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Abstract—The multiple agent reinforcement learning systems
(MARL) based on the Markov Game (MG) have emerged in
many critical applications. To improve the robustness/defense of
MARL systems against adversaries, studying various adversarial
attacks on reinforcement learning systems is very important.
Previous works on adversarial attacks considered some possible
features to attack in MDP, such as the action poisoning attacks,
the reward poisoning attacks, and the state perception attacks.
In this paper, we propose a brand-new form of attack called
the camouflage attack in the MARL systems. In the camouflage
attack, the attackers change the appearances of some objects
in the environment but without changing the actual objects;
and the camouflaged appearances may look the same to all the
targeted recipient (victim) agents. The camouflaged appearances
can mislead the recipient agents to follow misguided policies.
We evaluate the effect of camouflage attacks in two different
scenarios: Camouflage attacks were performed during the learn-
ing (training-time attacks) and were performed during the test
of agents’ policies (test-time attacks). Our numerical and theo-
retical results show that camouflage attacks can rival the more
conventional, but likely more difficult state perception attacks,
by comparing their effect on reducing agents’ global benefits. We
also investigated cost-constrained camouflage attacks and showed
how cost budgets affect attack performance numerically.

Index Terms—Muti-agent Reinforcement learning, Adversarial
attacks, Markov decision process

I. INTRODUCTION

INGLE-AGENT and multiple-agent reinforcement learning
(RL) algorithms are used in many safety or security-
related applications, such as autonomous driving [1], financial
decisions [2], recommendation systems [3], wireless com-
munication [4], and also in drones’ and robots’ algorithms
[5]. It is thus essential to develop trustworthy systems before
their real-world deployment. Studying the potential adversarial
attacks on RL systems and evaluating the worst-case perfor-
mances of RL agents under these attacks can help us limit
the damage imposed by adversarial parties, defend against
adversarial attacks, and therefore build more robust and secure
RL systems.

Adpversarial attacks and defenses against these attacks for
single-agent RL systems have been relatively well studied so
far [6]-[17], but adversarial attacks on multi-agent learning
are still not well understood. The challenges of MARL such
as scalability and non-stationarity potentially make it harder
to find robust solutions under environmental perturbations.
A series of model-based algorithms aim to find equilibrium
solutions of MARL [18]-[20]. However, none of them con-
sidered adversary settings in their problem formulations. [21]
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considered the white and black box adversarial attacks on
MARL and used new concepts like attack loss and cost
functions to evaluate the efficacy of adversarial attacks on
MARL systems.

In terms of the types of adversarial attacks on MARL, most
proposed adversarial attacks only consider recipient (victim)
agents’ properties to attack, for example, the action poisoning
attacks, the reward poisoning attacks, the state poisoning
attacks, the environmental attacks, or the mixed attacks [6],
[21]-[28]. These attacks either directly change the features
of agents, i.e., actions, rewards, or states of the MDP, or
perturb the interactions between the agents’ actions and the
environments. In [29], [30], the authors proposed a form of
state perception (observation) attack in deep reinforcement
learning, in which attackers confuse agents with delusional
states instead of changing their actual states during the game.
In [31], the authors addressed the state perception attacks with
cost constraints in a multi-agent system.

There is a close relationship between the study of ad-
versarial attacks and robust reinforcement learning. Robust
reinforcement learning aims to learn a policy that optimizes
the worst-case performance within a prescribed uncertainty
of transition kernels. In adversarial reinforcement learning,
agents are trained in the presence of an adversary that ap-
plies disturbance to the environment. There are some studies
aiming to develop robust policies by addressing challenges
in the adversarial framework. For example, [29] focuses on
improving the robustness of deep reinforcement learning by
proposing alternating training with learned adversaries in a
state-adversarial MDP. In [32], the authors formulate robust
RL as a constrained minimax game between the RL agent and
an adversary that controls uncertainties in the environment as
adversarial disturbances.

In this paper, we propose a new form of adversarial attack on
MARL system: the camouflage attack. During the camouflage
attack, instead of directly changing recipients’ properties, the
attackers change the appearances of some objects they can
control or even the appearances of attackers themselves. After
the camouflage attack, all the recipient agents potentially
observe the same camouflaged objects’ features so that they
are misled to misguided decisions in the MG. The camouflage
attacks are different from the state perception attacks in two
ways: 1) the camouflage attack does not directly change the
measurements of each recipient agents, but instead change
the appearances of the objects the attackers can control thus
changing the measurements of the victim agents indirectly; 2)
in the camouflage attack, the perceptions of different recipient
agents cannot be freely manipulated as in state perception
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attacks: the confusions of the recipient agents come from
observing the same camouflaged objects and thus are the
same or correlated. In addition, in camouflage attacks, the
underlying true states of the camouflaged objects are not
changed, and what are changed are only the appearances
of the camouflaged objects. For example, camouflaged robot
examples include stealthy invisible airplanes that can evade the
detection of regular radars: they are actually in the air but are
“camouflaged” to be invisible. As another example, one can
camouflage unimportant objects into fake “valuable” targets
so that enemy robots spend precious resources on attacking
these fake targets.

There are barely any studies of camouflage attacks from the
perspective of RL. Even though the terminology “camouflage”
is used in [33], it discussed essentially state perception attack
for single-victim-agent dynamical systems. For non-dynamical
systems, some works discussed improving the detection of
camouflaged attacks in deep learning models [34], [35].

MARL builds on the Markov game, which combines the
Markov decision process and game theory. The solution to
MARL is usually considered an equilibrium policy (Nash,
coarse-correlated, correlated) at which no agent can unilater-
ally improve its expected reward. In the context of this paper,
agents aim to maximize their long-term anticipated reward
in the shared environment while adapting to other agents’
strategies. The solution to MARL in this paper is a set of
policies that jointly maximize global benefit.

Parts of test-time camouflage attacks were published in
[36], but we significantly extended our results by introducing
two brand-new training-time camouflage attacks, and provided
new extensive theoretical performance analysis. The paper is
organized as follows: Section II introduces the test-time and
training-time camouflage attack model. Section III analyzes
the camouflage attacks, showing they perform comparably to
the more costly state perception attacks. Section IV provides
numerical evaluations, which demonstrates a significant drop
in expected reward and supports the theory in Section III.

II. PROBLEM FORMULATION

In the considered MDP environment, all the agents are
divided into two opposite groups, the attacker group M, and
the recipient (victim) agent group N, with |M| =m, |N| = n.

The 5-element tuple can describe the finite MDP environ-
ment for the recipient agents: ({S;}7 , {4}, {P}™,
{R;}_,,T), where T is the finite number of time steps, S; is
the state space of the i-th recipient agent with |S;| = S;, A;
is the action space for the i-th recipient agent with |A;| = A;.
We let P/, ., : S x A; x & — [0,1] be the i-th agent’s
transition probability kernel between time indices ¢ and ¢ + 1
witht =0,1,...T—1. Weuse R, ; : S; x.A; — R to represent
the reward function of the i-th recipient agent at time index
t, with t = 1,2,...,T. The reward function settings depend
on the exact problem. Our time index ¢ starts from O to 7.
We refer to time step ¢ as the time interval starting from time
index ¢t — 1 and ending at time index ¢, where 1 <t < T.

We let a;; denote the action the i-th agent takes at time
index ¢ and denote a;, the optimal action of the i-th agent at
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time step ¢. The joint action of all n agents at time index ¢ is
a; := (a1,4,a24¢,...,0n,). We denote 7, the optimal policy
of the i-th recipient agent at time index ¢, and ;i (sit) =
a; ;- The deterministic joint optimal policy at time index ¢ is
m; = {m{,}i=y, and we write ) = {7}, i

We use Vi : S; — R to denote the value function of agent
1 at time index ¢ under guidance of the individual policy 7,
where Vi (s;) = Er, > o Ri(Siksain)|sio = si]. The
Q-function @7} : §; x A — R of agent 7 at time index ¢
with a state-action pair (s;,a;) is defined to be Q7 (s;,a;) =
E,, [ZZ,:O Ri k(Sikyaik)|sio = Si,a;0 = a;]. The relation
between Q-value and V-value is Q;it(si,ai) = R, (si,a;) +
Sy iallst) S i (50, ai) Vi (55).

In our setting to introduce camouflage attacks, for the sake
of simplification, the overall state space is represented by
a factored representation {S;}7 ;. This happens when each
agent acts independently, its action only affects its own state
but the camouflage of the common environment objects affects
the states of every agent. In a more general setting, the actions
of agents can affect each other’s states jointly. In section IV-E,
we considered a scenario where all agent share a state space
S and their joint action a; decides the proceedings of MG.

We assume a white-box case such that the attackers can
monitor the underlying MARL algorithms of the recipient
agents, and therefore attackers know optimal policies 7,
of every recipient agent i at time index t. However, the
recipient agents are unaware of the existence of attackers or
their attacks. The m attackers perform camouflage attack by
disturbing recipient agents’ observations of their true states.
For a recipient agent ¢ at time index ¢, we let s, ; ; denote the
true state the agent ¢ is actually in and let s4,; denote the
delusional state that the agent ¢ thinks it is in.

The recipient agents are selfish in the game, aiming to
maximize their own rewards obtained during the T time
steps. The attackers aim to minimize the recipient agents’
total expected rewards. We discuss test-time and training-time
camouflage attacks separately in this paper, based on when the
camouflage attacks occur.

ITII. TEST-TIME CAMOUFLAGE ATTACKS

In test-time camouflage attacks, recipient agents have been
trained in the ground truth finite MDP without any attacks, and
they are aware of their optimal policies, 77, after the training.
The attackers only perform camouflage attacks during the test
of the optimal policies 7}, at every time step ¢.

There are two phases of play during one time step ¢ in the
test. In the first phase, from time index ¢ — 1 to ¢ — 0.5, the
attackers attack to make each recipient agent ¢ (1 < ¢ < n)
think it is in a delusional state sq;_q.5,;. In the 2nd phase,
after the attack, from the time index ¢ — 0.5 to ¢, each
recipient agent ¢ moves to S, ;; according to its policy at
time step ¢, m;(Sq1—0.5,4) = @iy, in Which sq; 05 is
agent ¢’s delusional state at time index ¢ — 0.5, and obtains
its corresponding reward 7, ; = R;((Sq,t—1.4,Qit,Sa,ti), S
described in Figure 1. We are interested in finding the optimal
attack strategy of attackers for each time step ¢t (1 <t <T).

Test-time camouflage attack: The m attackers can change
the appearance of some objects that they control during the
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Sa,t-1
Sd,t-1

Sa,t-0.5= Sat-1
Sd,t-0.5

Sat

Recipient Agentss
Optimal Policy

Sd,t= Sd,t-0.5

Figure 1: Transition between states

test at every time step t. Mathematically, suppose that we
have a random variable X; (5 which represents the true
status of an object at time index (¢ — 0.5). If it is not
camouflaged, the appearance, denoted by Y;_g 5, of this object
is just equal to X; o5, namely Y; o5 = Xi_o5. The
camouflage attack changes the appearance Y;_o5 to some
other value, for example, Y; o5 = g(X¢—0.5) where g(-) is a
camouflage function. Then the observation of X;_¢ 5 at time
index (¢t — 0.5) from the perspective of agent ¢ is given by
5d,0-0.5,6 = hi(9(Xi—0.5)) = hi(Yi—o.5), where Y;_q 5 is the
changed appearance of the object, and h; is the observation
function of recipient agent ¢ (h; can be a function giving
random outcomes, for example, due to noises).

These camouflaged objects will fool the recipient agents
into a distribution of delusional states sq ¢—¢.5,; for each agent
1. Different from the state perception attacks, these delusional
states sq.¢+—0.5,; have to be correlated or even the same across
different recipient agents: this is because camouflage attacks
make the recipient agents observe the same camouflaged
objects. In state perception attacks [29], the attackers can
instead fool different recipients into very different delusional
states.

Cost constrained test-time camouflage attacks: In prac-
tice, sometimes the attackers have attack budgets that must be
spent by the end of each time step. For example, the resources
used by attackers are provided by constantly-energy-harvesting
systems over time steps, and the budget for each time step
is constrained by the battery volume. We call this scenario
an “instant cost constrained case”. Within each time step ¢
(namely between time index ¢ — 1 and t), all attackers share
a budget B, and this budget B can only be spent during that
single time step: the leftover resources cannot be carried over
to the next time step £+ 1 or there is no need to carry over the
leftover resources to the next time step because of budget refill.
Once we get to time step t + 1, the shared budget B will be
refilled (say, to B). We would like to find out how to optimally
allocate the total resources to each attacker j for performing
the camouflage attack in each time step while satisfying the
instant cost constraint and minimizing the recipient agents’
total rewards. To simplify our presentations, we consider the
budgets are used to camouflage the attackers themselves.

We design an integration of between-step dynamic pro-
gramming and within-step static constrained optimizations to
compute the optimal attack strategy. During each time step ¢,

for each possible actual state vector s, ;—i, we use a static
standalone optimization program to determine the optimal
allocation of attackers’ budgets on camouflages. Between
different time steps, we use dynamic programming to account
for the state transitions and expected rewards.

We work backward from time index ¢ = 7' and initialize
value function V(o) = 0 for each dynamic programming
state (DPS) o (a DPS state includes all recipient and attacker
agents’ actual conditions, and also the conditions of camou-
flaged objects), and the subscript represents time index. Sup-
pose that we have already computed V* ; 5(044.0.5) for every
DPS state 0440.5. We then proceed to compute the optimal
attack policy during time step ¢ (essentially from ¢ to ¢ 4 0.5)
and also V;*(o;) for every DPS state 0. During time step ¢,
we let b; € R be the amount of resources attacker j spends on
its camouflage attack. The constraints on b; are such that the
total spending of all attackers cannot exceed B. To represent
formulas concisely, we stack the b;’s to form a m-dimensional
vector b called the attack allocation vector. Under the attack
allocation vector b, we denote the probability that the recipient
agents’ state will transit to 0y10.5 as P(b,Sq¢,0¢10.5), Where
Sa,t 18 the true states of all the recipient agents at time index
t. This probability must be between 0 and 1. Based on the
principles of dynamic programming, we want to optimize b;’s
to minimize the total expected rewards received by the agents
from time step ¢ to 7'. Thus, under a specific true state vector
Sa,t. the objective function for attackers to minimize is the
expected total reward of all the recipient agents from step ¢
onward to step 7.

1) Within-step static constrained optimization problem:
Suppose that the DPS has () possible values at time index
t 4 0.5 conditioned on the true states are s, ;, the optimal
attack under the “instant cost constrained” case at a single
time step ¢ can be formulated as the following within-step
static constrained optimization problem:

Q

min ZP(b, Sa,ts Uf+0.5)‘@10.5(0540.5) (D
k=1

subject toz b; < B,
j=1
P(b,sq.,0f105) < 1, Vk
— P(b,Sa,0005) <0, Vk
b; >0, j=1,...,m,
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where o}, 5 is the k-th DPS at time index ¢ + 0.5.

Depending on the physical nature of the attacks, we can
model the probability P(b, s, ¢, 0F, 5) as a function of b. In
one particular model considered in the paper, for each attacker
7, the probability that it can change the appearance of the
object it controls is min{b; /Cy(z;,y;), 1}, where Cy(x;,y;)
are constants representing how hard it is for the attacker j
to camouflage the appearance of x; as y;. In our numerical
results, we take Cy(z;,y;) = d(sljj,slj) + € where € is
a positive constant and d(s], j,sz J) is the distance between
the real position of the attacker j and the target camouflaged
position the attacker j chooses. Namely, if we assign more
budget to attacker j, and if the target camouflage position is
closer to its actual position, it is more likely that attacker j
can change the objects to the targeted appearances.

2) Between-step dynamic programming: After solving (1),
we take the optimal value of its objective function as V;*(o),
using which we continue to calculate V;* ; 5 (-) as follows. For
each DPS o;_¢.5, we update V;* ( s(0¢_0.5) as

> P(oiloi-05,a7_05) (Vi (00) + R(0i-0.5,01))-

ot

After updating V" ,5(-), again we will use another static
optimization formulation in Section III-1 to calculate V;* ,(-).
In this way, we perform this static optimization-dynamic
programming cycle recursively until we calculate all the V;* ()
backward from ¢ = T until ¢ = 0.

IV. TRAINING-TIME CAMOUFLAGE ATTACKS

In training-time camouflage attacks, however, the attackers
can change the appearance of objects during the learning,
which leads to recipient agents’ confused observations of tran-
sition kernels and confused observations of reward functions.
From the perspective of any agent i, let P% = {Ptdjt 11 P
denote the perceived transition kernels during the learning, and
let R¢ = {R{,}]_, denote the perceived reward functions
during the learning. We assume that in practice, agents are
trained over a sufficiently large number of episodes K so that
each agent learns the perceived P%¢, R¢ instead of the ground-
truth P?, R;, and therefore every agent ¢ learns a delusional
“optimal” policy wZ’t* after the training. The attackers only
perform camouflage attacks during the training of agents. In
the test of the delusional “optimal” policies WZ ;. no attack
occurs.

Training-time camouflage attacks: The m attackers
change the appearance of agents’ states according to the
camouflage function g(sq;|sq,:) : S; X S; — [0,1], such that
9(84,i|84,:) = a, a € [0,1]. The camouflage function g means
that the attackers change the appearance of the true state s, ;
into the delusional state s4; with probability a. Moreover,
ZS(ME& 9(84,il8q,i) = 1. The exact form of g depends on
the type of training-time camouflage attacks.

To emphasize the idea of camouflage attacks, the camou-
flage function g needs to be correlated or even exactly the
same across different recipient agent ¢, due to the fact that
camouflage attacks make the recipient agents observe the same
camouflaged objects.
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Perceived transition kernels and perceived reward functions
of individual recipient agents are affected due to the change of
appearance in the learning. Let P(s'|s,a) : S; x A; x S; —
[0,1] be the ground-truth transition kernel of a given state-
action pair (s,a) € (S;,A;) and a given next state s’ € S
of the ¢-th agent’s. If the agent is not camouflaged, its
perceived transition kernels and reward functions are the same
as the ground-truth kernels and reward functions: P%? = P?,
R? = R;. The camouflage attack changes the perception P!
to some other value that is other than the true P?, and so for the
perceived reward functions. We discuss how to find P%? and
R¢ at every time step precisely under two different training-
time camouflage attacks: the one-time camouflage attack, and
the permutation camouflage attack.

A. One-time camouflage attack

Settings: We discuss the one-time camouflage attack from
the perspective of an individual recipient agent ¢. We assume
that the agent ¢ follows a static stochastic policy m; ¢(a;|s;) =
1/A;, Ya; € A;, Vs; € S;, Vt in the learning. During the
learning, the recipient 1 learns a series of transition kernels
(P +1}i2o"s camouflaged reward functions {R{,}1Z, and
uses dynamic programming to solve for the delusional “opti-
mal” policy {7rz A i

The attackers launch the camouflage attack once at a time
index t* in the whole learning, 0 < t* < T — 1. This
camouflage attack fools the recipient agent ¢ on its actual state
Sq,+i € S; with a stochastic delusional state sq 4+ ; € S; at
the time index t*. At other time indices ¢ such that t # t*,
the agent ¢ can correctly perceive its true state s,:; € S;.
The camouflage function g(sq 1 ;|Sq.¢+ ;) gives the camouflage
probability a of deceiving the agent with the delusional state
Sq,+,; given its actual state s, ;- ;. In the one-time stochastic
camouflage attack, we use P ( denote a. The
parameters {xsayt*,iﬂsdvt*,i}s ' s, are subject to the
conditions that:

a,t*,iSd,t* i €

{Zs{i,f,*,i Lsq v i—8de% i 1, vs(ht*vi 2)
0< Lso p% i—rSa 1% i <1

Learning: For every agent i, denote the actual state
distribution as  {p;(Sa1.i)}ieg- We assume that the
distribution of the initial true state {sq0;} is uniform, i.e.,
P0(8q,0,4) = 1/.5;,for any initial state s, ¢ ;. There is an itera-
tive relation between the previous state distribution p;(sq.+ ;)
and the next state distribution p;i1(Sq,¢+1,;) such that

pf,-l—l(sa,,t-i—lii) = Z Z Ptiﬁt+1 (5(1.1’,-}—1,1', isa,,f,i,ia ai)ﬁiit(aiis{l,,t,i)pt(Su,i,t,i,)
Sa,t,i @i
- ZZPt*}t+1 q(tf«l»lligufn )I/A pf(qufl)
Sa,t,i @i
where P}, 4 ( 4, a;) is the ground-truth transition

probability.

Due to the one-time attack, the agents learn a series of
in-homogeneous transition kernels throughout time steps. For
every agent i, we use Ptd_’ft+1(3t+17i|st,i,ai) to denote the
perceived transition probability of moving from the current
state s;; with action a;, to the next state s;i1,. Since
the attackers strike only once at time index ¢ = t*, any
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agent ¢ observes the ground-truth transition probability for
t£t—1,t".

During the time step between t* — 1 and t*, the agent
1 can observe the true state s, ~_1,; at time index t* —
1. With action a;, the true distribution of the next actual
state sq ¢+ ; follows the ground-truth transition probability
Pti*_1_>t*(Sa,t*,i|$a,t*—1,i7ai)~ However, before the agent i
observes its next true state s, .- ;, the attackers launch a
camouflage attack at ¢*, causing the agent to believe that it’s
in the delusional state sq ¢+ ;. The probability of changing the

state perception from s, ¢+ ; to sq¢~ ; follows the camouflage
probabilities Ty yn i—r8q.0v ;- Therefore, the agent i’s perceived
transition kernel between t* — 1 and ¢* is:

Ptd*{lﬁt* (St ilse 1,0, i)

= Prob(sq,t=,i = S¢=i|st—1,6 = Sax,t-1,i, i), Va.

This perceived transition kernel is the probability of moving
from the true state s,;+_14, following action a;, to the
next delusional state sq .- ;, which can be computed as (3).

N _
PRty e (semilse—16,00) = > Py e (Sae il Sa s 14, 0i)Ts, o rsy e s 3)

Sa,t* i

> Pl (Sae i1

Sa,tris Qi)Ts, v i —ssy e it (@il Saee i) Pee (Satx i)

Pt(i’:t*+1(5t*+1,i|5t*,ia ai) =

Sa,t* i (4)
Do Tsgpeiosane Tt (@il Sd,ee i) Pe- (Saei) 7
Sa,t* i
T, e i—vsae Pt (Sa,tei) Rijee (Sae i i) (5)

R} p(seeirai) = Y

Sa,t* i

Zsmt* i Tsayen imrsan Dt (s(l»t* ,i)

During the time step between t* and t* + 1, agent ¢ thinks
it is in a delusional state sq ¢~ ; but it is actually in s, 4+ ; at
t*. Then, the recipient agent takes the action a;, and observes
the next true state s, ¢=1,; at t* + 1 since there are no more
attacks. The agent perceives another camouflaged transition
kernel during the time step between ¢t* and ¢* + 1:

d,i
Pt 1 (84180005 @i) = Prob(spilsaes i = 8005 i),

It is the probability/ of moving from the delusional state
Sa,4+,; with action a; to the next actual state s, ;~11;. We
apply conditional probability to solve for it:

p(sa,t*+1,i7 St i = Sd,t* iy ai)

p(St*,i = Sd,t*,i» ai)

Pg«it*ﬂ (Str41,il507,05 ai) =

Because

p(Sa,t*+1,ia Stx i = Sd,t* i, ai)

= E p(sa,t*+1,i75t*,i:Sd,t*,iyaivsa,t*,i)a

Sq,t* i

and this can be extended to

The one-time camouflage attack at t¢* also affects
the agent ¢’s perception of the reward functions. Let
R;{t(siyt,ai) represent the perceived reward function
at time index ¢ in the learning. Since attackers only
launch one camouflage attack at the time index t*,
Rﬁt(si7t,ai) = Ri(Sqit,a:), Va;, fort # t*. However, at
time index t*, the agent 7 learns a camouflaged reward function

Vai- quch that Rf_t*(siyt*,ai) = R; ¢ (Sd,#i, ), Va;. The actual

reward value returned from the environment still depends on
the actual state s, .- ;, but the agent 7 thinks the returned
reward value is resulted from the delusional state s4 - ;. The
exact form of camouflaged reward function is as the following:

Ri,t* (Sd,z*,hai) = Z p(Sa,t*,i

Sa,t* i

_ Z p(Sd,z*,i

Sa,t* i

Sd,t* L)th (Sa,t* iy ai)

Sa,t* ,i)pt* (Su,t* ,i)Ri,t* (Sa,t* Ji ai)
P+ (Sd,f,*,z‘) '

where pi (Sq,+i) = Zsa’t*_’ipt*(Sa,t*,i)p(Sd,t*,z’|5a,t*,i)-

Therefore, the perceived reward at time index t* is (5).
Under the one-time camouﬂagg attack, We summarize the

perceived transition kernels {P,”}, +1}f;01 and perceived re-

: d T : .
Z p(sa,t*-&-l,i'l‘?a,t*,hai)p(sd,t*,i|5a,t*,i)p(ai‘Sd,t*,i)p(Sa,t*,i) ward functions {Ri,t}tzl as the following:

Sa,t*,i

{ Z p(Sd,t*,z‘ = St*,z‘|5a,t*,i)p(5a,t*,i)}p(ai\Sd,t*,i = 5t*,i)

Sa,t* i

where p(-) denotes the true probability. In the above
formula, p(Sq,t++1,i|Sa,t* i, a;) is the ground-truth transitional
probability, p(sq¢«ilSa:) is the camouflage probability,
p(ai|sa,e+ ;) is the static policy, and p(s, ¢+ ;) is the true state
distribution at t*. By replacing these variables with notations
we defined before, we get (4). Notice that all the parameters
in (4) are known based on the settings of MDP and the
one-time camouflage attack.

(3), fort=t*-1
(4), fort=t*
Ground-truth P/, ,, otherwise

PPy (Sia]si ai) =

(5), fort=t*
Ground-truth R; ;, otherwise

th(si,ta a;) = {

Notice that with the camouflage attack, for every agent ¢, the
camouflage probabilities {z;_ ,._s, ,. } are the same across all
agents.
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B. Permutation camouflage attack

Settings: The settings of the recipient agents are the same
as those in the one-time camouflage attack. However, in this
case the attackers launch the permutation camouflage attack
at every time step ¢ during the training of recipient agents.
Let the permutation function be o : S; — ;. In this case, the
camouflage function satisfies that

1, if 0’(8@71‘) = Sd,i

0, otherwise

g(Sd,i |Sa,i) - {

Let 3; = [ap,) € {0,1}%%5 p g € {1,2,...,5;}, denote
the permutatlon matrix and ; is subject to the following
conditions: Z ' apg =1,Yq, and Eq 1 Gpg = 1,Yp.

We apply the same permutation attack Y; at every time
step, and we assume that there are sufficiently large episode
K for recipient agents to learn the perceived transition kernels
and reward functions. Notice that in this case, the perceived
transition kernels and reward functions are consistent across
time steps, since the same permutation attack ¥; is applied at
every time step.

Learning: The perceived transition kernel (same in every
time step) is P%* = %, P'YT, where P? is the ground-truth
transition kernel of agent i. The perceived reward function
(same in every time step) is RY = X;R;, where R; is the
ground-truth reward function of agent <.

C. Dynamic programming

In both cases of training-time camouflage attacks, after
every agent ¢ learns the series of perceived transition ker-
nels {P™, +1}iso and {R{,}{_,. we use the dynamic pro-
grammmg to find the delusional “optimal” policy wf’* =
{74 ()}, s € S;. Notice that 7% is the “optimal policy”
in the eyes of any recipient agent ¢ since recipient agents are
unaware of attacks during their learning.

Algorithm 1 Dynamic programming under camouflage attacks

d,i
Input: S;, A;, T, {Pt—>t+1 =0 >{R t}t 1
Initialize V%" = 0

fort=T7-1,T — .,0 do
for s; € S; do
Vzdt*(s) — a{neaj‘( Rz t+1(817 CLZ) +
Z Ptﬁwl( ilsis ai)‘/;tféil(s;)
’d,*
mh (8) “— arg max Rl +
Z Pt(i—zt-i-l( élslﬁ a)‘/z(,itik‘rl(sé)
end
end

Output {wﬁ’t*(si) P

V. PERFORMANCE ANALYSIS OF CAMOUFLAGE ATTACKS

A camouflage attack is arguably a more practical form
of adversarial attack since it only requires the attackers to
change the appearances of the objects the attackers directly
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control. So different victims will have correlated or the same
observations of these camouflaged objects. In contrast, the
optimal state perception attacks would require the attackers
to change the observations of different victims to possibly
different delusions. The analytical results on both the test-time
cases and training-time cases bound the gaps between expected
rewards earned under the camouflage attacks and under the
state perception attacks.

In this section, we assume that different victims have the
same observations of the camouflaged objects and we do not
impose cost constraints on the attacks. We start with a lemma
about imposing an equality constraint on the optimization
variables.

Lemma V.1. Consider n functions {f;}",, where i =

1,2, ..., n, and the following two optimization problems:
i Zﬂ% (©)
subject to x1 = x3 =+ = Tp;

and

n
,, nin ;fi(xi)- (7)

Let x** be the optimal solution of (6) and o1 be the optimal
objective value of (6). Let (z3,x5,...,x}) be the optimal
solution of (7) and oo be the optimal objective value of (7).
Assume that there exist constants C;’s, j = 1,2, ..., n, such
that for every j,

S () - i) £ G,
i=1,i£j
Then we have oo < 01 < 09 + min; {C;}.

Proof. : Because (6) has one additional constraint, 0o < 0.
Given an arbitrary index j, j = 1...n, we have:

o= file™) < fila?)
i=1 i=1
So for every j, we have

o1 —02 <Y filz}) =) fila])

=1 =1
Z - fi(z})) < Cj.
i=1,i#
Therefore 0y < 07 < 09 + minj{Cj}. O

We use Lemma V.1 to prove the bounded gap between the
global rewards gained under test-time state perception attacks
and under test-time camouflage attacks.

A. Performance of test-time camouflage attacks

Theorem V.2 (Test-time comparison). Consider m attackers
and n recipient agents, for one single time step t (from time
index t — 1 to time index t). Assume the recipients share
the same state space S, the same action space A, the same
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probability transition matrices P : S x A x § — [0,1],
and the same reward function R : S x A — R. Let the
observation functions h; be identical for every agent i, so that
the camouflaged observations are the same for every recipient
agent i, i.e. Sq4—0.5,4 'S are equal. We assume that the optimal
policy for each recipient agent is the same and the recipients
work independently from each other. We use ©f : S — A to
denote the shared optimal policy of a recipient agent at time
step t. Within time step t, let the expected reward gained by
individual agent © be ER. Let the total rewards of all recipients
gained under the optimal camouflaged attack be T R;" and the
total reward gained under the optimal state-perception attack

be TR;"".
Assume that for every pair of two different recipient
agents (i,7), 1,5 = 1...n, for every pair of actual states

(Sa,t—1,i>Sa,t—1,;) of recipient i and recipient j, the rewards
gained for agent i under delusional state perceptions at time
step t satisfy

ER(sq,t-1,, 71—?(52,2‘/70.5,]‘)) — ER(q,t-1,is Wt*(sjz,tfo.m)) < Cij,

for some small constant C;;, where Sz’t_o_&j and s(’;,t_o_&j
are the most-damaging delusional state perceptions that
minimize the reward for agent j and 1 respectively, and
ER(sqt—1,i,7; (Sd,t—05,.)) is the expected reward recipient
agent 1 will get using the policy corresponding to a delusional
State perception (Sd’t,()‘s’.). Then

n
TR <TR{* <TRP" +min »  {Cj;}.
T =10
Proof. : We use Lemma V.1 to prove Theorem V.2. For each
recipient agent i, 1 < ¢ < n, we let function f; be the expected
reward recipient agent ¢ gets under its true states s, ;1 ; and
agent ¢’s delusional observation sq¢_¢.5 ;.

In this setting, the variable x; in the optimization problems
(6) and (7) is the delusional observation sq:—o.5; of the
i-th recipient. In (6) which corresponds to the camouflage
attack, fi(z;) = ER(Sqt—-1,i,7;(Sd,t—0.5,)) and we require
Sd,t—0.5,i to be equal across different agents ¢’s. In (7) which
corresponds to a “free” state perception attack, f;(xz;) =
ER(sa,tfl,zﬁ WZ(Sd,th.SJ)), but we will not require Sd,t—0.5,i
to be the same across different agents ’s. Because

ER((8a,t-1, ﬂ?(sji7t70.5,j)) — ER(5a,1-1,i 77?(52,:570‘5,1')) < Cyj,

by applying Lemma V.1, we have TR;?* < TR{* < TR;?* +
min; Z:’L:l,i;éj{cij}' [

B. Performance of the training-time one-time camouflage at-
tack

To compare the effect of training-time state perception
attacks and training-time camouflaged attacks, we assume that
agents share the same state space such that S§; = S,VS;
with |S| = S, the same action space A; = A ,V.A; with
|A| = A, but each agent 7 has its own transition kernel P;
and reward function r;. For every agent ¢, let the ground-
truth infinite MDP environment be E = (S, A, P;,r;,T,7),
and the perceived infinitt MDP environment be E¢ =
(S, A, P3R4 T, ~), wherein T — oo, and v € [0,1]. « is

the discount factor. In the version of finite MDP, we assume
T is finite and v = 1.

Let mq;(s|t),¥s € S, denote the delusional “optimal”
policy for agent 7. Every recipient agent ¢ learns mq ;(-|1) in
the perceived environment £ during training under the attack
strategy 1. Here - is a dummy variable which means any state
s. We keep the notation - to make our citations of policies
consistent with traditional notations. We compare the tested V-
values ‘/'ff:"(“) € R¥ by following the delusional “optimal”
policy in the ground-truth MDP envrionment F, in which

o0
V70 () = B AFri(se, a)lso = s,af ~ mailself)].
k=0
In the finite-horizon version,

T
VI (s) = B[ rilse, a)lso = s, af ~ mai(si1)].
k=0
The following theorem compares the gap between tested
V-values guided by delusional polices trained under the one-
time state perception attack and under the one-time camouflage
attack. We assume E and E finite MDPs in Theorem V.3.

Theorem V.3 (Comparisons under one-time camouflage at-
tack). Comsider m attackers and n recipient agents present
in a finite  MDP with horizon T. In the one-time state
perception attacks, the set of attack strategies {1} is
the set of state perception probability matrices {X;} =
{[xsa‘i,t*‘)‘sd,i,t*]Sa,i,t*ﬂsd‘i,t*es}’ in which {xsa,i,t*ﬁsd,i,t*}
are subject to the conditions in (2).

Assume that for every pair of two different recipient agents
(i,7), for every state s, the tested V-values gained for
agent 1 with its policy trained under the training-time state-
perception-attack strategy X satisfy

Vi ) - Vi) < 0y,
for some small constant C;j, where X J* and Xi* are the most
damaging state perception probability matrices that minimize
the tested V-values for agent j and 1 respectively. For one-time
camouflage attacks, we require the optimal camouflage attack
strategy X* to be the same across all recipient agents. Then,
PraaCIXD) o ND IR o N pmaaCXD | i,

; o ; T ; o | i:;#{ i}

Proof. : We use Lemma V.1 to prove V.3. For each recipient
agent 4, we let the function {f;}7; be the tested V-value
recipient agent ¢ gets at time index 7', under the attack strategy
X;. The variable z; in the optimization problems (7) and (6)
are the state perception probability matrices X;. In (6) which
corresponds to the camouflage attack, f;(z;) = ij‘f(‘x’)
and we require X; to be equal across different agents
¢’s. In (7), which corresponds to a state perception attack,
fi(z;) = Vifr;’i("xi), but we don’t require X; to be the same

. . (| X3 G X
across all agents ¢’s. Since Vf; (%) -V'r (1X35) < Cyj, by

applying Lemma V.1, we have the direct préof of Theorem V.3:

n _ n _ n _ n
ZV;}“("X’) < Z%TTMHX ) < Z%?TMHX’) + min Z {Ci;}-
i=1 i=1 i=1 Tty
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C. Performance of the training-time permutation attacks

We further prove analytical results of training-time permu-
tation camouflage attacks with infinite MDPs. We start by
proving two lemmas that the Bellman optimality operator T is
a contraction and that the perceived V-value is a C})ermutation
of the ground-truth V-value. Recall that we use V;;" to denote
the delusional optimal V-value of agent ¢ at time index ¢ during
the training under attacks. Since in this case we are assuming
an infinite MDP, we omit the time index ¢ and use Vid’* to
denote the delusional optimal V-value at the end of the training
which was under attacks. The same case applies to the notation
of the ground-truth optimal V-values V,*.

Then, we use those two lemmas to prove the convergence
of value iteration in the perceived environment E? under

permutation camouflage attacks.

Lemma V.4. (Contraction of Bellman optimality operator) Let
T be the Bellman optimality operator. Given any state s € S,

= 7. (o (!
T(V:)(s) = max 7i(s,a) +75/§PZ<8 |5, a)Vi(s'),

where T; is the expected value of r;. The optimality operator
T is a contraction in the l.,-norm with the contraction factor
v, i.e.,

IT(V:) = T(V)lloo < AIIVi = V{llox-

Proof. Let m denote the greedy policy with respect to the
Bellman optimality operator T(V;), such that 7 satisfies:

T(Vi)(s) =T (Vi)(s) = Ti(s,7(s)) +~ Z Pi(s']s,m(s))Vi(s'),
s’eS

where 7(s) = arg max, (7i(s,a) +v >, cs Pi(s']s, a)Vi(s')).

Let V;,V/ € RS Given a state s € S, we have that:

IT(Vi)(5) = T(V)(8)lloo = lITi(s,w(8)) + 7 D Pals']s, m(s)Vi(s")

s'eS

— (rls () +7 Y A m )V () o

s'eS
=l Y- Pilsls,w(s)(Vils') = Vi (5D oo
s'eS
<y ) P s, m()II(Vils) = Vi())lloo
s’eS
=7V = V{lo-
O

Lemma V.5. [Permutation of value functions] Consider m
attackers and n agents present in an infinite MDP. Attackers
perform permutation attacks with the same attack strategy 33;,
where Y; is a permutation matrix with S rows and columns,
at every time step t on the individual agent i. Using value
iteration, the recipient agent i perceives its optimal V-value
Ve as a permutation of the ground-truth optimal V-values

7

V¥, e, VA = 5,V

7

Proof. We prove Lemma V.5 by induction. Let V%, = 0 and
Vi%* = X;V/ be the initial approximations. Using value
iteration to obtain both the true V-values and the perceived
V-values, we have the next true approximation to be V;*; =
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max, (r; + 7P;V;%), and next perceived approximation 5
to be:

V& = max(Sir; + 42 PET VA
, 4 :
= 3 (max(r; + yPBE] 8:V)5))
= Y (max(r; +vP; V) = iV
a ’ 3y

For the induction step, assume that at time step k, Vid;: =
2;V;%. Then, the next true approximation is V7 ., =
max,(r; + vP; V), and the next perceived approximation

(2

d,* I
V’,k+1 is:

Vi = max(Sir; + 7S PET V)
= Ni(max(r; +yPE] BiV7))
= i(max(r; +yBViy)) = ZiVieia

O

Theorem V.6 (Convergence analysis under permutation cam-
ouflage attacks). For every agent 1, let V;* be the optimal V-
value of the ground-truth MDP E, and let Vid’* be the optimal
V-value of the perceived MDP E?, which were both found by
value iterations. The algorithm of value iteration on E? is
given in Algorithm 2.

Assuming the iteration number is n, the gap between the
true optimal value V,;* and the n-th estimation of the perceived
V-value Vl‘fn in loo-norm is bounded by

. " . .
IVt = Viallow < 75 Vi) = Vibllow + 1V = V7l

and

Vi = Vi oo > IV = V>

K3

,yn
= 75 IV = Vil ®

wherein Vz'(,io is the initial approximation and Vifll is the
approximate perceived V-value by applying T once.

Proof. By the triangle inequality,
1V = Vidalloo < Vi = Vi lloo + IV = Vit I

To bound [|[V;"* — V||, we make a convergence analysis
on the value iteration. Let T denote the Bellman optimality
operator and apply T on E<. Since T is a contraction map,
V% is the fixed point of T, i.e., T(V;**) = V%*. Notice that
with an arbitrary step m, by the contraction property of T, we

have that:

IVitmt1 = Vitmlloo = IIT(ViS) = T(Vid_1)lloo
< 'VHVz'(,im - Vi(,im—lnoo
<...

< ’Ym||vz‘£,l1 - Vz'u,loHom

and therefore, we can bound the second part of the triangle
inequality ||Vid’* — Vldn||OO by creating a telescoping series:
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d, d a a
IV = Villoo S IVttt = Vitalloo + 1Vithi = Vitnsallos
d,*
+--+ H%irkl - ‘/’i(fnﬁ»lfl”OO + H‘/; T ‘/’i(fnﬁ»lHOO
<("+ Y4 7n'+l_1)”V¢fll - Vi(,iOHOO
+ "IV = Vil
7” a n d,* a
< fHViﬁ = Vol + 2"V = Villloo
Let [ — oo, we have that
ve —vie < v - v
Vi, = Vil < _WH i1 — Violl-
We use Lemma V.5 to bound || V;* — V%
Similarly, by the triangle equality
d d, d, d
Vi = Vinlloo 2 IV = Vi oo = IV = Vil
we further have the proof of (8).

|, and V2 = ¥,V

Algorithm 2 Value iteration under permutation attacks

Input: Infinite camouflaged horizon MDP(S, A, P¢, R¢, ),
iteration number: n
for k=0,1,...,n—1do
for s € S do
Vi < TV
T < greedy policy of Vldk*
end
end
Output: V2%, &

i,n > Yin

Our last theorem is to bound the gap between tested V-
values guided by delusional policies obtained under state-
perception permutation attacks and under camouflage permuta-
tion attacks. We assume F and E< infinite MDPs in Theorem
V7.

Theorem V.7 (Comparisons of training-time permutation cam-
ouflage attacks). Consider m attackers and n recipient agents
present in an infinite MDP. In the state perception permutation
attacks, the set of attack strategies {1} is the set of state
perception permutation matrices {¥;}, which is a set of
permutation matrices with S rows and columns.

Assume that for every pair of two different recipient agents
(i,7), for every state s, the tested V-values gained by agent i
with its policy trained under state-perception-attack strategy
Y satisfy )

7q.i(- (D
Vi) i tED < oy,
for some small constant C;;, where Z;f and X are the most
damaging permutation matrices that minimize the tested V-
value for agent j and i respectively. In permutation cam-
ouflage attacks, we require the optimal permutation attack
strategy X* to be the same across all recipient agents. Then,

prasCIED o NS i) o NS prmaCIsh | .
; i ; T ; e i i:;#{ i)
Proof. We prove by Lemma V.1. In the training, the cam-
ouflage permutation attacks permit only one minimizer, Y.
However, for state perception permutation attacks, there are
n minimizers allowed: (X1, ¥o,...,%,). O

VI. NUMERICAL RESULTS

We perform numerical results on both test-time and training-
time camouflage attacks under various game settings with
finite time 7. In the test-time case, we compare the total
rewards of all recipients without attack, under the camouflage
attack, and under the state perception attack. Results indicate
that recipients gain significantly smaller rewards under the
camouflage attacks compared to the case with no attacks. The
reward gained under the state perception attacks is smaller, but
not significantly, than the more practical camouflage attack.
For cost-constrained camouflage attacks, as the attack budget
increases, the gained reward becomes smaller. Our framework
works for general m-attacker-n-recipient scenarios. In the
training-time case, we perform a one-time camouflage attack
during the learning of the multiple-agent system and observe
a significant drop in reward resulting from the camouflage
attack.

A. Camouflage orientations (Test-time)

In the first experiment, there are 2 recipients and 2 attackers
playing in the MG. The recipients share the same state space
S, which is a ring containing 3 different states: 0, 1, and
2. They also share the same action space A, the probability
transition P, and the same reward function R. The action
space A is composed of three actions: go left, go right, and
stay. For actions left and right, the recipient agent has a 0.8
probability of moving in the intended direction and a 0.2
probability of moving in the opposite direction. For stay, the
recipient agent has a 0.8 probability of staying at the current
state and a 0.1 possibility of moving to the right or left. The
reward function in the experiment depends on the current
state, and the next state: R(s;_1,s:), which assigns a fixed
positive reward to the recipient agents, which is displayed in
the table below:

t J, t+1— S0 S1 S9
S0 3.0 |10.6 | 1.0
51 10.0 | 1.0 | 0.0
S2 1.0 | 0.0 | 11.6

The attacks camouflage the orientation of the ring by
rotating it counter-clockwisely for respectively 1 step, 2 steps,
and 3 steps. The camouflaged orientation after a 3-step ro-
tation is the same as the true orientation. For every attack,
recipients’ perceptions of their real positions are based on the
camouflaged ring, as described in Figure 2. In Figure 3, we
compared the expected global rewards of recipients for time
index from O to 5, under camouflage attacks, state perception
attacks, and without attacks. In this figure, the x-axis is the
time index, and the y-axis is the total expected rewards the
recipient agents gained from ¢ = 0 to the current time index.
With camouflage attacks, the reward gained is 34.4% of that
achieved without attack. With state perception attacks (where
attackers can freely fool each recipient into desired delusional
states), the reward is about 33.1% of that without attack.

B. Camouflage attackers’ real positions (Test-time)

In this case, the recipients and the attackers move on a
square g x g chessboard. The position of either a recipient or
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Camouflaged orientation 3

Figure 2: Illustration: camouflage attacks on a ring.
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Figure 3: Ring topology. Comparison of expected global
rewards between free state perception attacks and camouflage
attacks.

an attacker can be denoted as (i,75), where ¢ (0 <i < g —1)
records the row index, and j (0 < 5 < g — 1) records the
column index on the chessboard. We made 2 experiments
with a square chessboard: the first one has ¢ = 3, and the
second one has ¢ = 2. For each attacker, its position is
fixed and it can only attack if any recipient moves to its
location. Neither attackers nor recipients can move beyond
the boundaries of the chessboard. The recipients have the
same state space S, the same action space A, and the same
reward function R. Recipients can move up, down, right, or
left. The attackers’ positions cannot move during the game.
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Figure 4: 3 x 3 chessboard. Comparison between state percep-
tion attack and camouflage attack, with fixed attackers at (1,1)
and (2,1), 3 recipients and 2 attackers.

For simplicity, the probability of recipients moving along
the indicated direction of an action a € A is set to be 1.
The reward R(s;—1,s;) for entering all possible chessboard
positions is set to be 5.0 except for (0,1), whose reward is
10.0. If any recipient enters any of the attacker’s positions,
the reward is set to 1.0. For example, with ¢ = 3, if the fixed
positions of the attackers are at (1,1) and (2,1), then the
reward function can be displayed in the following table. The ¢,
7 here means the indices of the square the recipient is entering:

jlisl o 1 ]2
0 [50]100]5.0
1 |50 1.0 |50
2 |50 1.0 |50

In the first experiment, 3 recipients and 2 attackers played on
a 3x3 chessboard, and in the second experiment, 2 recipients
and 1 attacker played on a 2x2 chessboard. In Figures 4 and
5, we compared the expected global rewards of recipients
for time index from O to 5, under camouflage attacks, state
perception attacks, and without attacks.

In Figure 4, with the fixed attackers at (1,1) and (2,1) on the
chessboard, the global reward gain achieved under camouflage
attacks is 39.0% of the reward achieved without attack. The
reward gain under state perception attacks is roughly 16.7%.
In Figure 5, the expected global gained reward overall possible
real attackers’ positions after 5 camouflage attacks is 47.3% of
the case without attack, and the expected gained reward after
5 state perception attacks is 43.6% of the case without attack.

C. Cost constrained camouflage attacks (Test-time)

With 3 recipients and 2 attackers in the same 3 x 3
chessboard setting as VI-B, we add the cost constraint to
attackers at every time step when they perform a camouflage
attack. The cost of every attacker is the distance between its
real position and the target camouflage position. We define the
distance between two positions as the sum of their row and
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Figure 5: 2 x 2 chessboard. Comparison between state percep-
tion attack and camouflage attack, 2 recipients and 1 attacker.

column index absolute differences. Within every time step {,
the shared budget is refilled to a fixed budget. We choose
the following sequence of fixed budgets {1,2,3,4,6,12} for
tests. In Figure 6, we compare the expected global reward gain
under different budgets. It turns out that the higher the budget,
the fewer the reward gains. When the budget reaches 6, the
performance of the cost constrained camouflage attack is the
same as the optimal camouflage attack.

100 No Attack

Optimal Camouflage Attack

Camouflage Attack with Budget 1

Camouflage Attack with Budget 2

Camouflage Attack with Budget 3

Camouflage Attack with Budget 4

Camouflage Attack with Budget 6 e
= Camouflage Attack with Budget 12 -

80 4

ERERERE’

Expected Rewards

Time Index

Figure 6: Comparison between camouflage attacks with dif-
ferent budgets.

D. Camouflage orientations (Training-time)

In the training-time camouflage attack experiment, 2 recip-
ients play in the MG. The recipients share the state space
S = {(s1,s2)}, where s1,s2 € {0,1,2} on a circle. The
joint action space A contains 9 joint actions {(leftleft),
(left,right), (left,stay), (right,left), (right, right), (right,stay),

(stay,left), (stay,right), (stay,stay)}. The ground-truth transition
probabilities of every action {left, right, stay} are displayed
in the following tables. The transition probabilities of joint

0 0.25 | 0.75 0 0.85 | 0.15 09 | 0.05 | 0.05
0.85 0 0.15 0.15 0 0.85 0.05 09 | 0.05
0.25 | 0.75 0 0.85 | 0.15 0 0.05 | 0.05 | 09

Table I: Py, Prignt, Pstay

actions, P4, 4,) are the tensor products of F,, and P,,, for
example, P, ; = P;, ® Pr. The random reward function of
each agent is 7;(s, a), depends on the state action pair (s, a)
and is distributed from the normal distribution r; ~ N (p;, 0;).
u; and o; are chosen by Table III.

al st — 0 1 2
left 10, .02 2, .01 20, .01
right 5, .03 20, .02 4, .01
stay 1, .01 10, .03 | 40, .02
Table II: (u1, o1) for individual reward rq
al st — 0 1 2
left 4, .01 20, .01 | 40, .02
right 20, .02 2, .01 10, .03
stay 5,.03 10, .02 1, .01

Table III: (ug, 02) for individual reward 7o

The reward function of the MG is the total reward of two
agents: 1y + ro.

We let T' = 7. At t = 3, the attacker performs the one-
time camouflage attack to confuse agents’ observations on
the circle orientation. There is a fixed probability distribution
p(sd|sq.) that agents would perceive their true states as false
states. The elements of the camouflage probability matrix X
were chosen randomly between 0 and 1, but the matrix has
both row-sums and column-sums to be 1. One example of
camouflage probability matrix is shown in Table IV. The

Sa — Sq 4 0 1 2
0 0 0.68578239 | 0.31421761
1 0.31421761 0 0.68578239
2 0.68578239 | 0.31421761 0

Table IV: Camouflage probability

camouflage probability of the 2-agent system is X ® X.

Under the one-time camouflage attack at ¢ = 3, the agents
learn the camouflaged transition probabilities Py 5, P§.,,
and the camouflaged reward function R$. At other time
indices, agents learn the ground-truth transition probabilities
and reward functions.

We compare the sum of expected reward across all agents
by following the attacked optimal policies wf i =1,2 and
the true optimal policies 7},¢ = 1,2 in Figure 7. Compared
with the ground-truth V-values, the camouflaged V-values start
to drop at ¢ = 4 since Wf3* # m; 3 due to the camouflage attack
at t = 3. The drop of the expected reward of the state (0,0),
for example, is about 28.5% of the ground-truth V*(0,0).

We also did an experiment on a single-agent system, with
S ={0,1,2}, A = {left, right, stay}, and the same P,
and r as described in the 2-agent system. The numerical result
proves to be similar in Figure 8.
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—e— V(0,0),No attack
400 1 —*— V(0,0), Attacked
—e— V(1,1),No attack
—a— V(1,1), Attacked
V(2,2),No attack
V(2,2), Attacked
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Figure 7: Expected reward under a training-time camouflage
attack-multiple agents

—&— V(0),No attack
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200 4 —e— V(1),No attack
—a— V(1), Attacked
V(2),No attack
V(2), Attacked
150 A
A
4 5 6

100 A

Expected Rewards

50 1

Time Index

Figure 8: Expected reward under a training-time attack-single-
agent

E. Camouflage attack on Nash equilibrium policy (Test-time)

In the last experiment, we would like to explore the effect of
camouflage attacks on Nash equilibrium solutions. We assume
a two-agent general sum Markov game, with shared state space
S = {0,1}. The action spaces of Agent 1 and Agent 2 both
consist of two elements A; = Ay = {0,1}. At s = 0, the
shared state transits to s = 1 with probability 1/4 only if
agents take the joint action (1,1). Otherwise, the state of the
game stays at s = 0. At s = 1, the shared state stays the same
no matter what join action agents take.

The reward functions (r1,72) both depend on s and the joint
action a = (a1, az), which are displayed as the following

By initializing the V-values V;"(s) = 0 for any agent 4, of
any state s, and any joint policy 7r, we can obtain the Q-values
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a1 L ax — 0 1
0 (_170) (_170)
(—20, 3) with prob 1/4
! (1,-1) {(0,0) with prob 3/4
Table V: (r1,72) of s =0
a i ag — 0 1
0 2D (2,0)
(—20, 3) with prob 1/4
! (2,-1) {(0,0) with prob 3/4
Table VI: (r1,72) of s =1
of Agent 1 at time index 7' — 1 as:
QT7-1(0,(0,0)) = =1+ V{"+(0),
QT7-1(0,(0,1)) = =1+ V"1 (0),
Q;Tfl(o? (170)) =1+ Vvl T( )
QTr-1(0,(1,1)) = =5+ 1/4W71(1) + 3/4V77(0).
Similarly, for Agent 2, we have Q-values at 7' — 1 as:
Q37-1(0,(0,0)) = 1+ V577 (0),
Q;,T 1<0a( a1)> _1+VY27,"T(O>7
Q37-1(0,(1,0)) = 1+ V577(0),
Q3r-1(0,(1,1)) = 3/4 + 1/4V7p (1) + 3/4V577(0).
By plugging V;"(s) = 0, we get that the policy 77 _,(0) =
(1,0) is the equilibrium policy, since:
‘f,T 1( ( )) -1, QQT 1(0’(070)):1a
Tr-1(0,(0,1)) = =1, Q@3 741(0,(0,1)) = -1,
?,T 1( a( 70)) =1, QZ Tfl(ov (1’0)) =1,
Tr-100,(1,1)) = =5, Q57 1(0,(1,1)) = 3/4
For s = 1, however, we have that 7w}._, (1) = (0,0), since
‘f,T—l( ( )) =2, Q;T 1(17 (an)) =1,
?,Tfl( 7( 71)) - 2 Q2T 1(17 (Oa 1)) = 07
?,Tfl( 7( 70)) =2, QQT 1(17 (170)) =-1,
T-,T—l( v( 71)) -9, Q2,T—1(1v(171)) :3/4

Therefore the V-values at time index 1" — 1 is equal to:
Vit 1 (0) = LV3 4(0) =1,
VlT,rT—l(l) =2, VQTT—l(l) =1

We consider the test-time camouflage attack by permute s =
0 and s = 1. Therefore, assuming the agents have learned the
optimal policy at time index 7" — 1, by camouflage state s,
their “optimal” V-values is changed to

V17,r:;—1(0) = —1aV27,r:;—1(0) =1,
Viip (1) =2,V (1) = —1,
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which are less than the original V-values without the camou-
flage attack from the perspective of global benefits. At s = 0,
after camouflage attack, the sum of V-values of agents at 7'—1
is reduced from 2 to 0 , while at s = 1, the sum of V-values
is reduced from 3 to 1.

As for the state perception attacks, attackers can attack each
agent’s perception of s individually. There are totally four pos-
sible delusional joint states sq € {(0,0), (0,1),(1,0),(1,1)}.
When s = 0 and s = 1, the attacked V-values are displayed
in the following table:

V-values | sq — (0,0) (0,1) 1,0) (1,1)
Vi1 (0) Ly [ @Gy [ Ly [LY
Vi"rT_1(1) (2771) (2771) (271) (271)

From the table we can see that the best state perception
attack has the same effect as the camouflage attack in this
example, where the minimal attacked global expected reward
is 0 for s =0 and 1 for s = 1.
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