UNIVERSITY OF CALIFORNIA, DAVIS Department of Materials Science and Engineering

EMS 172: Smart Materials

CRN: 41639; Class times: TR: 1:40-3:10pm in Chem 166 and F: 2:10-3:00pm in Wellman 212

COURSE OUTLINE - Fall 2019

Instructors:	Professor Yayoi Takamura 2009 Kemper Hall email: ytakamura @ ucdavis.edu Office hours: M4:00pm and W 11:00an Course webpage: Canvas	n or by appointment in 2009 Kemper
Teaching Assista	<u>nt</u> : Mingzhen Feng Email: mzfeng @ ucdavis.edu Office hour: T 9am in 1033 Academic S	Surge
<u>Textbook</u> :	or in soft cover form for \$24.99, from Spr	8163-9 (4 th edition available free electronically,
tt 1. L 2. S I 3. N	ded Textbooks: A copy of these textbooks will he course reader. J. Solymar and D. Walsh, <i>Electrical Properties</i> 004/2014, ISBN: 0-19-926793-6 S.O. Kasap, <i>Principles of Electronic Materials of</i> SBN: 0-07-295791-3 J.A. Spaldin, <i>Magnetic Materials: Fundamenta</i> Cambridge University Press, 2003/2010, ISBN:	and Devices, 3 rd Edition, McGraw-Hill, 2006, Is and Device Applications, 1 st /2 nd editions,
Prerequisites:	CHE 110A or PHY 9D; ENG 6 or ECH	60 or equivalent (recommended)
<u>Grading</u> : Course Policies:	Homework (~ 7 assignments) Exam 1 (Thurs. Nov. 7 th , in-class) Final (Wed., Dec. 11 th , 6 pm)	40% 25% 35%

- 1. Homework is due promptly at the start of class on the due date via Canvas (preferred for color plots) or in paper. Late homework will be penalized 10% of the total point value per day up to 48 hrs past the deadline.
- 2. Exams will be closed book, closed notes, but you will be allowed one $8\frac{1}{2}$ " x 11" cheat sheet (double sided) for the midterm exam and two 8 1/2 " x 11" cheat sheets (double sided) for the final exam.
- 3. Unless you are instructed otherwise, you may discuss homework problems with other students in the class, but submitted work must be your own. The UC Davis Code of Academic Conduct will be strictly enforced. (see http://sja.ucdavis.edu/files/cac.pdf)
- 4. It is expected that students will abide by the UC Davis Principles of Community (see http://occr.ucdavis.edu/poc/).

Upon successful completion of this course, students will understand the basic electronic, optical, and magnetic properties of materials in the solid state and their structure-property relationships. ABET student outcome (1) states that students will gain an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.

UNIVERSITY OF CALIFORNIA, DAVIS Department of Materials Science and Engineering

EMS 172: Smart Materials CRN: 41639; **Class times**: TR: 1:40-3:10pm in Chem 166 and *F: 2:10-3:00pm in Wellman 212*

TENTATIVE CLASS SCHEDULE + READINGS

Fall 2019

Date	Торіс	Readings
Sept. 26	Intro, Crystal Structures, Bonding	
Sept. 27	Schrödinger's Equation	Hummel Ch.4
Oct. 1	Energy Bands in a Crystal	Hummel Ch. 5.1, 5.2, 5.7
Oct. 3	Electrons in a Crystal	Hummel Ch. 6
Oct. 4	Electrons in a Crystal/Problem Solving	Hummel Ch. 6
Oct. 8	Conductors	Hummel Ch. 7.1-7.4
Oct. 10	Conductors/Superconductors	Hummel Ch. 7.5, 7.6
Oct. 11	Problem Solving	
Oct. 15	Intrinsic Semiconductors	Solymar & Walsh Ch. 8 (Course reader
Oct. 17	Intrinsic Semiconductors	Solymar & Walsh Ch. 8 (Course reade
Oct. 18	Problem Solving	
Oct. 22	Extrinsic Semiconductors	Solymar & Walsh Ch. 8 (Course reade
Oct. 24	Extrinsic Semiconductors/Devices	
Oct. 25	Problem Solving	
Oct. 29	Devices/Dielectrics	Kasap Ch. 7 (Course Reader)
Oct. 31	Dielectrics	Kasap Ch. 7 (Course reader)
Nov. 1	Review for Midterm Exam	
Nov. 5	Ferroelectric Properties	Kasap Ch. 7 (Course reader)
Nov. 7	MIDTERM EXAM – in class	Through Dielectrics
Nov. 8	Internship and Career Center Presentation (tentative)	
Nov. 12	Ferroelectric Properties	
Nov. 14	Optical Properties	Hummel Ch. 10
Nov. 15	Problem Solving	
Nov. 19	Optical Properties	Hummel Ch. 11/12
Nov. 21	Magnetic Properties	Hummel Ch. 14-16
Nov. 22	Problem Solving	
Nov. 26	Magnetic Properties	Hummel Ch. 14-16/Supplemental
Nov. 28/29	THANKSGIVING HOLIDAY	NO CLASS
Dec. 3	Magnetic Properties	Hummel Ch. 14-16
Dec. 5	Magnetic Properties	Hummel Ch. 14-16
Dec. 6	Final Exam Review	
Dec. 11	FINAL EXAM– 6 pm	Everything in the course with emphasi on material after the midterm exam