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Abstract—Dueling bandit algorithms excel in learning from
pairwise comparisons, offering robust performance guarantees in
benign environments. However, recent evidence suggests that even
state-of-the-art methods can be highly susceptible to adversarial
manipulation. In this work, we introduce and analyze a post-
action attack model on the Relative Upper Confidence Bound
(RUCB) algorithm, a widely used dueling bandit algorithm.
Unlike pre-action attack considered in the existing work where
the attacker can observe all comparisons beforehand, our post-
action adversary intercepts only the feedback from the specific
arm pair chosen by the learner at each round. Despite this limited
access, we show that such targeted interference can coerce the
learner into favoring a predetermined target arm for almost
the entire time horizon. Specifically, the attacker incurs a total
cost of only O(K lnT ) while ensuring that the learner pulls
the target arm in T −O(K2 lnT ) comparisons, where T is the
time horizon and K is the number of total arms. To counter
such attacks, we propose a novel robust defense strategy Attack-
Aware RUCB (AA-RUCB) that augments the RUCB algorithm
with attack-awareness. Assuming the adversary’s budget is upper
bounded by A, the proposed algorithm adjusts RUCB’s upper
confidence bound estimates to account for potential outcome
flips. We prove that the defense algorithm preserves the optimal
O(K2 lnT ) regret when A = 0 and degrades gracefully to
O(K2 lnT +A

√
lnT ) as A grows.

Index Terms—dueling bandit, adversarial attack, defense.

I. INTRODUCTION

Multi-armed bandit (MAB) problems introduced by [2]
form a foundational framework in online learning and decision
making, capturing the essential trade-off between exploring
new actions to gather information and exploiting the best
known option for immediate reward [3]. In a typical MAB
setting, a learner faces a set of “arms” (actions) to choose
from repeatedly, each yielding stochastic rewards according
to an unknown probability distribution. MAB methods have
proven indispensable in a wide variety of applications: for
example, recommendation systems leverage bandits to person-
alize content by adapting to user feedback in real time [4];
advertising platforms employ bandits to optimally allocate
limited advertisement slots [5]; dynamic pricing strategies rely
on MAB algorithms [6]–[8] to discover the most profitable
price points; cognitive radios uses MAB algorithms to identify
free spectrum to access [9]–[11] and beam scheduling [12].

While traditional multi-armed bandit methods typically rely
on explicit, numerical rewards from a single arm, the dueling
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bandit framework [13] instead provides pairwise feedback:
given two arms, the learner observes which of the two “wins”
in a head-to-head comparison. This subtle yet significant shift
introduces additional challenges, as global preference rankings
must be inferred from potentially noisy pairwise outcomes,
which need not satisfy transitivity or consistency across all
arms. Despite these complexities, the dueling bandit problem
is of critical importance in real-world scenarios where direct
rewards are hard to measure but relative preferences are more
natural [14], [15]. In many applications, such as information
retrieval [16], [17], product recommendation [18], and prefer-
ence elicitation—users or systems can more easily compare
two items than provide a robust numerical score for each.
By leveraging these pairwise comparisons, dueling bandit
algorithms capture nuanced user preferences and avoid pitfalls
associated with subjective or hard-to-calibrate reward scales.
Consequently, dueling bandits are increasingly recognized as a
powerful framework for scenarios in which relative feedback
is more natural and more accurately reflects the underlying
value of different choices [19]–[21].

Although classical dueling bandit algorithms, such as the
Relative Upper Confidence Bound (RUCB) algorithm [22] of-
fer strong theoretical guarantees in benign settings, they can be
surprisingly vulnerable to adversarial feedback manipulations.
In many real-world scenarios, attackers can intercept or distort
the pairwise outcomes being observed, thereby misleading the
learner’s estimates of arm preferences. Moreover, an attacker
often needs to manipulate only a small fraction of pairwise
outcomes to achieve significant disruption. By shaping the
outcomes of crucial comparisons—either before the learner
begins interacting with the environment (pre-action) or after
each decision (post-action)—the attacker can engineer per-
sistent misestimates, ultimately steering the learner toward
suboptimal arms.

The pre-action attack has been investigated in the dueling
bandits setup [23]–[25]. Under this model, the adversary
corrupts or manipulates the environment by flipping some pair-
wise comparison outcomes before the learner takes any action.
The adversary, having full knowledge of all pairwise outcomes
or preference probabilities in advance, flips or distorts these
outcomes before the learner takes any action. By the time the
learner begins to interact with the environment and observe
feedback, the feedback has already been corrupted, thereby
altering the ground truth of the environment. As a result,
queries by the learner are based on this tampered environment.

While much of the early work on pre-action attacks was
devoted to the stochastic case, several researchers have ex-



plored adversarial dueling-bandit scenarios. Gajane et al. [26]
achieved a regret bound of O(

√
T ) in purely adversarial set-

tings. Saha et al. [27] proposed algorithms with regret bounds
of Õ(K1/3T 2/3), along with tighter results in a fixed-gap
adversarial setup. Agarwal et al. [23] further analyzed regret
as a sum of terms dependent on the adversary’s corruption and
the baseline stochastic bound. Despite these valuable insights,
they typically assume the adversary has full access to all
outcomes in advance—an assumption that may not hold in
many practical scenarios. Moreover, such attacks may lack
efficiency since they often target pairs other than the ones
selected by the learner, resulting in unnecessary modifications
that do not directly influence the learner’s decisions.

In this paper, we propose a novel post-action attack on
dueling bandits. In the proposed post-action attack model,
we restrict the adversary to only observe and corrupt the
feedback from the specific arm pair selected by the learner
at each round. This restriction may appear to weaken the
attacker, yet recent analyses of reward-manipulation or action-
manipulation attacks in stochastic bandits [28]–[34] show that
a post-action style of interference can be extremely potent.
For example, an attacker can steer the learner into pulling a
targeted arm for nearly T − log T rounds while incurring only
O(log T ) in manipulation costs [35]. This line of work has also
been extended to contextual bandits setup [36]–[38]. Despite
its practical relevance and formidable nature, the post-action
attack model remains relatively underexplored in the dueling
bandits literature.

We introduce and study a novel post-action adversarial
attack on dueling-bandit learners. In the standard dueling-
bandit setting, a learning algorithm (like the RUCB algorithm)
repeatedly selects pairs of arms to compare and then observes a
stochastic outcome. Prior work on adversarial dueling bandit
attacks typically assumes the attacker intervenes in advance
or intercepts reward signals in a global way. By contrast, our
post-action attacker is much more adaptive: it first observes
which pair RUCB has chosen, and only then corrupts the
observed outcome of the duel. The proposed attack algorithm
intervenes only when the learner compares the adversary’s
chosen target arm with another arm. In those rounds the
attacker flips the feedback, if necessary, so that the target
is recorded as the winner more than half the time, while
every comparison that does not involve the target is left
untouched. This allows the attacker to steer the algorithm’s
beliefs toward a chosen target arm at minimal cost. We show
that this powerful attack can almost entirely hijack RUCB’s
behavior. Concretely, our analysis proves that an adversary
can force RUCB to select a pre-specified “target” arm in
T − O(K2 lnT ) out of T total rounds, while incurring only
O(K lnT ) total corruption cost. In other words, for essentially
the entire time horizon the algorithm is misled into favoring
the adversary’s desired arm, even though the attacker’s budget
grows only logarithmically in T . These findings underscore
a critical vulnerability of preference-based learners: despite
RUCB’s optimal logarithmic regret in benign settings, even a
low-cost, reactive attack can dramatically subvert its choices.

Importantly, this threat model is realistic in many applications.
For example, in online ranking or recommendation systems
a malicious actor can often observe which items are being
evaluated and then launch “click-fraud” or fake-comparison
attacks to bias feedback in favor of a particular option.

To defend against such attacks we introduce the Attack
Aware RUCB (AA-RUCB), a simple and effective refinement
of the original RUCB algorithm. AA-RUCB differs from
RUCB by only a single-line modification. In each round it
enlarges every upper confidence bound with an additive term
that scales with an upper bound of the corruption budget A.
This extra margin pads the confidence intervals so the learner
can tolerate up to A corrupted outcomes without being misled.
Despite the small tweak, AA-RUCB preserves RUCB’s statis-
tical guarantees in benign conditions and degrades smoothly
when an adversary is present. We show that when A = 0,
i.e., there is no corruption, AA-RUCB coincides exactly with
RUCB and achieves the optimal regret rate O(K2 lnT ) for
dueling bandits. If an attacker spends budget A, the regret
increases only to O(K2 lnT + A

√
lnT ). The computational

overhead remains negligible because the modification simply
replaces the original confidence radius with a slightly larger
one, making the algorithm easy to integrate into existing
RUCB implementations. In practice AA-RUCB offers a robust
and convenient safeguard: the attacker must spend a much
larger budget to influence the learner, yet the algorithm’s
performance remains unchanged when no attack takes place.

Compared with our earlier conference paper [1], this journal
paper makes three significant changes. First, we expand the
theoretical treatment by providing complete, self-contained
proofs for all key lemmas and theorems, thereby closing
several gaps that were left open in the shorter version. Second,
we move beyond purely offensive analysis by introducing
AA-RUCB and rigorously establishing its robustness under
bounded corruption. Third, we broaden the empirical evalua-
tion through an extensive set of simulations that corroborate
the tightness of our theoretical guarantees.

The remainder of this paper is organized as follows. Sec-
tion II formally introduces the dueling bandit problem and our
post-action attack model. Section III designs a low-cost attack
against the classical RUCB algorithm and derives tight bounds
on its flip budget and induced regret. Section IV presents AA-
RUCB, a one-line modification of RUCB that provably limits
the attacker’s impact to an additive A

√
lnT term. Complete

theoretical guarantees are given in Sections III-C and IV, and
Section V corroborates them with synthetic experiments over
a wide range of horizons and budgets. We conclude with
implications and future directions in Section VI.

II. PROBLEM FORMULATION

A. Dueling Bandit Problem

Let there be K arms with an unknown K × K pairwise
preference matrix P = [pij ], where each entry pij ∈ [0, 1]
represents the probability that arm ai is preferred over arm aj
in a head-to-head comparison. The matrix satisfies the property



pji = 1− pij , ensuring that comparisons are probabilistically
consistent. Each pij is an unknown constant.

Following standard dueling bandit assumptions, we as-
sume the existence of a Condorcet winner (the unique best
arm) [39], [40], which, without loss of generality, is designated
as arm 1. This implies that arm 1 is preferred over every other
arm, satisfying p1i >

1
2 for all i > 1. At each time step t, the

learner selects a pair of arms (ac(t), ad(t)) ∈ [K] × [K] and
observes the outcome of their comparison.

Let Zt
i,j = 1i≻j denote the outcome of a pairwise compar-

ison between arms i and j. It equals 1 if arm i wins over arm
j, and 0 otherwise with the probability:

P (Zt
i,j = 1) = pij , P (Zt

i,j = 0) = 1− pij = pji.

In dueling bandits, a well known performance metric is the
regret of the algorithm, which captures how effectively the
algorithm converges to the Condorcet winner arm 1. Formally,
at time t, we define the cumulative convergence regret:

R(t) =

t∑
h=1

(
1{ac(h) ̸=1} + 1{ad(h) ̸=1}

)
, (1)

where ac(h) and ad(h) denote the two arms compared at round
h. Note that any pull of an arm other than arm 1 contributes to
the cumulative regret. Accordingly, our objective is to design
algorithms that minimize the cumulative convergence regret
R(t) over time

B. Post-action Attack

We now introduce post-action attack model. The attacker
has a target arm. Without loss of generality, we set arm k as
the attack target. The attacker’s goal is to coerce the learner
to frequently select or compare against arm k, effectively
misleading the algorithm into favoring arm k over other arms.

The attacker aims to achieve this goal by selectively flipping
some comparison results provided by the nature. In particular,
at each time step t, the agent will select a pair (ac(t), ad(t)).
The nature will then provide a comparison result Zt

ac(t),ad(t)

based on dueling bandit model discussed above. The attacker
will observe the outcome Zt

ac(t),ad(t)
and decide whether it

would like to attack at this time based on Zt
ac(t),ad(t)

and all
past observations. If the attacker decides to attack at time t, the
attacker changes Zt

ac(t),ad(t)
to Z̃t

ac(t),ad(t)
= 1−Zt

ac(t),ad(t)
.

The agent will observe Z̃t
ac(t),ad(t)

. If attacker does not attack
at time t, the agent will observe Zt

ac(t),ad(t)
.

The performance of an attack schemes are quantified by two
metrics: attack cost and attack regret. The cumulative post-
action attack cost at time t is defined as:

Lattack(t) =

t∑
h=1

∣∣∣Zh
ac(h),ad(h)

− Z̃h
ac(h),ad(h)

∣∣∣ . (2)

The attack regret quantifies the extent to which the adversary
successfully deviates the algorithm from the Condorcet winner

to the target arm k. Formally, the attack regret at time t is
defined as:

Rattack(t) =

t∑
h=1

(
1{ac(h)̸=k} + 1{ad(h) ̸=k}

)
, (3)

where ac(h) and ad(h) denote the two arms compared at
round h. The attacker aims to minimize the attack regret while
incurring the least possible attack cost.

III. POST-ACTION ATTACK ON RUCB

In this section, we propose a post-action attack targeting
the widely used Relative Upper Confidence Bound (RUCB)
algorithm [22].

A. RUCB Overview

Before presenting our attack scheme, we first provide an
overview of the RUCB algorithm introduced in [22]. To
facilitate the presentation, we reproduce the RUCB Algorithm
in Algorithm 1 using the same notation as in [22]. RUCB
leverages an extension of the classic UCB principle to esti-
mate pairwise preferences, selecting the arm most likely to
outperform others while simultaneously updating its confi-
dence bounds with the winner as a benchmark. Theoretically,
RUCB achieves a finite-time high-probability regret bound
of O(K log T ), which is the best known rate under minimal
assumptions [39], [41], [42].

As shown in Algorithm 1, RUCB updates pairwise win
counts in W, then calculates upper confidence bounds U
(line 5). Based on these bounds, it constructs a candidate set
C (line 9). In particular, C contains every arm that currently
appears at least as strong as all other arms, with its upper
confidence bound being at least 0.5 against every competitor.
Next, the algorithm either randomly picks an arm or samples
one from C according to the specified rule (lines 10–18): if
there is a single candidate, it is chosen; if multiple remain, the
selection among them follows a specific sampling distribution.
Finally, RUCB selects its comparison pair by choosing the
candidate arm ac and pairing it with ad, where ad maximizes
uj,c (line 19). The observed outcome from comparing {ac, ad}
then updates W (line 20).

In this paper, we use the following notations throughout the
analysis. The parameter α is an input to Algorithm 1 and is
used to control the confidence intervals. For any pair of arms
ai and aj , Nij(t) denotes the total number of comparisons be-
tween these arms up to time t, while wij(t) represents the total
number of wins of ai over aj , thus Nij(t) = wij(t) +wji(t).
The upper confidence bound [43] for pij , the probability of ai
being preferred over aj , is given by uij(t) =

wij(t)
Nij(t)

+
√

α ln t
Nij(t)

.
The corresponding lower confidence bound is denoted as
lij(t) = 1− uji(t).

B. Proposed Attack Strategy

The proposed attack strategy aims to ensure that ak wins
the pairwise comparisons against any arm i where i ̸= k
with probability larger than 1/2, thereby establishing ak as



Algorithm 1 RUCB[Algorithm 1 of [22]]

1: Input: Confidence parameter α ≥ 1
2 , horizon T ∈

{1, 2, . . . } ∪ {∞}
2: Initialize win matrix W = [wij ]← 0K×K ▷ wij counts

wins of ai over aj .
3: Initialize set B ← ∅
4: for t = 1 to T do

5: U← W

W +WT
+

√
α ln t

W +WT
▷ element-wise;

define x
0 = 1.

6: uii ← 1
2 for all i = 1, . . . ,K.

7: C ← {ac | ucj ≥ 1
2 , ∀j}.

8: if C = ∅ then
9: Choose ac uniformly at random from {1, . . . ,K}.

10: else
11: B ← B ∩ C
12: if |C| = 1 then
13: B ← C and set ac to be the unique element

of C.
14: else
15: Draw ac from C with distribution

p(ac) =


0.5, ac ∈ B,

1

2|B| |C \B|
, otherwise.

16: end if
17: end if
18: ad ← argmaxj ujc ▷ If there is a tie, break ties

uniformly; ensure ad ̸= ac.
19: Observe comparison (ac, ad) and update W:

(wcd, wdc)←

{
(wcd + 1, wdc), if ac wins,
(wcd, wdc + 1), otherwise.

20: end for
21: Return arm ac that beats the most opponents, i.e. the c

maximizing #{j | wcj

wcj+wjc
> 1

2}.

the Condorcet winner. The outcomes of comparisons involving
pairs where neither element is k remain unchanged.

Specifically, if the learner chooses a pair at time t does
not involve k, the attacker does nothing and sets Z̃t

i,j = Zt
i,j .

However, if (k, i) is selected (i.e., either ac(t) = k, ad(t) = i
or vice versa), the adversary can simply draw Z̃t

k,i directly
from a Bernoulli distribution with parameter p̃ki, where p̃ki is
a modified preference value chosen by the attacker, satisfying
p̃ki > 1

2 , independently of the original sample Zt
k,i. If the

original outcome Zt
k,i already equals Z̃t

k,i, the attacker leaves
it unchanged (i.e., no flip occurs); otherwise the attacker flips
the outcome.

If the learner ever selects the trivial pair (k, k) (i.e., it
compares the target arm with itself), the attacker also remains
inactive because flipping the outcome of a self-comparison
would not alter any preference estimates.

Overall, when (k, i) is chosen, the attacker’s strategy en-

sures that Z̃t
k,i takes the value 1 (i.e., k wins) with probability

p̃ki. Note that, the proposed attack strategy does not need to
know the true underlying values of pij .

Under this attack strategy, effectively, the observations ob-
served by the agent is generated by a modified preference
matrix P̃ = [p̃ij ] with p̃ki >

1
2 and p̃ik = 1− p̃ki <

1
2 for all

i ̸= k. For all other pairs (i, j), p̃ij remains equal to pij , as
the attacker does not flip any outcomes for these pairs.

C. Attack Cost and Regret Analysis

We now analyze the attack cost and attack regret, and show
the effectiveness of the proposed attack strategy.

We first introduce some notations. Let δ1, δ2 ∈ (0, 1) be
fixed confidence parameters. δ1 controls the length of initial
stage

τ(δ1) :=
(

(4α−1)K2

(2α−1) δ1

)1/(2α−1)

.

We will show that after this initial stage all pairwise
estimates lie in their confidence intervals with high proba-
bility. For every sub-optimal arm i ̸= 1 define the true gap
∆i := p1i − 1

2 > 0. The level δ2 is used to bound the
comparisons involving the attack target arm ak. For each non-
target arm ai ̸= ak define

Nmin
ik :=

⌈(√
α lnT +

√
1
2 ln

1
δ2

)2

(
p̃ki − 1

2

)2
⌉
,

and let t̃i := min{t ≥ 1 : Nik(t) = Nmin
ik } be the first round

at which the (i, k) comparison count reaches this threshold.

Theorem III.1.

Pr
(
∀t > max

i
t̃i,∀i ̸= k : ai /∈ C

)
> 1− (K − 1)δ2.

Proof. See Appendix A.

Theorem III.1 establishes that after initial period, with high
probability, each suboptimal arm ai ̸= k remains excluded
from the candidate set, ensuring ak is the only viable choice
in future rounds.

Theorem III.2. The total attack regret Rattack(T ) of the
proposed attack against RUCB is O

(
K2 lnT

)
with probability

larger than 1− δ1 − (K − 1)δ2.

Proof. See Appendix B.

We now highlight the main idea of the proof. We first
show that the number of comparisons between the target arm
ak and each sub-optimal arm ai ̸= ak is bounded by at
O(lnT ); over the K−1 target–involving pairs this contributes
O(K lnT ) to the total regret. We then prove that every
remaining counter Nij(T ) with i, j ̸= k is likewise bounded
by O(lnT ); summing over the Θ(K2) such pairs yields an
additional O(K2 lnT ). Hence the overall attack regret satisfies
Rattack(T ) = O(K2 lnT ).

Since the attack regret counts the rounds in which the
learner fails to play the target arm, this logarithmic bound



demonstrates that the attacker successfully compels the learner
to choose the target arm for almost the entire time horizon.

Theorem III.3. With probability larger than 1 − δ1 − (K −
1)δ2, the attack cost Lattack(T ) of the proposed attack against
RUCB is

O
(
(K − 1) ·max

i

{ p̃ki − pki
1− pki

}

· max
i


(√

α lnT +
√

1
2 ln

1
δ2

)2(
p̃ki − 1

2

)2

 ,

which scales as O(K lnT ).

Proof. See Appendix C.

We now introduce the high level idea of our proof. To
establish the O(K lnT ) bound on the attack cost, we first
show that when the number of comparisons between a non-
target arm ai ̸= k and the target arm ak exceeds a certain
threshold, the winning rate of ai drops below 1/2, leading to
ai’s removal from the candidate set C. We then prove that
Nik(t) will not increase further for such an arm, and ensure
ai remains out of C thereafter. By Theorem III.1, every non-
target arm eventually stays out of C. Summing over all i ̸= k
yields the overall O(K lnT ) cost in Theorem III.3.

IV. DEFENSE

As discussed in Section III, RUCB is not robust to adversar-
ial attacks. In this section, we propose a robust variant of the
RUCB algorithm, called Attack-Aware RUCB (AA-RUCB),
which adjusts the confidence bounds to mitigate post-action at-
tacks. We assume that the total attack budget is upperbounded
by A. Knowing such an upper bound is necessary: without
any limit on the adversary’s power, no learner can separate
stochastic noise from arbitrary manipulation, and sub-linear
regret becomes impossible. Hence A plays the same role as
corruption budgets in other robust bandit and online-learning
models, allowing the confidence intervals to be inflated just
enough to withstand the worst-case bias while preserving near-
optimal performance in benign regimes.

The learning procedure of AA-RUCB closely follows the
original RUCB, but with a crucial modification: an additional
term is added to each arm’s confidence bound to cover
the worst-case reward bias an adversary can impose. This
modification ensures that, even if rewards are corrupted, the
algorithm remains sufficiently optimistic. Consequently, the
analysis differs from the clean-feedback case by accounting
for the adversarial perturbation, which introduces extra terms
in the regret bounds and modifies the concentration arguments.
Algorithm 2 summarizes the procedure.

The algorithm inherits the overall structure of the original
RUCB: in each round it (i) computes an upper-confidence
matrix U from the cumulative win counts W, (ii) forms
a candidate set containing all arms whose upper confidence
against every opponent is at least one half, (iii) selects a
champion ac from that set (or uniformly if the set is empty),

(iv) pairs it with the opponent ad that currently maximises
ud c, and (v) updates W with the observed outcome of the
duel.

The crucial difference lies in the confidence calculation.
Whereas RUCB uses

URUCB =
W

W +WT
+

√
α ln t

W +WT
,

AA-RUCB inflates each element of this matrix with an ad-
ditional margin that compensates for at most A corrupted
outcomes per pair:

U =
W

W +WT
+

√
α ln t

W +WT
+

αA
√
ln t

(W +WT)K2
.

The first term of U is the empirical win rate for each
ordered pair of arms, and the second is the usual Hoeffding-
style exploration bonus scaled by α > 1

2 . The third term
pads the interval by an amount proportional to the corruption
budget A. Because an adversary can flip at most A outcomes
for any pair, the empirical win fraction may differ from the
truth by at most A/(W+WT). Multiplying by the factor K−2

and rescaling with
√
ln t yields a margin that safely dominates

this bias. Consequently, even after adversarial tampering, every
true preference still lies inside the enlarged confidence band
with high probability. When A = 0 the extra term vanishes,
so AA-RUCB reduces exactly to RUCB.

The entire confidence matrix is formed entry-by-entry
through the scalar definition

uij(t) =
wij(t)

Nij(t)
+

√
α ln t

Nij(t)
+

αA
√
ln t

Nij(t)K2
, (4)

where wij(t) is the number of wins of arm i over arm j up
to time t and Nij(t) = wij(t) + wji(t) is the total number
of comparisons between the two arms. And we set lij(t) =
1− uji(t).

We now state the main theoretical guarantees. The first
lemma shows that, with a high probability, the inflated confi-
dence bound indeed covers the true arm means under attack.

Lemma IV.1. Fix α > 1
2 , δ1 ∈ (0, 1), and K ≥ 2. Let

τd(δ1) := max
{
exp

(
K4/α2

)
,
( (4α−1)K2

(2α−1)δ1

) 1
2α−1

}
. (5)

Then

Pr
{
∀t > τd(δ1), i, j : pij ∈ [lij(t), uij(t)]

}
≥ 1− δ1.

Proof. See Appendix D.

We now discuss the main idea of our proof. Hoeffding’s
inequality bounds the clean-data deviation by

√
α ln t/Nij(t)

with high probability. An adversary who flips at most A
outcomes per pair can shift the empirical win rate by no more
than A/Nij(t). Combining these two contributions yields a
radius that safely encloses the true preference, and a union
bound over all pairs and times upgrades the per-pair guarantee
to the stated high-probability bound.



Algorithm 2 Attack-Aware RUCB (AA-RUCB)

1: Input: Confidence parameter α ≥ 1
2 , horizon T ∈

{1, 2, . . . } ∪ {∞}
2: Initialize win matrix W = [wij ]← 0K×K ▷ wij counts

wins of ai over aj .
3: Initialize set B ← ∅
4: for t = 1 to T do

5: U← W

W +WT
+

√
α ln t

W +WT
+

αA
√
ln t

(W +WT)K2
▷

element-wise; define x
0 = 1.

6: uii ← 1
2 for all i = 1, . . . ,K.

7: C ← {ac | ucj ≥ 1
2 , ∀j}.

8: if C = ∅ then
9: Choose ac uniformly at random from {1, . . . ,K}.

10: else
11: B ← B ∩ C
12: if |C| = 1 then
13: B ← C and set ac to be the unique element

of C.
14: else
15: Draw ac from C with distribution

p(ac) =


0.5, ac ∈ B,

1

2|B| |C \B|
, otherwise.

16: end if
17: end if
18: ad ← argmaxj ujc ▷ If there is a tie, break ties

uniformly; ensure ad ̸= ac.
19: Observe comparison (ac, ad) and update W:

(wcd, wdc)←

{
(wcd + 1, wdc), if ac wins,
(wcd, wdc + 1), otherwise.

20: end for
21: Return arm ac that beats the most opponents, i.e. the c

maximizing #{j | wcj

wcj+wjc
> 1

2}.

Theorem IV.2.

Pr
(
∀ t > τd(δ1), (i, j) ̸= (1, 1) :

Nij(t) ≤ max{τd(δ1), Dij(∆i,∆j , t)}
)
≥ 1− δ1,

(6)

where

Dij(∆i,∆j , t) =
[
Nmax(min{∆i,∆j}, t)

]
,

and

Nmax(∆, t) =

 2
√
αA/K2√

1 +
2A∆

K2
√
α ln t

− 1


2

. (7)

Proof. See Appendix E.

Theorem IV.2 provides a uniform, high-probability upper
bound on the number of times any sub-optimal pair of arms
is sampled once the burn-in phase up to τd(δ1) has elapsed.
This bound is crucial for the regret analysis, because every
additional comparison of a non-optimal pair contributes two
units to the cumulative regret.

Beyond the time index τd(δ1) the algorithm always com-
pares the Condorcet winner against itself. Suppose, for con-
tradiction, that some pair (i, j) were drawn more often than
the threshold in (7). In that case the inflated confidence
interval used by AA-RUCB would already be narrower than
the preference gap needed for the algorithm to select that
pair, so the comparison could not have been chosen. Since
Nmax(∆, t) is monotone decreasing in the preference gap ∆,
the same argument applies to every sub-optimal pair. A union
bound over all such pairs then shows that the probability of
exceeding the threshold for any pair is at most δ1, completing
the proof.

The following theorem gives the regret bound of the AA-
RUCB algorithm. It shows that the regret remains logarithmic
in T , with an extra additive term due to the adversary.

Theorem IV.3. Define ∆∗ = min
i

∆i. Let τd(δ1) be the
threshold in (5) and let Nmax(∆, T ) be the quantity in (7).

Then, with probability at least 1 − δ1, for all T ≥ 1, the
cumulative convergence regret (1)

R(T ) ≤ 2 τd(δ1) + 2
∑
i>j

Nmax

(
∆∗, T

)
= O(K2lnT +A

√
lnT ),

(8)

where the sum
∑

i>j ranges over all unordered pairs {i, j}
with i, j ̸= 1.

Proof. See Appendix F.

The main idea of the proof is as follow. Using the high-
probability bounds from Lemma IV.1 and Theorem IV.2,
the regret is split into two parts. The first τd(δ1) rounds
can add at most 2τd(δ1) because any two arms may be
pulled. Afterwards, each distinct sub-optimal pair is compared
no more than Nmax(∆

∗, T ) times, so its contribution is at
most 2Nmax(∆

∗, T ). Summing over all
(
K−1
2

)
such pairs

and adding the initial term yields the stated regret bound in
O(K2lnT +A

√
lnT ).

V. EXPERIMENTAL DATA AND RESULTS

A. Attack

In this section, we provide numerical examples to validate
the theoretical results obtained in this paper. We conduct
experiments using synthetic preference matrices generated by
a simple rank-based procedure. Specifically, we set K = 10,
designate arm 0 as the Condorcet winner, and fix arm 9 as the
adversary’s attack target.

We build two K × K preference matrices with the lin-
ear–rank rule P [i, j] = 0.5 + g (rj − ri)/(2K), P [j, i] =
1− P [i, j] and P [i, i] = 0.5. Matrix P uses the natural order
ri = i, making arm 0 the Condorcet winner and arm K − 1



(the attacker’s target) the weakest; the rank difference between
these two arms is −(K − 1). Matrix P̃ is a cyclic shift with
r̃K−1 = 0 and r̃0 = K−1, so the same pair has gap +(K−1).

Choosing

g1 =
(
0.5− pmin

ki

) 2K

K − 1
, g2 =

(
p̃max
ki − 0.5

) 2K

K − 1
,

gives P [K − 1, 0] = pmin
ki and P̃ [K − 1, 0] = p̃max

ki . We
form P̃ by copying P and overwriting only the target arm’s
row and column with slope g2; hence the two matrices differ
exclusively in entries that involve the target arm.

By default, we set pmin
ki = 0.05 and p̃max

ki = 0.95. We also
choose a time horizon T = 5e5 and a parameter α = 0.6 to
guide the update rules in our algorithms.

Our experimental results align well with the theoretical
guarantees. Figure 1 illustrates how the cumulative attack
cost grows on the order of K lnT , exactly as Theorem III.3
predicts.

Turning to the learner’s performance, Figure 2 shows the
defense regret, defined as the frequency with which arms
other than the Condorcet winner are chosen. In the no-attack
scenario, RUCB promptly identifies the best arm, and the
defense regret remains nearly zero. However, once adversarial
manipulation begins, the regret curve slopes upward (with
an approximate slope of 2), signifying that the learner is
frequently misled away from the Condorcet winner.

The attack regret, illustrated in Figure 3, represents the num-
ber of times arms other than the target arm are selected during
the adversarial attack. The figure provides a focused view of
the attack regret under adversarial conditions, showcasing its
growth at a rate of O(K2 lnT ) over the entire time horizon,
as formally established in Theorem III.2.

Fig. 1: Cumulative Cost

To probe how different problem characteristics influence
both the attacker and the learner, we vary one quantity at a
time while holding the others fixed and average each setting
over three independent runs.

In Fig. 4 we gradually increase the enforced probability
p̃max
ki , thereby enlarging the gap p̃ki − 1

2 . As predicted by
Theorem III.3, the dominant term in the upper bound becomes
1
/(
p̃ki − 1

2

)2
. And the attack regret equals the cost plus the

number of comparisons that do not involve ak as the proof in

Fig. 2: Cumulative Defense Regret

Fig. 3: Cumulative Attack Regret With Attack

Appendix B. Accordingly, both the attack cost and the attack
regret fall with the expected quadratic rate.

Figure 5 shows that, as the number of arms K increases,
the attack cost exhibits O(K lnT ) growth, whereas the attack
regret scales as O(K2 lnT ). These observations are consistent
with Theorems III.3 and III.2.

Finally, Figure 6 illustrates that higher values of exploration
parameter α induce more exploration and, consequently, larger
attack cost and attack regret, in agreement with our theoretical
analysis.

Fig. 4: Average flips and attacker-view regret versus p̃max
ki

(pmin
ki = 0.05).



Fig. 5: Average flips and attacker-view regret versus the
number of arms K (pmin

ki = 0.05, p̃max
ki = 0.95).

Fig. 6: Average flips and attacker-view regret versus the ex-
ploration parameter α (K = 10, pmin

ki = 0.05, p̃max
ki = 0.95).

B. Defense

We complement the theoretical bound of Theorem IV.3 with
a set of experiments that illustrate how the proposed defence
algorithm behaves under varying time steps, adversarial bud-
gets, and time horizons.

1) Timesteps: We set the horizon T = 5e5 and keep
the adversary budget at A = 10

√
T . Figure 7 shows the

total defense regret as a function of T . The curve grows
sub-linearly, corroborating the favourable dependence on T
predicted by our analysis.

Fig. 7: Total defense regret versus timestep t.

2) Impact of the adversarial budget: Next we fix the
horizon at T = 5e5 and change the attack budget from 5

√
T

to 50
√
T . Figure 8 reports the final total defense regret after T

rounds. As expected, larger budgets enable the attacker to in-
flict higher defense regret, yet the curve follows A lnT growth
as in (8) and remains well below the linear worst-case envelope
O(T ), indicating the robustness of the defence mechanism.

Fig. 8: Final total defense regret as a function of the adversarial
budget.

3) Impact of the horizon T: We vary the horizon on the
grid T ∈ {1e5, . . . , 1e6}, keep the adversary’s budget at A =
10
√
T , and set (α, β) = (0.6, 1/K2). Figure 9 shows the mean

total defense regret (sum over the two sub-regrets Rc and Rd)
as a function of T. The curve grows sub-linearly, corroborating
the favourable dependence on T predicted by our analysis.

Fig. 9: Final total defense regret as a function of the horizon T .

VI. CONCLUSION

This work provides the first end-to-end study of both
offensive and defensive strategies for dueling bandits under
outcome corruption.

On the offensive side, we have examined a potent post-
action attack model for the dueling bandit problem, focusing
specifically on the RUCB algorithm. Our theoretical analysis
shows that, by manipulating only the feedback from the chosen
arm pair, an adversary can force the learner to select a predeter-
mined target arm almost exclusively. A learner that continues
to run RUCB unchanged under this attack incurs linear regret,
O(T ), while the adversary needs only a total intervention



budget ofO(K lnT ) and suffers at mostO(K2 lnT ) attack re-
gret. Empirical results reinforce these findings, demonstrating
how post-action interference severely compromises RUCB’s
performance, despite its strong guarantees in benign scenarios.

On the defensive side we have introduced Attack-Aware
RUCB (AA-RUCB), which inflates each confidence bound
by a corruption-budget term αA

√
ln t

K2Nij(t)
. This single-line change

retains RUCB’s optimal O(K2lnT ) regret when A = 0 and
degrades gracefully to O(K2lnT+A

√
lnT ) in the worst case.

We have conducted comprehensive numerical experiments to
validate the theoretic results.
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Verzelen. On weak regret analysis for dueling bandits. In Neural
Information Processing Systems, Vancouver, Canada, December 2024.

[41] Yisong Yue and Thorsten Joachims. Interactively optimizing informa-
tion retrieval systems as a dueling bandits problem. In International
Conference on Machine Learning, page 1201–1208, Montreal, Quebec,
Canada, June 2009.
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APPENDIX

A. Proof of Theorem III.1

Proof. Let Γ(t) be the event that ∀i ̸= k,

wik(t)

Nik(t)
+

√
α lnT

Nik(t)
<

1

2

and ai /∈ C at iteration t.
For any t > maxi t̃i and any i ̸= k, if wik(t)

Nik(t)
+
√

α lnT
Nik(t)

< 1
2 ,

ai /∈ C, then, with Nik(t
∗) = Nik(t):

uik(t
∗) =

wik(t
∗)

Nik(t∗)
+

√
α ln t∗

Nik(t∗)

≤ wik(t
∗)

Nik(t∗)
+

√
α lnT

Nik(t∗)

=
wik(t)

Nik(t)
+

√
α lnT

Nik(t)
<

1

2
.

(9)

Thus, for t∗ = t+ 1, ∀i ̸= k, ai /∈ C.
Since Γ(maxi t̃i+1) is true, from (9), for t∗ = maxi t̃i+2,

ai /∈ C and wik(t
∗)

Nik(t∗)
+

√
α lnT
Nik(t∗)

< 1
2 , which means Γ(t∗) is

true. Suppose Γ(tm) holds for tm > maxi t̃i + 1, ai /∈ C and
wik(tm)
Nik(tm) +

√
α lnT

Nik(tm) <
1
2 . Then, Γ(tm + 1) holds from (9) if

let t = tm.
By induction, we can know that if Γ(maxi t̃i + 1) holds,

then Γ(maxi t̃i + 1 + n) holds for any n > 0.

If t = maxi t̃i + 1, Pr
(
∀i ̸= k, ai /∈ C

)
> 1− (K − 1)δ2

directly from Proposition A.1.
If t > maxi t̃i + 1:

Pr
(
∀t > max

i
t̃i, ∀i ̸= k, ai /∈ C

)
= Pr

(
∀t > max

i
t̃i + 1, ∀i ̸= k, ai /∈ C | Γ(max

i
t̃i + 1

)
× Pr

(
Γ(max

i
t̃i + 1)

)
> 1× (1− (K − 1)δ2) = 1− (K − 1)δ2.

B. Proof of Theorem III.2

Proof. Proposition 2 of Zoghi et al. [22] applies to any fixed
preference matrix that admits a unique Condorcet winner and
to any α > 1

2 . Once the adversary fixes the modified matrix
P̃ = [p̃ij ] with arm ak satisfying p̃ki > 1

2 for all i ̸= k,
the learner’s observations are exactly those that would be
generated by running Algorithm 1 on P̃. Hence, from the
learner’s perspective, all assumptions of Proposition 2 hold
with the gaps ∆̃i = p̃ki − 1

2 and the Condorcet winner
ak. We may therefore invoke that result to claim that, with
probability at least 1 − δ1, for time T > τ(δ) any i ̸= k
and j ̸= k, Nij(T ) ≤ 4α lnT

min(∆̃2
i ,∆̃

2
j )

. For all combinations of

(i, j), i ̸= j, i ̸= k, j ̸= k,

i ̸=k
j ̸=k∑
i ̸=j

Nij(T ) ≤
(K − 1)(K − 2)

2
· 4α lnT

min(∆̃2
i , ∆̃

2
j )
. (10)

Proposition A.1. Let ai be any arm different from the attack
target arm ak,

Pr
(
∀t ≥ max

i
t̃i,

wik(t)
Nik(t)

+
√

α lnT
Nik(t)

< 1
2

)
≥ 1− (K − 1)δ2,

(11)
so, with the same probability, ∀i ̸= k, ai /∈ C.

Proof. See Appendix G.

By Proposition A.1, Pr
(
uik(t) < 1

2

)
≥ 1 − (K − 1)δ2

for every t > maxi t̃i. Whenever this inequality holds, ai is
excluded from the candidate set C and therefore cannot be
selected as the first comparison arm c in round t. If instead
c = k, the second arm d = argmaxj ̸=k ujk(t) also differs
from i because uik(t) < ukk(t) = 1

2 ≤ udk(t). Hence the
ordered pairs (i, k) and (k, i) are never chosen for comparison
in that round, implying Nik(t+ 1) = Nik(t).

Combining with Theorem III.1, for each arm ai, where i ̸=
k, there are at most

⌈(√
α lnT +

√
1
2 ln

1
δ2

)2

(
1
2 − p̃ik

)2
⌉

(12)

comparisons with ak.
Putting (10) and (12) with

R(t) =

t∑
h=1

(
1{ac(h) ̸=ak} + 1{ad(h)̸=ak}

)
, (13)



we derive:

Rattack(T ) = 2 ·

i ̸=k
j ̸=k∑
i ̸=j

Nij(T ) + 1 ·
∑
i ̸=k

Nki(T )

≤ 2 · (K − 1)(K − 2)

2
· 4α lnT

min(∆̃2
i , ∆̃

2
j )

+ (K − 1) ·max
i

{ p̃ki − pki
1− pki

}

·max
i

{(√
α lnT +

√
1
2 ln

1
δ2

)2(
p̃ki − 1

2

)2 }
= O(K2 lnT ).

And T ≥ R(T ) ≥ T − Rattack(T ) = T − O(K2 lnT ) =
O(T ).

C. Proof of Theorem III.3
Proof. (12) amounts to a total of

(K − 1) ·max
i

{(√
α lnT +

√
1
2 ln

1
δ2

)2

(
p̃ki − 1

2

)2 }
comparisons with ak for all arms ai, where i ̸= k and the
max operation is taken over all i. After that, with c = k and
d = k, we can infer that the attack has succeeded.
Since the attack cost for each comparison between ai and ak,
i ̸= k, can be defined as a random variable that takes on a
value of 1 if there is an attack and 0 if there is no attack.

Let PAki denote the probability that attack reverses the
outcome Zt

k,i from 0 to 1, we can calculate the expected attack
cost as follows:

Lik
attack =

{
1 with probability PAki,

0 with probability 1− PAki

E(Lik
attack) = 1× PAki + 0× (1− PAki)

= PAki.

To express PAki in terms of the estimated probability p̃ki
and the actual probability pki, we use the given relationship:

PAki =
p̃ki − pki
1− pki

.

Substituting this back into the expression for the expected
attack cost, we get:

E(Lik
attack) =

p̃ki − pki
1− pki

.

It is bounded by maxi(
p̃ki−pki

1−pki
) for all arms i ̸= k. The

total attack cost is

Lattack(T ) =(K − 1) ·max
i

{ p̃ki − pki
1− pki

}

·max
i

{(√
α lnT +

√
1
2 ln

1
δ2

)2(
p̃ki − 1

2

)2 }
which is O(K lnT ).

D. Proof of Lemma IV.1

Proof. Set p̂ij(t) = wij(t)/Nij(t). Without attacks, Hoeffd-
ing’s inequality and a union bound over the K2 ordered pairs
give

Pr
(
∃ t > t0, i, j :

∣∣p̂ij(t)− pij
∣∣ > √

α ln t
Nij(t)

)
≤ (4α− 1)K2

(2α− 1) t 2α−1
0

. (14)

Choose

t0 :=
(

(4α−1)K2

(2α−1)δ

) 1
2α−1

, (15)

so that the right-hand side of (14) equals δ1:

Pr
(
∃ t > t0, i, j :

∣∣p̂ij(t)− pij
∣∣ > √

α ln t
Nij(t)

)
≤ δ1. (16)

Let w⋆
ij(t) denote the (unobserved) win count had no attacks

occurred. Because the adversary flips at most A outcomes,∣∣wij(t)− w⋆
ij(t)

∣∣ ≤ A =⇒
∣∣p̂ij(t)− p̂⋆ij(t)

∣∣ ≤ A

Nij(t)
.

Define
t1 := exp

(
K4/α2

)
, (17)

so that A ≤ αA
√
ln t

K2 for all t ≥ t1. Hence, whenever the
no-attack concentration event in (16) holds, we have for every
(i, j) and t ≥ t1∣∣p̂ij(t)− pij

∣∣ ≤√
α ln t
Nij(t)

+ αA
√
ln t

Nij(t)K2 = uij(t)− p̂ij(t).

Since lij(t) = 1 − uji(t), the same bound yields pij ∈
[lij(t), uij(t)].

Let τd(δ1)) be as in (5); note that τd(δ1) = max{t0, t1}.
With (16),

Pr
(
∃ t > τd(δ1), i, j : pij /∈ [lij(t), uij(t)]

)
≤ Pr

(
∃ t > t0, i, j :

∣∣p̃ij(t)− pij
∣∣ > √

α ln t
Nij(t)

)
≤ δ1, (18)

which completes the proof.

E. Proof of Theorem IV.2

Proof. First, note that the algorithm never actually compares a
sub-optimal arm against itself beyond the initial seeding phase.
In particular, once t > τd(δ1), if the algorithm were to select
arm ai as both the champion and challenger in a round (i.e.
c = i and d = i), it would contradict the fact that uii(t) =
1
2 < p1i ≤ u1i(t) (since a1 is the Condorcet winner). Thus,
for t > τd(δ1) we have Nii(t) = 0 for all i ̸= 1, and trivial
bounds hold for (i, i) pairs. We henceforth consider distinct
arms i ̸= j.

Suppose, for contradiction, that there exist distinct arms i ̸=
j and a time t > τd(δ1) such that

Nij(t) > Nmax

(
min{∆i,∆j}, t

)
.

Let s ≤ t be the last round in which ai and aj were
matched. Without loss of generality, assume the algorithm



chose c = i and d = j at time s (the opposite case is
symmetric).

The choice c = i implies

uij(s) ≥ 1
2 , (19)

for otherwise arm ai would not have been a plausible cham-
pion against aj . Likewise, selecting d = j requires uji(s) ≥
u1i(s); because p1i ≤ u1i(s) under the high-probability event,
this gives

lij(s) = 1− uji(s) ≤ 1− p1i = pi1. (20)

Subtracting (20) from (19) yields

uij(s)− lij(s) ≥ 1
2 − pi1 = ∆i. (21)

On the other hand, the attack-aware formula for the interval
width gives

uij(s)− lij(s) = 2

√
α ln s

Nij(s)

(
1 +

√
α

Nij(s)
A
K2

)
. (22)

Rewrite the inequality

2

√
α ln s

Nij(s)

(
1 +

√
α

Nij(s)

A

K2

)
≥ ∆i. (23)

Let x := Nij(s)
−1/2 > 0. Inequality (23) becomes the

quadratic condition

Bcx2+B x−∆i ≥ 0, B := 2
√
α ln s, c :=

√
α

A

K2
.

Since Bc > 0, the inequality holds only for x ≤ x⋆, where

x⋆ =

√
1 +

2c∆i

B
− 1

2c
.

Re-expressing in terms of x ≤ x⋆ yields (7) with ∆ = ∆i:
Nij(s) ≤ Nmax(∆i, s).

Because Nij(t) exceeds the threshold in (7) with ∆ = ∆i,
the right-hand side of (22) is strictly smaller than ∆i.

Consequently

uij(s)− lij(s) < ∆i. (24)

Inequalities (21) and (24) are incompatible, giving the
desired contradiction.

The symmetric argument (with i and j interchanged) yields

uji(s)− lji(s) ≥ 1
2 − pj1 = ∆j . (25)

Consequently

Nji(s) ≤ Nmax(∆j , s).

The function Nmax(∆, t) in (7) is decreasing in the gap
argument ∆ (larger gaps require fewer comparisons) and non-
decreasing in the time index t.

Because min{∆i,∆j} ≤ ∆i,∆j and s ≤ t, it follows that

Nmax(∆i, s) ≤ Nmax

(
min{∆i,∆j}, s

)
≤ Nmax

(
min{∆i,∆j}, t

)

and

Nmax(∆j , s) ≤ Nmax

(
min{∆i,∆j}, t

)
.

Hence each pair–specific bound Nij(s) ≤ Nmax(∆i, s) and
Nji(s) ≤ Nmax(∆j , s) is no larger than the common threshold
Nmax

(
min{∆i,∆j}, t

)
, justifying the use of this single worst-

case bound in the contradiction argument and in the remainder
of the proof.

Hence Nij(t) ≤ Nmax

(
min{∆i,∆j}, t

)
must hold for

every pair i ̸= j when t > τd(δ1).
Finally, for t ≤ τd(δ1) we trivially have Nij(t) ≤ t ≤

τd(δ1). Combining the two time ranges, we conclude that

Nij(t) ≤ max
{
τd(δ1), Nmax

(
min{∆i,∆j}, t

)}
for all distinct i, j with probability at least 1− δ1, completing
the proof.

F. Proof of Theorem IV.3

Proof. Work on the 1 − δ1 event granted by Lemma IV.1
and Theorem IV.2, so all confidence intervals and comparison
bounds hold.

During the first τd(δ1) rounds the algorithm may pull any
arms. Each round can contribute at most 2 to R(t) (both
selected arms could be sub-optimal). Hence the total regret
accumulated in rounds 1, . . . , τd(δ1) is at most 2 τd(δ1).

After round τd(δ1), Fix a pair of distinct sub-optimal arms
i, j ̸= 1. Every comparison between ai and aj contributes
exactly 2 to the regret, and by Theorem IV.2 such a pair is
selected at most Nmax(∆

∗, t) times up to round t. Hence the
regret due to this pair is bounded by 2Nmax(∆

∗, t). Summing
over all unordered pairs {i, j} with i, j ̸= 1 yields a post-
threshold regret bound of 2

∑
i>j Nmax(∆

∗, t).
Adding the contribution from the initial phase to that from

the post-threshold phase gives

R(t) ≤ 2 τd(δ1) + 2
∑
i>j

Nmax

(
∆∗, t

)
,

which holds on the 1− δ1 event, completing the proof.
Putting the explicit formulas for τd(δ1) and Nmax(∆ij , t)

back into the regret bound gives the fully expanded inequality

R(t) ≤ 2 max
{
eK4/α2

,
(

(4α−1)K2

(2α−1) δ1

) 1
2α−1

}

+ (K − 1)(K − 2)

 2
√
αA/K2√

1 +
2A∆∗

K2
√
α ln t

− 1


2

= O(K2lnT +A
√
lnT ).

(26)



G. Proof of Proposition A.1

Proof. Abbreviate N := Nik(t) and a :=
√
α lnT .

Because the empirical wins satisfy wik(t) ∼ Bin(N, p̃ik),
the upper-confidence statistic can be written as uik(t) =
wik(t)

N +a/
√
N . Denote the bonus term by c := a√

N
. To bound

the event uik(t) ≥ 1
2 observe that uik(t) ≥ 1

2 ⇔
wik(t)

N −p̃ik ≥
∆̃i − c. Hoeffding’s inequality therefore gives

P
(
(uik(t) ≥ 1

2

)
≤ exp

[
−2N(∆̃i − c)2

]
.

We now show that this exponent does not exceed − ln(1/δ2)
once N ≥ Nmin

ik . Set s :=
√
N ; then c = a/s and

the inequality 2N(∆̃ia − c)2 ≥ ln(1/δ) becomes 2∆̃2
i s

2 −
4∆̃ia s + 2a2 − ln(1/δ2) ≥ 0. Because the quadratic has
positive leading coefficient, it is non-negative for every s

not less than the larger root s+ = (a +
√

1
2 ln(1/δ2))/∆̃i.

Consequently the bound holds for every N = s2 ≥ s2+, and
the ceiling in the definition of Nmin

ik guarantees precisely this
condition. Hence P

(
uik(t) ≥ 1

2

)
≤ δ2 and (11) follows.

Finally we justify that ∆̃i − c > 0 under the same
requirement. Since x 7→ a/

√
x is decreasing, c ≤ a/

√
Nmin

ik .

But Nmin
ik ≥ (a +

√
1
2 ln(1/δ2))

2/∆̃2
i , so c ≤ a∆̃i/(a +√

1
2 ln(1/δ2)) < ∆̃i.
Now consider all K−1 non-target arms and let Ei := {∀t ≥

t̃i, uik(t) <
1
2}. Applying the union bound yields

Pr
( ⋂

i ̸=k

Ei

)
≥ 1−

∑
i ̸=k

Pr(Ec
i ) ≥ 1− (K − 1)δ2.

Hence, with probability at least 1− (K − 1)δ2, there exists
the deterministic time t̃max := maxi ̸=k t̃i after which uik(t) <
1
2 for every i ̸= k and every t ≥ t̃max. Because Line 7 of
RUCB includes an arm in the candidate set C only if its
upper bound is at least 1

2 , no non-target arm can belong to C
after t̃max.
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