
On Generating Multiple Keys with Restricted Public
Discussion

Wenwen Tu, Mario Goldenbaum, Lifeng Lai, and H. Vincent Poor

Abstract—In this paper, the problem of simultaneously gener-
ating multiple keys in a model where the key generating parties
have restricted access to public discussions is considered. This
model is a cascade of a source model and a channel model.
It consists of four terminals, i.e., Alice, Bob, Carol and Eve.
Alice and Bob are connected via a noiseless channel while Bob
connects with Carol and Eve via a wiretap channel. There is no
direct link connecting Alice with Carol or Eve, hence Carol and
Eve do not have direct access to the discussion between Alice
and Bob. Alice wishes to share a secret key with Carol while
Bob wishes to share another independent secret key with Carol.
This model incorporates many classical models as special cases,
and we provide inner and outer bounds on the corresponding
secret-key capacity region. And under some important special
cases where certain Markov chain relationships hold, we provide
inner and outer bounds that match, thus fully characterize the
secret-key capacity region.

Index Terms—Correlated sources, multiple key generation,
public discussion, source-channel model, wiretap channel.

I. INTRODUCTION

Enabling multiple terminals to generate a common secret
key plays an important role in information-theoretic security
[2]–[6]. Recently, as an important and natural extension,
the problem of simultaneously generating multiple keys has
received considerable attention [7]–[11].

The paradigm of secret key generation via public discussion
is typically investigated either from a source or a channel
perspective [12]–[18]. Under the source model, the legitimate
terminals have access to correlated random sequences, based
on which they are able to share a secret key via exchang-
ing messages over a public noiseless channel that is fully
accessible to an eavesdropper [2], [3], [5], [6]. While under
the channel model, the legitimate terminals typically have no
access to correlated random sequences, but they can exploit
differences in channel statistics to generate a secret key [4],
[19]–[21].
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In addition, it is commonly assumed in most of the existing
works on key generation that the public discussion is acces-
sible to all terminals. This assumption simplifies the model
and facilitates the derivation of exact key capacity results.
However, in practice, this assumption may not always be valid.
For example, in key generation for wireless networks [16],
[22], [23], the public discussion needs to be carried out through
wireless channels. Hence, users that are far away from the
transmitter may not be able to receive the public discussion
directly.

In our recent works [24] and [25], we made an initial
attempt to understand the key generation problem in a joint
source-channel model without the above-mentioned assump-
tion. In the considered model therein, there are three legitimate
terminals (say Alice, Bob and Carol), where Alice and Bob
are connected via a noiseless link. Bob and Carol, on the other
hand, are connected via a wiretap channel in the presence of
an eavesdropper Eve. There is no direct link between Alice
and Carol, thus the discussion between Alice and Bob is not
accessible to Carol. But we assumed Eve could observe the
messages exchanged over the noiseless link for the sake of
strong secrecy. In this model, Alice and Bob would like to
share two individual secret keys with Carol, and we provided
a single-letter characterization of the corresponding secret-key
capacity region.

However, there are many practical scenarios in which it is
practically very difficult for Eve to overhear the discussion
over the noiseless link between Alice and Bob (e.g., a fiber
optical cable). Thus, in this paper we make a nontrivial
extension to the model considered in [24] and [25] by further
restricting Eve to not having access to the discussion channel
between Alice and Bob. More specifically, Alice and Bob wish
to agree with Carol on two individual secret keys. Alice and
Bob are connected via a noiseless channel while Bob connects
with Carol in the presence of Eve via a wiretap channel. There
is no direct link connecting Alice with Carol or Eve, hence
Carol and Eve do not have direct access to the discussion
between Alice and Bob. Under this model, we investigate the
corresponding secret-key capacity region of these two keys.

To facilitate understanding, we first study the case when Eve
has no side information, and we provided both an inner and an
outer bounds on the secret-key capacity region. We show that
these two bounds match if a certain Markov chain relationship
holds. Compared with the result obtained in [25], the capacity
region is enlarged. This is mainly due to the fact that Eve
cannot observe the discussion between Alice and Bob. We
design a scheme to show that Alice is able to transfer partial



secret key information to Bob. Utilizing this secret information
from Alice, Bob is able to generate a key at a larger rate. In
other words, the rate of the key shared by Bob and Carol can
be increased by partially sacrificing the rate of the key shared
by Alice and Carol. We then consider the more general case
in which Eve has side information, and also provide inner and
outer bounds on the corresponding secret-key capacity region.
For the important special case that the sources and channels
fulfill two specific Markov chain conditions, we refine these
two bounds and fully characterize the corresponding capacity
region.

As mentioned above, this paper is related to two of our
recent works [1], [25]. [1] is a conference version of this paper:
it presents the results of the special case when Eve has no side
information. We extend the results in [1] by adding the results
of the more general and interesting case where Eve has side
information in this journal version. Furthermore, the model
studied in this paper is related to the model considered in
[25]. The main difference is that, in this paper, we assume that
Eve can only observe the output of the wiretap channel, while
Eve is also allowed to have access to the public discussion
between Alice and Bob in [25]. This model difference makes
the problem considered in this paper different from and
significantly more challenging than the problem considered
in [25].

The remainder of the paper is organized as follows. The
problem setup is described in Section II. In Section III, we
present our main results while the corresponding proofs are
provided in Appendices. Finally, we offer our concluding
remarks in Section IV.

II. PROBLEM SETUP

Two terminals, Alice and Bob wish to share with terminal
Carol two independent secret keys K1 and K2. K1 is required
to be secure from Bob while K2 has to be secure from
Alice. Furthermore, (K1,K2) needs to be kept confidential
from an eavesdropper Eve. Alice and Bob are connected via
a noiseless channel while Bob is connected with Carol via a
wiretap channel in the presence of Eve. The wiretap channel
is modeled as PY Z|X(Y,Z|X ), where X ,Y and Z denote
the channel input and output alphabets. However, there are no
direct links between Alice, Carol, and Eve. The system model
is illustrated in Fig. 1.

The link between Alice and Bob is two-way, and they
are allowed to exchange messages over it. The assumption
that there is no direct link between Alice, Carol and Eve
above means that Carol and Eve do not have access to
the discussion occurred between Alice and Bob. This is the
main difference between our work and the existing work that
assume every party has access to the discussion. On the other
hand, the wiretap channel between Bob and Carol is one-
way. Since Eve can only observe the output of the wiretap
channel, the messages exchanged over the noiseless link are
secure from Eve. Alice, Carol and Eve are assumed to have
access to correlated sequences UN , V N and WN in advance,
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Fig. 1. System model.

and (UN , V N ,WN ) are generated according to a given joint
probability mass function

PUNV NWN (uN , vN , wN ) =

N∏
i=1

PUVW (ui, vi, wi), (1)

where U, V and W take values from the alphabets U ,V and
W , respectively.

At the beginning of communication, Alice generates local
randomness FA and Bob generates FB . Then, Alice and
Bob take turns to exchange messages with each other. The
transmitted messages from Alice are functions of UN , FA and
all previously received messages from Bob (when starting the
communication it is ∅), and the transmitted messages from
Bob are generated in a similar manner. After the discussion
between Alice and Bob ends, Bob transmits a sequence Xn

over the wiretap channel that is a function of F and FB , where
F summarizes all the messages exchanged between Alice and
Bob. On the other hand, at the end of the discussion Alice
computes K1 as a function of (UN , FA,F), Bob generates
K2 as a function of (FB ,F) and Carol generates two keys
K ′1 and K ′2 as functions of (Y n, V N ).

Definition 1. A rate-pair (R1, R2) is said to be achievable if
for any given ε > 0 there exists an n(ε) ∈ N such that for all
n ≥ n(ε) there exists a scheme that fulfills

Pr{Ki 6= K ′i} ≤ ε, i = 1, 2, (2)
1

n
I(K1;FB ,F) ≤ ε, (3)

1

n
I(K2;U

N , FA,F) ≤ ε, (4)

1

n
I(K1,K2;Z

n,WN ) ≤ ε, (5)

1

n
H(Ki) ≥

1

n
log |Ki| − ε, i = 1, 2, (6)

1

n
H(K1) ≥ R1 − ε,

1

n
H(K2) ≥ R2 − ε. (7)

Here, (2) indicates that the keys generated at the corre-
sponding key sharing parties should be the same with high
probability. Furthermore, (3) means that the generated key K1

is secure from Bob, (4) implies that the generated key K2 is
secure from Alice and K1 and K2 are independent, and (5)
implies that (K1,K2) should be jointly secure from Eve. In
addition, (6) requires that the generated keys should be nearly
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uniformly distributed, and (7) indicates that R1 and R2 are
two achievable key rates of K1 and K2, respectively.

Definition 2. The secret-key capacity region C is defined as

C ,
{
(R1, R2) ∈ R2

+ | (R1, R2) is achievable
}
,

and
C1 , sup

(R1,R2)∈C
R1, C2 , sup

(R1,R2)∈C
R2.

In the following, our goal is to find a single-letter charac-
terization of the secret-key capacity C.

III. MAIN RESULTS

In this section, we first focus on the case when Eve
has no side information, i.e. W = ∅. Then, we consider
the case when Eve has side information. In both cases, we
provide corresponding inner and outer bounds on the secret-
key capacity region. In the case with no side information, we
show that the inner bound and the outer bound match if a
certain Markov chain condition holds; and in the case with side
information, we refine the obtained outer bound, providing a
matching characterization on the capacity region if two certain
Markov chain conditions hold. For notational convenience, we
let β , n/N .

A. No Side Information at Eve

For auxiliary random variables S1, S2 and T2 satisfying
S1 → U → V and T2 → S2 → X → (Y,Z), we define

Ro1(PS1|U , PT2|S2
PS2X) ,

{
(R1, R2) ∈ R2

+ :

R1 ≤
1

β
I(S1;V ), (8)

R2 ≤ I(S2;Y )− 1

β
[I(S1;U)− I(S1;V )], (9)

R1+R2≤
1

β
I(S1;V )+

[
I(S2;Y |T2)−I(S2;Z|T2)

]+}
.(10)

Note that (9) implies that [I(S1;U)− I(S1;V )] ≤ βI(S2;Y ).
In addition, we define

Ro2(PS1|U , PX) ,
{
(R1, R2) ∈ R2

+ :

R1 ≤
1

β
I(S1;V ), (11)

R2 ≤ I(X;Y )− 1

β
[I(S1;U)− I(S1;V )], (12)

R1 +R2 ≤
1

β
I(S1;V ) + I(X;Y |Z)

}
. (13)

In this case, we denote the secret-key capacity region by Co,
and Co1 and Co2 are denoted in a similar manner. Then, we
have the following result.

Theorem 1. Ro1(PS1|U , PT2|S2
PS2X) is an achievable secret-

key rate region, and an inner bound on Co is given by

Roin =
⋃

PS1|U ,PT2|S2
PS2X

Ro1(PS1|U , PT2|S2
PS2X). (14)

Proof: (Outline) We will generate 2N(I(S1;U)+ε) se-
quences UN at Alice’s side, and ask Bob to use partial
sequence of Xn to convey Alice’s message to Carol, so
that Carol can share a common secret randomness of rate
I(S1;V )−ε, with Alice. Then, Alice splits the common secret
randomness into two parts: one as the secret key K1, and the
other one is released to Bob so that Bob can use it to generate
a key with rate larger than I(S2;Y |T2) − I(S2;Z|T2) − ε,
with Carol (note that I(S2;Y |T2) − I(S2;Z|T2) − ε is the
largest rate Bob can share with Carol if no secret randomness
is provided to Bob, given PT2|S2

PS2X ). Meanwhile, Bob will
use a distillation method so that the generated key K2 is also
independent with the secret randomness provided by Alice.
For detailed proof, please refer to Appendix A.

Theorem 1 implies that

Co2 ≥ max
PS1|U,

PT2|S2
PS2X

min
{
I(S2;Y )− 1

β
[I(S1;U)− I(S1;V )],

1

β
I(S1;V ) + I(S2;Y |T2)− I(S2;Z|T2)

}
. (15)

The right-hand side of (15) is larger than max
PS2X

{I(S2;Y ) −

I(S2;Z)}, which is obvious by setting S1 = ∅ and T2 = ∅.
This result indicates that the existence of (UN , V N ) indeed
helps Bob in increasing the rate of K2, which is in contrast to
[24, Cor. 2]. The main reason is that, in the model considered
in this paper, Eve cannot observe the discussion between Alice
and Bob, and hence Alice can send partial information of UN

to Bob, which Bob can use to further confuse Eve and increase
the key rate of K2.

Theorem 2. An outer bound on Co is given by

Roout =
⋃

PS1|U ,PX

Ro2(PS1|U , PX). (16)

And if the wiretap channel is degraded (i.e., X → Y → Z
forms a Markov chain in that order), Co is given by

Co =
⋃

PS1|U ,PX

Ro2(PS1|U , PX). (17)

Proof: The proof of the first part (16) is postponed to
Appendix B. Here, we only show the second part, i.e., the
proof of (17).

It suffices to show that given any (PS1|U , PX),
Ro2(PS1|U , PX) is achievable under the Markov chain
X → Y → Z.

By setting S2 = X and T2 = ∅, we have that (12) is
equivalent to (9), and

I(S2;Y |T2)− I(S2;Z|T2) = I(X;Y )− I(X;Z)

= I(X;Y |Z),

which indicates that (10) and (13) are equivalent. Thus

Ro2(PM |U , PX) = Ro1(PM |U , PX),

and Ro1(PM |U , PX) is achievable according to Theorem 1.
This completes the proof of the second part.
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From Theorem 2, we can conclude that Co2 is upper-bounded
by

Co2 ≤ max
PS1|U ,PX

min
{ 1

β
I(S1;V ) + I(X;Y |Z),

I(X;Y )− 1

β
[I(S1;U)− I(S1;V )]

}
(18)

in general. We have the following corollary.

Corollary 1. If the wiretap channel between Bob, Carol and
Eve is degraded (i.e., X → Y → Z), then

Co2 = max
PS1|U ,PX

min
{ 1

β
I(S1;V ) + I(X;Y |Z),

I(X;Y )− 1

β
[I(S1;U)− I(S1;V )]

}
. (19)

Furthermore, taking both Theorems 1 and 2 into consider-
ation, we have the following corollary.

Corollary 2.

Co1 = max
S1−U−V

1

β
I(S1;V )

s.t. I(S1;U)− I(S1;V ) ≤ max
PX

βI(X;Y ). (20)

Corollary 2 shows that if we only focus on K1, the channel
between Alice and Carol can be viewed as a noiseless channel
with rate constraint R = max

PX

βI(X;Y ), in which case the

result is consistent with [24, Cor. 1].

B. Eve Has Side Information

In this subsection, we consider the more general case when
Eve has side information that is correlated with UN and V N ,
i.e., W 6= ∅.

For auxiliary random variables S1, T1, S2 and T2 satisfying
T1 → S1 → U → (V,W ) and T2 → S2 → X → (Y,Z), we
define

R1(PT1|S1
PS1|U , PT2|S2

PS2X) ,
{
(R1, R2) ∈ R2

+ :

R1 ≤
1

β
I(S1;V ), (21)

R1 ≤
1

β
[I(S1;U)− I(S1;W )] (22)

R2 ≤ I(S2;Y )− 1

β
[I(S1;U)− I(S1;V )], (23)

R1+R2≤
1

β
[I(S1;V |T1)− I(S1;W |T1)]+

+
[
I(S2;Y |T2)−I(S2;Z|T2)

]+}
, (24)

and

R2(PT1|S1
PS1|U , PX) ,

{
(R1, R2) ∈ R2

+ :

R1 ≤
1

β
I(S1;V ), (25)

R1 ≤
1

β
H(U |W ), (26)

R2 ≤ I(X;Y )− 1

β
[I(S1;U)− I(S1;V )], (27)

R1 +R2 ≤
1

β
[I(S1;V |T1)− I(S1;W |T1)]+

+I(X;Y |Z)
}
. (28)

Then, we have the following result.

Theorem 3. R1(PT1|S1
PS1|U , PT2|S2

PS2X) is an achievable
secret-key rate region, and an inner bound on C is given by

Rin =
⋃

PT1|S1
PS1|U,

PT2|S2
PS2X

R1(PT1|S1
PS1|U , PT2|S2

PS2X). (29)

Proof: (Outline) The main idea to design a coding scheme
to show the validity of this inner bound follows that in the
proof of Theorem 1. That is, Alice sends out two messages to
Bob, one is intended for Carol so that she can use it to decode
the sequence SN1 , and the other one serves as transfering
partial secret-key information of K1 to Bob. Then, Bob uses
a short sequence Sn1

2 to convey the message from Alice to
Carol and utilizes another sequence Sn2

2 , where n = n1 +n2,
so that Alice and Bob can share certain common randomnesses
with Carol. Finally, Alice, Bob and Carol will distill keys from
these randomnesses. Detailed proof is provided in Appendix
C.

We note that, from Corollary 2, the wiretap channel between
Bob and Carol acts as a noiseless relay with rate constraint
R = max

PX

I(X;Y ) to Alice and Carol in the case of W = ∅.
And compared with that of the real noiseless channel with the
same rate constraint, the existence of this relay does not help
in increasing the key capacity of K1. However, the situation
is different in the case of W 6= ∅. In this case, we can see,
from Theorem 3, that

C1 ≥ max
PT1|S1

PS1|U,

PT2|S2
PS2X

min

{
1

β
I(S1;V ),

1

β
[I(S1;U)− I(S1;W )],

1

β
[I(S1;V |T1)−I(S1;W |T1)]+

[
I(S2;Y |T2)−I(S2;Z|T2)

]+}
s.t. I(S1;U)− I(S1;V ) ≤ βI(S2;Y ),

which is larger than that in [6]:

max
PT1|S1

PS1|U ,PX

1

β
[I(S1;V |T1)− I(S1;W |T1)]

s.t. I(S1;U)− I(S1;V ) ≤ βI(S2;Y ).

Thus, we can conclude that the wiretap channel indeed helps
in increasing the key capacity of K1. Furthermore, we can
also obtain a similar lower bound on C2 as that in (15).
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Theorem 4. An outer bound on C is given by

Rout =
⋃

PT1|S1
PS1|U ,PX

R2(PT1|S1
PS1|U , PX). (30)

Proof: Please refer to Appendix D for details.
The above inner bound Rin and the outer bound Rout do

not match in general, but under the conditions that the wiretap
channel is degraded and that U → V → W , the outer bound
Rout can be refined to match the inner bound Rin.

Theorem 5. If the wiretap channel is degraded (i.e., X →
Y → Z) and the Markov chain condition U → V → W
holds, we have that

C =
⋃

PS1|U ,PX

R(PS1|U , PX), (31)

where R(PS1|U , PX) is defined as

R(PS1|U , PX) ,
{
(R1, R2) ∈ R2

+ :

R1 ≤
1

β
I(S1;V ), (32)

R1 ≤
1

β
[I(S1;U)− I(S1;W )] (33)

R2 ≤ I(X;Y )− 1

β
[I(S1;U)− I(S1;V )], (34)

R1+R2≤
1

β
[I(S1;V )− I(S1;W )] + I(X;Y |Z)

}
.(35)

Proof: Please refer to Appendix E for details.
Intuitively, given an auxiliary random variable S1, (32)

reflects the upper bound on the rate of K1 that can be made
secure from Bob, and (33) represents the bound due to that K1

is required to be confidential from Eve. The bound defined in
(34) indicates that with the assistance of Alice, the key rate of
K2 can be potentially enlarged (note that if there is no Alice,
the key capacity is maxPX

I(X;Y |Z) [3]), but in order to
use the information contained in S1, Bob needs to partially
sacrifice information in X to convey the information of S1 to
Carol. And (35) reflects that fact that both K1 and K2 should
be kept secure from Eve.

Furthermore, under the conditions X → Y → Z and U →
V →W , we can also obtain single-letter characterizations of
C1 and C2 (see Theorem 5).

Corollary 3. If the wiretap channel is degraded (i.e., X →
Y → Z) and U → V →W holds, we have that

C1 = max
PS1|U ,PX

min

{
1

β
I(S1;V ),

1

β
I(S1;U |W ),

1

β
I(S1;V |W ) + I(X;Y |Z)

}
s.t. I(S1;U)− I(S1;V ) ≤ βI(X;Y )

and

C2 = max
PS1|U ,PX

min

{
I(X;Y )− 1

β
I(S1;U |V ),

1

β
I(S1;V |W ) + I(X;Y |Z)

}
.

If we only care about C1, the noisy channel can be taken as a
noiseless channel with rate constraint R ≤ I(X;Y ). However,
compared with the forward capacity in the noiseless channel
with rate constraint [6]:

max
PS1|U

1

β
I(S1;V |W ),

s.t.
1

β
[I(S1;U)− I(S1;V )] ≤ I(X;Y ),

C1 is increased, which is due to the fact that with the help
from Bob, the message transmitted over the noisy channel
is partially masked, thus Eve only observes partial public
discussion from Alice to Carol. On the other hand, if we only
care about C2, it is also enlarged, compared with the case
without help from Alice: maxPX

I(X;Y |Z), the reason is that
Bob can utilize the information from Alice to further confuse
Eve.

IV. CONCLUSION

We have considered a new variation of the problem of
simultaneously generating multiple secret keys with restricted
public discussion and have compared the obtained results with
related results known from the literature. More specifically,
we have first studied the case in which an eavesdropper has
no side information and provided both inner and outer bounds
on the corresponding key capacity region. The inner and outer
bounds coincide if the wiretap channel is physically degraded.
Then, we have considered the more general case in which the
eavesdropper has side information and also provided single-
letter inner and outer bounds on the key capacity region.
Finally, these bounds were refined in such a way that under the
assumption certain Markov chain conditions are fulfilled lead
to a full characterization of the secret-key capacity region.

APPENDIX A
PROOF OF THEOREM 1

For the convenience of presentation, we assume T2 = ∅
since the case with T2 6= ∅ is straight forward following
a similar scheme as follows. Thus, we show that given
(PS1|U , PS2X), for any (R1, R2) ∈ Ro1(PS1|U , PS2X) there
exists a scheme such that (R1, R2) is achievable. Towards this
end, we propose a novel key generation scheme. For simplicity
of notation, we assume β = 1, i.e. N = n. It suffices to show
that the pair (R1,min{I(S2;Y )− I(S2;Z) + R̃1, I(S2;Y )−
I(S1;U) + I(S1;V )} − ε) with R1 + R̃1 = I(S1;V ) − ε is
achievable.

The novel scheme consists of two phases: Key Agreement
and Key Distillation.

Phase I: Key Agreement.
Codebook generation: Codebook at Alice CA. Given
PS1|UPUV , randomly and independently generate 2nR0 se-
quences Sn1 , according to

∏n
i=1 PS1

(S1i), and randomly assign
to each sequence three indices (f, φ1, φ2) with f ∈ [1 :
2nR00 ], φ1 ∈ [1 : 2nR01 ], φ2 ∈ [1 : 2nR02 ] being independently
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and uniformly distributed. Here, for some arbitrarily small
ε > 0, we set

R0 = I(S1;U) + ε, R00 = I(S1;U)− I(S1;V ) + 2ε,

R01 +R02 = R0 −R00 = I(S1;V )− ε.

Codebook at Bob CB . Split the number n as summation of
n1 + n2 with n1 = nR00/R10. Given PS2XPY Z|X , first ran-
domly and independently generate 2n1R10 sequences Sn1

2 , ac-
cording to

∏n1

i=1 PS2(S2i), and randomly assign each sequence
an index pair (f1, f2) with f1 ∈ [1 : 2n1R11 ] and f2 ∈ [1 :
2n1R12 ] being independently and uniformly distributed. Then,
randomly and independently generate 2n2R10+nR01 sequences
Sn2
2 , according to

∏n2

i=1 PS2
(S2i), and randomly assign each

sequence three indices (φ1, ϕ, ψ) with ϕ ∈ [1 : 2n2R11 ]
and ψ ∈ [1 : 2n2R12 ] being independently and uniformly
distributed. Here,

R10 = I(S2;Y )− ε, R11 = I(S2;Y )− I(S2;Z)− 2ε,

R12 = R10 −R11 = I(S2;Z) + ε.

We use Sn1 (f, φ1, ·) to denote the bin of all Sn1 sequences
with the same index (f, φ1), and use similar notation for
the other sequences, e.g., Sn1

2 (f1, ·). Due to the fact that the
cardinality of the set of indices (f1, f2) equals that of the set
of indices f , we can define a bijective mapping between f and
(f1, f2). Without loss of generality, we assume f = (f1, f2).
Encoding: Having observed Un, Alice looks into CA, and
tries to find a sequence Sn1 that is jointly typical according
to PS1U . If there are more than one such sequence, randomly
select one of them; if there is no such sequence, randomly
select one sequence Sn1 from all possible sequences. Then,
Alice transmits the indices (f(Sn1 ), φ1(S

n
1 )) to Bob.

Upon receiving (f, φ1), Bob looks into CB , selecting the
sequence Sn1

2 (f1, f2), and randomly and uniformly selects
Sn2
2 within Sn2

2 (φ1, ·, ·). Finally, Bob transmits the sequence
Sn2 = (Sn1

2 , Sn2
2 ) over the channel PX|S2

PY Z|X .
Decoding: Upon receiving Y n = (Y n1 , Y n2), Carol first
looks into CB and tries to decode Ŝn1

2 from Y n1 by looking
for a sequence that is jointly typical with respect to PS2Y .
After decoding Ŝn1

2 , Carol looks into CA, trying to decode
a sequence Ŝn1 , within Sn1 (f(Ŝ

n1
2 )), that is jointly typical

with V n according to PS1V . Finally, with the obtained index
φ1(Ŝ

n
1 ), Carol decodes Ŝn2

2 from Y n2 by looking for a
sequence that is jointly typical with Y n2 according to PS2Y .
Among the above three decoding steps, if there is no or more
than one jointly typical sequence in any step, declare an error.

Phase II: Key Distillation. Set R13 = min{I(S2;Y ) −
I(S2;Z) + R01 − 4ε, I(S2;Y ) − I(S1;U) + I(S1;V ) −
4ε}. Randomly and independently assign all possible indices
(f1, φ1, ϕ, ψ) to 2nR13 bins which are indexed by θ. Set

K1 = φ2(S
n
1 ),K

′
1 = φ2(Ŝ

n
1 );

K2 = θ(f1(S
n
1 ), φ1(S

n
2 ), ϕ(S

n
2 ), ψ(S

n
2 )),

K ′2 = θ(f1(Ŝ
n
1 ), φ1(Ŝ

n
2 ), ϕ(Ŝ

n
2 ), ψ(Ŝ

n
2 )).

Analysis of error probability: According to the Channel
Coding Theorem [26], we conclude that Carol can correctly

decode Sn1
2 with a probability larger than 1− ε/3. Then, with

the decoded index f(Sn1
2 ), Carol can use (f, V n) to decode

Sn1 correctly with a probability larger than 1 − ε/3, which
follows from the Slepian-Wolf Theorem. Finally, Carol can
use the obtained index φ1(Sn1 ) to locate bin Sn2

2 (φ1, ·, ·) and
decode Sn2

2 correctly from Y n2 with a probability larger than
1− ε/3. Thus, the total probability of decoding error is upper
bounded by ε.
Analysis of key rates: According to the codebook construc-
tion, we have that (φ2, f1, φ1, ϕ, ψ) are independent. Thus, we
easily obtain

R1 = R02, R2 = R13.

Analysis of secrecy: Since (f, φ1) is the only randomness
shared by Alice and Bob, and

I(K1; f, φ1) = I(φ2; f, φ1) ≤ nε,

K1 is secure from Bob.
To verify that K2 is secure from Alice, we first have

I(K2; f, φ1) = I(θ; f1, f2, φ1) = I(θ; f1, φ1)

= H(θ)−H(θ|f1, φ1).

Since (f1, φ1, ϕ, ψ) are independent and they are uniformly
and independently assigned to |θ| bins, we can show that

H(θ|f1, φ1) ≥ H(θ)− nε

as long as |ϕ||ψ| > |θ|. Since

log |ϕ||ψ| = n2R11 + n2R12 = n2R10

= (n− n1)R10 = nR10 − nR00

= n[I(S2;Y )− I(S1;U) + I(S1;V )− 3ε]

> log |θ|,

we have I(K2; f, φ1) ≤ nε.
Now, in order to bound I(K1,K2;Z

n), consider

I(K1,K2;Z
n) = I(K2;Z

n) + I(K1;Z
n|K2)

≤ I(θ;Zn) + I(φ2; f, φ1) ≤ I(θ;Zn) + nε

= H(θ)−H(θ|Zn) + nε.

We can also verify that H(θ|Zn) ≥ H(θ) − nε as long as
H(f1, φ1, ϕ, ψ|Zn) > nR13. Note that

H(f1, φ1, ϕ, ψ|Zn) = H(f1, S
n2
2 |Zn)

= H(f1|Zn) +H(Sn2
2 |Zn, f1)

= H(f1|Zn1) +H(Sn2
2 |Zn2).

Since in each bin Sn1
2 (f1, ·) there are 2n1(I(S2;Z)+nε) se-

quences Sn1
2 , there exists at least one sequence Sn1

2 that is
jointly typical with Zn1 in bin Sn1

2 (f1, ·) with high prob-
ability. Thus, we obtain H(f1|Zn1) ≥ n1R11 − n1ε. Fur-
thermore, since there are 2n2R10+nR01 randomly generated
Sn2
2 sequences, the average number of those sequences that

are jointly typical with Zn2 is 2n2R10+nR01−n2I(S2;Z). As a
consequence, we obtain

H(Sn2
2 |Zn2) ≥ n2R10 + nR01 − n2I(S2;Z)− n2ε

= n2R11 + nR01.
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Hence, we have

H(f1, φ1, ϕ, ψ|Zn) ≥ n1R11 − n1ε+ n2R11 + nR01

> n(I(S2;Y )− I(S2;Z) +R01 − 3ε) > R13

which implies I(K1,K2;Z
n) ≤ 2ε as desired.

APPENDIX B
PROOF OF THEOREM 2

It suffices to show that any achievable pair (R1, R2) is
included in Ro2(PS1|U , PX), for some (PS1|U , PX).

First, we have

H(K1) = H(K1|Y n, V N ) + I(K1;Y
n, V N )

≤ I(K1;Y
n, V N ) + nε

= I(K1;Y
n) + I(K1;V

N |Y n) + nε
(a)

≤ I(K1;F) + I(K1;V
N |Y n) + nε

≤
N∑
i=1

I(K1;Vi|Y n, V i−1) + 2nε

≤
N∑
i=1

I(K1,K2, U
n
i+1, V

i−1, Y n;Vi) + 2nε

=

N∑
i=1

I(S1i;Vi) + 2nε

= N

N∑
i=1

1

N
I(S1Q;VQ|Q = i) + 2nε

= NI(S1;V ) + 2nε, (36)

in which S1i := (K1,K2, U
n
i+1, V

i−1, Y n), S1 := (S1Q, Q),
and Q is an independent random variable uniformly distributed
over [1 : N ]. Note that (a) follows from the condition UN −
F− (Y n, Zn). Thus, it follows that S1 − U − V .

Second, we have

H(K1) +H(K2)

= H(K1,K2)

= H(K1,K2|Y n, V N ) + I(K1,K2;Y
n, V N )

≤ I(K1,K2;Y
n, V N ) + nε

≤ I(K1,K2;Y
n) + I(K1,K2;V

N |Y n) + nε. (37)

For the first term on the right-hand side of (37), it follows that

I(K1,K2;Y
n) ≤ I(K1,K2;Y

n)− I(K1,K2;Z
n) + 2nε

≤ I(K1,K2;Y
n, Zn)− I(K1,K2;Z

n) + 2nε

≤ I(K1,K2;Y
n|Zn) + 2nε

≤ I(Xn;Y n|Zn) + 2nε

≤
∑
i

[
H(Yi|Y i−1Zn)−H(Yi|XnY i−1Zn)

]
≤
∑
i

[
H(Yi|Zi)−H(Yi|XnY i−1Zn)

]
(a)

≤
∑
i

[H(Yi|Zi)−H(Yi|XiZi)]

= nI(X;Y |Z) + 2nε, (38)

where (a) is true due to

(Xn, Y i−1, Zi−1, Zni+1)−Xi − (Yi, Zi)

⇒ (Xn, Y i−1, Zn)− (Xi, Zi)− Yi.

Moreover, the second term of (37) can be bounded as

I(K1,K2;V
N |Y n) =

N∑
i=1

I(K1,K2;Vi|V i−1, Y n)

≤
N∑
i=1

I(K1,K2, V
i−1, Y n, UNi+1;Vi)

= NI(S1;V ). (39)

Thus,

R1 +R2 ≤ I(X;Y |Z) + 1

β
I(S1;V ) + 4ε.

Furthermore, we have

I(UN ;Y n)− I(V N ;Y n)

≤ I(F;Y n)− I(V N ;Y n)

= I(F;Y n,K2)− I(F;K2|Y n)− I(V N ;Y n)

≤ I(F;Y n|K2)− I(F;K2|Y n)− I(V N ;Y n) + nε

= I(F,K2;Y
n)− I(K2;Y

n)− I(F;K2|Y n)
−I(V N ;Y n) + nε

= I(F,K2;Y
n)− I(F, Y n;K2)− I(V N ;Y n) + nε

(a)

≤ I(F,K2;Y
n)− I(V N , Y n;K2)− I(V N ;Y n) + nε

= I(F,K2;Y
n|V N )− I(V N , Y n;K2) + nε

≤ I(F,K2;Y
n|V N )−H(K2) + 2nε

=

n∑
i=1

I(F,K2;Yi|Y i−1, V N )−H(K2) + 2nε

≤
n∑
i=1

I(F,K2, Y
i−1, V N ;Yi)−H(K2) + 2nε

≤
n∑
i=1

I(Xi;Yi)−H(K2) + 2nε

= nI(X;Y )−H(K2) + 2nε, (40)

in which (a) follows from

{
V N → F→ K2

V N → F,K2 → Y n

⇒ V N → F→ Y n,K2

⇒ V N , Y n → F, Y n → K2. (41)
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On the other hand,

I(UN ;Y n)− I(V N ;Y n)

= I(UN ;Y n,K1,K2)− I(V N ;Y n,K1,K2)

−I(UN ;K1,K2|Y n) + I(V N ;K1,K2|Y n)
= I(UN ;Y n,K1,K2)− I(V N ;Y n,K1,K2)

+H(K1,K2|Y n, UN )−H(K1,K2|Y n, V N )

≥ I(UN ;Y n,K1,K2)− I(V N ;Y n,K1,K2)− nε

=

N∑
i=1

(
I(Y n,K1,K2;Ui|UNi+1, V

i−1)

−I(Y n,K1,K2;Vi|UNi+1, V
i−1)

)
− nε

=

N∑
i=1

(
I(Y n,K1,K2, U

N
i+1, V

i−1;Ui)

−I(Y n,K1,K2, U
N
i+1, V

i−1;Vi)
)
− nε

=

N∑
i=1

I(S1i;Ui)− I(S1i;Vi)− nε

= N
(
I(S1;U)− I(S1;V )

)
− nε. (42)

Thus, we have

I(S1;U)− I(S1;V ) + βR2 ≤ βI(X;Y ) + 3ε.

As ε can be chosen arbitrarily small, this concludes the proof.

APPENDIX C
PROOF OF THEOREM 3

As the proof follows allong similar lines as that of Theorem
1, we only provide the codebook construction. Without loss
of generality, we assume I(S2;Y |T2) − I(S2;Z|T2) ≥ 0,
I(S1;V |T1) − I(S1;W |T1) ≥ 0 and β = 1,
i.e. N = n. Then, it is equivalent to proving
that given (PT1|S1

PS1|U , PT2|S2
PS2X), for any

(R1, R2) ∈ R1(PT1|S1
PS1|U , PT2|S2

PS2X) there
exists a scheme such that (R1, R2) is achievable.
Set R2 = min{I(S2;Y |T2) − I(S2;Z|T2) +
R̃1, I(S2;Y ) − I(S1;U) + I(S1;V ), I(S1;V |T1) −
I(S1;W |T1) + I(S2;Y |T2) − I(S2;Z|T2) − R1} − 4ε
with R1 + R̃1 = min{I(S1;V ), I(S1;U) − I(S1;W )} − ε,
it suffices to show that the pair (R1, R2) is achievable. The
scheme consists of two phases: Key Agreement and Key
Distillation.

Phase I: Key Agreement.
Codebook generation: Codebook at Alice CA. Given
PT1|S1

PS1|UPUV , randomly and independently generate 2nR0

sequences Tn1 according to
∏n
i=1 PT1

(T1i), which are indexed
by (f1, f2) with f1 ∈ [1 : 2nR01 ] and f2 ∈ [1 : 2nR02 ].
For each Tn1 , randomly and independently generate 2nR03

sequences Sn1 according to
∏n
i=1 PS1|T1

(S1i|T1i), which are
indexed by (φ1, φ2) with φ1 ∈ [1 : 2nR04 ] and φ2 ∈ [1 :

2nR05 ]. Then, randomly assign the tuple (f2, φ2) into 2nR̃1

bins indexed by f3. Here,

R0 = I(T1;U) + ε,

R01 = I(T1;U)− I(T1;V ) + 2ε,

R02 = I(T1;V )− ε,
R03 = I(S1;U |T1) + ε,

R04 = I(S1;U |T1)− I(S1;V |T1) + ε,

R05 = I(S1;V |T1)− ε.

Codebook at Bob CB1
. Split the number n as summation of

n1+n2 with n1 = n(R01+R04)/R12. Given PT2
PS2XPY Z|X ,

first randomly and independently generate 2n1R10 sequences
Tn1
2 , according to

∏n1

i=1 PT2(T2i). For each Tn1
2 , randomly

and independently generate 2nR11 sequences Sn1
2 according

to
∏n1

i=1 PS2|T2
(S2i|T2i). Then, randomly assign a index ψ1 ∈

[1 : 2n1R12 ] to the pair (Tn1
2 , Sn1

2 ), and set a bijective mapping
between ψ1 and (f1, φ1).
CB2 . Randomly and independently generate 2n2R10+nR̃1

sequences Tn2
2 , according to

∏n2

i=1 PT2
(T2i), and randomly

assign each sequence into 2nR̃1 bins. Then, similar as above,
generate 2nR11 sequences Sn2

2 for each Tn2
2 . Denote the bin

index of Tn2
2 by ψ3, the index of Tn2

2 within each bin by
ψ4 and index of Sn2

2 by ψ5 respectively, with ψ3 ∈ [1 :

2nR̃1 ], ψ4 ∈ [1 : 2n2R10 ] and ψ5 ∈ [1 : 2n2R11 ].

R10 = I(T2;Y )− ε,
R11 = I(S2;Y |T2)− ε,
R12 = I(S2;Y )− ε,

Encoding: Having observed the sequence Un, Alice looks
into CA, and tries to find a sequence Tn1 that is jointly typical
according to PT1U . If there are more than one such sequence,
randomly select one of them; if there is no such sequence,
randomly select one sequence Tn1 from all possible sequences.
Similarly, for all sequences Sn1 that are generated by Tn1 , select
a sequence Sn1 that is jointly typical with (Tn1 , U

n). If there
is no such sequence, randomly select one. Alice transmits the
indices (f1, φ1) as well as the bin index f3 to Bob.

Upon receiving (f, φ1), Bob looks into CB1
, selecting the

sequence Sn1
2 (ψ1). And he looks into the f3-th bin of Tn2

2 ,
randomly and uniformly selecting Tn2

2 and Sn2
2 . Finally, Bob

transmits the sequence Sn2 = (Sn1
2 , Sn2

2 ) over the channel
PX|S2

PY Z|X .
Decoding: Upon receiving Y n = (Y n1 , Y n2), Carol first
looks into CB1

and tries to decode T̂n1
2 and Ŝn1

2 from Y n1 by
looking for a pair of sequences that is jointly typical with Y n1

with respect to PT2S2Y . After decoding T̂n1
2 and Ŝn1

2 , Carol
looks into CA, trying to decode the sequence pair (T̂n1 , Ŝ

n
1 )

with the parameters (f1, ψ1), that is jointly typical with V n

according to PT1S1V . Finally, with the obtained index f3 from
(T̂n1 , Ŝ

n
1 ), Carol decodes (T̂n2

2 , Ŝn2
2 ) from Y n2 according to

PT2S2Y . Among the above three decoding steps, if there is no
or more than one jointly typical sequence in any step, declare
an error.
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Phase II: Key Distillation. Randomly and independently
assign all possible indices (f1, f2, φ1, φ2) to 2nR1 bins which
are indexed by θ1, and (ψ1, ψ3, ψ4, ψ5) to 2nR2 bins which
are indexed by θ2. And set K1 = θ1 and K2 = θ2.

Then, follow a similar analysis process as that in the proof
of Theorem 1, we can verify that with a probability larger than
1− ε, Alice and Bob will successfully share secret keys with
Carol with rate R1 and R2, respectively.

APPENDIX D
PROOF OF THEOREM 4

To prove Theorem 4 is equivalent to showing that
given any achievable key rate pair (R1, R2), there ex-
ists some (PT1|S1

PS1|U , PX) subject to (R1, R2) ∈
R2(PT1|S1

PS1|U , PX).
First, from (36), we have

H(K1) =

N∑
i=1

I(K1;Vi|Y n, V i−1) + 2nε

≤
N∑
i=1

I(K1,K2, V
i−1,Wn

i+1, Y
n;Vi) + 2nε

=

N∑
i=1

I(S1i;Vi) + 2nε

= NI(S1;V ) + 2nε, (43)

in which S1i := (K1,K2, V
i−1,Wn

i+1, Y
n), S1 := (S1Q, Q).

And we can easily verify that S1 − U − V . Thus, we have

R1 ≤
1

β
I(S1;V ) + 2ε. (44)

Second, the proof of R1 ≤ 1
βH(U |W ) is trivial following

from

H(K1) = H(K1|UN ) + I(K1;U
N )

≤ I(K1;U
N )− I(K1;W

N ) + nε

= I(K1;U
N |WN ) + nε

≤ I(UN ;UN |WN ) + nε

= H(UN |WN ) + nε

= NH(U |W ) + nε.

Furthermore, to show (27), we first have

I(UN ;Y n)− I(V N ;Y n) ≤ nI(X;Y )−H(K2) + 2nε,

according to (40). On the other hand, we have

I(UN ;Y n)− I(V N ;Y n)

(a)

≥
N∑
i=1

(
I(K1,K2, U

N
i+1, V

i−1, Y n;Ui)

−I(K1,K2, U
N
i+1, V

i−1, Y n;Vi)
)
− nε

(b)
=

N∑
i=1

[
I(K1,K2, U

N
i+1, V

i−1,WN
i+1, Y

n;Ui)

−I(K1,K2, U
N
i+1, V

i−1,WN
i+1, Y

n;Vi)
]
− nε

=

N∑
i=1

[
I(S1i;Ui)− I(S1i;Vi)

]
+

N∑
i=1

[
I(UNi+1;Ui|S1i)− I(UNi+1;Vi|S1i)

]
− nε

=

N∑
i=1

[
I(S1i;Ui)− I(S1i;Vi)

]
+

N∑
i=1

[
I(UNi+1;S1i, Ui, Vi)− I(UNi+1;S1i, Vi)

]
− nε

(c)

≥
N∑
i=1

[
I(S1i;Ui)− I(S1i;Vi)

]
− nε

= N
[
I(S1;U)− I(S1;V )

]
− nε. (45)

where (a) is due to (42), (b) follows from

WN
i+1 → UNi+1 → (UN , V i)

⇒ WN
i+1 → UNi+1 → (K1,F, Ui, V

i)

⇒ WN
i+1 → UNi+1 → (K1,K2, Y

n, Ui, V
i)

⇒ WN
i+1 → (K1,K2, U

N
i+1, V

i−1, Y n)→ (Ui, Vi)

⇒
{
WN
i+1 → (K1,K2, U

N
i+1, V

i−1, Y n)→ Ui
WN
i+1 → (K1,K2, U

N
i+1, V

i−1, Y n)→ Vi
, (46)

and (c) is true since

(UN , V i−1,WN
i+1)→ Ui → Vi

⇒ (K1,F, U
N
i+1, V

i−1,WN
i+1)→ Ui → Vi

⇒ (K1,K2, Y
n, UNi+1, V

i−1,WN
i+1)→ Ui → Vi

⇒ UNi+1 → (K1,K2, V
i−1,WN

i+1, Y
n, Ui)→ Vi. (47)

Thus, it follows

N [I(S1;U)− I(S1;V )] ≤ nI(X;Y )−H(K2) + 3nε,

which implies

R2 ≤ I(X;Y )− 1

β
[I(S1;U)− I(S1;V )] + 3ε.

As the last step, we have that

H(K1) +H(K2)

= H(K1,K2)

= H(K1,K2|Y n,WN ) + I(K1,K2;Y
n,WN )

≤ H(K1,K2|Y n,WN )−H(K1,K2|Y n, V N )

+I(K1,K2;Y
n,WN )− I(K1,K2;Z

n,WN ) + nε

= I(K1,K2;Y
n, V N )− I(K1,K2;Y

n,WN )

+I(K1,K2;Y
n,WN )− I(K1,K2;Z

n,WN ) + nε

= I(K1,K2;V
N |Y n)− I(K1,K2;W

N |Y n)
+I(K1,K2;Y

n|WN )− I(K1,K2;Z
n|WN ) + nε

≤
N∑
i=1

[I(K1,K2;Vi|V i−1,WN
i+1, Y

n)

−I(K1,K2;Wi|V i−1,WN
i+1, Y

n)]
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+I(K1,K2;Y
n, Zn|WN )− I(K1,K2;Z

n|WN ) + nε

=

N∑
i=1

[I(K1,K2, V
i−1,WN

i+1, Y
n;Vi|V i−1,WN

i+1, Y
n)

−I(K1,K2, V
i−1,WN

i+1, Y
n;Wi|V i−1,WN

i+1, Y
n)]

+I(K1,K2;Y
n|Zn,WN ) + nε

≤
N∑
i=1

[I(S1i;Vi|T1i)− I(S1i;Wi|T1i)]

+I(K1,K2,W
N ;Y n|Zn) + nε

≤ N [I(S1;V |T1)− I(S1;W |T1)] + I(Xn;Y n|Zn) + nε

= N [I(S1;V |T1)− I(S1;W |T1)] + nI(X;Y |Z) + nε. (48)

Thus, we have

R1 +R2 ≤
1

β
[I(S1;V |T1)− I(S1;W |T1)] + I(X;Y |Z) + ε,

and this completes the proof since ε is an arbitrary small
number.

APPENDIX E
PROOF OF THEOREM 5

Under conditions X → Y → Z and U → V →W , to show
that

⋃
PS1|U ,PX

R(PS1|U , PX) is a single-letter characterization

on C is equivalent to showing that
⋃

PS1|U ,PX

R(PS1|U , PX) is

both an inner bound and an outer bound on C, simultaneously.
First of all, by setting T1 = T2 = ∅ and S2 = X , we

conclude that

R(PS1|U , PX) = R1(PT1|S1
PS1|U , PT2|S2

PS2X),

Thus,
⋃

PS1|U ,PX

R(PS1|U , PX) is an inner bound according to

Theorem 3.
Now, we show the converse of Theorem 5. First, similar as

(43), we have

R1 ≤
1

β
I(S1;V ) + 2ε,

in which S1 , (S1Q, Q) and S1i ,
(K1,K2, U

N
i+1, V

i−1,W i−1,Wn
i+1, Y

n). In addition, we
also have that S1 − U − V .

Second, it follows that

H(K1) ≤ I(K1;U
N )− I(K1;W

N ) + nε

=

N∑
i=1

[I(K1;Ui|UNi+1,W
i−1)

−I(K1;Wi|UNi+1,W
i−1)] + nε

=

N∑
i=1

[I(K1, U
N
i+1,W

i−1;Ui)

−I(K1, U
N
i+1,W

i−1;Wi)] + nε

=

N∑
i=1

[I(S1i;Ui)− I(S1i;Wi)]

−
N∑
i=1

[
I(S1i;Ui|K1, U

N
i+1,W

i−1)

−I(S1i;Wi|K1, U
N
i+1,W

i−1)
]
+ nε

(a)
=

N∑
i=1

[I(S1i;Ui)− I(S1i;Wi)]

−
N∑
i=1

[
I(S1i;Ui|Wi,K1, U

N
i+1,W

i−1)
]
+ nε

≤
N∑
i=1

[I(S1i;Ui)− I(S1i;Wi)] + nε

≤ N [I(S1;U)− I(S1;W )] + nε (49)

in which (a) is due to

S1i → Ui →Wi

⇒ S1i → (Ui,K1, U
N
i+1,W

i−1)→Wi.

Furthermore, we have

I(UN ;Y n)− I(V N ;Y n)

≥
N∑
i=1

[
I(K1,K2, U

N
i+1, V

i−1, Y n;Ui)

−I(K1,K2, U
N
i+1, V

i−1, Y n;Vi)
]
− nε

≥
N∑
i=1

[
I(S1i;Ui)− I(S1i;Vi)

]
−

N∑
i=1

[
I(W i−1,WN

i+1;Ui|K1,K2, U
N
i+1, V

i−1, Y n)

−I(W i−1,WN
i+1;Vi|K1,K2, U

N
i+1, V

i−1, Y n)
]
− nε

(a)

≥
N∑
i=1

[
I(S1i;Ui)− I(S1i;Vi)

]
− nε, (50)

= N [I(S1i;Ui)− I(S1i;Vi)]− nε, (51)

where (a) is due to

U → V →W

⇒ (W i−1,WN
i+1)→(UNi+1, V

i−1)→(UN , V N )

⇒ (W i−1,WN
i+1)→(UNi+1, V

i−1)→(K1,K2, Y
n, Ui, Vi)

⇒ (W i−1,WN
i+1)→ (K1,K2, U

N
i+1, V

i−1, Y n)→(Ui, Vi)

⇒
{
(W i−1,WN

i+1)→(K1,K2, U
N
i+1, V

i−1, Y n)→Ui
(W i−1,WN

i+1)→(K1,K2, U
N
i+1, V

i−1, Y n)→Vi
.

On the other hand, we have

I(UN ;Y n)− I(V N ;Y n) ≤ nI(X;Y )−H(K2) + 2nε,

whose derivation is the same as (40). Thus, we obtain that

R2 ≤ I(X;Y )− 1

β
[I(S1;U)− I(S1;V )] + 3ε.
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At last, we have
N∑
i=1

[I(V i−1,WN
i+1, Y

n;Vi)− I(V i−1,WN
i+1, Y

n;Wi)]

=

N∑
i=1

[I(Y n;Vi|V i−1,WN
i+1)− I(Y n;Wi|V i−1,WN

i+1)]

= I(Y n;V N )− I(Y n;WN )

≥ 0,

since Y n → UN → V N →WN . Thus, from (48) we have

H(K1) +H(K2)

≤
N∑
i=1

[I(K1,K2;Vi|V i−1,WN
i+1, Y

n)

−I(K1,K2;Wi|V i−1,WN
i+1, Y

n)] + nI(X;Y |Z) + nε

≤
N∑
i=1

[I(K1,K2, V
i−1,WN

i+1, Y
n;Vi)

−I(K1,K2, V
i−1,WN

i+1, Y
n;Wi)] + nI(X;Y |Z) + nε

≤
N∑
i=1

[I(S1i;Vi)− I(S1i;Wi)] + nI(X;Y |Z) + nε

−
N∑
i=1

[
I(UNi+1,W

i−1;Vi|K1,K2, V
i−1,WN

i+1, Y
n)

−I(UNi+1,W
i−1;Wi|K1,K2, V

i−1,WN
i+1, Y

n)
]

=

N∑
i=1

[I(S1i;Vi)− I(S1i;Wi)] + nI(X;Y |Z) + nε

−
N∑
i=1

I(UNi+1,W
i−1;Vi|Wi,K1,K2, V

i−1,WN
i+1, Y

n)

≤
N∑
i=1

[I(S1i;Vi)− I(S1i;Wi)] + nI(X;Y |Z) + nε

= N [I(S1;V |T1)− I(S1;W |T1)] + nI(X;Y |Z) + nε. (52)

Thus, we have

R1 +R2 ≤
1

β
[I(S1;V |T1)− I(S1;W |T1)] + I(X;Y |Z) + ε.

Hence, it follows that
⋃

PS1|U ,PX

R(PS1|U , PX) is an outer

bound as well. And this completes the proof.

REFERENCES

[1] W. Tu, M. Goldenbaum, L. Lai, and H. V. Poor, “Multiple key generation
with restricted public discussion structure,” in Proc. IEEE Conf. on
Communications and Network Security, (Philadelphia, PA), pp. 641–
645, Oct. 2016.

[2] U. M. Maurer, “Secret key agreement by public discussion from common
information,” IEEE Trans. Inf. Theory, vol. 39, pp. 733–742, May 1993.

[3] R. Ahlswede and I. Csiszár, “Common randomness in information theory
and cryptography, Part I: Secret sharing,” IEEE Trans. Inf. Theory,
vol. 39, pp. 1121–1132, July 1993.

[4] I. Csiszár and J. Körner, “Broadcast channels with confidential mes-
sages,” IEEE Trans. Inf. Theory, vol. 24, pp. 339–348, May 1978.

[5] I. Csiszár and P. Narayan, “Secrecy capacities for multiple terminals,”
IEEE Trans. Inf. Theory, vol. 50, pp. 3047–3061, Dec. 2004.

[6] I. Csiszár and P. Narayan, “Common randomness and secret key gen-
eration with a helper,” IEEE Trans. Inf. Theory, vol. 46, pp. 344–366,
Mar. 2000.

[7] H. Zhang, L. Lai, Y. Liang, and H. Wang, “The capacity region of
the source-type model for secret key and private key generation,” IEEE
Trans. Inf. Theory, vol. 60, pp. 6389–6398, Jul. 2014.

[8] L. Lai and L. Huie, “Simultaneously generating multiple keys in many to
one networks,” in Proc. IEEE Int. Symp. Inf. Theory, (Istanbul, Turkey),
pp. 2394–2398, July 2013.

[9] C. Ye and P. Narayan, “The secret key-private key capacity region
for three terminals,” in Proc. IEEE Int. Symp. Inf. Theory, (Adelaide,
Australia), pp. 2142–2146, Sept. 2005.

[10] C. Ye and P. Narayan, “Secret key and private key constructions for
simple multiterminal source models,” IEEE Trans. Inf. Theory, vol. 58,
pp. 639–651, Feb. 2012.

[11] P. Xu, Z. Ding, X. Dai, and G. Karagiannidis, “Simultaneously gen-
erating secret and private keys in a cooperative pairwise independent
network,” IEEE Trans. Inf. Forensics Security, vol. 11, pp. 1139–1150,
Jan. 2016.

[12] S. Watanabe and Y. Oohama, “Secret key agreement from vector
Gaussian sources by rate limited public communication,” IEEE Trans.
Inf. Forensics Security, vol. 6, pp. 541–550, Sept. 2011.

[13] A. Agrawal, Z. Rezki, A. Khisti, and M.-S. Alouini, “Noncoherent
capacity of secret-key agreement with public discussion,” IEEE Trans.
Inf. Forensics Security, vol. 6, pp. 565–574, Sept. 2011.

[14] N. Wang, N. Zhang, and T. A. Gulliver, “Cooperative key agreement
for wireless networking: Key rates and practical protocol design,” IEEE
Trans. Inf. Forensics Security, vol. 9, pp. 272–284, Jan. 2014.

[15] C. W. Wong, T. F. Wong, and J. M. Shea, “Secret-sharing LDPC codes
for the BPSK-constrained Gaussian wiretap channel,” IEEE Trans. Inf.
Forensics Security, vol. 6, pp. 551–564, Sept. 2011.

[16] K. Chen, B. B. Natarajan, and S. Shattil, “Secret key generation rate
with power allocation in relay-based LTE-A networks,” IEEE Trans.
Inf. Forensics Security, vol. 10, pp. 2424–2434, Nov. 2015.

[17] M. F. Haroun and T. A. Gulliver, “Secret key generation using chaotic
signals over frequency selective fading channels,” IEEE Trans. Inf.
Forensics Security, vol. 10, pp. 1764–1775, Aug. 2015.

[18] S. Tomasin and A. Dall’Arche, “Resource allocation for secret key
agreement over parallel channels with full and partial eavesdropper CSI,”
IEEE Trans. Inf. Forensics Security, vol. 10, pp. 2314–2324, Nov. 2015.

[19] A. Khisti, S. N. Diggavi, and G. W. Wornell, “Secret-key agreement with
channel state information at the transmitter,” IEEE Trans. Inf. Forensics
Security, vol. 6, pp. 672–681, Sept. 2011.

[20] I. Csiszar and P. Narayan, “Secrecy capacities for multiterminal channel
models,” IEEE Trans. Inf. Theory, vol. 54, pp. 2437–2452, Jun. 2008.

[21] A. Zibaeenejad, “Key generation over wiretap models with non-causal
side information,” IEEE Trans. Inf. Forensics Security, vol. 10, pp. 1456–
1471, Jul. 2015.

[22] H. Zhou, L. M. Huie, and L. Lai, “Secret key generation in the two-way
relay channel with active attackers,” IEEE Trans. Inf. Forensics Security,
vol. 9, pp. 476–488, Feb. 2014.

[23] Y. Oohama, “Capacity theorems for relay channels with confidential
messages,” in Proc. IEEE Int. Symp. Inf. Theory, (Nice, France),
pp. 926–930, IEEE, Jun. 2007.

[24] W. Tu, M. Goldenbaum, L. Lai, and H. V. Poor, “Simultaneously
generating multiple keys over a cascade of a noiseless channel and a
wiretap channel,” in Proc. IEEE Inf. Theory Workshop, (Cambridge,
UK), pp. 206–210, Sept. 2016.

[25] W. Tu, M. Goldenbaum, L. Lai, and H. V. Poor, “On simultaneously
generating multiple keys in a joint source-channel model,” IEEE Trans.
Inf. Forensics Security, vol. 12, pp. 298–308, Feb. 2017.

[26] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: John Wiley & Sons, 2012.

11


