomous
agents, each of which aims to optimize its own long-term re-
turn by interacting with the environment and other agents [1].
In MARL problem, different agents may have different goals
and the overall RL problem may also have a total goal col-
lected from each agent’s goal. In the cooperative setting, all
agents want to solve similar problems and they collaborate to
optimize a common long-term rewards. In this paper, we will
consider the distributed reinforcement learning (DRL) prob-
lem with cooperative agents.

There have been many recent work on distributed RL
under both collaborative RL and parallel RL setting. [2] pro-
posed distributed RL algorithm for the tabular multiagent
MDP model with convergence guarantees. [3] developed a
distributed Q-learning algorithm, termed QD-learning, in the
network setting where agents can only communicate with
their neighbors. [4] provided MADDPG which is an adapta-
tion of actor-critic methods for multiagent RL problems.

In multi-agent RL problems, different agents will com-
municate through a centralized or decentralized network.
Most of the existing works on MARL assume that all agents
work correctly and can safely send information to the cen-
ter controller or its neighbors. However, in practice, there
is a risk that some of the agents are compromised and send
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wrong information, which can be called as Byzantine attack-
ers. Byzantine attackers can reduce the long-term reward in
cooperative RL setting or lead the algorithms to converge
to values chosen by the attackers by modifying or falsifying
intermediate results when the center controller requires these
intermediate results for updating.

There are many interesting recent works on designing dis-
tributed machine learning algorithms for supervised learning
problems that can deal with Byzantine attackers [5, 6, 7, 8, 9,
10, 11, 12, 13, 14]. On the other hand, the existing work
on the design of RL algorithms that are robust to Byzan-
tine attackers has been limited, except a recent work [15]
that develops value iteration based algorithm. In this paper,
we focus on distributed problems based on multi-agent co-
operative RL where there are Byzantine attackers in the sys-
tem. In particular, we propose a new multi-agent policy gradi-
ent method named median-based multi-agent policy gradient
method (MMPG), which is robust to Byzantine attacks. In
the considered setup, in each iteration, agents will generate
trajectory based on the policy decided by the center control
and each agent will compute a policy gradient. If an agent
is honest, it will send the computed policy gradient informa-
tion to the center controller. On the other hand, if an agent
is a Byzantine attacker, it will send arbitrary information of
its choice to the center controller. After receiving information
from all agents, the center controller will aggregate informa-
tion using geometric median. The geometric median enables
the server to mitigate the impact of attackers when up to half
of the agents are Byzantine attackers. Using this method, we
prove that the algorithm can achieve a sublinear convergence
to the stationary point. We show this result by proving that the
average of norm of overall cumulative loss gradient on itera-
tion is bounded by certain value. Empirically, we evaluate the
performance of MMPG using neural network-parameterized
policies on the popular multi-agent RL benchmark for the co-
operative navigation task.

2. MODEL

Consider a Markov decision process characterized by a
quadruple (S,A,P, γ, ρ, l), where S and A are the state
space and the action space for the agent; P is the space of the
state transition probability of the MDP defined as mappings



S × A → ∆(S); γ ∈ (0, 1) is the discounting factor; ρ
is the initial state distribution; and l : S × A → R is the
loss for the agent. When considering MARL problems, we
assume that there is a central controller and several agents
communicating with the central controller. We will also use
a similar quadruple to that in RL problem to describe the
model (S,A,P, γ, ρ, {lm}m∈M). The difference is that now
S andA are the state space and the action space for all agents;
lm : S × A → R is the loss (or negative reward) for agent m
and there are M agents in setM = {1, . . . ,M}.

We will use above defined parameters to describe the dis-
tributed RL model. In cooperative distributed RL problem,
the goal is to find the optimal policy π(θ), which can gener-
ate trajectories of state-action pairs T := {s0, a0, s1, a1, ...},
in order to minimize the infinite-horizon discounted loss ag-
gregated over all agents based on parameter θ:

min
θ

∑
m∈M

Lm(θ), (1)

where

Lm(θ) := ET ∼P(.|θ)

[ ∞∑
t=0

γtlm(st, at)

]
. (2)

Here, lm(st, at) is the loss given the state-action pair (st, at)
and Lm(π) is the average cumulative loss for agent m over
the trajectory. Given a policy π, the probability of generating
trajectory T is given by

P(T |θ) = ρ(s0)

∞∏
t=0

π(at|st, θ)P(st+1|st, at), (3)

where ρ(s0) is the probability of the initial state s0, and
P(st+1|st, at) is the transition probability from the current
state st to the next state st+1 by taking action at.

This problem can be solved by applying the G(po)MDP-
based PG stochastic gradient descent method [16]. The ap-
proximate policy gradient of each agent’s loss Lm(θ) can be
written as:

∇̂N,TLm(θk) = (4)

1

N

N∑
n=1

T∑
t=0

(
t∑

τ=0

∇ log π(anτ |snτ ; θk)

)
γtlm(snt , a

n
t ).

Here N is the number of trajectories used to estimate the pol-
icy gradient.

Every agent then sends this value to the center controller.
After receiving values from all agents, the center controller
computes the sum and updates θ by θk+1 = θk − α∇̂kPG.
This process continues until a certain stop criteria is satisfied.

In this paper, we consider a model with Byzantine work-
ers, in which an unknown subset of agents might be compro-
mised. Furthermore, the set of compromised agents might
change over time. If an agent is compromised, instead of the

Algorithm 1 Median-based multi-agent approximate policy
gradient (MMPG) algorithm

Center controller:
Initialize randomly selects θ0 ∈ Θ.
for k = 0, 1, 2, ...,K do

1: Broadcasts the current model parameter estimator θk

to all agents;
2: Waits to receive policy gradients from agents; gm(θk)
denotes the value received from agent m;
3: Computes
g(θk) = med{Mg1(θk), ...,MgM (θk))};
7:Updates θk+1 = θk − αg(θk);

end for
Agent m:
1: Receives model parameter estimator θk, computes the
approximate policy gradient ∇̂N,TLm(θk);
2: If worker m is honest, it sends ∇̂N,TLm(θk); If not, it
sends the value determined by the attacker;

approximate policy gradient calculated from local data, it can
send arbitrary information to the server. In particular, let Bt
denote the set of compromised agents at iteration k, the server
receives data gm(θk) from m-th agent with

gm(θk) =

{
∇̂N,TLm(θk) m /∈ Bt

? m ∈ Bt
, (5)

in which ? denotes an arbitrary vector chosen by the attacker.
It is easy to see that if the center controller continues to

compute the update direction using the summation, the ap-
proximate policy gradient algorithm will not converge. The
goal of our paper is to design a robust multi-agent policy gra-
dient algorithm that can tolerate Byzantine attackers.

In this paper, we assume the size ofM is M . Among M
agents, up to q < M/2 of them can be Byzantine attackers.
We also assume the center controller know the value q. Fur-
thermore, we will introduce a parameter for the aggregating
method β ∈ (0, 12 ) and use D(·‖·) to denote the Kullback-
Leibler (KL) divergence.

3. ALGORITHM

In this section, we describe our algorithm in distributed RL
problem that can tolerate Byzantine attacks. Main steps of
the algorithm are listed in Algorithm 1.

The main idea of our algorithm is to use geometric median
of the received information as the aggregation method. In
particular, after receiving the policy gradient from agents, the
center controller computes

g(θk) = med{Mg1(θk), ...,MgM (θk))},

in which med{·} is the geometric median of the vectors. The



center controller will then use g(θk) to update the parameters:

θk+1 = θk − αg(θk). (6)

After that, the center controller broadcasts new parameter
θk+1.

The formal convergence proof will be provided in the con-
vergence analysis section. Here we highlight the high level
idea why the algorithm works. Geometric median is a gener-
alization of median in one-dimension to multiple dimensions,
and has been widely used in robust statistics. In particular, let
xi ∈ Rd, i = 1, · · · , n, then the geometric median of the set
{x1, x2, ..., xn} is define as

med{x1, x2, ..., xn} := arg min
x

n∑
i=1

‖xi − x‖. (7)

The geometric median has a very nice property that will be
useful for our analysis. For example, when the dimension is
one, then if strictly more than half points are in [−r, r], the
geometric median must lie in [−r, r]. When the dimension is
larger than one, the geometric median has following property.

Lemma 1. [17] Let x1, x2, ..., xn be n points in a Hilbert
space. Let x∗ denote the geometric median of these points.
For any β ∈ (0, 1/2), and given r > 0, if

∑n
i=1 1{‖xi‖≤r} ≥

(1− β)n, then ‖x∗‖ ≤ Cβr, where Cα = 2(1− β)/(1− 2β).

From Lemma 1, we can see that, if a majority number
(1 − β)n of points are inside the Euclidean ball of radius r
centered at origin, then the geometric median must be inside
the Euclidean ball of radius Cβr. From this property we can
upper bound geometric median by Cβr.

4. CONVERGENCE ANALYSIS

In this section, we analyze the convergence property of the
proposed algorithm MMPG with Byzantine attackers.

Before presenting detailed analysis, here we introduce
some assumptions and high level ideas. For

L(θ) =
∑
m∈M

Lm(θ),

if the sum of ‖∇L(θ)‖ on iterations can be bounded by
some constant value, the algorithm can successfully con-
verge. Hence, we will show this bound by using geometric
median method. Now, we introduce two assumptions. These
assumptions are similar to those used in [18, 16, 19, 20, 21].

Assumption 1. For each state-action pair (s,a), the loss
lm(s, a) is bounded as lm(s, a) ∈ [0, l].

Assumption 1 requires the boundedness of the instanta-
neous loss, which makes sense in practice since the systems in
real life commonly output finite magnitudes of responses. [18,
16, 19].

Assumption 2. For each state-action pair (s,a), and any pol-
icy parameter θ ∈ Rd, there exist constants G and F such
that

‖∇ log π(a|s; θ)‖ ≤ G (8)

and ∣∣∣∣ ∂2

∂θi∂θj
log π(a|s; θ)

∣∣∣∣ ≤ F. (9)

Assumption 2 requires the score function and its partial
derivatives to be bounded, so that the variance of the estimator
is bounded.

From Assumptions 1 and 2, the overall accumulated loss
function L(θ) is also ML-smooth, where

ML =

(
F +G2 +

2γG2

1− γ

)
γMl

(1− γ)2
. (10)

Since the overall accumulated loss function L(θ) is ML-
smooth, we have the following lemma.

Lemma 2. Under Assumptions 1 and 2, if the step-size is se-
lected such that α ≤ 1/ML, then the objective values satisfy

L(θk+1)− L(θk) ≤ −α
2
‖∇L(θk)‖2 (11)

+α‖g(θk)−∇TL(θk)‖2 + α‖∇TL(θk)−∇L(θk)‖2.

This lemma shows the distance of accumulated loss func-
tion in each iteration. For the third term in Lemma 2, the
distance between infinite policy gradient and finite policy gra-
dient is bounded by the following lemma.

Lemma 3. [22] For the infinite policy gradient and its finite
approximation, for any θ, the distance of them is bounded by

‖∇TL(θ)−∇L(θ)‖ ≤ σT , (12)

where

σT = MGl

(
T +

γ

1− γ

)
γT

1− γ
. (13)

For the second term in Lemma 2, for each term in g(θk),
we have the following lemma.

Lemma 4. Under Assumptions 1 and 2, for any scalar δ
K ∈

(0, 1), the distance between each term in g(θ) and∇TL(θ) is

Pr
(
‖M∇̂N,TLm(θ)−∇TL(θ)‖2 ≤ σ2

N,δ/K

)
≥ 1− δ

K
.

For β ∈ (0, 1/2), define good event as

Eβ =

{
M∑
m=1

1{‖M∇̂N,TLm(θ)−∇TL(θ)‖2≤σ2
N,δ/K

}

}
≥M(1− β) + q, (14)

where q is the number of Byzantine attackers. When this
event happens, the received information from at least M(1−
β) + q agents is close to the ∇TL(θ). The following lemma
gives a lower bound to the probability of good event Eβ .



Lemma 5. Suppose for all m, we have

Pr
(
‖M∇̂N,TLm(θ)−∇TL(θ)‖2 ≤ σ2

N,δ/K

)
≥ 1− δ

K
,

for any β ∈ (q/M, 1/2) and 0 < δ/K ≤ β − q/M . Then

Pr (Eβ ≥M(1− β) + q) ≥ 1− exp−MD(β−q/M ||(δ/K)),

where

D(δ′‖δ) = δ′ log
δ′

δ
+ (1− δ′) log

1− δ′

1− δ
. (15)

Now we can define a new variable Vk = L(θk)−L(θ∗) to
show the distance between accumulation loss function and the
optimal accumulation loss function in each iteration. From
the above lemmas, we have the following convergence result.

Theorem 1. Under Assumptions 1 and 2, if the stepsize α ≤
1
ML

, for any β ∈ (q/M, 1/2) and 0 < δ/K ≤ β−q/M , with
probability at least 1− exp−MD(β−q/M ||(δ/K)),

1

K

K∑
k=1

‖∇L(θ)‖2 ≤ 2ML

K
V1 + 2Cβσ

2
N,δ/K + 2σ2

T . (16)

This theorem shows that the algorithm achieves a sub-
linear convergence to the stationary point when there are at
most half number of total agents are Byzantine attackers.

5. NUMERICAL RESULTS

In this section, we provide numerical examples to illustrate
the analytical results. We consider the simulation environ-
ment of Cooperative Navigation task, which is from the pop-
ular OpenAI Gym paradigm [23]. In this task, there are M
agents andM landmarks, each agent has a different landmark
goal and has reward based on the goal. Agents are connected
to a central coordinator. The goal of the whole system is to
maximize the reward which is obtained by minimizing the
negative of loss function. In the simulation, we assume the
state is globally observable. For the parameter setting, we set
the environment with M = 5 agents. The policy is parame-
terized by a three-layer neural network where the first and the
second hidden layers contain 50 and 20 neurons with ReLU
as the activation function and using softmax operator as the
output layer. The discounting factor is γ = 0.99 in all the
tests and the stepsize α = 0.001. For each episode, both al-
gorithms terminate after T = 100 iterations. We run in total
N = 10 batch episodes in each Monte Carlo run, and report
the globally averaged reward from 5 agents. In our numer-
ical simulation, we consider applying two different kinds of
attacks during communication : 1) Inverse attack, in which
each attacker first calculates the policy gradient but sends the
inverse value to the server; and 2) Random attack, in which
the attacker randomly generates policy gradient value. In our

simulation, we assume 2 agents are Byzantine attackers,and
we compare the performance between two algorithms: 1) The
proposed median-based multi-agent policy gradient (MMPG)
and 2) G(PO)MDP.

Fig. 1. Globally averaged reward: 2 Inverse attack.

Fig. 2. Globally averaged reward: 2 Random attack.

Figures 1 and 2 plot the value of the globally averaged re-
ward vs iteration with 2 inverse attacks and 2 random attacks
respectively in the multi-agents RL task, where all agents
solve the shared Cooperative Navigation task with 5 agents.
From Figures 1 and 2, we can see that G(PO)MDP method
does not work. On the other hand, the proposed MMPG can
still benefit from honest agents and shows a better globally
averaged reward.

6. CONCLUSION

In this paper, we have proposed a robust median-based multi-
agent policy gradient algorithm that can tolerant at most half
number of total agents being Byzantine attackers in a coop-
erative RL setting. We have proved that the proposed algo-
rithm can converge to stationary point. We have also provided
numerical examples to illustrate the performance of the pro-
posed algorithm.
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