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Abstract—In this paper, we investigate human feedback at-
tacks on online Reinforcement Learning from Human Feedback
(RLHF) algorithms. The attacker’s goal is to force the victim
RLHF algorithm to eventually learn a suboptimal policy while
inducing a small attack cost. We propose an adversarial attack
strategy, and prove that it is successful in terms of misleading
the online RLHF algorithm to learn the suboptimal target policy.
We also propose a robust defense online RLHF algorithm. We
show that the proposed algorithm is robust to any attacker
whose attack cost is bounded by a budget. The simulation results
validate our theoretical analysis.

Index Terms—reinforcement learning, human feedback, adver-
sarial attack, robust defense

I. INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF)
has become a prominent technique to adapt reinforcement
learning models to problems of which the reward functions
are not clear or difficult for human to demonstrate [1], [2].
In particular, RLHF is an important component of training
foundational large models [1], e.g., the large language models
(LLMs) [3]. RLHF allows foundational large models to align
their output distribution with human preferences once fine-
tuned, which improves usefulness and reduces harmful con-
tents. Moreover, RLHF can continuously improve foundational
large models through evaluation and data collection.

However, it has been shown that RLHF faces substantial se-
curity issues related to the reliability of the human preference
data, i.e., when there are adversarial attacks on preferences
or random noises in human preferences [2]. The human
preference data can be manipulated by adversaries to mislead
the RLHF algorithms [4]–[8], which can lead to catastrophic
consequences in the real world. For example, when attacked
by commercial competitors or individuals with an axe to
grind, LLM chatbots could generate misinformation or harmful
content, such as fake news, hate speech, or dangerous health
advice.

Therefore, it is crucial to study the security issues faced by
RLHF algorithms, especially to understand the impact and lim-
itations of the adversarial attacks on RLHF, due to the potential
catastrophic real-world consequences. More importantly, the
existence of adversarial attacks should be considered in the
design of RLHF algorithms, to ensure the robustness of RLHF
algorithms against potential attackers, which could maintain
the helpfulness and harmlessness of foundational large models.
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In this paper, we first analyze the vulnerability of existing
online RLHF algorithms. We propose an adversarial human
feedback attack on online RLHF algorithms and prove its
success through both theoretical analysis and experimental
results. Our attack method manipulates the agent’s learning
process by providing specifically designed human preferences.
The manipulations on human preferences are based on the
Bradley-Terry model [9], and has the effect of hiding the
true underlying reward function and misleading online RLHF
algorithms to a wrong estimation of the reward function. In
this way, the attacker can force the online RLHF algorithm to
learn an unwanted target policy. Meanwhile, the attacker will
induce a small attack cost because of the exploitation nature of
the online RLHF algorithms, i.e., the victim algorithm wants
to learn the optimal policy in its view eventually.

The success of our human feedback attack demonstrates the
vulnerability of RLHF systems to adversarial interventions.
To address this issue, we further design a robust online
RLHF defense algorithm against attackers with bounded attack
budget, ensuring that the agent can learn the original optimal
policy effectively even under adversarial attacks. With the
existence of the attacker, the defense mechanism encourages
the online RLHF algorithm’s exploration by raising the reward
estimation, of which the amount is decided by the knowledge
of attacker’s ability to manipulate the human preferences.
When there is no adversarial attack, the defense mechanism
will not affect the learning process of the online RLHF
algorithm, and the robust defense algorithm will behave the
same as the standard online RLHF algorithm. We provide
theoretical guarantees on the robustness of our defense method
against attackers with bounded attack budget and validate its
effectiveness with simulation results.

Our contributions are summarized as follows:

• We propose an adversarial human feedback attack on
online RLHF algorithms, and prove its success through
theoretical analysis and experimental results.

• We design a robust online RLHF algorithm defending
against adversarial attacks, and provide theoretical guar-
antees on the robustness of our defense method, which is
then validated by simulations.

• We provide a systematical understanding of the security
issues faced by online RLHF algorithms from adversarial
human feedback attacks, and valuable insights of design-
ing robust defense algorithms resolving these issues.

The rest of the paper is organized as follows. In Section II,
we review the background and related work. In Section III,



we introduce the problem formulation of online RLHF and
the human feedback attack. In Section IV, we present the
attack strategy design and theoretical analysis. In Section V,
we propose the defense algorithm and provide theoretical
guarantees. In Section VI, we conduct simulations to validate
the attack and defense strategies. Finally, we conclude the
paper in Section VII.

II. BACKGROUND AND RELATED WORK

RLHF: RLHF frameworks usually combine three intercon-
nected processes: feedback collection, reward modeling, and
policy optimization [1], [2]. Take the example of training
LLMs, the RLHF process usually starts with a language model
pretrained on high-quality data, and then fine-tunes the model
using human feedbacks to align the model’s outputs with
human preferences [3], [10], [11]. Depend on whether the
human feedbacks are collected and whether the reward is
modeled online or offline, the theoretical studies of RLHF
algorithm can be categorized into online RLHF [12], [13] and
offline RLHF [11], [14]. In the online RLHF setting, the agent
learns from real-time interactions with human feedbacks, while
in the offline RLHF setting, the agent has access to a pre-
collected dataset of human preferences.

Adversarial Attack and Defense: Adversarial attacks have
been widely studied in the context of machine learning [15],
[16], from the traditional multi-armed bandit (MAB) prob-
lems [17] to the modern reinforcement learning (RL) al-
gorithms [18]. For example, existing works have identified
potential security issues of MAB algorithms in different
settings [19]–[24], and different adversarial attacks methods
against RL algorithms [25]–[29]. In particular, these works
show that an attacker can force the machine learning al-
gorithms to take unwanted actions, and may lead to severe
real-world consequences (unfair business competition, health
threats, misinformation spreading etc.).

Attack and defense always go hand in hand. With the
existence of the attack, it is important to design defense
strategies to protect the machine learning algorithms from
taking unwanted actions [30]–[32]. For example, in the con-
text of MAB problems, many robust algorithms have been
proposed to defend against adversarial attacks in different
settings [33]–[41]. Existing works have also proposed defense
strategies in RL algorithms [42]–[44]. These works provide
valuable insights on how to design defense algorithms against
adversarial attacks.

Attack on RLHF and Robust Defense: Despite the rich
literature on adversarial attacks and defenses in MAB and RL
algorithms, designing adversarial attack methods and robust
defense algorithms against adversarial attacks for RLHF is still
an open research problem.

In the field of offline RLHF with a pre-collected dataset
of human preferences, [4]–[7] propose data poisoning attack
to modify the original preference dataset, or append poisoned
preferences to the original dataset. [4]–[6] provide valuable
experimental results on the impact of adversarial attacks,
while [7] conduct a comprehensive theoretical analysis of the

effectiveness of the attack. As for the robust algorithms in
offline RLHF, [45]–[49] propose robust algorithms against the
noise in human preferences. They assume that a small amount
of the dataset is corrupted or noisy, and provide theoretical
or experimental results on the robustness of offline RLHF
algorithms. However, the noisy preferences in their works
are not generated by adversarial attacks, i.e., not specifically
designed to mislead the algorithm.

In the field of online RLHF learning from real-time interac-
tions with human feedbacks, adversarial attacks and defenses
have not been systematically studied. This paper aims to
fill this gap by proposing an adversarial attack strategy on
online RLHF algorithms, and designing a robust online RLHF
algorithm against the adversarial attacks.

III. PROBLEM FORMULATION

A. Reinforcement Learning with Human Feedback

We consider the episodic Markov Decision Process (MDP)
with a state space S, an action space A, and a horizon
H for each episode. The transition probability is denoted
as Ph(sh+1|sh, ah). A policy π is a mapping from the
state space to the action space, i.e., π : S → A, which
specifies an action distribution based on the current state.
We assume that there is an unobservable underlying reward
function r∗ : (S ×A) → [0, 1]. The optimal policy is the
one that maximizes the expected cumulative reward over the
horizon Eπ

[∑H
h=1 r

∗(sh, ah)
]
. One policy π is ϵ-optimal if its

expected cumulative reward is within ϵ of the optimal policy:
Eπ

[∑H
h=1 r

∗(sh, ah)
]
≥ maxπ′ Eπ′

[∑H
h=1 r

∗(sh, ah)
]
− ϵ.

A trajectory τ ∈ (S,A)H is defined as (s1, a1, . . . , sH , aH)
which is a sequence of interactions with the MDP. In RLHF,
the agent interacts with the reward-less environment and re-
ceives human preferences in the form of pairwise comparisons
between trajectories. In this case, we assume that there is
an unobservable underlying reward function r∗ for trajectory:
r∗ : (S ×A)H → [0, H]. Then, the policies can be evaluated
with their values: Eτ∼π [r

∗(τ)]. Note that the trajectory τ
can be reduced to the state-action pair (s, a) by H = 1,
which leads to (s, a) preferences as a special case of human
comparison.

A popular model describing human preference distribution
for pairwise comparisons is the Bradley-Terry model [9]:
P (τ1 ≻ τ2) = exp(r∗(τ1))

exp(r∗(τ1))+exp(r∗(τ2))
. Thus, the human

comparison results are modeled as sampled from a Bernoulli
distribution: o(τ1, τ2) ∼ Ber (σ (r∗(τ1)− r∗(τ2))), where
σ(x) is the link function [13], e.g., the sigmoid function
σ(x) = 1

1+exp(−x) for Bradley-Terry model [1], [11], [50]–
[52]. The outcome of the comparison is o(τ1, τ2) = 1 if τ1 is
preferred to τ2, and o(τ1, τ2) = 0 otherwise.

Assumption III.1 (Link Function). σ(0) = 1
2 ; for x ∈

[−H,H], σ′(x) ≥ α > 0.

This assumption is commonly used in RLHF literature [13],
[53], and it makes the link function well-defined, makes the
optimal policy be possible to identify [13], and ensures our



following analysis. It is also satisfied by the popular Bradley-
Terry model.

We introduce the Eluder dimension to measure the difficulty
of function approximation, and the realizability assumption of
learning the underlying reward function r∗.

Definition III.1 (Eluder Dimension [13]). For any function
class F ⊆ X → R, its Eluder dimension dimE(F , ϵ) is defined
as the length of the longest sequence {x1, x2, . . . , xn} ⊆ X
such that there exists ϵ′ > ϵ so that for all i ∈ [n], xi is ϵ′-
independent of its prefix sequence {x1, . . . , xi−1}, in the sense
that there exists some fi, gi ∈ F such that√√√√i−1∑

j=1

((fi − gi)(xj))
2 ≤ ϵ′ and |(fi − gi)(xi)| ≥ ϵ′.

Eluder dimension is a measure of the complexity of a
function class. It quantifies the longest sequence of points one
must observe to distinguish between two functions in the class
at any other point.

Assumption III.2 (Realizability [13]). r∗ ∈ R, where R is
the set of all possible reward functions R = {r : (S ×A)H →
[0, H]}.

Further, denote R := {r + c|c ∈ [−H, 0], r ∈ R} as the
reward function class augmented with a bias term, due to the
fact that human preference is based on the difference between
two reward functions.

Since the agent does not have access to r∗ in RLHF, it needs
to estimate and approximate the underlying reward function.
In the offline RLHF setting, one has access to a dataset of
human comparison results D = {(τ i1, τ i2, oi1,2)}Ni=1. Maximum
likelihood estimation [11], cross-entropy loss method [1], or
Bayesian loss method [54] can be used to estimate the un-
derlying reward function from the human comparison dataset.
However, in the online RLHF setting, one will not have access
to the entire dataset of comparisons. One popular approach to
estimate the reward function in the online RLHF setting is the
Preference-to-Reward (P2R) interface [13]. With the help of
P2R, any reward-based RL algorithm with sample complexity
guarantees (see Definition III.2) can be adapted to reward-less
RLHF setting and learn an approximately optimal policy from
preference feedback. P2R does not induce sample complexity
overhead, and the human comparison complexity does not
scale with the RL algorithm’s sample complexity.

The P2R interface is presented in Algorithm 1. It maintains
a confidence set of reward functions Br and history sets of
human comparisons D and Dhist. When a new trajectory τ is
queried, P2R first checks the history set Dhist to see if the
reward for τ has been previously estimated. If not, it checks
if the confidence set Br agrees on the reward for τ . Only
when neither of these conditions is satisfied, P2R queries
the human comparison for the preference between τ and a
reference trajectory τ0. The interactions between the reward-
based RL algorithm, the P2R interface, the MDP, and the
human comparison oracle are shown in Figure 1.

Definition III.2 (Sample Complexity [13]). An RL algorithm
A is g(ϵ)-robust and has sample complexity C(ϵ, δ) if it
can output an ϵ-optimal policy using C(ϵ, δ) samples with
probability at least 1−δ, even if the reward of each trajectory
τ is perturbed by ϵ(τ) with ∥ϵ(τ)∥∞ ≤ g(ϵ).

Algorithm 1 Preference-to-Reward (P2R) Interface [13]

1: Br ← R, D ← {}, Dhist ← {}
2: Execute the random policy to collect τ0
3: Upon query of trajectory τ :
4: if (r̂, τ) ∈ Dhist then
5: return r̂
6: end if
7: if maxr,r′∈Br (r(τ)− r(τ0))− (r′(τ)− r′(τ0)) < 2ϵ then
8: r̂ ← r(τ)− r(τ0) for an arbitrary r ∈ Br
9: Dhist ← Dhist ∪ (r̂, τ)

10: else
11: Query comparison oracle m times on τ and τ0; com-

pute average comparison result ō
12: r̂ ← argminx∈[−H,H] |σ(x) − ō|, D ← D ∪ (r̂, τ),
Dhist ← Dhist ∪ (r̂, τ)

13: Br ← {r ∈ Br :
∑

(r̂,τ)∈D(r(τ)− r(τ0)− r̂)2 ≤ β}
14: end if
15: return r̂

Fig. 1: Interactions protocol of the P2R interface [13].

B. Human Feedback Attack

In this paper, we consider a setup where there is an attacker
that can intercept the human comparison results o(τ1, τ2) and
manipulate them to õ(τ1, τ2) to mislead the online RLHF
algorithm. The attacker’s goal is to force the online RLHF
algorithm to learn a suboptimal target policy π† while inducing
a small attack cost. Specifically, we attack the P2R interface
described in Section III-A, as shown in Figure 2.

One goal of the attacker is to force the online RLHF
algorithm to learn a target policy π†. For example, it could
be a suboptimal policy that is able to generate useless or even
harmful content in LLMs. Here we consider a deterministic
π†, i.e., {

π†(a†h|sh) = 1

π†(a′h|sh) = 0
∀h ∈ [H],

where a†h is the action taken by the target policy π† for state
sh at time step h, and a′h is other possible action.



Fig. 2: Human feedback attack on online RLHF with P2R.

We assume that our target policy π† is deterministic in the
following analysis, which is reasonable because usually the
attacker has one specific deterministic action to manipulate the
agent to learn at each state [29], [55]–[57]. Note that stochastic
target policy is also studied in [28], [58], which is not the focus
of this paper.

We now define the total variation distance between two poli-
cies π and π

′
as TV (π∥π′) = 1

2

∑
τ∈T |P (τ |π)− P (τ |π′)| .

The total variation distance [59] is used to determine if the
learned policy π̂ is close to the target policy π†. Usually, when
talking about the policies, the total variation distance is defined
with respect to the state-action pair (s, a): TV (π∥π′) =
maxs

∑
a |π(a|s)− π′(a|s)| [60], [61]. However, in our case,

the total variation is defined with respect to the trajectory
τ for the following reasons: 1) The human feedback is
collected based on the comparison of two trajectories; 2) A
different policy means a different π(a|s) for each state-action
pair (s, a), which will further lead to a different probability
distribution of the trajectory τ ; 3) Even two trajectories are
identical, the probability of being sampled by π and π′ could
be different, leading to a different total variation distance.

Another goal of the attacker is to induce a small attack
cost. For example, the attacker would want to reduce the cost
of computational power of deciphering the queries to human
and manipulating the comparison results in LLMs.

Definition III.3 (Global Attack Cost).

Cost =
∑
k

∑
m

1 {õm(τk, τ0) ̸= om(τk, τ0)} ,

where k is the k-th trajectory, m represents the m-th compar-
ison oracle query, õm(τk, τ0) and om(τk, τ0) are the manipu-
lated and original human comparison result respectively.

In the case of human feedback attack, we first propose the
global attack cost, which is defined as the total number of
attacker generating the manipulated human comparison results
when it tries to mislead the online RLHF algorithm during
entire learning process. It is a metric to evaluate the success of
the attack, where a smaller attack cost means that the attacker
could mislead the RLHF algorithm with less effort.

Definition III.4 (Local Attack Cost).

Cost =
∑
m

1 {õm(τ, τ0) ̸= om(τ, τ0)} ,

where m represents the m-th comparison oracle query,
õm(τ, τ0) and om(τ, τ0) are the manipulated and original
human comparison result respectively.

We further propose the local attack cost, which is refined to
represent the number of attacker’s manipulations on the com-
parison results for one trajectory τ sent for human comparison.
Compared with the global attack cost, the local attack cost is
more accurate to evaluate the attacker’s effort in manipulating
the human feedback.

IV. ATTACK

In this paper, the fundamental logic of attacking online
RLHF algorithm is to force the standard RL algorithm to learn
a target policy π† by manipulating the reward observations in
P2R interface and misleading the reward estimation. With the
existence of the attack, the human comparison results õ are
viewed as sampled w.r.t. a new underlying reward r†, instead
of the r∗, and the estimation of underlying reward function
of the environment will be misled. As a result, the agent will
also be misled to learn a target policy π† w.r.t. the manipulated
reward function r† instead of the original reward function r∗.
In the case of Bradley-Terry model, our attack strategy aim to
make the learning process as follows:

r̂att ← õ (τ1, τ2) ∼ Ber
(
σ
(
r†(τ1)− r†(τ2)

))
,

where õ (τ1, τ2) is the human comparison result between τ and
τ0 under attack, and r̂att is the estimation of the underlying
reward function under attack, i.e., r†.

Denote R† as the set of all possible reward functions after
attack R† = {r : (S ×A)H → [0, H]}. Further, denote R†

:=
{r + c|c ∈ [−H, 0], r ∈ R†} as the reward function class
after attack augmented with a bias term. We assume R† ⊆ R
and R† ⊆ R. r† ∈ R†. This assumption ensures that we
can theoretically find an exact representation of the reward
function after attack, and the attacker cannot create a reward
function that is not in the original space.

We hope that the attack could have the following effects:
• The manipulated human feedback õ is seen to be sampled

w.r.t. a new underlying reward r†, instead of the r∗.
• The best policy under the manipulated reward r† is the

target policy π†.
• The RL algorithm will actually learn the target policy π†.
• The attack will only induce a small cost.
Define T as the set of all possible trajectories, and T † as

the set of all trajectories that the agent will experience under
the deterministic target policy π†:

T =
{
τ : τ ∈ (S ×A)H

}
,

T † =
{
τ ∈ T : τ

(
π†,Ph(·|s, a)

)}
.

The new underlying reward function r† after attack is
defined as:

r†(τ) =

{
0 τ ∈ T \ T †

r∗(τ) τ ∈ T †.



Thus, the attack strategy is to manipulate the human com-
parison results to be sampled w.r.t. the new underlying reward
function r†. For the trajectories τ ∈ T †, the manipulated hu-
man comparison results õ (τ, τ0) ∼ Ber (σ (r∗(τ)− r∗(τ0))),
which means that õ (τ, τ0) = o (τ, τ0). For the trajectories
τ ∈ T\T †, the manipulated human comparison results õ (τ, τ0)
will be sampled from a new distribution Ber (σ (−r∗(τ0))).

Note that when the reference trajectory τ0 ∈ T \T †, we will
notice that õ (τ0, τ0) ∼ Ber (σ (−r∗(τ0))), which only holds
when r∗(τ0) = 0 so that the Bradley-Terry model is satisfied.
Thus, we have r∗(τ0) = r†(τ0) no matter τ0 ∈ T † or not. In
summary, we have the following assumption on the problem
sets on which this attack is effective, to ensure the human
comparison model is not violated:

Assumption IV.1 (Baseline Trajectory). If τ0 ∈ T \ T †, then
r∗(τ0) = 0. Otherwise, there is no restriction on r∗(τ0).

In short, our attack strategy is:{
õ (τ, τ0) = o (τ, τ0) τ ∈ T †

õ (τ, τ0) ∼ Ber (σ (−r∗(τ0))) τ ∈ T \ T †.

Here, we present our attack strategy in Algorithm 2.

Algorithm 2 Human Feedback Attack for online RLHF

1: Upon human comparison is needed for τ
2: if τ ∈ T † then
3: õ (τ, τ0) = o (τ, τ0)
4: else
5: õ (τ, τ0) ∼ Ber (σ (−r∗(τ0)))
6: end if
7: Return õ (τ, τ0) for human comparison result

The following theorems provide the theoretical analysis of
the attack strategy.

Theorem IV.1. Under human feedback attack as Algorithm 2,
the deterministic target policy π† is the optimal policy w.r.t.
the manipulated reward function r†:

V π†

r† = max
π

V π
r† = max

π
Eτ∼π

[
r†(τ)

]
.

Theorem IV.1 reveals that with the new underlying reward
function r†, the target policy π† is the optimal policy.

Theorem IV.2. Suppose Assumption III.1 and III.2 hold. Let

ϵ0 = g(ϵ)/2, dR = dimE(R, ϵ0) and m = Θ

(
dR ln(dR/δ)

ϵ20α
2

)
in Algorithm 1. Suppose that A is a g(ϵ)-robust RL al-
gorithm with sample complexity C(ϵ, δ), and is running on
the estimated reward function r̂ returned by Algorithm 1.
Under human feedback attack as Algorithm 2, with probability
1 − δ, A will return a policy π̂ that is ϵ-optimal w.r.t. the
manipulated reward function r†: V π̂

r† ≥ V π†

r† − ϵ.

Theorem IV.2 shows that the RL algorithm will return an
ϵ-optimal policy. However, it is not guaranteed that the RL
algorithm learns the target policy π†, meaning that the returned

policy π̂ is not necessarily close to π† in distribution. Because
ϵ-optimal is only a property from the perspective of value
function, it doesn’t describe the action distribution based on
the current state.

Theorem IV.3. The ϵ-optimal policy π̂ in Theorem IV.2 is
ϵ
H -approximate to the target policy π†:

TV
(
π̂∥π†) ≤ ϵ

H
,

where ϵ is from ϵ-optimal in terms of value function, and H
is the horizon of each trajectory.

Theorem IV.3 shows that the RL algorithm will return a
policy that is close to the target policy π† in distribution, which
means that the attack is successful to manipulate the agent to
learn the target policy π†.

Theorem IV.4. With probability 1 − δ, during the forced
learning process as of Theorem IV.2, when the ϵ

H -approximate
policy π̂ is returned, the attacker induces global attack cost:

Cost ≤ m · C(ϵ, δ).

Corollary IV.4.1. With probability 1− 2δ, during the forced
learning process as of Theorem IV.2, when the ϵ

H -approximate
policy π̂ is returned, the attacker induces global attack cost:

Cost ≤ Õ

(
d2R
ϵ2α2

)
.

Theorem IV.4 provides an upper-bound on the global attack
cost, which is highly dependent on the RLHF algorithm
design. In this case, it depends on how the reward is estimated
and the robustness of the RL algorithm A , and particularly,
we have Corollary IV.4.1 that provides a more detailed upper-
bound on the attack cost.

V. DEFENSE

In practical applications, the attacker may have a limited
budget on the attack cost. In this section, we consider one
particular kind of attackers, of which the local attack cost
(Definition III.4) is limited. For example, in LLMs, even when
one answer is queried multiple times for training, the adversary
may only manipulate a small portion of the comparison results
due to the cost of deciphering the query and perform the
manipulation. Denote C as the maximum local attack cost
allowed by the attacker for each trajectory. We have that∑

m 1 {õm(τ, τ0) ̸= om(τ, τ0)} ≤ C for each trajectory τ .
These attackers with bounded local attack cost could be
defended by particularly designed defense algorithms. On the
contrary, if an attacker has unbounded local attack cost, there’s
no algorithm can defend it, since the human feedbacks can be
arbitrarily changed. We suppose that the defense algorithm has
the knowledge of the upper-bound C of the attacker’s local
attack cost, but not the specific attack strategy.

Here, we propose a defense online RLHF algorithm, named
Robust Preference-to-Reward (R-P2R) interface, which is ro-
bust to human feedback attacks. The R-P2R interface is pre-
sented in Algorithm 3. The interactions between the reward-



based RL algorithm, the R-P2R interface, the MDP, and the
human comparison oracle are shown in Figure 3.

Fig. 3: Interactions protocol of the R-P2R interface.

In the R-P2R interface, when a trajectory τ is queried by the
RL algorithm, R-P2R first checks the history set Dhist to see
if the trajectory has been queried before. If the trajectory has
been queried before, R-P2R will return the estimated reward r̂
directly. Otherwise, R-P2R will check if the confidence set Br
agrees on the reward estimation, i.e., the difference between
two reward functions on τ and τ0 is less than 2ϵ. If Br agrees
on the reward estimation, R-P2R will return an arbitrary reward
estimation r̂ from Br. Otherwise, R-P2R will query the human
comparison oracle m times on τ and τ0 to get the average
comparison result ō, and then estimate the reward function r̂
based on ō. Meanwhile, R-P2R will update the confidence set
Br and history sets D and Dhist.

The intuition of the defense algorithm is to encourage the
RL algorithm’s exploration by raising the reward estimation.
In the R-P2R interface, we introduce a parameter γ, which
raises the average comparison result ō to 1 for an amount
of γ(1 − ō). When the ō is small, which could probably
be caused by the attacker’s manipulation, R-P2R will raise ō
more, leading to larger reward estimation. Otherwise, R-P2R
will raise ō less. Note that, this will not change the relative
order of comparison results for different trajectories. When
the attacker has a small local attack cost budget C, which
means that for each trajectory not too many comparisons are
manipulated, R-P2R will be more conservative on the reward
estimation, otherwise, more aggressive. For the special case
when there’s no attack, R-P2R will reduce to P2R by setting
C = 0.

The following theorems provide the theoretical analysis of
the defense strategy.

Theorem V.1. Assume that the attacker has local attack
cost budget C, i.e.,

∑
m 1 {õm(τ, τ0) ̸= om(τ, τ0)} ≤ C

for each trajectory τ . Suppose Assumption III.1 and III.2
hold. Let ϵ0 = g(ϵ)/2, dR = dimE(R, ϵ0) and m =

max

{
256dR ln(4dR/δ)

ϵ20α
2 ,

32C
√

dR
αϵ0

}
. Suppose that A is an g(ϵ)-

robust RL algorithm with sample complexity C(ϵ, δ). By run-
ning A with R-P2R as in Algorithm 3, we can learn an ϵ-
optimal policy w.r.t. the original underlying reward function,
using C(ϵ, δ) samples and max

{
1024d2

R ln(4dR/δ)

g2(ϵ)α2 ,
64CdR

3/2

αg(ϵ)

}
queries to the comparison oracle with probability 1− 2δ.

Theorem V.1 reveals that with a limited attack cost budget C

Algorithm 3 Robust Preference-to-Reward (R-P2R) Interface

1: Br ← R, D and Dhist ← {}, local attack cost budget C
2: Execute the random policy to collect τ0
3: Upon query of trajectory τ :
4: γ ← C/(C +m)
5: if (r̂, τ) ∈ Dhist then
6: return r̂
7: end if
8: if maxr,r′∈Br

(r(τ)− r(τ0))− (r′(τ)− r′(τ0)) < 2ϵ then
9: r̂ ← r(τ)− r(τ0) for an arbitrary r ∈ Br

10: Dhist ← Dhist ∪ (r̂, τ)
11: else
12: r̂ ← Query-Human-Comparison(τ, τ0, γ,Br,D,Dhist)
13: end if
14: return r̂

Algorithm 4 Query-Human-Comparison (in R-P2R)

1: Passing τ , τ0, γ, Br, D and Dhist as input
2: Query comparison oracle m times on τ and τ0; compute

average comparison result ō
3: o′ ← ō+ γ(1− ō)
4: r̂ ← argminx∈[−H,H] |σ(x)− o′|
5: D ← D ∪ (r̂, τ), Dhist ← Dhist ∪ (r̂, τ)
6: Br ← {r ∈ Br :

∑
(r̂,τ)∈D(r(τ)− r(τ0)− r̂)2 ≤ β}

7: return r̂

on the attacker side, or in other words, a properly chosen and
relatively large enough m on R-P2R side, the RL algorithm
will return an ϵ-optimal policy with high probability.

Particularly, when the local attack cost budget is small, i.e.,

C ≤ 8
√

dR ln(4dR/δ)

ϵ0α
, the human comparisons needed for each

trajectory will be m =
256dR ln(4dR/δ)

ϵ20α
2 = Θ

(
dR ln(dR/δ)

ϵ20α
2

)
.

Moreover, an ϵ-optimal policy can be learned by A with
sample complexity C(ϵ, δ) and query complexity Õ

(
d2
R

α2g(ϵ)2

)
.

Specifically, when there’s no attack, i.e., C = 0, the R-
P2R will reduce to the P2R, and Theorem V.1 will reduce to
Theorem 4 in [13].

VI. EXPERIMENTAL DATA AND RESULTS

A. Attack

We first evaluate the attack strategy in Algorithm 2 on the
online RLHF algorithms. We consider a simple grid world
environment with a 11× 11 grid, where the agent starts from
the center of the grid, i.e., (5, 5). The agent has five possible
actions: up, right, down, left, and stay, with mean reward
0.7, 0.8, 0.2, 0.3, 0.5 respectively. The environment dynamics
are defined as: when the agent takes an action, with probability
p = 0.9, it will move to the desired direction, and with
probability 1 − p = 0.1, it will move up, right, down, left,
or stay with equal probability. The environment is illustrated
in Figure 4. We use tuple (x, y, a) to represent the state-action
pair, where x and y are the coordinates of the agent, and a is
the action taken by the agent. The human comparison is based



Fig. 4: Grid world environment

on the state-action pair to give (x, y, a) preference, i.e., the
trajectory τ is one state-action pair (x, y, a) and has horizon
1. In this environment, the original optimal policy is to move
right for each state (x, y). The baseline trajectory τ0 as the
reference for human comparison is (5, 5, down).

The agent will interact with the environment for K episodes,
starting from the center of the grid for each episode, and within
one episode, the agent will take H = 5 steps. This setting
belongs to tabular MDP of which the state and action space
are finite. The Eluder dimension of the reward function class
is dR = Õ(SA).

We attack the popular online RLHF algorithm P2R in-
terface in Algorithm 1 connected with UCBVI-BF [62] as
the RL algorithm A . UCBVI-BF is a model-based tabular
value iteration algorithm which guarantees that the value
function is an upper confidence bound on the optimal value
function. UCBVI-BF uses Bernstein-Freedman’s concentration
inequality to build the confidence set. It has sample com-
plexity C(ϵ, δ) = O

(
SAH3/ϵ2

)
[13], [63], and is O(ϵ/H)-

robust [13]. Here we set the parameters ϵ = 0.1, δ = 0.01,
g(ϵ) = ϵ/4H = 5 × 10−3, ϵ0 = g(ϵ)/2 = 2.5 × 10−3,
dR = 605, and β = ϵ20/4 = 1.5625 × 10−6. The constant
α is calculated to be α = 0.196 for sigmoid link function
σ(x) = 1

1+e−x and x ∈ [−H,H]. Data is collected from 5
independent runs, and the results are averaged over these runs.

The target policy π† is deterministic, which is to move down
for each state (x, y).

While [13] proposed a novel approach and solid proofs
for online RLHF, i.e., P2R, they did not provide simulation
results to validate its effectiveness. To address this, we will
first demonstrate the functionality of P2R in Figure 5, by
presenting the results of UCBVI-BF running with P2R on
human preferences, compared to running without P2R directly
on rewards. It is shown that the P2R interface can effectively
ensure the learning of optimal policy with human preferences,
and convert a reward-based RL algorithm to a preference-

based RL algorithm.
Then, we evaluate the attack strategy in Algorithm 2 on

the online RLHF P2R interface. Figure 6 shows the results of
UCBVI-BF running with P2R under attack. It is shown that the
agent will learn the target policy π† with manipulated human
preferences. The policy of agent is significantly manipulated
from move right to move down for each state (x, y).

In the simulation setting, the target action under target
policy is down for each state (x, y), while the original optimal
action is right. Figure 7 shows the success of the attack in the
following aspects:

• Without attack, the agent will learn the optimal policy
with human preferences, and the number of times taking
original optimal actions is significantly higher than that
of target actions, as shown in Figure 7a.

• With attack, the agent will instead learn the target policy,
leading to a significantly larger number of times taking
target actions among all trajectories, as shown in Fig-
ure 7b.

• The number of attacks performed, i.e., the number of
trajectories need to be attacked, is sublinear to the total
number of trajectories, as shown in Figure 7c.

Note that, in Figure 7c, we use attack count for y-axis,
because with our attack strategy, the global attack cost is equal
to the attack count multiplied by a constant, which will not
affect the sublinear property.

B. Defense

In this section, we evaluate the robust online RLHF strategy
as in Algorithm 3. We consider the same tabular grid world
environment as in Section VI-A. The agent has the same
horizon and runs the same RL algorithm UCBVI-BF.

The attacker will flip C out of m human comparisons from
1 to 0 for each trajectory τ which does not move down.
Meanwhile, the attacker will not manipulate the comparison
results for those trajectories that move down. Here we set the

attack cost budget C =
8
√

dR ln(4dR/δ)

ϵ0α
, and the comparison

number m =
256dR ln(4dR/δ)

ϵ20α
2 .

Figure 8 shows the results of UCBVI-BF running with R-
P2R under attack. Compared with the heatmaps in Figure 5, it
is shown that the agent can defend against the attack and learn
the optimal policy with human preferences by using R-P2R.
Figure 9 shows the action count for R-P2R under attack, which
can be compared with Figure 7a, the result of P2R without
attack. Table I further provides the numerical results of the
optimal actions taken for 2.5× 107 trajectories when running
R-P2R under attack and P2R without attack. The simulation
shows that the agent can learn the optimal policy with human
preferences by using R-P2R even under attack. The robust
online RLHF strategy R-P2R is successful in defending against
the attack.

VII. CONCLUSION

In this paper, we have proposed a novel adversarial human
feedback attack strategy on online RLHF algorithms. We have



(a) UCBVI-BF with P2R on human preferences

(b) UCBVI-BF on rewards

Fig. 5: UCBVI-BF with and without P2R (no attack)

Fig. 6: UCBVI-BF with P2R under attack

Case Optimal Actions Count Percentage (%)
Attack R-P2R 24,429,701 97.72
No Attack P2R 24,429,805 97.72

TABLE I: Optimal actions taken for 2.5 × 107 trajectories
when running R-P2R under attack and P2R without attack.

proved that our attack method is successful in manipulating
the agent’s learning process by providing misleading human
preferences. We have also proposed a robust online RLHF
strategy, named R-P2R interface, which is able to defend
against any human feedback attacks whose local attack cost is
bounded. The experimental results have verified our theoretical
analysis and demonstrated the effectiveness of the proposed
attack and defense strategy.
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APPENDIX

A. Proof of Theorem IV.1

Lemma A.1. Denote T † as the set of all possible trajectories
τ generated by the target policy π†, with the given transition
of MDP. If the target policy is deterministic, then, for any
trajectory τ ∈ T †, we have: P

(
τ |π†) ≥ P (τ |π) ∀π.

Proof. Denote τ : (s1, a1, s2, . . . , sH , aH , sH+1) as an ar-
bitrary trajectory in T †, for any possible policy π and a
deterministic target policy π†, we have:

P
(
τ |π†)

= P (s1)π
†(a1|s1)P(s2|s1, a1) . . . π†(aH |sH)P(sH+1|sH , aH)

= P (s1)P(s2|s1, a1) . . .P(sH+1|sH , aH)

≥ P (s1)π(a1|s1)P(s2|s1, a1) . . . π(aH |sH)P(sH+1|sH , aH)

= P (τ |π) ,



where P represents the transition probability of MDP, and π
represents the policy.

Proof of Theorem IV.1. When we consider the trajectory re-
ward function r : (S ×A)H → [0, H], the value function of
a policy π is defined as V π

r = Eτ∼π [r(τ)].
Under attack, for any policy π, we have:

V π
r† =

∑
τ∈T

P (τ |π)r†(τ)

=
∑
τ∈T †

P (τ |π)r†(τ) +
∑

τ∈T\T †

P (τ |π)r†(τ)

=
∑
τ∈T †

P (τ |π)r†(τ) ≤
∑
τ∈T †

P (τ |π†)r†(τ) = V π†

r† ,

where the inequality is due to Lemma A.1.

B. Proof of Theorem IV.2

The proof follows the logic of Section B.3 in [13]. The
basic idea is that the RLHF algorithm will see the manipulated
reward function r† as the true underlying reward function, and
sometimes the trajectories will be split into two parts T † and
T \ T † for discussion.

Lemma A.2. Under human feedback attack as Algorithm 2,

in P2R as Algorithm 1, with m = Θ

(
ln(1/δ′)
α2ϵ′2

)
, for each τ

such that the comparison oracle is queried, with probability
1− δ′, ∣∣r̂(τ)− (r†(τ)− r† (τ0)

)∣∣ ≤ ϵ′.

Proof. For those τ ∈ T †, we have õ(τ, τ0) = o(τ, τ0), and
õ ∼ Ber

(
σ
(
r†(τ)− r†(τ0)

))
= Ber (σ (r∗(τ)− r∗(τ0))).

By Hoeffding’s inequality, with probability 1−δ′, we have:∣∣ō− σ
(
r†(τ)− r†(τ0)

)∣∣ ≤√ ln (2/δ′)

m
.

Since r̂ ← argminx∈[−H,H] |σ(x)− ō|, we have:

|σ(r̂(τ))− ō| ≤
∣∣σ (r†(τ)− r† (τ0)

)
− ō
∣∣ ≤√ ln (2/δ′)

m

=⇒
∣∣σ(r̂(τ))− σ

(
r†(τ)− r† (τ0)

)∣∣ ≤ 2

√
ln (2/δ′)

m
.

With Assumption III.1, we have:∣∣r̂(τ)− (r†(τ)− r† (τ0)
)∣∣

≤ 1

α
·
∣∣σ(r̂(τ))− σ

(
r†(τ)− r† (τ0)

)∣∣
≤ 2

α

√
ln (2/δ′)

m
≤ ϵ′.

Similarly, for those τ ∈ T \ T †, we have õ(τ, τ0) ∼
Ber

(
σ
(
−r†(τ0)

))
= Ber (σ (−r∗(τ0))). By Hoeffding’s in-

equality, with probability 1− δ′, we have:∣∣ō− σ
(
r†(τ)− r†(τ0)

)∣∣ = |ō− σ (−r∗(τ0))| ≤
√

ln (2/δ′)

m
.

Thus, we have
∣∣r̂(τ)− (r†(τ)− r† (τ0)

)∣∣ ≤ ϵ′.

Lemma A.3. Under human feedback attack as Algorithm 2,
in P2R as Algorithm 1, set m = Θ

(
d ln(d/δ)

ϵ20α
2

)
and β =

ϵ20
4 .

With probability 1 − δ, the number of samples on which the
comparison oracle is queried is at most dimE

(
R†

, ϵ0

)
.

Proof. The proof of Lemma B.6. in [13] holds with the
attacked human feedback, by replacing the original underlying
reward function r∗ with the manipulated reward function r†,
and the original reward function space R with the manipulated
reward function space R†

. Some clarifications can be found
in the proof of Lemma A.8.

Lemma A.4. Let R† ⊆ R be two function classes of
(S ×A)H → [−H,H]. Then for any ϵ > 0, we have:
dimE

(
R†

, ϵ
)
≤ dimE

(
R, ϵ

)
.

Proof. Suppose, for contradiction, that dimE

(
R†

, ϵ
)

>

dimE

(
R, ϵ

)
.

Let dimE

(
R, ϵ

)
= D. By the assumption, there is an ϵ′ ≥ ϵ

and a sequence {τ1, τ2, . . . , τD+1} that is ϵ′-independent with
respect to R†

. This means for each i ∈ [D + 1], there exists
f†
i , g

†
i ∈ R

†
such that:√√√√i−1∑

j=1

(
f†
i (τj)− g†i (τj)

)2
≤ ϵ′ and

∣∣∣f†
i (τi)− g†i (τi)

∣∣∣ ≥ ϵ′.

Since R† ⊆ R, we have f†
i , g

†
i ∈ R.

Consider the same sequence {τ1, τ2, . . . , τD+1}, and the
same pairs

(
f†
i , g

†
i

)
but now regarded as members of R.

For each i ∈ [D + 1], because f†
i , g

†
i ∈ R, we have the

same inequalities:√√√√i−1∑
j=1

(
f†
i (τj)− g†i (τj)

)2
≤ ϵ′ and

∣∣∣f†
i (τi)− g†i (τi)

∣∣∣ ≥ ϵ′.

Thus, the sequence {τ1, τ2, . . . , τD+1} also forms an ϵ′-
independent sequence of length D + 1 with respect to R.

By the definition of dimE

(
R, ϵ

)
, the longest possible ϵ-

independent sequence in R is of length D. However, we found
a sequence of length D+1, which contradicts the maximality
of D. Therefore, we have dimE

(
R†

, ϵ
)
≤ dimE

(
R, ϵ

)
.

Lemma A.5. Under human feedback attack as Algorithm 2,
with probability 1 − δ, r† ∈ Br throughout the execution of
P2R as Algorithm 1.

Lemma A.6. Under human feedback attack as Algorithm 2,
with probability 1 − δ, for each τ in Line 3 of P2R as
Algorithm 1, the returned reward r̂ satisfies∣∣r̂ − (r†(τ)− r† (τ0)

)∣∣ ≤ 2ϵ0.

Proof. The proof of Lemma B.7 and B.8 in [13] can be applied
to Lemma A.5 and A.6, by replacing the original reward
function r∗ with the manipulated reward function r†.



Proof of Theorem IV.2. Choose ϵ0 := g(ϵ)/2, β =
ϵ20
4 and

m = Θ

(
dR ln(dR/δ)

ϵ20α
2

)
. By Lemma A.6, the reward estimation

r̂ is g(ϵ)-close to r̂† = r†(τ)−r†(τ0). By definition of sample
complexity, with probability 1 − δ, the policy π̂ returned by
the RL algorithm running on the estimated reward function r̂
is ϵ-optimal for r̂†, which implies that it is also ϵ-optimal for
the manipulated reward function r†.

C. Proof of Theorem IV.3

Proof. From Theorem IV.2, we have V π̂
r† ≥ V π†

r† − ϵ. By the
definition of value function of a policy, it is equivalent to:∑

τ∈T

P (τ |π̂)r†(τ) ≥
∑
τ∈T

P (τ |π†)r†(τ)− ϵ

=⇒
∑
τ∈T

(
P (τ |π†)− P (τ |π̂)

)
r†(τ) ≤ ϵ.

Since for all τ ∈ T \ T †, r†(τ) = 0, it follows that:∑
τ∈T †

(
P (τ |π†)− P (τ |π̂)

)
r†(τ) ≤ ϵ.

With the assumption of deterministic target policy π†, we
have for all τ : (s1, a1, s2, . . . , sH , aH , sH+1) ∈ T †:

P (τ |π†) = P (s1)P(s2|s1, a1) . . .P(sH+1|sH , aH),

P (τ |π̂)
= P (s1)π̂(a1|s1)P(s2|s1, a1) . . . π̂(aH |sH)P(sH+1|sH , aH)

= P (τ |π†) · π̂(τ),

where π̂(τ) =
∏H

h=1 π̂(ah|sh).
Thus, we have:

∑
τ∈T † P (τ |π†)r†(τ)(1− π̂(τ)) ≤ ϵ, where

the r†(τ) = r∗(τ) ∈ [0, H] for all possible τ ∼ π†. Since
this relation holds for all kind of original underlying reward
function r∗, it must hold for the case when r∗(τ) = H for
all τ ∈ T † and maximizes the left side of the inequality.
Therefore, we have:

∑
τ∈T † P (τ |π†)(1− π̂(τ)) ≤ ϵ

H .
Moreover, since

∑
τ∈T † P (τ |π̂)+

∑
τ∈T\T † P (τ |π̂) = 1 =∑

τ∈T † P (τ |π†), thus:∑
τ∈T\T †

P (τ |π̂) =
∑
τ∈T †

P (τ |π†)− P (τ |π̂)

=
∑
τ∈T †

P (τ |π†)(1− π̂(τ)) ≤ ϵ

H
.

The total variation distance between policies π̂ and π† is:

TV
(
π̂∥π†) = 1

2

∑
τ

∣∣P (τ |π̂)− P (τ |π†)
∣∣

=
1

2

∑
τ∈T †

∣∣P (τ |π̂)− P (τ |π†)
∣∣+ ∑

τ∈T\T †

∣∣P (τ |π̂)− P (τ |π†)
∣∣

=
1

2

∑
τ∈T †

P (τ |π†)(1− π̂(τ)) +
∑

τ∈T\T †

P (τ |π̂)

 ≤ ϵ

H
.

D. Proof of Theorem IV.4 and Corollary IV.4.1

Proof of Theorem IV.4. Since A is a g(ϵ)-robust RL algo-
rithm with sample complexity C(ϵ, δ), the number of all
samples / episodes / trajectories until it learns the policy π̂
is bounded by C(ϵ, δ). m represents the number of human
comparison queries for each trajectory. Because the attacker
will generate the manipulated human comparison results õ for
each comparison in m queries whenever the episode trajectory
τ ∈ T \T †, which may not be the case for all C(ϵ, δ) samples.
Thus, the attack cost is at most C(ϵ, δ) ·m.

Proof of Corollary IV.4. By Lemma A.3 and A.4, with prob-
ability 1−δ, the number of samples on which the comparison
oracle is queried is at most dimE

(
R, ϵ0

)
. With the attack

design, we know that not all these samples are in T \ T †,
meaning the attacker will not generate the manipulated hu-
man comparison results õ for all these samples. Thus, the
attack cost is at most dimE

(
R, ϵ0

)
· m ≤ Õ

(
d2
R

ϵ2α2

)
. By

Theorem IV.2, with probability 1 − δ, the RL algorithm will
return an ϵ-optimal policy π̂. The probability 1 − 2δ is from
union bound.

E. Proof of Theorem V.1

Lemma A.7. With m = max
{

16 ln(2/δ′)
α2ϵ′2 , 8C

αϵ′

}
, for each

τ such that the comparison oracle is queried in R-P2R as
Algorithm 4, with probability 1− δ′,

|r̂(τ)− (r∗(τ)− r∗(τ0))| ≤ ϵ′.

Proof. Denote the average comparison result in P2R and R-
P2R before attack as ō, and the corresponding one after attack
as ō†. Denote the new update rule in R-P2R (Algorithm 4 line
3) before attack as o′ = γ + (1− γ)ō, and the corresponding
one after attack as o† = γ+(1− γ)ō†. Denote the underlying
reward function before attack as r∗, and the manipulated
reward function after attack as r†. The notations before and
after attack are summarized as follows:

ō→ ō†

o′ = γ + (1− γ)ō→ o† = γ + (1− γ)ō†

r∗ → r†.

Suppose that the comparison oracle is queried for trajectory
τ . As commonly assumed in the literature, the human feed-
backs (o-s) are sampled from a Bernoulli distribution with
parameter σ(r∗(τ)− r∗(τ0)). By Hoeffding’s inequality, with
probability 1− δ′, we have:

|ō− σ(r∗(τ)− r∗(τ0))| ≤
√

ln(2/δ′)

m
,

∣∣ō† − σ(r†(τ)− r†(τ0))
∣∣ ≤√ ln(2/δ′)

m
.

With the existence of the attack, we have:

r̂(τ) = argminx∈[−H,H]

∣∣σ(x)− o†
∣∣

= argminx∈[−H,H]

∣∣σ(x)− γ − (1− γ)ō†
∣∣ .



Thus, we have:∣∣σ(r̂(τ))− γ − (1− γ)ō†
∣∣

≤
∣∣σ(r∗(τ)− r∗(τ0))− γ − (1− γ)ō†

∣∣
=
∣∣σ(r∗(τ)− r∗(τ0))− ō† − γ + γō†

∣∣
=
∣∣σ(r∗(τ)− r∗(τ0))− ō+ ō− ō† − γ + γō†

∣∣
≤ |σ(r∗(τ)− r∗(τ0))− ō|+

∣∣ō− ō† − γ + γō†
∣∣ .

Also, we have
∣∣γō† − γ

∣∣ ≤ γ and:

∣∣ō− ō†
∣∣ = ∣∣∣∣∣ 1m

m∑
i=1

oi −
1

m

m∑
i=1

õi

∣∣∣∣∣
≤ 1

m

m∑
i=1

|oi − õi| ≤
1

m

m∑
i=1

1(oi ̸= õi) ≤
C

m
.

Thus, with the update rule of γ, and k = 1, 2, . . . , we have:∣∣σ(r̂(τ))− γ − (1− γ)ō†
∣∣

≤ |σ(r∗(τ)− r∗(τ0))− ō|+
∣∣ō− ō† − γ + γō†

∣∣
≤
√

ln(2/δ′)

m
+

C

m
+

C

C + km

≤
√

ln(2/δ′)

m
+

2C

m
.

It follows that:

|σ(r̂(τ))− σ(r∗(τ)− r∗(τ0))| ≤ 2

√
ln(2/δ′)

m
+

4C

m
.

By Assumption III.1, we have:

|r̂(τ)− (r∗(τ)− r∗(τ0))| ≤
1

α
|σ(r̂(τ))− σ(r∗(τ)− r∗(τ0))|

≤ 2

α

√
ln(2/δ′)

m
+

4C

αm
.

To make the right side of the inequality less than ϵ′, we
could pick m such that:

2

α

√
ln(2/δ′)

m
≤ ϵ′

2
and

4C

αm
≤ ϵ′

2
.

In other words, we could pick m = max
{

16 ln(2/δ′)
α2ϵ′2 , 8C

αϵ′

}
,

and then with probability 1 − δ′ we have:
|r̂(τ)− (r∗(τ)− r∗(τ0))| ≤ ϵ′.

Lemma A.8. In R-P2R as Algorithm 3, set m =

max
{

256d ln(4d/δ)
ϵ20α

2 , 32C
√
d

αϵ0

}
, and β =

ϵ20
4 . With probability

1− δ, the number of samples on which the comparison oracle
is queried is at most dimE

(
R, ϵ0

)
.

Proof. Note that the R-P2R does not know what will be the
reward function space after the attack, i.e., R†

. It will search
within the original reward function space R. The proof of
Lemma B.6. in [13] can be applied here. However, it needs to
be clarified that the use of Lemma A.7 in the proof is through
choose ϵ′ = ϵ0

4
√
d

and δ′ = δ
2d . Union bound is used to achieve

the probability 1− δ.

Thus, with probability 1 − δ, ∀k ≤ min(K, 2d), |r̂k −
r̃∗(τk)| ≤ ϵ0

4
√
d

(by Lemma A.7). Then for any i ≤ K,∑
k≤i

(r̃i(τk)− r̃∗(τk))
2 ≤

∑
k≤i

(r̃i(τk)− r̂k)
2

+ 2
∑
k≤i

|r̃i(τk)− r̂k| |r̂k − r̃∗(τk)|

+
∑
k≤i

(r̂k − r̃∗(τk))
2

≤ β + 2
√
Kβ

ϵ0

4
√
d
+K

(
ϵ20
4d

)2

≤ ϵ20,

where the
√
Kβ term is from Cauchy-Schwarz inequality:∑

k≤i

|r̃i(τk)− r̂k| · 1

2

≤

∑
k≤i

12

 ·
∑

k≤i

|r̃i(τk)− r̂k|2


≤ K ·
∑
k≤i

(r̃i(τk)− r̂k)
2 ≤ Kβ.

Lemma A.9. With probability 1− δ, r∗ ∈ Br throughout the
execution of R-P2R as Algorithm 3.

Proof. By Lemma A.7 and Lemma A.8, with probability 1−δ,
at every step of R-P2R, each reward estimation r̂ is close to
r∗(τ)− r∗(τ0), thus:∑

(r̂,τ)∈D

(r̂ − (r∗(τ)− r∗(τ0)))
2 ≤ d

(
ϵ0

4
√
d

)2

≤ β.

Lemma A.10. With probability 1− δ, for each τ in Line 3 of
R-P2R as Algorithm 3, the returned reward r̂ satisfies:

|r̂ − (r∗(τ)− r∗(τ0))| ≤ 2ϵ0.

Proof. The proof of Lemma B.8. in [13] holds with
Lemma A.9.

Proof of Theorem V.1. Set ϵ0 = g(ϵ)/2, β =
ϵ20
4 and

m = max

{
256dR ln(4dR/δ)

ϵ20α
2 ,

32C
√

dR
αϵ0

}
. By Lemma A.10,

with probability 1 − δ, the reward estimation r̂ is g(ϵ)-close
to r∗(τ) − r∗(τ0). By definition of sample complexity, with
probability 1 − δ, the policy π̂ returned by the RL algorithm
running on the estimated reward function r̂ is ϵ-optimal for
r∗(τ) − r∗(τ0), and thus it is also ϵ-optimal for the original
reward function r∗. The probability 1−2δ is from union bound.

Since the RL algorithm has a sample complexity of C(ϵ, δ),
the total number of samples is at most C(ϵ, δ) · m. By
Lemma A.8, the number of human comparison queries is at
most:

dimE

(
R, ϵ0

)
·m ≤ max

{
1024d2R ln(4dR/δ)

g2(ϵ)α2
,
64CdR

3/2

αg(ϵ)

}
.
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